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Introduction 

 

This Special Report on the Ocean and Cryosphere1 in a Changing Climate (SROCC) was prepared following an IPCC Panel 

decision in 2016 to prepare three Special Reports during the Sixth Assessment Cycle2. By assessing new scientific 

literature3, the SROCC4 responds to government and observer organization proposals. The SROCC follows the other two 

Special Reports on Global Warming of 1.5°C (SR1.5) and on Climate Change and Land (SRCCL)5 and the 

Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services (IPBES) Global Assessment Report on 

Biodiversity and Ecosystem Services. 

 

This Summary for Policymakers (SPM) compiles key findings of the report and is structured in three parts: SPM.A: Observed 

changes and impacts, SPM.B: Projected changes and risks, and SPM.C: Implementing Responses to Ocean and Cryosphere 

Change. To assist navigation of the SPM, icons indicate where content can be found. Confidence in key findings is reported 

using IPCC calibrated language66 and the underlying scientific basis for each key finding is indicated by references to 

sections of the underlying report.  

Key of icons to indicate content 

 

                                                
1 The cryosphere is defined in this report (Annex I: Glossary) as the components of the Earth System at and below the land and ocean 
surface that are frozen, including snow cover, glaciers, ice sheets, ice shelves, icebergs, sea ice, lake ice, river ice, permafrost, and 
seasonally frozen ground. 
2 The decision to prepare a Special Report on Climate Change and Oceans and the Cryosphere was made at the Forty-Third Session 
of the IPCC in Nairobi, Kenya, 11-13 April 2016. 
3 Cut-off dates: 15 October 2018 for manuscript submission, 15 May 2019 for acceptance for publication. 
4 The SROCC is produced under the scientific leadership of Working Group I and Working Group II. In line with the approved outline, 
mitigation options (Working Group III) are not assessed with the exception of the mitigation potential of blue carbon (coastal 
ecosystems). 
5 The full titles of these two Special Reports are: “Global Warming of 1.5°C. An IPCC special report on the impacts of global warming 
of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global 
response to the threat of climate change, sustainable development, and efforts to eradicate poverty”; “Climate Change and Land: an 
IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse 
gas fluxes in terrestrial ecosystems”. 
6 Each finding is grounded in an evaluation of underlying evidence and agreement. A level of confidence is expressed using five 
qualifiers: very low, low, medium, high and very high, and typeset in italics, e.g., medium confidence. The following terms have been 
used to indicate the assessed likelihood of an outcome or a result: virtually certain 99–100% probability, very likely 90–100%, likely 
66–100%, about as likely as not 33–66%, unlikely 0–33%, very unlikely 0–10%, exceptionally unlikely 0–1%. Assessed likelihood 
is typeset in italics, e.g., very likely. This is consistent with AR5 and the other AR6 Special Reports. Additional terms (extremely likely 
95–100%, more likely than not >50–100%, more unlikely than likely 0–<50%, extremely unlikely 0–5%) are used when appropriate. 
This Report also uses the term ‘likely range’ or ‘very likely range’ to indicate that the assessed likelihood of an outcome lies within the 
17-83% or 5-95% probability range. For more details see {1.9.2, Figure 1.4} 
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Startup Box: The importance of the ocean and cryosphere for people 

 

All people on Earth depend directly or indirectly on the ocean and cryosphere. The global ocean covers 71% of the Earth 

surface and contains about 97% of the Earth’s water. The cryosphere refers to frozen components of the Earth system1. 

Around 10% of Earth’s land area is covered by glaciers or ice sheets. The ocean and cryosphere support unique habitats, 

and are interconnected with other components of the climate system through global exchange of water, energy and 

carbon. The projected responses of the ocean and cryosphere to past and current human-induced greenhouse gas 

emissions and ongoing global warming include climate feedbacks, changes over decades to millennia that cannot be 

avoided, thresholds of abrupt change, and irreversibility. {Box 1.1, 1.2} 

 

Human communities in close connection with coastal environments, small islands (including Small Island Developing 

States, SIDS), polar areas and high mountains7 are particularly exposed to ocean and cryosphere change, such as sea level 

rise, extreme sea level and shrinking cryosphere. Other communities further from the coast are also exposed to changes 

in the ocean, such as through extreme weather events. Today, around 4 million people live permanently in the Arctic 

region, of whom 10% are Indigenous. The low-lying coastal zone8 is currently home to around 680 million people (nearly 

10% of the 2010 global population), projected to reach more than one billion by 2050. SIDS are home to 65 million 

people. Around 670 million people (nearly 10% of the 2010 global population), including Indigenous peoples, live in high 

mountain regions in all continents except Antarctica. In high mountain regions, population is projected to reach between 

740 and 840 million by 2050 (about 8.4–8.7% of the projected global population). {1.1, 2.1, 3.1, Cross-Chapter Box 9, 

Figure 2.1}  

 

In addition to their role within the climate system, such as the uptake and redistribution of natural and anthropogenic 

carbon dioxide (CO2) and heat, as well as ecosystem support, services provided to people by the ocean and/or cryosphere 

include food and water supply, renewable energy, and benefits for health and well-being, cultural values, tourism, trade, 

and transport. The state of the ocean and cryosphere interacts with each aspect of sustainability reflected in the United 

Nations Sustainable Development Goals (SDGs). {1.1, 1.2, 1.5} 

 
  

                                                
7 High mountain areas include all mountain regions where glaciers, snow or permafrost are prominent features of the landscape. For 
a list of high mountain regions covered in this report, see Chapter 2. Population in high mountain regions is calculated for areas less 
than 100 kilometres from glaciers or permafrost in high mountain areas assessed in this report {2.1}. Projections for 2050 give the 
range of population in these regions across all five of the Shared Socioeconomic Pathways {Cross-Chapter Box 1 in Chapter 1}. 
8 Population in the low elevation coastal zone is calculated for land areas connected to the coast, including small island states, that 
are less than 10 metres above sea level {Cross-Chapter Box 9}. Projections for 2050 give the range of population in these regions 
across all five of the Shared Socioeconomic Pathways {Cross-Chapter Box 1 in Chapter 1}. 
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SPM.A OBSERVED CHANGES AND IMPACTS  

 

Observed Physical Changes 

 

A1. Over the last decades, global warming has led to widespread shrinking of the cryosphere, with mass loss from ice 

sheets and glaciers (very high confidence), reductions in snow cover (high confidence) and Arctic sea ice extent and 

thickness (very high confidence), and increased permafrost temperature (very high confidence). {2.2, 3.2, 3.3, 3.4, Figures 

SPM.1, SPM.2} 

 

A1.1 Ice sheets and glaciers worldwide have lost mass (very high confidence). Between 2006 and 2015, 

the Greenland Ice Sheet9 lost ice mass at an average rate of 278 ± 11 Gt  yr–1 (equivalent to 0.77 ± 0.03 mm yr–1 of global 

sea level rise), mostly due to surface melting (high confidence). In 2006–2015, the Antarctic Ice Sheet10 lost mass at an 

average rate of 155 ± 19 Gt yr–1 (0.43 ± 0.05 mm yr–1), mostly due to rapid thinning and retreat of major outlet glaciers 

draining the West Antarctic Ice Sheet (very high confidence). Glaciers worldwide outside Greenland and Antarctica lost 

mass at an average rate of 220 ± 30 Gt yr–1 (equivalent to 0.61 ± 0.08 mm yr–1 sea level rise) in 2006–2015. {3.3.1, 

4.2.3, Appendix 2.A, Figure SPM.1} 

 

A1.2 Arctic June snow cover extent on land declined by 13.4 ± 5.4% per decade from 1967 to 2018, 

a total loss of approximately 2.5 million km2, predominantly due to surface air temperature increase (high confidence). In 

nearly all high mountain areas, the depth, extent and duration of snow cover have declined over recent decades, especially 

at lower elevation (high confidence). {2.2.2, 3.4.1, Figure SPM.1} 

 

A1.3 Permafrost temperatures have increased to record high levels (1980s-present) (very high 

confidence) including the recent increase by 0.29°C ± 0.12°C from 2007 to 2016 averaged across polar and high-

mountain regions globally. Arctic and boreal permafrost contain 1460–1600 Gt organic carbon, almost twice the carbon 

in the atmosphere (medium confidence). There is medium evidence with low agreement whether northern permafrost 

regions are currently releasing additional net methane and CO2 due to thaw. Permafrost thaw and glacier retreat have 

decreased the stability of high-mountain slopes (high confidence). {2.2.4, 2.3.2, 3.4.1, 3.4.3, Figure SPM.1}  

 

A1.4 Between 1979 and 2018, Arctic sea ice extent has very likely decreased for all months of the year. 

September sea ice reductions are very likely 12.8 ± 2.3% per decade. These sea ice changes in September are likely 

unprecedented for at least 1000 years. Arctic sea ice has thinned, concurrent with a transition to younger ice: between 

                                                
9 Including peripheral glaciers 
10 360 Gt ice corresponds to 1 mm of global mean sea level  
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1979 and 2018, the areal proportion of multi-year ice at least five years old has declined by approximately 90% (very 

high confidence). Feedbacks from the loss of summer sea ice and spring snow cover on land have contributed to amplified 

warming in the Arctic (high confidence) where surface air temperature likely increased by more than double the global 

average over the last two decades. Changes in Arctic sea ice have the potential to influence mid-latitude weather (medium 

confidence), but there is low confidence in the detection of this influence for specific weather types. Antarctic sea ice 

extent overall has had no statistically significant trend (1979–2018) due to contrasting regional signals and large 

interannual variability (high confidence). {3.2.1, 6.3.1; Box 3.1; Box 3.2; A1.2, Figures SPM.1, SPM.2} 
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Figure SPM.1: Observed and modelled historical changes in the ocean and cryosphere since 195011, and projected future changes 

under low (RCP2.6) and high (RCP8.5) greenhouse gas emissions scenarios. {Box SPM.1}. Changes are shown for: (a) Global mean 

surface air temperature change with likely range {Box SPM.1, Cross-Chapter Box 1 in Chapter 1}. Ocean-related changes with very 

likely ranges for (b) Global mean sea surface temperature change {Box 5.1, 5.2.2}; (c) Change factor in surface ocean marine heatwave 

days {6.4.1}; (d) Global ocean heat content change (0–2000 m depth). An approximate steric sea level equivalent is shown with the 

right axis by multiplying the ocean heat content by the global-mean thermal expansion coefficient (ε ≈ 0.125 m per 1024 Joules)12 for 

observed warming since 1970 {Figure 5.1}; (h) Global mean surface pH (on the total scale). Assessed observational trends are compiled 

from open ocean time series sites longer than 15 years {Box 5.1, Figure 5.6, 5.2.2}; and (i) Global mean ocean oxygen change (100–

600 m depth). Assessed observational trends span 1970–2010 centered on 1996 {Figure 5.8, 5.2.2}. Sea-level changes with likely 

ranges for (m) Global mean sea level change. Hashed shading reflects low confidence in sea level projections beyond 2100 and bars 

at 2300 reflect expert elicitation on the range of possible sea level change {4.2.3, Figure 4.2}; and components from (e,f) Greenland 

and Antarctic ice sheet mass loss {3.3.1}; and (g) Glacier mass loss {Cross-Chapter Box 6 in Chapter 2, Table 4.1}. Further cryosphere-

related changes with very likely ranges for (j) Arctic sea ice extent change for September13 {3.2.1, 3.2.2 Figure 3.3}; (k) Arctic snow 

cover change for June (land areas north of 60°N) {3.4.1, 3.4.2, Figure 3.10}; and (l) Change in near-surface (within 3–4 m) permafrost 

area in the Northern Hemisphere {3.4.1, 3.4.2, Figure 3.10}. Assessments of projected changes under the intermediate RCP4.5 and 

RCP6.0 scenarios are not available for all variables considered here, but where available can be found in the underlying report {For 

RCP4.5 see: 2.2.2, Cross-Chapter Box 6 in Chapter 2, 3.2.2, 3.4.2, 4.2.3, for RCP6.0 see Cross-Chapter Box 1 in Chapter 1}. 

 
 

 

Box SPM.1: Use of climate change scenarios in SROCC  

 

Assessments of projected future changes in this report are based largely on CMIP514 climate model projections using 

Representative Concentration Pathways (RCPs). RCPs are scenarios that include time series of emissions and 

concentrations of the full suite of greenhouse gases (GHGs) and aerosols and chemically active gases, as well as land use 

/ land cover. RCPs provide only one set of many possible scenarios that would lead to different levels of global warming. 

{Annex I: Glossary} 

 

This report uses mainly RCP2.6 and RCP8.5 in its assessment, reflecting the available literature. RCP2.6 represents a low 

greenhouse gas emission, high mitigation future, that in CMIP5 simulations gives a two in three chance of limiting global 

warming to below 2°C by 2100 15. By contrast, RCP8.5 is a high greenhouse gas emission scenario in the absence of 

policies to combat climate change, leading to continued and sustained growth in atmospheric greenhouse gas 

                                                
11 This does not imply that the changes started in 1950. Changes in some variables have occurred since the pre-industrial period.  
12 This scaling factor (global-mean ocean expansion as sea level rise in metres per unit heat) varies by about 10% between different 
models, and it will systematically increase by about 10% by 2100 under RCP8.5 forcing due to ocean warming increasing the average 
thermal expansion coefficient. {4.2.1, 4.2.2, 5.2.2} 
13 Antarctic sea ice is not shown here due to low confidence in future projections. {3.2.2} 
14 CMIP5 is Phase 5 of the Coupled Model Intercomparison Project (Annex I: Glossary).  
15 A pathway with lower emissions (RCP1.9), which would correspond to a lower level of projected warming than RCP2.6, was not 
part of CMIP5. 
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concentrations. Compared to the total set of RCPs, RCP8.5 corresponds to the pathway with the highest greenhouse gas 

emissions. The underlying chapters also reference other scenarios, including RCP4.5 and RCP6.0 that have intermediate 

levels of greenhouse gas emissions and result in intermediate levels of warming. {Annex I: Glossary, Cross-Chapter Box 1 

in Chapter 1} 

 

Table SPM.1 provides estimates of total warming since the pre-industrial period under four different RCPs for key 

assessment intervals used in SROCC. The warming from the 1850–1900 period until 1986–2005 has been assessed as 

0.63°C (0.57 to 0.69°C likely range) using observations of near-surface air temperature over the ocean and over landy. 

Consistent with the approach in AR5, modelled future changes in global mean surface air temperature relative to 1986–

2005 are added to this observed warming. {Cross-Chapter Box 1 in Chapter 1} 

 

Table SPM.1: Projected global mean surface temperature change relative to 1850–1900 for two time periods under four 

RCPs16. 
 

Near-term: 2031–2050 End-of-century: 2081–2100 

Scenario Mean (°C) likely range (°C) Mean (°C) likely range (°C) 

RCP2.6 1.6 1.1 to 2.0 1.6 0.9 to 2.4 

RCP4.5 1.7 1.3 to 2.2 2.5 1.7 to 3.3 

RCP6.0 1.6 1.2 to 2.0 2.9 2.0 to 3.8 

RCP8.5 2.0 1.5 to 2.4 4.3 3.2 to 5.4 

{Cross-Chapter Box 1 in Chapter 1} 

 

 

A2. It is virtually certain that the global ocean has warmed unabated since 1970 and has taken up more than 90% of 

the excess heat in the climate system (high confidence). Since 1993, the rate of ocean warming has more than doubled 

(likely). Marine heatwaves have very likely doubled in frequency since 1982 and are increasing in intensity (very high 

confidence). By absorbing more CO2, the ocean has undergone increasing surface acidification (virtually certain). A loss 

of oxygen has occurred from the surface to 1000 m (medium confidence). {1.4, 3.2, 5.2, 6.4, 6.7, Figures SPM.1, SPM.2} 

  

                                                
16 In some instances this report assesses changes relative to 2006–2015. The warming from the 1850–1900 period until 2006–2015 
has been assessed as 0.87°C (0.75 to 0.99°C likely range). {Cross-Chapter Box 1 in Chapter 1}. 
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A2.1. The ocean warming trend documented in the IPCC Fifth Assessment Report (AR5) has continued. 

Since 1993 the rate of ocean warming and thus heat uptake has more than doubled (likely)from 3.22 ± 1.61 ZJ yr–1 (0–

700 m depth) and 0.97 ± 0.64 ZJ yr–1 (700–2000 m) between 1969 and 1993, to 6.28 ± 0.48 ZJ yr–1 (0–700 m) and 

3.86 ± 2.09 ZJ yr–1 (700–2000 m) between 1993 and 201717, and is attributed to anthropogenic forcing (very likely). 

{1.4.1, 5.2.2, Table 5.1, Figure SPM.1} 

 

A2.2 The Southern Ocean accounted for 35–43% of the total heat gain in the upper 2000 m global 

ocean between 1970 and 2017 (high confidence). Its share increased to 45–62% between 2005 and 2017 (high 

confidence). The deep ocean below 2000 m has warmed since 1992 (likely), especially in the Southern Ocean. {1.4, 3.2.1, 

5.2.2, Table 5.1, Figure SPM.2} 

 

A2.3 Globally, marine heat related events have increased; marine heatwaves18, defined when the daily 

sea surface temperature exceeds the local 99th percentile over the period 1982 to 2016, have doubled in frequency and 

have become longer-lasting, more intense and more extensive (very likely). It is very likely that between 84–90% of marine 

heatwaves that occurred between 2006 and 2015 are attributable to the anthropogenic temperature increase. {Table 6.2, 

6.4; Figures SPM.1, SPM.2} 

 

A2.4 Density stratification19 has increased in the upper 200 m of the ocean since 1970 (very likely). 

Observed surface ocean warming and high latitude addition of freshwater are making the surface ocean less dense relative 

to deeper parts of the ocean (high confidence) and inhibiting mixing between surface and deeper waters (high confidence). 

The mean stratification of the upper 200 m has increased by 2.3 ± 0.1% (very likely range) from the 1971–1990 average 

to the 1998–2017 average. {5.2.2} 

 

A2.5 The ocean has taken up between 20–30% (very likely) of total anthropogenic CO2 emissions since 

the 1980s causing further ocean acidification. Open ocean surface pH has declined by a very likely range of 0.017–0.027 

pH units per decade since the late 1980s20, with the decline in surface ocean pH very likely to have already emerged from 

background natural variability for more than 95% of the ocean surface area. {3.2.1; 5.2.2; Box 5.1; Figures SPM.1, SPM.2} 

 

                                                
17 ZJ is Zettajoule and is equal to 1021 Joules. Warming the entire ocean by 1°C requires about 5500 ZJ; 144 ZJ would warm the top 
100 m by about 1°C. 
18 A marine heatwave is a period of extreme warm near-sea surface temperature that persists for days to months and can extend up 
to thousands of kilometres (Annex I: Glossary). 
19 In this report density stratification is defined as the density contrast between shallower and deeper layers. Increased stratification 
reduces the vertical exchange of heat, salinity, oxygen, carbon, and nutrients. 
20 Based on in-situ records longer than fifteen years. 
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A2.6 Datasets spanning 1970–2010 show that the open ocean has lost oxygen by a very likely range 

of 0.5–3.3% over the upper 1000 m, alongside a likely expansion of the volume of oxygen minimum zones by 3–8% 

(medium confidence). Oxygen loss is primarily due to increasing ocean stratification, changing ventilation and 

biogeochemistry (high confidence). {5.2.2; Figures SPM.1, SPM.2} 

 

A2.7 Observations, both in situ (2004–2017) and based on sea surface temperature reconstructions, 

indicate that the Atlantic Meridional Overturning Circulation (AMOC)21 has weakened relative to 1850–1900 (medium 

confidence). There is insufficient data to quantify the magnitude of the weakening, or to properly attribute it to 

anthropogenic forcing due to the limited length of the observational record. Although attribution is currently not possible, 

CMIP5 model simulations of the period 1850–2015, on average, exhibit a weakening AMOC when driven by 

anthropogenic forcing. {6.7}. 

 

A3. Global mean sea level (GMSL) is rising, with acceleration in recent decades due to increasing rates of ice loss from 

the Greenland and Antarctic ice sheets (very high confidence), as well as continued glacier mass loss and ocean thermal 

expansion. Increases in tropical cyclone winds and rainfall, and increases in extreme waves, combined with relative sea 

level rise, exacerbate extreme sea level events and coastal hazards (high confidence). {3.3; 4.2; 6.2; 6.3; 6.8; Figures 

SPM.1, SPM.2, SPM.4, SPM.5} 

 

A3.1 Total GMSL rise for 1902–2015 is 0.16 m (likely range 0.12–0.21 m). The rate of GMSL rise for 

2006–2015 of 3.6 mm yr–1 (3.1–4.1 mm yr–1, very likely range), is unprecedented over the last century (high confidence), 

and about 2.5 times the rate for 1901–1990 of 1.4 mm yr–1 (0.8– 2.0 mm yr–1, very likely range). The sum of ice sheet 

and glacier contributions over the period 2006–2015 is the dominant source of sea level rise (1.8 mm yr–1, very likely 

range 1.7–1.9 mm yr–1), exceeding the effect of thermal expansion of ocean water (1.4 mm yr–1, very likely range 1.1–

1.7 mm yr–1) 22  (very high confidence). The dominant cause of global mean sea level rise since 1970 is anthropogenic 

forcing (high confidence). {4.2.1, 4.2.2, Figure SPM.1} 

 

A3.2 Sea-level rise has accelerated (extremely likely) due to the combined increased ice loss from the 

Greenland and Antarctic ice sheets (very high confidence). Mass loss from the Antarctic ice sheet over the period 2007–

2016 tripled relative to 1997–2006. For Greenland, mass loss doubled over the same period (likely, medium confidence). 

{3.3.1; Figures SPM.1, SPM.2; SPM A1.1} 

                                                
21 The Atlantic Meridional Overturning Circulation (AMOC) is the main current system in the South and North Atlantic Oceans (Annex 
I: Glossary). 
22 The total rate of sea-level rise is greater than the sum of cryosphere and ocean contributions due to uncertainties in the estimate of 
landwater storage. 
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A3.3 Acceleration of ice flow and retreat in Antarctica, which has the potential to lead to sea-level rise 

of several metres within a few centuries, is observed in the Amundsen Sea Embayment of West Antarctica and in Wilkes 

Land, East Antarctica (very high confidence). These changes may be the onset of an irreversible23 ice sheet instability. 

Uncertainty related to the onset of ice sheet instability arises from limited observations, inadequate model representation 

of ice sheet processes, and limited understanding of the complex interactions between the atmosphere, ocean and the 

ice sheet. {3.3.1, Cross-Chapter Box 8 in Chapter 3, 4.2.3} 

 

A3.4 Sea-level rise is not globally uniform and varies regionally. Regional differences, within ±30% of 

the global mean sea-level rise, result from land ice loss and variations in ocean warming and circulation. Differences from 

the global mean can be greater in areas of rapid vertical land movement including from local human activities (e.g. 

extraction of groundwater). (high confidence) {4.2.2, 5.2.2, 6.2.2, 6.3.1, 6.8.2, Figure SPM.2} 

 

A3.5 Extreme wave heights, which contribute to extreme sea level events, coastal erosion and flooding, 

have increased in the Southern and North Atlantic Oceans by around 1.0 cm yr–1 and 0.8 cm yr–1 over the period 1985–

2018 (medium confidence). Sea ice loss in the Arctic has also increased wave heights over the period 1992–2014 (medium 

confidence). {4.2.2, 6.2, 6.3, 6.8, Box 6.1} 

 

A3.6 Anthropogenic climate change has increased observed precipitation (medium confidence), winds 

(low confidence), and extreme sea level events (high confidence) associated with some tropical cyclones, which has 

increased intensity of multiple extreme events and associated cascading impacts (high confidence). Anthropogenic climate 

change may have contributed to a poleward migration of maximum tropical cyclone intensity in the western North Pacific 

in recent decades related to anthropogenically-forced tropical expansion (low confidence). There is emerging evidence for 

an increase in annual global proportion of Category 4 or 5 tropical cyclones in recent decades (low confidence). {6.2, 

Table 6.2, 6.3, 6.8, Box 6.1} 

 

Observed Impacts on Ecosystems 

 

A4. Cryospheric and associated hydrological changes have impacted terrestrial and freshwater species and ecosystems in 

high mountain and polar regions through the appearance of land previously covered by ice, changes in snow cover, and 

thawing permafrost. These changes have contributed to changing the seasonal activities, abundance and distribution of 

ecologically, culturally, and economically important plant and animal species, ecological disturbances, and ecosystem 

functioning. (high confidence) {2.3.2, 2.3.3, 3.4.1, 3.4.3, Box 3.4, Figure SPM.2} 

                                                
23 The recovery time scale is hundreds to thousands of years (Annex I: Glossary). 
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A4.1 Over the last century some species of plants and animals have increased in abundance, shifted 

their range, and established in new areas as glaciers receded and the snow-free season lengthened (high confidence). 

Together with warming, these changes have increased locally the number of species in high mountains, as lower-elevation 

species migrate upslope (very high confidence). Some cold-adapted or snow-dependent species have declined in 

abundance, increasing their risk of extinction, notably on mountain summits (high confidence). In polar and mountain 

regions, many species have altered seasonal activities especially in late winter and spring (high confidence). {2.3.3, Box 

3.4}  

 

A4.2 Increased wildfire and abrupt permafrost thaw, as well as changes in Arctic and mountain 

hydrology have altered frequency and intensity of ecosystem disturbances (high confidence). This has included positive 

and negative impacts on vegetation and wildlife such as reindeer and salmon (high confidence). {2.3.3, 3.4.1, 3.4.3} 

 

A4.3 Across tundra, satellite observations show an overall greening, often indicative of increased plant 

productivity (high confidence). Some browning areas in tundra and boreal forest are indicative that productivity has 

decreased (high confidence). These changes have negatively affected provisioning, regulating and cultural ecosystem 

services, with also some transient positive impacts for provisioning services, in both high mountains (medium confidence) 

and polar regions (high confidence). {2.3.1, 2.3.3, 3.4.1, 3.4.3, Annex I: Glossary} 

 

A5. Since about 1950 many marine species across various groups have undergone shifts in geographical range and 

seasonal activities in response to ocean warming, sea ice change and biogeochemical changes, such as oxygen loss, to 

their habitats (high confidence). This has resulted in shifts in species composition, abundance and biomass production of 

ecosystems, from the equator to the poles. Altered interactions between species have caused cascading impacts on 

ecosystem structure and functioning (medium confidence). In some marine ecosystems species are impacted by both the 

effects of fishing and climate changes (medium confidence). {3.2.3, 3.2.4, Box 3.4, 5.2.3, 5.3, 5.4.1, Figure SPM.2}  

 

A5.1 Rates of poleward shifts in distributions across different marine species since the 1950s are 52 ± 

33 km per decade and 29 ± 16 km per decade (very likely ranges) for organisms in the epipelagic (upper 200 m from sea 

surface) and seafloor ecosystems, respectively. The rate and direction of observed shifts in distributions are shaped by 

local temperature, oxygen, and ocean currents across depth, latitudinal and longitudinal gradients (high confidence). 

Warming-induced species range expansions have led to altered ecosystem structure and functioning such as in the North 

Atlantic, Northeast Pacific and Arctic (medium confidence). {5.2.3, 5.3.2, 5.3.6, Box 3.4, Figure SPM.2} 

 

A5.2 In recent decades, Arctic net primary production has increased in ice-free waters (high confidence) 

and spring phytoplankton blooms are occurring earlier in the year in response to sea ice change and nutrient availability 
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with spatially variable positive and negative consequences for marine ecosystems (medium confidence). In the Antarctic, 

such changes are spatially heterogeneous and have been associated with rapid local environmental change, including 

retreating glaciers and sea ice change (medium confidence). Changes in the seasonal activities, production and distribution 

of some Arctic zooplankton and a southward shift in the distribution of the Antarctic krill population in the South Atlantic 

are associated with climate-linked environmental changes (medium confidence). In polar regions, ice associated marine 

mammals and seabirds have experienced habitat contraction linked to sea ice changes (high confidence) and impacts on 

foraging success due to climate impacts on prey distributions (medium confidence). Cascading effects of multiple climate-

related drivers on polar zooplankton have affected food web structure and function, biodiversity as well as fisheries (high 

confidence). {3.2.3, 3.2.4, Box 3.4, 5.2.3, Figure SPM.2} 

 

A5.3 Eastern Boundary Upwelling Systems (EBUS) are amongst the most productive ocean ecosystems. 

Increasing ocean acidification and oxygen loss are negatively impacting two of the four major upwelling systems: the 

California Current and Humboldt Current (high confidence). Ocean acidification and decrease in oxygen level in the 

California Current upwelling system have altered ecosystem structure, with direct negative impacts on biomass production 

and species composition (medium confidence). {Box 5.3, Figure SPM.2} 

 

A5.4 Ocean warming in the 20th century and beyond has contributed to an overall decrease in maximum 

catch potential (medium confidence), compounding the impacts from overfishing for some fish stocks (high confidence). 

In many regions, declines in the abundance of fish and shellfish stocks due to direct and indirect effects of global warming 

and biogeochemical changes have already contributed to reduced fisheries catches (high confidence). In some areas, 

changing ocean conditions have contributed to the expansion of suitable habitat and/or increases in the abundance of 

some species (high confidence). These changes have been accompanied by changes in species composition of fisheries 

catches since the 1970s in many ecosystems (medium confidence). {3.2.3, 5.4.1, Figure SPM.2} 

 

A6. Coastal ecosystems are affected by ocean warming, including intensified marine heatwaves, acidification, loss of 

oxygen, salinity intrusion and sea level rise, in combination with adverse effects from human activities on ocean and land 

(high confidence). Impacts are already observed on habitat area and biodiversity, as well as ecosystem functioning and 

services (high confidence). {4.3.2, 4.3.3, 5.3, 5.4.1, 6.4.2, Figure SPM.2} 

 

A6.1 Vegetated coastal ecosystems protect the coastline from storms and erosion and help buffer the 

impacts of sea level rise. Nearly 50% of coastal wetlands have been lost over the last 100 years, as a result of the 

combined effects of localised human pressures, sea level rise, warming and extreme climate events (high confidence). 

Vegetated coastal ecosystems are important carbon stores; their loss is responsible for the current release of 0.04–1.46 

GtC yr–1 (medium confidence). In response to warming, distribution ranges of seagrass meadows and kelp forests are 

expanding at high latitudes and contracting at low latitudes since the late 1970s (high confidence), and in some areas 
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episodic losses occur following heatwaves (medium confidence). Large-scale mangrove mortality that is related to 

warming since the 1960s has been partially offset by their encroachment into subtropical saltmarshes as a result of 

increase in temperature, causing the loss of open areas with herbaceous plants that provide food and habitat for 

dependent fauna (high confidence). {4.3.3, 5.3.2, 5.3.6, 5.4.1, 5.5.1, Figure SPM.2}. 

 

A6.2 Increased sea water intrusion in estuaries due to sea level rise has driven upstream redistribution 

of marine species (medium confidence) and caused a reduction of suitable habitats for estuarine communities (medium 

confidence). Increased nutrient and organic matter loads in estuaries since the 1970s from intensive human development 

and riverine loads have exacerbated the stimulating effects of ocean warming on bacterial respiration, leading to 

expansion of low oxygen areas (high confidence). {5.3.1}. 

 

A6.3 The impacts of sea level rise on coastal ecosystems include habitat contraction, geographical shift 

of associated species, and loss of biodiversity and ecosystem functionality. Impacts are exacerbated by direct human 

disturbances, and where anthropogenic barriers prevent landward shift of marshes and mangroves (termed coastal 

squeeze) (high confidence). Depending on local geomorphology and sediment supply, marshes and mangroves can grow 

vertically at rates equal to or greater than current mean sea level rise (high confidence). {4.3.2, 4.3.3, 5.3.2, 5.3.7, 5.4.1} 

 

A6.4 Warm-water coral reefs and rocky shores dominated by immobile, calcifying (e.g., shell and 

skeleton producing) organisms such as corals, barnacles and mussels, are currently impacted by extreme temperatures 

and ocean acidification (high confidence). Marine heatwaves have already resulted in large-scale coral bleaching events 

at increasing frequency (very high confidence) causing worldwide reef degradation since 1997, and recovery is slow (more 

than 15 years) if it occurs (high confidence). Prolonged periods of high environmental temperature and dehydration of the 

organisms pose high risk to rocky shore ecosystems (high confidence). {SR1.5; 5.3.4, 5.3.5, 6.4.2.1, Figure SPM.2} 
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Figure SPM.2: Synthesis of observed regional hazards and impacts in ocean 24 (top) and high mountain and polar land regions 

(bottom) assessed in SROCC. For each region, physical changes, impacts on key ecosystems, and impacts on human systems and 

ecosystem function and services are shown. For physical changes, yellow/green refers to an increase/decrease, respectively, in amount 

or frequency of the measured variable. For impacts on ecosystems, human systems and ecosystems services blue or red depicts whether 

an observed impact is positive (beneficial) or negative (adverse), respectively, to the given system or service. Cells assigned ‘increase 

and decrease’ indicate that within that region, both increase and decrease of physical changes are found, but are not necessarily 

equal; the same holds for cells showing ‘positive and negative’ attributable impacts. For ocean regions, the confidence level refers to 

the confidence in attributing observed changes to changes in greenhouse gas forcing for physical changes and to climate change for 

ecosystem, human systems, and ecosystem services. For high-mountain and polar land regions, the level of confidence in attributing 

physical changes and impacts at least partly to a change in the cryosphere is shown. No assessment means: not applicable, not 

assessed at regional scale, or the evidence is insufficient for assessment. The physical changes in the ocean are defined as: Temperature 

change in 0–700 m layer of the ocean except for Southern Ocean (0–2000 m) and Arctic Ocean (upper mixed layer and major inflowing 

                                                
24 Marginal seas are not assessed individually as ocean regions in this report. 
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branches); Oxygen in the 0–1200 m layer or oxygen minimum layer; Ocean pH as surface pH (decreasing pH corresponds to increasing 

ocean acidification). Ecosystems in the ocean: Coral refers to warm-water coral reefs and cold-water corals. The ‘upper water column’ 

category refers to epipelagic zone for all ocean regions except Polar Regions, where the impacts on some pelagic organisms in open 

water deeper than the upper 200 m were included. Coastal wetland includes salt marshes, mangroves and seagrasses. Kelp forests 

are habitats of a specific group of macroalgae. Rocky shores are coastal habitats dominated by immobile calcified organisms such as 

mussels and barnacles. Deep sea is seafloor ecosystems that are 3000–6000 m deep. Sea-ice associated includes ecosystems in, on 

and below sea ice. Habitat services refer to supporting structures and services (e.g., habitat, biodiversity, primary production). Coastal 

Carbon Sequestration refers to the uptake and storage of carbon by coastal blue carbon ecosystems. Ecosystems on Land: Tundra 

refers to tundra and alpine meadows, and includes terrestrial Antarctic ecosystems. Migration refers to an increase or decrease in net 

migration, not to beneficial/adverse value. Impacts on tourism refer to the operating conditions for the tourism sector. Cultural services 

include cultural identity, sense of home, and spiritual, intrinsic and aesthetic values, as well as contributions from glacier archaeology. 

The underlying information is given for land regions in tables SM2.6, SM2.7, SM2.8, SM3.8, SM3.9, and SM3.10, and for ocean 

regions in tables SM5.10, SM5.11, SM3.8, SM3.9, and SM3.10. {2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5, 2.3.6, 2.3.7, Figure 2.1, 3.2.1; 

3.2.3; 3.2.4; 3.3.3; 3.4.1; 3.4.3; 3.5.2; Box 3.4, 4.2.2, 5.2.2, 5.2.3, 5.3.3, 5.4, 5.6, Figure 5.24, Box 5.3} 

 

 

Observed Impacts on People and Ecosystem Services 

 

A7. Since the mid-20th century, the shrinking cryosphere in the Arctic and high-mountain areas has led to predominantly 

negative impacts on food security, water resources, water quality, livelihoods, health and well-being, infrastructure, 

transportation, tourism and recreation, as well as culture of human societies, particularly for Indigenous peoples (high 

confidence). Costs and benefits have been unequally distributed across populations and regions. Adaptation efforts have 

benefited from the inclusion of Indigenous knowledge and local knowledge (high confidence). {1.1, 1.5, 1.6.2, 2.3, 2.4, 

3.4, 3.5, Figure SPM.2}  

 

A7.1 Food and water security have been negatively impacted by changes in snow cover, lake and river 

ice, and permafrost in many Arctic regions (high confidence). These changes have disrupted access to, and food availability 

within, herding, hunting, fishing, and gathering areas, harming the livelihoods and cultural identity of Arctic residents 

including Indigenous populations (high confidence). Glacier retreat and snow cover changes have contributed to localized 

declines in agricultural yields in some high mountain regions, including Hindu Kush Himalaya and the tropical Andes 

(medium confidence). {2.3.1., 2.3.7, Box 2.4, 3.4.1, 3.4.2, 3.4.3, 3.5.2, Figure SPM.2} 

 

A7.2 In the Arctic, negative impacts of cryosphere change on human health have included increased 

risk of food- and waterborne diseases, malnutrition, injury, and mental health challenges especially among Indigenous 

peoples (high confidence). In some high-mountain areas, water quality has been affected by contaminants, particularly 

mercury, released from melting glaciers and thawing permafrost (medium confidence). Health-related adaptation efforts 
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in the Arctic range from local to international in scale, and successes have been underpinned by Indigenous knowledge 

(high confidence). {1.8, Cross-Chapter Box 4 in Chapter 1, 2.3.1, 3.4.3} 

 

A7.3 Arctic residents, especially Indigenous peoples, have adjusted the timing of activities to respond 

to changes in seasonality and safety of land, ice, and snow travel conditions. Municipalities and industry are beginning to 

address infrastructure failures associated with flooding and thawing permafrost and some coastal communities have 

planned for relocation (high confidence). Limited funding, skills, capacity, and institutional support to engage meaningfully 

in planning processes have challenged adaptation (high confidence). {3.5.2, 3.5.4, Cross-Chapter Box 9} 

 

A7.4 Summertime Arctic ship-based transportation (including tourism) increased over the past two 

decades concurrent with sea ice reductions (high confidence). This has implications for global trade and economies linked 

to traditional shipping corridors, and poses risks to Arctic marine ecosystems and coastal communities (high confidence), 

such as from invasive species and local pollution. {3.2.1, 3.2.4, 3.5.4, 5.4.2, Figure SPM.2} 

 

A7.5 In past decades, exposure of people and infrastructure to natural hazards has increased due to 

growing population, tourism and socioeconomic development (high confidence). Some disasters have been linked to 

changes in the cryosphere, for example in the Andes, high mountain Asia, Caucasus and European Alps (medium 

confidence). {2.3.2, Fig SPM.2} 

 

A7.6 Changes in snow and glaciers have changed the amount and seasonality of runoff and water 

resources in snow dominated and glacier-fed river basins (very high confidence). Hydropower facilities have experienced 

changes in seasonality and both increases and decreases in water input from high mountain areas, for example, in central 

Europe, Iceland, Western USA/Canada, and tropical Andes (medium confidence). However, there is only limited evidence 

of resulting impacts on operations and energy production. {B1.4, 2.3.1} 

 

A7.7 High mountain aesthetic and cultural aspects have been negatively impacted by glacier and snow 

cover decline (e.g. in the Himalaya, East Africa, the tropical Andes) (medium confidence). Tourism and recreation, including 

ski and glacier tourism, hiking, and mountaineering, have also been negatively impacted in many mountain regions 

(medium confidence). In some places, artificial snowmaking has reduced negative impacts on ski tourism (medium 

confidence). {2.3.5, 2.3.6, Figure SPM.2} 

 

A8. Changes in the ocean have impacted marine ecosystems and ecosystem services with regionally diverse outcomes, 

challenging their governance (high confidence). Both positive and negative impacts result for food security through 

fisheries (medium confidence), local cultures and livelihoods (medium confidence), and tourism and recreation (medium 

confidence). The impacts on ecosystem services have negative consequences for health and well-being (medium 



APPROVED SPM  IPCC SR Ocean and Cryosphere 

Subject to Copyedit SPM-18 Total pages: 42 

confidence), and for Indigenous peoples and local communities dependent on fisheries (high confidence). {1.1, 1.5, 3.2.1, 

5.4.1, 5.4.2, Figure SPM.2} 

 

A8.1 Warming-induced changes in the spatial distribution and abundance of some fish and shellfish 

stocks have had positive and negative impacts on catches, economic benefits, livelihoods, and local culture (high 

confidence). There are negative consequences for Indigenous peoples and local communities that are dependent on 

fisheries (high confidence). Shifts in species distributions and abundance has challenged international and national ocean 

and fisheries governance, including in the Arctic, North Atlantic and Pacific, in terms of regulating fishing to secure 

ecosystem integrity and sharing of resources between fishing entities (high confidence). {3.2.4, 3.5.3, 5.4.2, 5.5.2, Figure 

SPM.2} 

 

A8.2 Harmful algal blooms display range expansion and increased frequency in coastal areas since the 

1980s in response to both climatic and non-climatic drivers such as increased riverine nutrients run-off (high 

confidence). The observed trends in harmful algal blooms are attributed partly to the effects of ocean warming, marine 

heatwaves, oxygen loss, eutrophication and pollution (high confidence). Harmful algal blooms have had negative impacts 

on food security, tourism, local economy, and human health (high confidence). The human communities who are more 

vulnerable to these biological hazards are those in areas without sustained monitoring programs and dedicated early 

warning systems for harmful algal blooms (medium confidence). {Box 5.4, 5.4.2, 6.4.2}. 

 

A9. Coastal communities are exposed to multiple climate-related hazards, including tropical cyclones, extreme sea levels 

and flooding, marine heatwaves, sea ice loss, and permafrost thaw (high confidence). A diversity of responses has been 

implemented worldwide, mostly after extreme events, but also some in anticipation of future sea level rise, e.g., in the 

case of large infrastructure. {3.2.4, 3.4.3, 4.3.2, 4.3.3, 4.3.4, 4.4.2, 5.4.2, 6.2, 6.4.2, 6.8, Box 6.1, Cross Chapter Box 9, 

Figure SPM.5} 

 

A9.1 Attribution of current coastal impacts on people to sea level rise remains difficult in most locations 

since impacts were exacerbated by human-induced non-climatic drivers, such as land subsidence (e.g., groundwater 

extraction), pollution, habitat degradation, reef and sand mining (high confidence). {4.3.2., 4.3.3} 

 

A9.2 Coastal protection through hard measures, such as dikes, seawalls, and surge barriers, is 

widespread in many coastal cities and deltas. Ecosystem-based and hybrid approaches combining ecosystems and built 

infrastructure are becoming more popular worldwide. Coastal advance, which refers to the creation of new land by 

building seawards (e.g., land reclamation), has a long history in most areas where there are dense coastal populations 

and a shortage of land. Coastal retreat, which refers to the removal of human occupation of coastal areas, is also observed, 
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but is generally restricted to small human communities or occurs to create coastal wetland habitat. The effectiveness of 

the responses to sea level rise are assessed in Figure SPM.5. {3.5.3, 4.3.3, 4.4.2, 6.3.3, 6.9.1, Cross-Chapter Box 9}  

 

 
SPM.B PROJECTED CHANGES AND RISKS 

 

Projected Physical Changes25 

 

B1. Global-scale glacier mass loss, permafrost thaw, and decline in snow cover and Arctic sea ice extent are projected to 

continue in the near-term (2031–2050) due to surface air temperature increases (high confidence), with unavoidable 

consequences for river runoff and local hazards (high confidence). The Greenland and Antarctic Ice Sheets are projected 

to lose mass at an increasing rate throughout the 21st century and beyond (high confidence). The rates and magnitudes 

of these cryospheric changes are projected to increase further in the second half of the 21st century in a high greenhouse 

gas emissions scenario (high confidence). Strong reductions in greenhouse gas emissions in the coming decades are 

projected to reduce further changes after 2050 (high confidence). {2.2, 2.3, Cross-Chapter Box 6 in Chapter 2, 3.3, 3.4, 

Figure SPM.1, SPM Box SPM.1} 

 

B1.1 Projected glacier mass reductions between 2015 and 2100 (excluding the ice sheets) range from 

18 ± 7% (likely range) for RCP2.6 to 36 ± 11% (likely range) for RCP8.5, corresponding to a sea-level contribution of 94 

± 25 mm (likely range) sea-level equivalent for RCP2.6, and 200 ± 44 mm (likely range) for RCP8.5 (medium confidence). 

Regions with mostly smaller glaciers (e.g., Central Europe, Caucasus, North Asia, Scandinavia, tropical Andes, Mexico, 

eastern Africa and Indonesia), are projected to lose more than 80% of their current ice mass by 2100 under RCP8.5 

(medium confidence), and many glaciers are projected to disappear regardless of future emissions (very high confidence). 

{Cross-Chapter Box 6 in Chapter 2, Figure SPM.1} 

 

B1.2 In 2100, the Greenland Ice Sheet’s projected contribution to GMSL rise is 0.07 m (0.04–0.12 m, 

likely range) under RCP2.6, and 0.15 m (0.08–0.27 m, likely range) under RCP8.5. In 2100, the Antarctic Ice Sheet is 

projected to contribute 0.04 m (0.01–0.11 m, likely range) under RCP2.6, and 0.12 m (0.03–0.28 m, likely range) under 

RCP8.5. The Greenland Ice Sheet is currently contributing more to sea-level rise than the Antarctic Ice Sheet (high 

confidence), but Antarctica could become a larger contributor by the end of the 21st century as a consequence of rapid 

retreat (low confidence). Beyond 2100, increasing divergence between Greenland and Antarctica’s relative contributions 

to GMSL rise under RCP8.5 has important consequences for the pace of relative sea-level rise in the Northern Hemisphere. 

{3.3.1, 4.2.3, 4.2.5, 4.3.3, Cross-Chapter Box 8, Figure SPM.1} 

                                                
25 This report primarily uses RCP2.6 and RCP8.5 for the following reasons: These scenarios largely represent the assessed range for 
the topics covered in this report; they largely represent what is covered in the assessed literature, based on CMIP5; and they allow a 
consistent narrative about projected changes. RCP4.5 and RCP6.0 are not available for all topics addressed in the report. {Box SPM.1} 



APPROVED SPM  IPCC SR Ocean and Cryosphere 

Subject to Copyedit SPM-20 Total pages: 42 

 

B1.3 Arctic autumn and spring snow cover are projected to decrease by 5–10%, relative to 1986–2005, 

in the near-term (2031–2050), followed by no further losses under RCP2.6, but an additional 15–25% loss by the end of 

century under RCP8.5 (high confidence). In high mountain areas, projected decreases in low elevation mean winter snow 

depth, compared to 1986–2005, are likely 10–40% by 2031–2050, regardless of emissions scenario (high confidence). 

For 2081–2100, this projected decrease is likely 10–40 % for RCP2.6 and 50–90% for RCP8.5. {2.2.2, 3.3.2, 3.4.2, 

Figure SPM.1} 

 

B1.4 Widespread permafrost thaw is projected for this century (very high confidence) and beyond. By 

2100, projected near-surface (within 3–4 m) permafrost area shows a decrease of 24 ± 16% (likely range) for RCP2.6 

and 69 ± 20% (likely range) for RCP8.5. The RCP8.5 scenario leads to the cumulative release of tens to hundreds of 

billions of tons (GtC) of permafrost carbon as CO2
26 and methane to the atmosphere by 2100 with the potential to 

exacerbate climate change (medium confidence). Lower emissions scenarios dampen the response of carbon emissions 

from the permafrost region (high confidence). Methane contributes a small fraction of the total additional carbon release 

but is significant because of its higher warming potential. Increased plant growth is projected to replenish soil carbon in 

part, but will not match carbon releases over the long term (medium confidence). {2.2.4, 3.4.2, 3.4.3, Figure SPM.1, 

Cross-Chapter Box 5 in Chapter 1} 

 

B1.5 In many high mountain areas, glacier retreat and permafrost thaw are projected to further decrease 

the stability of slopes, and the number and area of glacier lakes will continue to increase (high confidence). Floods due to 

glacier lake outburst or rain-on-snow, landslides and snow avalanches, are projected to occur also in new locations or 

different seasons (high confidence). {2.3.2} 

 

B1.6 River runoff in snow-dominated or glacier-fed high mountain basins is projected to change 

regardless of emissions scenario (very high confidence), with increases in average winter runoff (high confidence) and 

earlier spring peaks (very high confidence). In all emissions scenarios, average annual and summer runoff from glaciers 

are projected to peak at or before the end of the 21st century (high confidence), e.g., around mid-century in High Mountain 

Asia, followed by a decline in glacier runoff. In regions with little glacier cover (e.g., tropical Andes, European Alps) most 

glaciers have already passed this peak (high confidence). Projected declines in glacier runoff by 2100 (RCP8.5) can reduce 

basin runoff by 10% or more in at least one month of the melt season in several large river basins, especially in High 

Mountain Asia during the dry season (low confidence). {2.3.1} 

 

                                                
26 For context, total annual anthropogenic CO2 emissions were 10.8 ± 0.8 GtC yr–1 (39.6 ± 2.9 GtCO2 yr–1) on average over the period 
2008–2017. Total annual anthropogenic methane emissions were 0.35 ± 0.01 GtCH4 yr–1, on average over the period 2003–2012. 
{5.5.1} 
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B1.7 Arctic sea ice loss is projected to continue through mid-century, with differences thereafter 

depending on the magnitude of global warming: for stabilised global warming of 1.5°C the annual probability of a sea 

ice free September by the end of century is approximately 1%, which rises to 10–35% for stabilised global warming of 

2°C (high confidence). There is low confidence in projections for Antarctic sea ice. {3.2.2, Figure SPM.1} 

 

B2. Over the 21st century, the ocean is projected to transition to unprecedented conditions with increased temperatures 

(virtually certain), greater upper ocean stratification (very likely), further acidification (virtually certain), oxygen decline 

(medium confidence), and altered net primary production (low confidence). Marine heatwaves (very high confidence) and 

extreme El Niño and La Niña events (medium confidence) are projected to become more frequent. The Atlantic Meridional 

Overturning Circulation (AMOC) is projected to weaken (very likely). The rates and magnitudes of these changes will be 

smaller under scenarios with low greenhouse gas emissions (very likely). {3.2; 5.2; 6.4; 6.5; 6.7; Box 5.1; Figures SPM.1, 

SPM.3} 

 

B2.1 The ocean will continue to warm throughout the 21st century (virtually certain). By 2100, the top 

2000 m of the ocean are projected to take up 5–7 times more heat under RCP8.5 (or 2–4 times more under RCP2.6) than 

the observed accumulated ocean heat uptake since 1970 (very likely). The annual mean density stratification14 of the top 

200 m, averaged between 60°S and 60°N, is projected to increase by 12–30% for RCP8.5 and 1–9% for RCP2.6, for 

2081–2100 relative to 1986–2005 (very likely), inhibiting vertical nutrient, carbon and oxygen fluxes. {5.2.2, Figure 

SPM.1} 

 

B2.2 By 2081–2100 under RCP8.5, ocean oxygen content (medium confidence), upper ocean nitrate 

content (medium confidence), net primary production (low confidence) and carbon export (medium confidence) are 

projected to decline globally by very likely ranges of 3–4%, 9–14%, 4–11% and 9-16% respectively, relative to 2006–

2015. Under RCP2.6, globally projected changes by 2081–2100 are smaller compared to RCP8.5 for oxygen loss (very 

likely), nutrient availability (about as likely as not) and net primary production (high confidence). {5.2.2; Box 5.1; Figures 

SPM.1, SPM.3} 

 

B2.3 Continued carbon uptake by the ocean by 2100 is virtually certain to exacerbate ocean 

acidification. Open ocean surface pH is projected to decrease by around 0.3 pH units by 2081–2100, relative to 2006–

2015, under RCP8.5 (virtually certain). For RCP8.5, there are elevated risks for keystone aragonite shell-forming species 

due to crossing an aragonite stability threshold year-round in the Polar and sub-Polar Oceans by 2081–2100 (very likely). 

For RCP2.6, these conditions will be avoided this century (very likely), but some eastern boundary upwelling systems are 

projected to remain vulnerable (high confidence). {3.2.3, 5.2.2, Box 5.1, Box 5.3, Figure SPM.1} 
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B2.4 Climate conditions, unprecedented since the preindustrial period, are developing in the ocean, 

elevating risks for open ocean ecosystems. Surface acidification and warming have already emerged in the historical period 

(very likely). Oxygen loss between 100 and 600 m depth is projected to emerge over 59–80% of the ocean area by 2031–

2050 under RCP8.5 (very likely). The projected time of emergence for five primary drivers of marine ecosystem change 

(surface warming and acidification, oxygen loss, nitrate content and net primary production change) are all prior to 2100 

for over 60% of the ocean area under RCP8.5 and over 30% under RCP2.6 (very likely). {Annex I: Glossary, Box 5.1, Box 

5.1 Figure 1} 

 

B2.5 Marine heatwaves are projected to further increase in frequency, duration, spatial extent and 

intensity (maximum temperature) (very high confidence). Climate models project increases in the frequency of marine 

heatwaves by 2081–2100, relative to 1850–1900, by approximately 50 times under RCP8.5 and 20 times under RCP2.6 

(medium confidence). The largest increases in frequency are projected for the Arctic and the tropical oceans (medium 

confidence). The intensity of marine heatwaves is projected to increase about 10-fold under RCP8.5 by 2081–2100, 

relative to 1850–1900 (medium confidence).{6.4, Figure SPM.1} 

 

B2.6 Extreme El Niño and La Niña events are projected to likely increase in frequency in the 21st century 

and to likely intensify existing hazards, with drier or wetter responses in several regions across the globe. Extreme El Niño 

events are projected to occur about as twice as often under both RCP2.6 and RCP8.5 in the 21st century when compared 

to the 20th century (medium confidence). Projections indicate that extreme Indian Ocean Dipole events also increase in 

frequency (low confidence). {6.5; Figures 6.5, 6.6} 

 

B2.7 The AMOC is projected to weaken in the 21st century under all RCPs (very likely), although a 

collapse is very unlikely (medium confidence). Based on CMIP5 projections, by 2300, an AMOC collapse is as likely as not 

for high emissions scenarios and very unlikely for lower ones (medium confidence). Any substantial weakening of the 

AMOC is projected to cause a decrease in marine productivity in the North Atlantic (medium confidence), more storms in 

Northern Europe (medium confidence), less Sahelian summer rainfall (high confidence) and South Asian summer rainfall 

(medium confidence), a reduced number of tropical cyclones in the Atlantic (medium confidence), and an increase in 

regional sea level along the northeast coast of North America (medium confidence). Such changes would be in addition 

to the global warming signal. {6.7; Figures 6.8–6.10} 

 

B3. Sea level continues to rise at an increasing rate. Extreme sea level events that are historically rare (once per century 

in the recent past) are projected to occur frequently (at least once per year) at many locations by 2050 in all RCP scenarios, 

especially in tropical regions (high confidence). The increasing frequency of high water levels can have severe impacts in 

many locations depending on exposure (high confidence). Sea level rise is projected to continue beyond 2100 in all RCP 

scenarios. For a high emissions scenario (RCP8.5), projections of global sea level rise by 2100 are greater than in AR5 
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due to a larger contribution from the Antarctic Ice Sheet (medium confidence). In coming centuries under RCP8.5, sea 

level rise is projected to exceed rates of several centimetres per year resulting in multi-metre rise (medium confidence), 

while for RCP2.6 sea level rise is projected to be limited to around 1m in 2300 (low confidence). Extreme sea levels and 

coastal hazards will be exacerbated by projected increases in tropical cyclone intensity and precipitation (high confidence). 

Projected changes in waves and tides vary locally in whether they amplify or ameliorate these hazards (medium 

confidence). {Cross-Chapter Box 5 in Chapter 1; Cross-Chapter Box 8 in Chapter 3; 4.1; 4.2; 5.2.2, 6.3.1; Figures SPM.1, 

SPM.4, SPM.5} 

 

B3.1 The global mean sea level (GMSL) rise under RCP2.6 is projected to be 0.39 m (0.26–0.53 m, 

likely range) for the period 2081–2100, and 0.43 m (0.29–0.59 m, likely range) in 2100 with respect to 1986–2005. For 

RCP8.5, the corresponding GMSL rise is 0.71 m (0.51–0.92 m, likely range) for 2081–2100 and 0.84 m (0.61–1.10 m, 

likely range) in 2100. Mean sea level rise projections are higher by 0.1 m compared to AR5 under RCP8.5 in 2100, and 

the likely range extends beyond 1 m in 2100 due to a larger projected ice loss from the Antarctic Ice Sheet (medium 

confidence). The uncertainty at the end of the century is mainly determined by the ice sheets, especially in Antarctica. 

{4.2.3; Figures SPM.1, SPM.5} 

 

 B3.2 Sea level projections show regional differences around GMSL. Processes not driven by recent 

climate change, such as local subsidence caused by natural processes and human activities, are important to relative sea 

level changes at the coast (high confidence). While the relative importance of climate-driven sea level rise is projected to 

increase over time, local processes need to be considered for projections and impacts of sea level (high confidence). 

{SPMA3.4, 4.2.1, 4.2.2, Figure SPM.5}. 

 

B3.3 The rate of global mean sea level rise is projected to reach 15 mm yr–1 (10–20 mm yr–1, likely 

range) under RCP8.5 in 2100, and to exceed several centimetres per year in the 22nd century. Under RCP2.6, the rate is 

projected to reach 4 mm yr-1 (2–6 mm yr–1, likely range) in 2100. Model studies indicate multi-meter rise in sea level by 

2300 (2.3–5.4 m for RCP8.5 and 0.6–1.07 m under RCP2.6) (low confidence), indicating the importance of reduced 

emissions for limiting sea level rise. Processes controlling the timing of future ice-shelf loss and the extent of ice sheet 

instabilities could increase Antarctica’s contribution to sea level rise to values substantially higher than the likely range on 

century and longer time-scales (low confidence). Considering the consequences of sea level rise that a collapse of parts 

of the Antarctic Ice Sheet entails, this high impact risk merits attention. {Cross-Chapter Box 5 in Chapter 1, Cross-Chapter 

Box 8 in Chapter 3, 4.1, 4.2.3} 

 

B3.4 Global mean sea level rise will cause the frequency of extreme sea level events at most locations 

to increase. Local sea levels that historically occurred once per century (historical centennial events) are projected to occur 

at least annually at most locations by 2100 under all RCP scenarios (high confidence). Many low-lying megacities and 
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small islands (including SIDS) are projected to experience historical centennial events at least annually by 2050 under 

RCP2.6, RCP4.5 and RCP8.5. The year when the historical centennial event becomes an annual event in the mid-latitudes 

occurs soonest in RCP8.5, next in RCP4.5 and latest in RCP2.6. The increasing frequency of high water levels can have 

severe impacts in many locations depending on the level of exposure (high confidence). {4.2.3; 6.3; Figures SPM.4, SPM.5} 

 

B3.5 Significant wave heights (the average height from trough to crest of the highest one-third of waves) 

are projected to increase across the Southern Ocean and tropical eastern Pacific (high confidence) and Baltic Sea (medium 

confidence) and decrease over the North Atlantic and Mediterranean Sea under RCP8.5 (high confidence). Coastal tidal 

amplitudes and patterns are projected to change due to sea level rise and coastal adaptation measures (very likely). 

Projected changes in waves arising from changes in weather patterns, and changes in tides due to sea level rise, can 

locally enhance or ameliorate coastal hazards (medium confidence). {6.3.1, 5.2.2} 

 

B3.6 The average intensity of tropical cyclones, the proportion of Category 4 and 5 tropical cyclones 

and the associated average precipitation rates are projected to increase for a 2°C global temperature rise above any 

baseline period (medium confidence). Rising mean sea levels will contribute to higher extreme sea levels associated with 

tropical cyclones (very high confidence). Coastal hazards will be exacerbated by an increase in the average intensity, 

magnitude of storm surge and precipitation rates of tropical cyclones. There are greater increases projected under RCP8.5 

than under RCP2.6 from around mid-century to 2100 (medium confidence). There is low confidence in changes in the 

future frequency of tropical cyclones at the global scale. {6.3.1} 

 

 

Projected Risks for Ecosystems 

 

B.4 Future land cryosphere changes will continue to alter terrestrial and freshwater ecosystems in high-mountain and 

polar regions with major shifts in species distributions resulting in changes in ecosystem structure and functioning, and 

eventual loss of globally unique biodiversity (medium confidence). Wildfire is projected to increase significantly for the rest 

of this century across most tundra and boreal regions, and also in some mountain regions (medium confidence). {2.3.3, 

Box 3.4, 3.4.3} 

 

B4.1 In high-mountain regions, further upslope migration by lower-elevation species, range 

contractions, and increased mortality will lead to population declines of many alpine species, especially glacier- or snow-

dependent species (high confidence), with local and eventual global species loss (medium confidence). The persistence of 

alpine species and sustaining ecosystem services depends on appropriate conservation and adaptation measures (high 

confidence). {2.3.3} 
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B4.2 On Arctic land, a loss of globally unique biodiversity is projected as limited refugia exist for some 

High-Arctic species and hence they are outcompeted by more temperate species (medium confidence). Woody shrubs and 

trees are projected to expand to cover 24–52% of Arctic tundra by 2050 (medium confidence). The boreal forest is 

projected to expand at its northern edge, while diminishing at its southern edge where it is replaced by lower biomass 

woodland/shrublands (medium confidence). {3.4.3, Box 3.4} 

 

B4.3 Permafrost thaw and decrease in snow will affect Arctic and mountain hydrology and wildfire, with 

impacts on vegetation and wildlife (medium confidence). About 20% of Arctic land permafrost is vulnerable to abrupt 

permafrost thaw and ground subsidence, which is projected to increase small lake area by over 50% by 2100 for RCP8.5 

(medium confidence). Even as the overall regional water cycle is projected to intensify, including increased precipitation, 

evapotranspiration, and river discharge to the Arctic Ocean, decreases in snow and permafrost may lead to soil drying 

with consequences for ecosystem productivity and disturbances (medium confidence). Wildfire is projected to increase for 

the rest of this century across most tundra and boreal regions, and also in some mountain regions, while interactions 

between climate and shifting vegetation will influence future fire intensity and frequency (medium confidence). {2.3.3, 

3.4.1, 3.4.2, 3.4.3, SPM B1} 

 

B5. A decrease in global biomass of marine animal communities, their production, and fisheries catch potential, and a 

shift in species composition are projected over the 21st century in ocean ecosystems from the surface to the deep seafloor 

under all emission scenarios (medium confidence). The rate and magnitude of decline are projected to be highest in the 

tropics (high confidence), whereas impacts remain diverse in polar regions (medium confidence) and increase for high 

emission scenarios. Ocean acidification (medium confidence), oxygen loss (medium confidence) and reduced sea ice extent 

(medium confidence) as well as non-climatic human activities (medium confidence) have the potential to exacerbate these 

warming-induced ecosystem impacts. {3.2.3, 3.3.3, 5.2.2, 5.2.3, 5.2.4, 5.4.1, Figure SPM.3} 

 

B5.1 Projected ocean warming and changes in net primary production alter biomass, production and 

community structure of marine ecosystems. The global-scale biomass of marine animals across the foodweb is projected 

to decrease by 15.0 ± 5.9% (very likely range) and the maximum catch potential of fisheries by 20.5–24.1% by the end 

of the 21st century relative to 1986–2005 under RCP8.5 (medium confidence). These changes are projected to be very 

likely three to four times larger under RCP8.5 than RCP2.6. {3.2.3, 3.3.3, 5.2.2, 5.2.3, 5.4.1, Figure SPM.3}. 

 

B5.2 Under enhanced stratification reduced nutrient supply is projected to cause tropical ocean net 

primary production to decline by 7–16% (very likely range) for RCP8.5 by 2081–2100 (medium confidence). In tropical 

regions, marine animal biomass and production are projected to decrease more than the global average under all 

emissions scenarios in the 21st century (high confidence). Warming and sea ice changes are projected to increase marine 

net primary production in the Arctic (medium confidence) and around Antarctica (low confidence), modified by changing 
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nutrient supply due to shifts in upwelling and stratification. Globally, the sinking flux of organic matter from the upper 

ocean is projected to decrease, linked largely due to changes in net primary production (high confidence). As a result, 

95% or more of the deep sea (3000–6000 m depth) seafloor area and cold-water coral ecosystems are projected to 

experience declines in benthic biomass under RCP8.5 (medium confidence) {3.2.3, 5.2.2. 5.2.4, Figure SPM.1} 

 

B5.3 Warming, ocean acidification, reduced seasonal sea ice extent and continued loss of multi-year 

sea ice are projected to impact polar marine ecosystems through direct and indirect effects on habitats, populations and 

their viability (medium confidence). The geographical range of Arctic marine species, including marine mammals, birds 

and fish is projected to contract, while the range of some sub-Arctic fish communities is projected to expand, further 

increasing pressure on high-Arctic species (medium confidence). In the Southern Ocean, the habitat of Antarctic krill, a 

key prey species for penguins, seals and whales, is projected to contract southwards under both RCP2.6 and RCP8.5 

(medium confidence). {3.2.2, 3.2.3, 5.2.3} 

 

B5.4 Ocean warming, oxygen loss, acidification and a decrease in flux of organic carbon from the surface 

to the deep ocean are projected to harm habitat-forming cold-water corals, which support high biodiversity, partly through 

decreased calcification, increased dissolution of skeletons, and bioerosion (medium confidence). Vulnerability and risks 

are highest where and when temperature and oxygen conditions both reach values outside species’ tolerance ranges 

(medium confidence). {Box 5.2, Figure SPM.3} 
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Figure SPM.3: Projected changes, impacts and risks for ocean regions and ecosystems: a) depth integrated net primary production 

(NPP from CMIP52727), b) total animal biomass (depth integrated, including fishes and invertebrates from FISHMIP28), c) maximum 

fisheries catch potential and d) impacts and risks for coastal and open ocean ecosystems. The three left panels represent the simulated 

(a,b) and observed (c) mean values for the recent past (1986–2005), the middle and right panels represent projected changes (%) by 

2081–2100 relative to recent past under low (RCP2.6) and high (RCP8.5) greenhouse gas emissions scenario {Box SPM.1}, 

respectively. Total animal biomass in the recent past (b, left panel) represents the projected total animal biomass by each spatial pixel 

relative to the global average. c) *Average observed fisheries catch in the recent past (based on data from the Sea Around Us global 

fisheries database); projected changes in maximum fisheries catch potential in shelf seas are based on the average outputs from two 

fisheries and marine ecosystem models. To indicate areas of model inconsistency, shaded areas represent regions where models 

disagree in the direction of change for more than: a) and b) 3 out of 10 model projections, and c) one out of two models. Although 

unshaded, the projected change in the Arctic and Antarctic regions in b) total animal biomass and c) fisheries catch potential have 

low confidence due to uncertainties associated with modelling multiple interacting drivers and ecosystem responses. Projections 

presented in b) and c) are driven by changes in ocean physical and biogeochemical conditions e.g., temperature, oxygen level, and 

net primary production projected from CMIP5 Earth system models. **The epipelagic refers to the uppermost part of the ocean with 

depth <200 m from the surface where there is enough sunlight to allow photosynthesis. d) Assessment of risks for coastal and open 

ocean ecosystems based on observed and projected climate impacts on ecosystem structure, functioning and biodiversity. Impacts and 

risks are shown in relation to changes in Global Mean Surface Temperature (GMST) relative to pre-industrial level. Since assessments 

of risks and impacts are based on global mean Sea Surface Temperature (SST), the corresponding SST levels are shown.29 The 

assessment of risk transitions is described in Chapter 5 Sections 5.2, 5.3, 5.2.5 and 5.3.7 and Supplementary Materials SM5.3, 

TableSM5.6, TableSM5.8 and other parts of the underlying report. The figure indicates assessed risks at approximate warming levels 

and increasing climate-related hazards in the ocean: ocean warming, acidification, deoxygenation, increased density stratification, 

changes in carbon fluxes, sea level rise, and increased frequency and/or intensity of extreme events. The assessment considers the 

natural adaptive capacity of the ecosystems, their exposure and vulnerability. Impact and risk levels do not consider risk reduction 

strategies such as human interventions, or future changes in non-climatic drivers. Risks for ecosystems were assessed by considering 

biological, biogeochemical, geomorphological and physical aspects. Higher risks associated with compound effects of climate hazards 

include habitat and biodiversity loss, changes in species composition and distribution ranges, and impacts/risks on ecosystem structure 

and functioning, including changes in animal/plant biomass and density, productivity, carbon fluxes, and sediment transport. As part 

of the assessment, literature was compiled and data extracted into a summary table. A multi-round expert elicitation process was 

undertaken with independent evaluation of threshold judgement, and a final consensus discussion. Further information on methods 

and underlying literature can be found in Chapter 5, Sections 5.2 and 5.3 and Supplementary Material. {3.2.3, 3.2.4, 5.2, 5.3, 5.2.5, 

5.3.7, SM5.6, SM5.8, Figure 5.16, Cross Chapter Box 1 in Chapter 1 Table CCB1}  

 

 

                                                
27 NPP is estimated from the Coupled Models Intercomparison Project 5 (CMIP5). 

28 Total animal biomass is from the Fisheries and Marine Ecosystem Models Intercomparison Project (FISHMIP). 

29 The conversion between GMST and SST is based on a scaling factor of 1.44 derived from changes in an ensemble of RCP8.5 
simulations; this scaling factor has an uncertainty of about 4 % due to differences between the RCP2.6 and RCP8.5 scenarios {Table 
SPM.1}. 
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B6. Risks of severe impacts on biodiversity, structure and function of coastal ecosystems are projected to be higher for 

elevated temperatures under high compared to low emissions scenarios in the 21st century and beyond. Projected 

ecosystem responses include losses of species habitat and diversity, and degradation of ecosystem functions. The capacity 

of organisms and ecosystems to adjust and adapt is higher at lower emissions scenarios (high confidence). For sensitive 

ecosystems such as seagrass meadows and kelp forests, high risks are projected if global warming exceeds 2°C above 

pre-industrial temperature, combined with other climate-related hazards (high confidence). Warm water corals are at high 

risk already and are projected to transition to very high risk even if global warming is limited to 1.5°C (very high 

confidence). {4.3.3, 5.3, 5.5, Figure SPM.3} 

 

B6.1 All coastal ecosystems assessed are projected to face increasing risk level, from moderate to high 

risk under RCP2.6 to high to very high risk under RCP8.5 by 2100. Intertidal rocky shore ecosystems are projected to be 

at very high risk by 2100 under RCP8.5 (medium confidence) due to exposure to warming, especially during marine 

heatwaves, as well as to acidification, sea level rise, loss of calcifying species and biodiversity (high confidence). Ocean 

acidification challenges these ecosystems and further limits their habitat suitability (medium confidence) by inhibiting 

recovery through reduced calcification and enhanced bioerosion. The decline of kelp forests is projected to continue in 

temperate regions due to warming, particularly under the projected intensification of marine heatwaves, with high risk of 

local extinctions under RCP8.5 (medium confidence). {5.3, 5.3.5, 5.3.6, 5.3.7, 6.4.2, Figure SPM.3} 

 

B6.2 Seagrass meadows and saltmarshes and associated carbon stores are at moderate risk at 1.5°C 

global warming and increase with further warming (medium confidence). Globally, 20–90% of current coastal wetlands 

are projected to be lost by 2100, depending on projected sea level rise, regional differences and wetland types, especially 

where vertical growth is already constrained by reduced sediment supply and landward migration is constrained by steep 

topography or human modification of shorelines (high confidence). {4.3.3, 5.3.2, Figure SPM.3, SPM A6.1} 

 

 B6.3 Ocean warming, sea level rise and tidal changes are projected to expand salinization and hypoxia 

in estuaries (high confidence) with high risks for some biota leading to migration, reduced survival, and local extinction 

under high emission scenarios (medium confidence). These impacts are projected to be more pronounced in more 

vulnerable eutrophic and shallow estuaries with low tidal range in temperate and high latitude regions (medium 

confidence). {5.2.2., 5.3.1, Figure SPM.3} 

 

B6.4 Almost all warm-water coral reefs are projected to suffer significant losses of area and local 

extinctions, even if global warming is limited to 1.5°C (high confidence). The species composition and diversity of 

remaining reef communities is projected to differ from present-day reefs (very high confidence). {5.3.4, 5.4.1, Figure 

SPM.3}. 
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Projected Risks for People and Ecosystem Services 

 

B7. Future cryosphere changes on land are projected to affect water resources and their uses, such as hydropower (high 

confidence) and irrigated agriculture in and downstream of high-mountain areas (medium confidence), as well as 

livelihoods in the Arctic (medium confidence). Changes in floods, avalanches, landslides, and ground destabilization are 

projected to increase risk for infrastructure, cultural, tourism, and recreational assets (medium confidence). {2.3, 2.3.1, 

3.4.3} 

 

B7.1 Disaster risks to human settlements and livelihood options in high mountain areas and the Arctic 

are expected to increase (medium confidence), due to future changes in hazards such as floods, fires, landslides, 

avalanches, unreliable ice and snow conditions, and increased exposure of people and infrastructure (high confidence). 

Current engineered risk reduction approaches are projected to be less effective as hazards change in character (medium 

confidence). Significant risk reduction and adaptation strategies help avoid increased impacts from mountain flood and 

landslide hazards as exposure and vulnerability are increasing in many mountain regions during this century (high 

confidence).{2.3.2, 3.4.3, 3.5.2} 

 

B7.2 Permafrost thaw-induced subsidence of the land surface is projected to impact overlying urban 

and rural communication and transportation infrastructure in the Arctic and in high mountain areas (medium confidence). 

The majority of Arctic infrastructure is located in regions where permafrost thaw is projected to intensify by mid-century. 

Retrofitting and redesigning infrastructure has the potential to halve the costs arising from permafrost thaw and related 

climate-change impacts by 2100 (medium confidence). {2.3.4, 3.4.1, 3.4.3} 

 

B7.3 High mountain tourism, recreation and cultural assets are projected to be negatively affected by 

future cryospheric changes (high confidence). Current snowmaking technologies are projected to be less effective in 

reducing risks to ski tourism in a warmer climate in most parts of Europe, North America, and Japan, in particular at 2°C 

global warming and beyond (high confidence). {2.3.5, 2.3.6} 

 

B8. Future shifts in fish distribution and decreases in their abundance and fisheries catch potential due to climate change 

are projected to affect income, livelihoods, and food security of marine resource-dependent communities (medium 

confidence). Long-term loss and degradation of marine ecosystems compromises the ocean’s role in cultural, recreational, 

and intrinsic values important for human identity and well-being (medium confidence). {3.2.4, 3.4.3, 5.4.1, 5.4.2, 6.4}  

 

B8.1 Projected geographical shifts and decreases of global marine animal biomass and fish catch 

potential are more pronounced under RCP8.5 relative to RCP2.6 elevating the risk for income and livelihoods of dependent 

human communities, particularly in areas that are economically vulnerable (medium confidence). The projected 
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redistribution of resources and abundance increases the risk of conflicts among fisheries, authorities or communities 

(medium confidence). Challenges to fisheries governance are widespread under RCP8.5 with regional hotspots such as 

the Arctic and tropical Pacific Ocean (medium confidence). {3.5.2, 5.4.1, 5.4.2, 5.5.2, 5.5.3, 6.4.2, Figure SPM.3} 

 

B8.2 The decline in warm water coral reefs is projected to greatly compromise the services they provide 

to society, such as food provision (high confidence), coastal protection (high confidence) and tourism (medium 

confidence). Increases in the risks for seafood security (medium confidence) associated with decreases in seafood 

availability are projected to elevate the risk to nutritional health in some communities highly dependent on seafood 

(medium confidence), such as those in the Arctic, West Africa, and Small Island Developing States. Such impacts 

compound any risks from other shifts in diets and food systems caused by social and economic changes and climate 

change over land (medium confidence). {3.4.3, 5.4.2, 6.4.2} 

 

B8.3 Global warming compromises seafood safety (medium confidence) through human exposure to 

elevated bioaccumulation of persistent organic pollutants and mercury in marine plants and animals (medium confidence), 

increasing prevalence of waterborne Vibrio pathogens (medium confidence), and heightened likelihood of harmful algal 

blooms (medium confidence). These risks are projected to be particularly large for human communities with high 

consumption of seafood, including coastal Indigenous communities (medium confidence), and for economic sectors such 

as fisheries, aquaculture, and tourism (high confidence). {3.4.3, 5.4.2, Box 5.3} 

 

B8.4 Climate change impacts on marine ecosystems and their services put key cultural dimensions of 

lives and livelihoods at risk (medium confidence), including through shifts in the distribution or abundance of harvested 

species and diminished access to fishing or hunting areas. This includes potentially rapid and irreversible loss of culture 

and local knowledge and Indigenous knowledge, and negative impacts on traditional diets and food security, aesthetic 

aspects, and marine recreational activities (medium confidence). {3.4.3, 3.5.3, 5.4.2} 

 

B9. Increased mean and extreme sea level, alongside ocean warming and acidification, are projected to exacerbate risks 

for human communities in low-lying coastal areas (high confidence). In Arctic human communities without rapid land 

uplift, and in urban atoll islands, risks are projected to be moderate to high even under a low emissions scenario (RCP2.6) 

(medium confidence), including reaching adaptation limits (high confidence). Under a high emissions scenario (RCP8.5), 

delta regions and resource rich coastal cities are projected to experience moderate to high risk levels after 2050 under 

current adaptation (medium confidence). Ambitious adaptation including transformative governance is expected to reduce 

risk (high confidence), but with context-specific benefits. {4.3.3, 4.3.4, 6.9.2, Cross-chapter Box 9, SM4.3, Figure SPM.5} 

 

B9.1 In the absence of more ambitious adaptation efforts compared to today, and under current trends 

of increasing exposure and vulnerability of coastal communities, risks, such as erosion and land loss, flooding, salinization, 
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and cascading impacts due to mean sea level rise and extreme events are projected to significantly increase throughout 

this century under all greenhouse gas emissions scenarios (very high confidence). Under the same assumptions, annual 

coastal flood damages are projected to increase by 2–3 orders of magnitude by 2100 compared to today (high confidence). 

{4.3.3; 4.3.4; Box 6.1; 6.8; SM4.3; Figures SPM.4, SPM.5} 

 

B9.2 High to very high risks are approached for vulnerable communities in coral reef environments, 

urban atoll islands and low-lying Arctic locations from sea level rise well before the end of this century in case of high 

emissions scenarios. This entails adaptation limits being reached, which are the points at which an actor’s objectives (or 

system needs) cannot be secured from intolerable risks through adaptive actions (high confidence). Reaching adaptation 

limits (e.g., biophysical, geographical, financial, technical, social, political, and institutional) depends on the emissions 

scenario and context-specific risk tolerance, and is projected to expand to more areas beyond 2100, due to the long-term 

commitment of sea level rise (medium confidence). Some island nations are likely to become uninhabitable due to climate-

related ocean and cryosphere change (medium confidence), but habitability thresholds remain extremely difficult to assess. 

{4.3.4, 4.4.2, 4.4.3, 5.5.2, Cross-Chapter Box 9, SM4.3, SPM C1, Glossary, Figure SPM.5} 

 

B9.3 Globally, a slower rate of climate-related ocean and cryosphere change provides greater 

adaptation opportunities (high confidence). While there is high confidence that ambitious adaptation, including 

governance for transformative change, has the potential to reduce risks in many locations, such benefits can vary between 

locations. At global scale, coastal protection can reduce flood risk by 2–3 orders of magnitude during the 21st century, 

but depends on investments on the order of tens to several hundreds of billions of US$ per year (high confidence). While 

such investments are generally cost efficient for densely populated urban areas, rural and poorer areas may be challenged 

to afford such investments with relative annual costs for some small island states amounting to several percent of GDP 

(high confidence). Even with major adaptation efforts, residual risks and associated losses are projected to occur (medium 

confidence), but context-specific limits to adaptation and residual risks remain difficult to assess. {4.1.3, 4.2.2.4, 4.3.1, 

4.3.2, 4.3.4., 4.4.3, 6.9.1, 6.9.2, Cross-Chapter Boxes 1–2 in Chapter 1, SM4.3, Figure SPM.5}  

 

  



APPROVED SPM  IPCC SR Ocean and Cryosphere 

Subject to Copyedit SPM-33 Total pages: 42 

 

 

Figure SPM.4: The effect of regional sea-level rise on extreme sea level events at coastal locations. a) Schematic illustration of 

extreme sea level events and their average recurrence in the recent past (1986–2005) and the future. As a consequence of mean sea 

level rise, local sea levels that historically occurred once per century (historical centennial events, HCEs) are projected to recur more 

frequently in the future. b) The year in which HCEs are expected to recur once per year on average under RCP8.5 and RCP2.6, at the 

439 individual coastal locations where the observational record is sufficient. The absence of a circle indicates an inability to perform 

an assessment due to a lack of data but does not indicate absence of exposure and risk. The darker the circle, the earlier this transition 

is expected. The likely range is ±10 years for locations where this transition is expected before 2100. White circles (33% of locations 

under RCP2.6 and 10% under RCP8.5) indicate that HCEs are not expected to recur once per year before 2100. c) An indication at 

which locations this transition of HCEs to annual events is projected to occur more than 10 years later under RCP2.6 compared to 

RCP8.5. As the scenarios lead to small differences by 2050 in many locations results are not shown here for RCP4.5 but they are 

available in Chapter 4. {4.2.3, Figure 4.10, Figure 4.12} 

  



APPROVED SPM  IPCC SR Ocean and Cryosphere 

Subject to Copyedit SPM-34 Total pages: 42 

SPM.C IMPLEMENTING RESPONSES TO OCEAN AND CRYOSPHERE CHANGE  

 

Challenges 

 

C1. Impacts of climate-related changes in the ocean and cryosphere increasingly challenge current governance efforts to 

develop and implement adaptation responses from local to global scales, and in some cases pushing them to their limits. 

People with the highest exposure and vulnerability are often those with lowest capacity to respond (high confidence). 

{1.5, 1.7, Cross-Chapter Boxes 2–3 of Chapter 1, 2.3.1, 2.3.2, 2.3.3, 2.4, 3.2.4, 3.4.3, 3.5.2, 3.5.3, 4.1, 4.3.3, 4.4.3, 

5.5.2, 5.5.3, 6.9}  

 

C1.1 The temporal scales of climate change impacts in ocean and cryosphere and their societal 

consequences operate on time horizons which are longer than those of governance arrangements (e.g., planning cycles, 

public and corporate decision making cycles, and financial instruments). Such temporal differences challenge the ability 

of societies to adequately prepare for and respond to long-term changes including shifts in the frequency and intensity of 

extreme events (high confidence). Examples include changing landslides and floods in high mountain regions and risks to 

important species and ecosystems in the Arctic, as well as to low-lying nations and islands, small island nations, other 

coastal regions and to coral reef ecosystems. {2.3.2, 3.5.2, 3.5.4, 4.4.3, 5.2, 5.3, 5.4, 5.5.1, 5.5.2, 5.5.3, 6.9} 

 

C1.2 Governance arrangements (e.g., marine protected areas, spatial plans and water management 

systems) are, in many contexts, too fragmented across administrative boundaries and sectors to provide integrated 

responses to the increasing and cascading risks from climate-related changes in the ocean and/or cryosphere (high 

confidence). The capacity of governance systems in polar and ocean regions to respond to climate change impacts has 

strengthened recently, but this development is not sufficiently rapid or robust to adequately address the scale of increasing 

projected risks (high confidence). In high mountains, coastal regions and small islands, there are also difficulties in 

coordinating climate adaptation responses, due to the many interactions of climatic and non-climatic risk drivers (such as 

inaccessibility, demographic and settlement trends, or land subsidence caused by local activities) across scales, sectors 

and policy domains (high confidence). {2.3.1, 3.5.3, 4.4.3, 5.4.2, 5.5.2, 5.5.3, Box 5.6, 6.9, Cross-Chapter Box 3 in 

Chapter 1} 

 

C1.3 There are a broad range of identified barriers and limits for adaptation to climate change in 

ecosystems (high confidence). Limitations include the space that ecosystems require, non-climatic drivers and human 

impacts that need to be addressed as part of the adaptation response, the lowering of adaptive capacity of ecosystems 

because of climate change, and the slower ecosystem recovery rates relative to the recurrence of climate impacts, 

availability of technology, knowledge and financial support, and existing governance arrangements (medium confidence). 

{3.5.4, 5.5.2}  
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C1.4 Financial, technological, institutional and other barriers exist for implementing responses to current 

and projected negative impacts of climate-related changes in the ocean and cryosphere, impeding resilience building and 

risk reduction measures (high confidence). Whether such barriers reduce adaptation effectiveness or correspond to 

adaptation limits depends on context specific circumstances, the rate and scale of climate changes and on the ability of 

societies to turn their adaptive capacity into effective adaptation responses. Adaptive capacity continues to differ between 

as well as within communities and societies (high confidence). People with highest exposure and vulnerability to current 

and future hazards from ocean and cryosphere changes are often also those with lowest adaptive capacity, particularly in 

low-lying islands and coasts, Arctic and high mountain regions with development challenges (high confidence). {2.3.1, 

2.3.2, 2.3.7, Box 2.4, 3.5.2, 4.3.4, 4.4.2, 4.4.3, 5.5.2, 6.9, Cross-Chapter Boxes 2 and 3 in Chapter 1, Cross-Chapter 

Box 9} 

 

Strengthening Response Options 

 

C2. The far-reaching services and options provided by ocean and cryosphere-related ecosystems can be supported by 

protection, restoration, precautionary ecosystem-based management of renewable resource use, and the reduction of 

pollution and other stressors (high confidence). Integrated water management (medium confidence) and ecosystem-based 

adaptation (high confidence) approaches lower climate risks locally and provide multiple societal benefits. However, 

ecological, financial, institutional and governance constraints for such actions exist (high confidence), and in many 

contexts ecosystem-based adaptation will only be effective under the lowest levels of warming (high confidence). {2.3.1, 

2.3.3, 3.2.4, 3.5.2, 3.5.4, 4.4.2, 5.2.2, 5.4.2, 5.5.1, 5.5.2, Figure SPM.5} 

 

C2.1 Networks of protected areas help maintain ecosystem services, including carbon uptake and 

storage, and enable future ecosystem-based adaptation options by facilitating the poleward and altitudinal movements 

of species, populations, and ecosystems that occur in response to warming and sea level rise (medium confidence). 

Geographic barriers, ecosystem degradation, habitat fragmentation and barriers to regional cooperation limit the potential 

for such networks to support future species range shifts in marine, high mountain and polar land regions. (high 

confidence). {2.3.3, 3.2.3, 3.3.2, 3.5.4, 5.5.2, Box 3.4} 

 

C2.2 Terrestrial and marine habitat restoration, and ecosystem management tools such as assisted 

species relocation and coral gardening, can be locally effective in enhancing ecosystem-based adaptation (high 

confidence). Such actions are most successful when they are community-supported, are science-based whilst also using 

local knowledge and Indigenous knowledge, have long-term support that includes the reduction or removal of non-

climatic stressors, and under the lowest levels of warming (high confidence). For example, coral reef restoration options 

may be ineffective if global warming exceeds 1.5°C, because corals are already at high risk (very high confidence) at 

current levels of warming. {2.3.3, 4.4.2, 5.3.7, 5.5.1, 5.5.2, Box 5.5, Fig SPM.3} 
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C2.3 Strengthening precautionary approaches, such as rebuilding overexploited or depleted fisheries, 

and responsiveness of existing fisheries management strategies reduces negative climate change impacts on fisheries, 

with benefits for regional economies and livelihoods (medium confidence). Fisheries management that regularly assesses 

and updates measures over time, informed by assessments of future ecosystem trends, reduces risks for fisheries (medium 

confidence) but has limited ability to address ecosystem change. {3.2.4, 3.5.2, 5.4.2, 5.5.2, 5.5.3, Figure SPM.5} 

 

C2.4 Restoration of vegetated coastal ecosystems, such as mangroves, tidal marshes and seagrass 

meadows (coastal ‘blue carbon’ ecosystems), could provide climate change mitigation through increased carbon uptake 

and storage of around 0.5% of current global emissions annually (medium confidence). Improved protection and 

management can reduce carbon emissions from these ecosystems. Together, these actions also have multiple other 

benefits, such as providing storm protection, improving water quality, and benefiting biodiversity and fisheries (high 

confidence). Improving the quantification of carbon storage and greenhouse gas fluxes of these coastal ecosystems will 

reduce current uncertainties around measurement, reporting and verification (high confidence). {Box 4.3, 5.4, 5.5.1, 5.5.2, 

Annex I: Glossary} 

 

C2.5 Ocean renewable energy can support climate change mitigation, and can comprise energy 

extraction from offshore winds, tides, waves, thermal and salinity gradient and algal biofuels. The emerging demand for 

alternative energy sources is expected to generate economic opportunities for the ocean renewable energy sector (high 

confidence), although their potential may also be affected by climate change (low confidence). {5.4.2, 5.5.1, Figure 5.23} 

 

C2.6 Integrated water management approaches across multiple scales can be effective at addressing 

impacts and leveraging opportunities from cryosphere changes in high mountain areas. These approaches also support 

water resource management through the development and optimization of multi-purpose storage and release of water 

from reservoirs (medium confidence), with consideration of potentially negative impacts to ecosystems and communities. 

Diversification of tourism activities throughout the year supports adaptation in high mountain economies (medium 

confidence). {2.3.1, 2.3.5} 

 

C3. Coastal communities face challenging choices in crafting context-specific and integrated responses to sea level rise 

that balance costs, benefits and trade-offs of available options and that can be adjusted over time (high confidence). All 

types of options, including protection, accommodation, ecosystem-based adaptation, coastal advance and retreat, 

wherever possible, can play important roles in such integrated responses (high confidence). {4.4.2, 4.4.3, 4.4.4, 6.9.1, 

Cross-Chapter Box 9; Figure SPM.5} 
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C3.1. The higher the sea levels rise, the more challenging is coastal protection, mainly due to economic, 

financial and social barriers rather than due to technical limits (high confidence). In the coming decades, reducing local 

drivers of exposure and vulnerability such as coastal urbanization and human-induced subsidence constitute effective 

responses (high confidence). Where space is limited, and the value of exposed assets is high (e.g., in cities), hard protection 

(e.g., dikes) is likely to be a cost-efficient response option during the 21st century taking into account the specifics of the 

context (high confidence), but resource-limited areas may not be able to afford such investments. Where space is available, 

ecosystem-based adaptation can reduce coastal risk and provide multiple other benefits such as carbon storage, improved 

water quality, biodiversity conservation and livelihood support (medium confidence). {4.3.2, 4.4.2, Box 4.1, Cross-Chapter 

Box 9, Figure SPM.5} 

 

C3.2 Some coastal accommodation measures, such as early warning systems and flood-proofing of 

buildings, are often both low cost and highly cost-efficient under current sea levels (high confidence). Under projected sea 

level rise and increase in coastal hazards some of these measures become less effective unless combined with other 

measures (high confidence). All types of options, including protection, accommodation, ecosystem-based adaptation, 

coastal advance and planned relocation, if alternative localities are available, can play important roles in such integrated 

responses (high confidence). Where the community affected is small, or in the aftermath of a disaster, reducing risk by 

coastal planned relocations is worth considering if safe alternative localities are available. Such planned relocation can be 

socially, culturally, financially and politically constrained (very high confidence). {4.4.2, Box 4.1, Cross-Chapter Box 9, 

SPM B3} 

 

C3.3 Responses to sea-level rise and associated risk reduction present society with profound governance 

challenges, resulting from the uncertainty about the magnitude and rate of future sea level rise, vexing trade-offs between 

societal goals (e.g., safety, conservation, economic development, intra- and inter-generational equity), limited resources, 

and conflicting interests and values among diverse stakeholders (high confidence). These challenges can be eased using 

locally appropriate combinations of decision analysis, land-use planning, public participation, diverse knowledge systems 

and conflict resolution approaches that are adjusted over time as circumstances change (high confidence). {Cross-Chapter 

Box 5 in Chapter 1, 4.4.3, 4.4.4, 6.9} 

 

C3.4 Despite the large uncertainties about the magnitude and rate of post 2050 sea level rise, many 

coastal decisions with time horizons of decades to over a century are being made now (e.g., critical infrastructure, coastal 

protection works, city planning) and can be improved by taking relative sea-level rise into account, favouring flexible 

responses (i.e., those that can be adapted over time) supported by monitoring systems for early warning signals, 

periodically adjusting decisions (i.e., adaptive decision making), using robust decision-making approaches, expert 

judgement, scenario-building, and multiple knowledge systems (high confidence). The sea level rise range that needs to 

be considered for planning and implementing coastal responses depends on the risk tolerance of stakeholders. 
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Stakeholders with higher risk tolerance (e.g., those planning for investments that can be very easily adapted to unforeseen 

conditions) often prefer to use the likely range of projections, while stakeholders with a lower risk tolerance (e.g., those 

deciding on critical infrastructure) also consider global and local mean sea level above the upper end of the likely range 

(globally 1.1 m under RCP8.5 by 2100) and from methods characterised by lower confidence such as from expert 

elicitation. {1.8.1, 1.9.2, 4.2.3, 4.4.4, Figure 4.2, Cross-Chapter Box 5 in Chapter 1, Figure SPM.5, SPM B3} 
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Figure SPM.5: Sea level rise risks and responses. The term response is used here instead of adaptation because some responses, 

such as retreat, may or may not be considered to be adaptation. Panel a) shows the combined risk of coastal flooding, erosion and 

salinization for illustrative geographies in 2100, due to changing mean and extreme sea levels under RCP2.6 and RCP8.5 and under 

two response scenarios. Risks under RCPs 4.5 and 6.0 were not assessed due to a lack of literature for the assessed geographies. The 

assessment does not account for changes in extreme sea level beyond those directly induced by mean sea level rise; risk levels could 

increase if other changes in extreme sea levels were considered (e.g., due to changes in cyclone intensity). Panel a) considers a 

socioeconomic scenario with relatively stable coastal population density over the century {SM4.3.2}. Risks to illustrative geographies 

have been assessed based on relative sea-level changes projected for a set of specific examples: New York City, Shanghai and 

Rotterdam for resource-rich coastal cities covering a wide range of response experiences; South Tarawa, Fongafale and Male’ for 

urban atoll islands; Mekong and Ganges-Brahmaputra-Meghna for large tropical agricultural deltas; and Bykovskiy, Shishmaref, 

Kivalina, Tuktoyaktuk and Shingle Point for Arctic communities located in regions remote from rapid glacio-isostatic adjustment {4.2, 

4.3.4, SM4.2}. The assessment distinguishes between two contrasting response scenarios. “No-to-moderate response” describes 

efforts as of today (i.e., no further significant action or new types of actions). “Maximum potential response” represents a combination 

of responses implemented to their full extent and thus significant additional efforts compared to today, assuming minimal financial, 

social and political barriers. The assessment has been conducted for each sea level rise and response scenario, as indicated by the 

burning embers in the figure; in-between risk levels are interpolated {4.3.3}. The assessment criteria include exposure and vulnerability 

(density of assets, level of degradation of terrestrial and marine buffer ecosystems), coastal hazards (flooding, shoreline erosion, 

salinization), in-situ responses (hard engineered coastal defenses, ecosystem restoration or creation of new natural buffers areas, and 

subsidence management) and planned relocation. Planned relocation refers to managed retreat or resettlement as described in 

Chapter 4, i.e., proactive and local-scale measures to reduce risk by relocating people, assets and infrastructure. Forced displacement 

is not considered in this assessment. Panel a) also highlights the relative contributions of in-situ responses and planned relocation to 

the total risk reduction. Panel b) schematically illustrates the risk reduction (vertical arrows) and risk delay (horizontal arrows) through 

mitigation and/or responses to sea level rise. Panel c) summarizes and assesses responses to sea level rise in terms of their 

effectiveness, costs, co-benefits, drawbacks, economic efficiency and associated governance challenges {4.4.2}. Panel d) presents 

generic steps of an adaptive decision-making approach, as well as key enabling conditions for responses to sea level rise {4.4.4; 

4.4.5}. 

 

 

Enabling Conditions 

 

C4. Enabling climate resilience and sustainable development depends critically on urgent and ambitious emissions 

reductions coupled with coordinated sustained and increasingly ambitious adaptation actions (very high confidence). Key 

enablers for implementing effective responses to climate-related changes in the ocean and cryosphere include intensifying 
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cooperation and coordination among governing authorities across spatial scales and planning horizons. Education and 

climate literacy, monitoring and forecasting, use of all available knowledge sources, sharing of data, information and 

knowledge, finance, addressing social vulnerability and equity, and institutional support are also essential. Such 

investments enable capacity-building, social learning, and participation in context-specific adaptation, as well as the 

negotiation of trade-offs and realisation of co-benefits in reducing short-term risks and building long-term resilience and 

sustainability. (high confidence) This report reflects the state of science for ocean and cryosphere for low levels of global 

warming (1.5°C), as also assessed in earlier IPCC and IPBES reports. {1.1, 1.5, 1.8.3, 2.3.1, 2.3.2, 2.4, Figure 2.7, 2.5, 

3.5.2, 3.5.4, 4.4, 5.2.2, Box 5.3, 5.4.2, 5.5.2, 6.4.3, 6.5.3, 6.8, 6.9, Cross-Chapter Box 9, Figure SPM.5} 

 

C4.1 In light of observed and projected changes in the ocean and cryosphere, many nations will face 

challenges to adapt, even with ambitious mitigation (very high confidence). In a high emissions scenario, many ocean- 

and cryosphere-dependent communities are projected to face adaptation limits (e.g. biophysical, geographical, financial, 

technical, social, political and institutional) during the second half of the 21st century. Low emission pathways, for 

comparison, limit the risks from ocean and cryosphere changes in this century and beyond and enable more effective 

responses (high confidence), whilst also creating co-benefits. Profound economic and institutional transformative change 

will enable Climate Resilient Development Pathways in the ocean and cryosphere context (high confidence). {1.1, 1.4–

1.7, Cross-Chapter Boxes 1–3 in Chapter 1, 2.3.1, 2.4, Box 3.2, Figure 3.4, Cross-Chapter Box 7 in Chapter 3, 3.4.3, 

4.2.2, 4.2.3, 4.3.4, 4.4.2, 4.4.3, 4.4.6, 5.4.2, 5.5.3, 6.9.2, Cross-Chapter Box 9, Figure SPM.5} 

 

C4.2 Intensifying cooperation and coordination among governing authorities across scales, jurisdictions, 

sectors, policy domains and planning horizons can enable effective responses to changes in the ocean, cryosphere and to 

sea level rise (high confidence). Regional cooperation, including treaties and conventions, can support adaptation action; 

however, the extent to which responding to impacts and losses arising from changes in the ocean and cryosphere is 

enabled through regional policy frameworks is currently limited (high confidence). Institutional arrangements that provide 

strong multiscale linkages with local and Indigenous communities benefit adaptation (high confidence). Coordination and 

complementarity between national and transboundary regional policies can support efforts to address risks to resource 

security and management, such as water and fisheries (medium confidence). {2.3.1, 2.3.2, 2.4, Box 2.4, 2.5, 3.5.2, 3.5.3, 

3.5.4, 4.4.4, 4.4.5, Table 4.9, 5.5.2, 6.9.2} 

 

C4.3 Experience to date – for example, in responding to sea level rise, water-related risks in some high 

mountains, and climate change risks in the Arctic – also reveal the enabling influence of taking a long-term perspective 

when making short-term decisions, explicitly accounting for uncertainty of context-specific risks beyond 2050 (high 

confidence), and building governance capabilities to tackle complex risks (medium confidence). {2.3.1, 3.5.4, 4.4.4, 4.4.5, 

Table 4.9, 5.5.2, 6.9, Figure SPM.5} 

 



APPROVED SPM  IPCC SR Ocean and Cryosphere 

Subject to Copyedit SPM-42 Total pages: 42 

C4.4 Investments in education and capacity building at various levels and scales facilitates social 

learning and long-term capability for context-specific responses to reduce risk and enhance resilience (high confidence). 

Specific activities include utilization of multiple knowledge systems and regional climate information into decision making, 

and the engagement of local communities, Indigenous peoples, and relevant stakeholders in adaptive governance 

arrangements and planning frameworks (medium confidence). Promotion of climate literacy and drawing on local, 

Indigenous and scientific knowledge systems enables public awareness, understanding and social learning about locality-

specific risk and response potential (high confidence). Such investments can develop, and in many cases transform existing 

institutions and enable informed, interactive and adaptive governance arrangements (high confidence). {1.8.3, 2.3.2, 

Figure 2.7, Box 2.4, 2.4, 3.5.2, 3.5.4, 4.4.4, 4.4.5, Table 4.9, 5.5.2, 6.9} 

 

C4.5 Context-specific monitoring and forecasting of changes in the ocean and the cryosphere informs 

adaptation planning and implementation, and facilitates robust decisions on trade-offs between short- and long-term 

gains (medium confidence). Sustained long-term monitoring, sharing of data, information and knowledge and improved 

context-specific forecasts, including early warning systems to predict more extreme El Niño/La Niña events, tropical 

cyclones, and marine heatwaves, help to manage negative impacts from ocean changes such as losses in fisheries, and 

adverse impacts on human health, food security, agriculture, coral reefs, aquaculture, wildfire, tourism, conservation, 

drought and flood (high confidence). {2.4, 2.5, 3.5.2, 4.4.4, 5.5.2, 6.3.1, 6.3.3, 6.4.3, 6.5.3, 6.9} 

 

C4.6 Prioritising measures to address social vulnerability and equity underpins efforts to promote fair 

and just climate resilience and sustainable development (high confidence), and can be helped by creating safe community 

settings for meaningful public participation, deliberation and conflict resolution (medium confidence). {Box 2.4, 4.4.4, 

4.4.5, Table 4.9, Figure SPM.5} 

 

C4.7 This assessment of the ocean and cryosphere in a changing climate reveals the benefits of 

ambitious mitigation and effective adaptation for sustainable development and, conversely, the escalating costs and risks 

of delayed action. The potential to chart Climate Resilient Development Pathways varies within and among ocean, high 

mountain and polar land regions. Realising this potential depends on transformative change. This highlights the urgency 

of prioritising timely, ambitious, coordinated and enduring action. (very high confidence) {1.1, 1.8, Cross-Chapter Box 1, 

2.3, 2.4, 3.5, 4.2.1, 4.2.2, 4.3.4, 4.4, Table 4.9, 5.5, 6.9, Cross-Chapter Box 9, Figure SPM.5} 
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Executive Summary 
 
This special report assesses new knowledge since the IPCC 5th Assessment Report (AR5) and the Special 
Report on Global Warming of 1.5°C (SR1.5) on how the ocean and cryosphere have and are expected to 
change with ongoing global warming, the risks and opportunities these changes bring to ecosystems and 
people, and mitigation, adaptation and governance options for reducing future risks. Chapter 1 provides 
context on the importance of the ocean and cryosphere, and the framework for the assessments in subsequent 
chapters of the report. 
 
All people on Earth depend directly or indirectly on the ocean and cryosphere. The fundamental roles 
of the ocean and cryosphere in the Earth system include the uptake and redistribution of anthropogenic 
carbon dioxide and heat by the ocean, as well as their crucial involvement of in the hydrological cycle. The 
cryosphere also amplifies climate changes through snow, ice and permafrost feedbacks. Services provided to 
people by the ocean and/or cryosphere include food and freshwater, renewable energy, health and wellbeing, 
cultural values, trade, and transport. {1.1, 1.2, 1.5} 
  
Sustainable development is at risk from emerging and intensifying ocean and cryosphere changes. 
Ocean and cryosphere changes interact with each of the United Nations Sustainable Development Goals 
(SDGs). Progress on climate action (SDG13) would reduce risks to aspects of sustainable development that 
are fundamentally linked to the ocean and cryosphere and the services they provide (high confidence1). 
Progress on achieving the SDGs can contribute to reducing the exposure or vulnerabilities of people and 
communities to the risks of ocean and cryosphere change (medium confidence). {1.1} 
 
Communities living in close connection with polar, mountain, and coastal environments are 
particularly exposed to the current and future hazards of ocean and cryosphere change. Coasts are 
home to approximately 28% of the global population, including around 11% living on land less than 10 m 
above sea level. Almost 10% of the global population lives in the Arctic or high mountain regions. People in 
these regions face the greatest exposure to ocean and cryosphere change, and poor and marginalised people 
here are particularly vulnerable to climate-related hazards and risks (very high confidence). The adaptive 
capacity of people, communities and nations is shaped by social, political, cultural, economic, technological, 
institutional, geographical, and demographic factors. {1.1, 1.5, 1.6, Cross-Chapter Box 2 in Chapter 1} 
 
Ocean and cryosphere changes are pervasive and observed from high mountains, to the polar regions, 
to coasts, and into the deep ocean. AR5 assessed that the ocean is warming (0-700 m: virtually certain2; 
700-2000 m: likely), sea level is rising (high confidence), and ocean acidity is increasing (high confidence). 
Most glaciers are shrinking (high confidence), the Greenland and Antarctic ice sheets are losing mass (high 
confidence), sea-ice extent in the Arctic is decreasing (very high confidence), Northern Hemisphere snow 
cover is decreasing (very high confidence), and permafrost temperatures are increasing (high confidence). 
Improvements since AR5 in observation systems, techniques, reconstructions and model developments, have 
advanced scientific characterisation and understanding of ocean and cryosphere change, including in 
previously identified areas of concern such as ice sheets and Atlantic Meridional Overturning Circulation. 
{1.1, 1.4, 1.8.1} 
 
Evidence and understanding of the human causes of climate warming, and of associated ocean and 
cryosphere changes, has increased over the past 30 years of IPCC assessments (very high confidence). 
Human activities are estimated to have caused approximately 1.0°C of global warming above pre-industrial 
                                                   
1 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; 
and for the degree of agreement: low, medium, or high. A level of confidence is expressed using five qualifiers: very 
low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and 
agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of 
agreement are correlated with increasing confidence (see Section 1.9.2 and Figure 1.4 for more details). 
2 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: 
Virtually certain 99–100% probability, Very likely 90–100%, Likely 66–100%, About as likely as not 33–66%, 
Unlikely 0–33%, Very unlikely 0–10%, and Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–
100%, More likely than not >50–100%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed 
likelihood is typeset in italics, e.g., very likely (see Section 1.9.2 and Figure 1.4 for more details). This Report also uses 
the term ‘likely range’ to indicate that the assessed likelihood of an outcome lies within the 17-83% probability range. 
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levels (SR1.5). Areas of concern in earlier IPCC reports, such as the expected acceleration of sea level rise, 
are now observed (high confidence). Evidence for expected slow-down of Atlantic Meridional Overturning 
Circulation is emerging in sustained observations and from long-term palaeoclimate reconstructions (medium 
confidence), and may be related with anthropogenic forcing according to model simulations, although this 
remains to be properly attributed. Significant sea level rise contributions from Antarctic ice sheet mass loss 
(very high confidence), which earlier reports did not expect to manifest this century, are already being 
observed. {1.1, 1.4} 
 
Ocean and cryosphere changes and risks by the end-of-century (2081-2100) will be larger under high 
greenhouse gas emission scenarios, compared with low emission scenarios (very high confidence). 
Projections and assessments of future climate, ocean and cryosphere changes in SROCC are commonly 
based on coordinated climate model experiments from the Coupled Model Intercomparison Project Phase 5 
(CMIP5) forced with Representative Concentration Pathways (RCPs) of future radiative forcing. Current 
emissions continue to grow at a rate consistent with a high emission future without effective climate change 
mitigation policies (referred to as RCP8.5). The SROCC assessment contrasts this high greenhouse gas 
emission future with a low greenhouse gas emission, high mitigation future  (referred to as RCP2.6) that 
gives a two in three chance of limiting warming by the end of the century to less than 2oC above pre-
industrial. {Cross-Chapter Box 1 in Chapter 1}  
 
Characteristics of ocean and cryosphere change include thresholds of abrupt change, long-term 
changes that cannot be avoided, and irreversibility (high confidence). Ocean warming, acidification and 
deoxygenation, ice sheet and glacier mass loss, and permafrost degradation are expected to be irreversible on 
timescales relevant to human societies and ecosystems. Long response times of decades to millennia mean 
that the ocean and cryosphere are committed to long-term change even after atmospheric greenhouse gas 
concentrations and radiative forcing stabilise (high confidence). Ice melt or the thawing of permafrost 
involve thresholds (state changes) that allow for abrupt, nonlinear responses to ongoing climate warming 
(high confidence). These characteristics of ocean and cryosphere change pose risks and challenges to 
adaptation {1.1, Box 1.1, 1.3}. 
  
Societies will be exposed, and challenged to adapt, to changes in the ocean and cryosphere even if 
current and future efforts to reduce greenhouse gas emissions keep global warming well below 2°C 
(very high confidence). Ocean and cryosphere-related mitigation and adaptation measures include options 
that address the causes of climate change, support biological and ecological adaptation, or enhance societal 
adaptation. Most ocean-based local mitigation and adaptation measures have limited effectiveness to 
mitigate climate change and reduce its consequences at the global scale, but are useful to implement because 
they address local risks, often have co-benefits such as biodiversity conservation, and have few adverse side 
effects. Effective mitigation at a global scale will reduce the need and cost of adaptation, and reduce the risks 
of surpassing limits to adaptation. Ocean-based carbon dioxide removal at the global scale has potentially 
large negative ecosystem consequences. {Cross-Chapter Box 2 in Chapter 1, 1.6.1, 1.6.2} 
 
The scale and cross-boundary dimensions of changes in the ocean and cryosphere challenge the ability 
of communities, cultures and nations to respond effectively within existing governance frameworks 
(high confidence). Profound economic and institutional transformations are needed if climate-resilient 
development is to be achieved (high confidence). Changes in the ocean and cryosphere, the ecosystem 
services that they provide, the drivers of those changes, and the risks to marine, coastal, polar and mountain 
ecosystems, occur on spatial and temporal scales that may not align within existing governance structures 
and practices (medium confidence). This report highlights the requirements for transformative governance, 
international and transboundary cooperation, and greater empowerment of local communities in the 
governance of the ocean, coasts, and cryosphere in a changing climate. {1.5, 1.7, Cross-Chapter Box 2 in 
Chapter 1, Cross-Chapter Box 3 in Chapter 1} 
  
Robust assessments of ocean and cryosphere change, and the development of context-specific 
governance and response options, depend on utilising and strengthening all available knowledge 
systems (high confidence). Scientific knowledge from observations, models and syntheses provides global 
to local scale understandings of climate change (very high confidence). Indigenous knowledge and local 
knowledge provide context-specific and socio-culturally relevant understandings for effective responses and 
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policies (medium confidence). Education and climate literacy enable climate action and adaptation (high 
confidence). {1.8, Cross-Chapter Box 4 in Chapter 1}  
 
Long-term sustained observations and continued modeling are critical for detecting, understanding 
and predicting ocean and cryosphere change, providing the knowledge to inform risk assessments and 
adaptation planning (high confidence). Knowledge gaps exist in scientific knowledge for important 
regions, parameters and processes of ocean and cryosphere change, including for physically plausible, high 
impact changes like high-end sea level rise scenarios that would be costly if realised without effective 
adaptation planning and even then may exceed limits to adaptation. Means such as expert judgement, 
scenario-building, and invoking multiple lines of evidence enable comprehensive risk assessments even in 
cases of uncertain future ocean and cryosphere changes. {1.8.1, 1.9.2; Cross-Chapter Box 5 in Chapter 1} 
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1.1 Why this Special Report? 
 
All people depend directly or indirectly on the ocean and cryosphere (see FAQ1.1). Coasts are the most 
densely populated areas on Earth. As of 2010, 28% of the global population (1.9 billion people) were living 
in areas less than 100 km from the coastline and less than 100 m above sea level, including 17 major cities 
which are each home to more than 5 million people (Kummu et al., 2016). The low elevation coastal zone 
(land less than 10 m above sea level), where people and infrastructure are most exposed to coastal hazards, is 
currently home to around 11% of the global population (around 680 million people), and by 2050 the 
population in this zone is projected to grow to more than one billion under all shared socio-economic 
pathways (Section 4.3.3.2; Merkens et al., 2016; O’Neill et al., 2017). In 2010, approximately 4 million 
people lived in the Arctic (Section 3.5.1), and an increase of only 4% is projected for 2030 (Heleniak, 2014) 
compared to 16 to 23% for the global population increase (O’Neill et al., 2017). Almost 10% of the global 
population (around 670 million people) lived in high mountain regions in 2010, and by 2050 the population 
in these regions is expected to grow to between 736 to 844 million across the shared socio-economic 
pathways (Section 2.1). For people living in close contact with the ocean and cryosphere, these systems 
provide essential livelihoods, food security, well-being and cultural identity, but are also a source of hazards 
(Sections 1.5.1, 1.5.2).  
 
Even people living far from the ocean or cryosphere depend on these systems. Snow and glacier melt from 
high mountains helps to sustain the rivers that deliver water resources to downstream populations (Kaser et 
al., 2010; Sharma et al., 2019). In the Indus and Ganges river basins, for example, snow and glacier melt 
provides enough water to grow food crops to sustain a balanced diet for 38 million people, and supports the 
livelihoods of 129 million farmers (Biemans et al., 2019). The ocean and cryosphere regulate global climate 
and weather; the ocean is the primary source of rain and snowfall needed to sustain life on land, and uptake 
of heat and carbon into the ocean has so far limited the magnitude of anthropogenic warming experienced at 
the Earth’s surface (Section 1.2). The ocean’s biosphere is responsible for about half of the primary 
production on Earth, and around 17% of the non-grain protein in human diets is derived from the ocean 
(FAO, 2018). Ocean and cryosphere changes can result in differing consequences and benefits on local to 
global scales; for example, declining sea ice in the Arctic is allowing access to shorter international shipping 
routes but restricting traditional sea-ice based travel for Arctic communities.  
 
Human activities are estimated to have so far caused approximately 1°C of global warming (0.8-1.2°C likely 
range; above pre-industrial levels; IPCC, 2018). The IPCC Fifth Assessment Report (AR5) concluded that, 
‘Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are 
unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow 
and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased’ 
(IPCC, 2013). Subsequently, Parties to the Paris Agreement aimed to strengthen the global response to the 
threats of climate change, including by ‘holding the increase in global average temperature to well below 
2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C’ (UNFCCC, 
2015). 
 
Pervasive ocean and cryosphere changes that are already being caused by human-induced climate change are 
observed from high mountains, to the polar regions, to coasts and into the deep reaches of the ocean. 
Changes by the end of this century are expected to be larger under high greenhouse gas emission futures 
compared with low emission futures (Cross-Chapter Box 1 in Chapter 1), and inaction on reducing emissions 
will have large economic costs. If human impacts on the ocean continue unabated, declines in ocean health 
and services are projected to cost the global economy $428 billion per year by 2050, and $1.979 trillion per 
year by 2100. Alternatively, steps to reduce these impacts could save more than a trillion dollars per year by 
2100 (Ackerman, 2013). Similarly, sea level rise scenarios of 25 to 123 cm by 2100 without adaptation are 
expected to see 0.2 to 4.6% of the global population impacted by coastal flooding annually, with average 
annual losses amounting to 0.3 to 9.3% of global GDP. Investment in adaptation reduces by 2 to 3 orders of 
magnitude the number of people flooded and the losses caused (Hinkel et al., 2014). 
 
The United Nations 2030 Sustainable Development Goals (SDGs) (UN, 2015) are all connected to varying 
extents with the ocean and cryosphere (see FAQ1.2). Climate action (SDG13) would limit future ocean and 
cryosphere changes (high confidence; Cross-Chapter Box 1 in Chapter 1, Figure 1.5, Chapter 2-6), and 
would reduce risks to SDGs that are fundamentally linked to the ocean and cryosphere, including life below 
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water, and clean water and sanitation. (Sections 2.4, 4.4, 5.4; Szabo et al., 2016; LeBlanc et al., 2017; Singh 
et al., 2018; Visbeck, 2018; Wymann von Dach et al., 2018; Kulonen, Accepted). Other goals for sustainable 
development depend on the services the ocean and cryosphere provide or are impacted by ocean and 
cryosphere change; including, life on land, health and wellbeing, eradicating poverty and hunger, economic 
growth, clean energy, infrastructure, and sustainable cities and communities. Progress on the other SDGs 
(education, gender equality, reduced inequalities, responsible consumption, strong institutions, and 
partnerships for the goals) are important for reducing the vulnerability of people and communities to the 
risks of ocean and cryosphere changes (Section 1.5; 2.3), and for supporting mitigation and adaptation 
responses (Sections 1.6, 1.7 and 1.8.3; medium confidence).  
 
The characteristics of ocean and cryosphere change (Section 1.3) present particular challenges to climate-
resilient development pathways. Ocean acidification and deoxygenation, ice sheet and glacier mass loss, and 
permafrost degradation are expected to be irreversible on timescales relevant to human societies and 
ecosystems (Lenton et al., 2008; Solomon et al., 2009; Frölicher and Joos, 2010; Cai et al., 2016; Kopp et al., 
2016). Ocean and cryosphere changes also have the potential to worsen anthropogenic climate change, 
globally and regionally; for example, by additional greenhouse gas emissions released through permafrost 
thaw that would intensify anthropogenic climate change globally, or by increasing the absorption of solar 
radiation through snow and ice loss in the Arctic that is causing regional climate to warm at more than twice 
the global rate (AMAP, 2017; Steffen et al., 2018). Ocean and cryosphere changes place particular pressures 
on the adaptive capacities of cultures who maintain centuries to millennia-old relationships to the planet’s 
polar, mountain, and coastal environments, as well as on cities, states and nations whose territorial 
boundaries are being transformed by ongoing sea level rise (Gerrard and Wannier, 2013). The scale and 
cross-boundary dimensions of changes in the ocean and cryosphere challenge the ability of current local, 
regional, to international governance structures to respond (Section 1.7). Profound economic and 
institutional transformations are needed if climate-resilient development is to be achieved, including 
ambitious mitigation efforts to avoid the risks of large-scale and abrupt ocean and cryosphere changes.  
 
The commissioning of this Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) 
recognises the interconnected ways in which the ocean and cryosphere are expected to change in a warming 
climate. SROCC assesses new knowledge since AR5 and provides an integrated approach across IPCC 
working groups I and II, linking physical changes with their ecological and human impacts, and the 
strategies to respond and adapt to future risks. It is one of three special reports being produced by the IPCC 
during its Sixth Assessment Cycle (in addition to the three working groups’ main assessment reports). The 
concurrent IPCC Special Report on Climate Change and Land (SRCCL; due August 2019) links to SROCC 
where terrestrial environments and their habitability interact closely with the ocean or cryosphere, such as in 
mountain, Arctic, and coastal regions. The recent IPCC Special Report on Global Warming of 1.5°C (SR1.5) 
concluded that human-induced warming will reach 1.5°C between 2030 and 2052 if it continues to increase 
at the current rate (high confidence), and that there are widespread benefits to human and natural systems of 
limiting warming to 1.5oC compared with 2oC or more (high confidence; IPCC, 2018).  
 
 
[START BOX 1.1 HERE] 
 
Box 1.1: Major Components and Characteristics of the Ocean and Cryosphere 
 
Ocean 
The global ocean is the interconnected body of saline water that encompasses polar to equatorial climate 
zones and covers 71% of the Earth surface. It includes the Arctic, Pacific, Atlantic, Indian, and Southern 
oceans, as well as their marginal seas. The ocean contains about 97% of the Earth’s water, supplies 99% of 
the Earth's biologically-habitable space, and provides roughly half of the primary production on Earth.  
 
Coasts are where ocean and land processes interact, and includes coastal cities, deltas, estuaries, and other 
coastal ecosystems such as mangrove forests. Low elevation coastal zones (less than 10 m above sea level) 
are densely populated and particularly exposed to hazards from the ocean (Chapters 4 to 6, Cross-Chapter 
Box 9). Moving into the ocean, the continental shelf represents the shallow ocean areas (depth <200 m) that 
surround continents and islands, before the seafloor descends at the continental slope into the deep ocean. 
The edge of the continental shelf is often used to identify the coastal ocean from the open ocean. Ocean 
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depth and distance from the coast may influence the governance and economic access that applies to ocean 
areas (Cross-Chapter Box 3 in Chapter 1).  
 
The average depth of the global ocean is about 3700 m, with a maximum depth of more than 10,000 m. The 
ocean is vertically stratified with less dense water sitting above more dense layers, determined by the 
seawater temperature, salinity and pressure. The surface of the ocean is in direct contact with the 
atmosphere, except for sea ice covered regions. Sunlight penetrates the water column and supports primary 
production (by phytoplankton) down to 50 to 200 m depth (epipelagic zone). Atmospheric-driven mixing 
occurs from the sea surface and into the mesopelagic zone (200 to 1000 m). The distinction between the 
upper ocean and deep ocean depends on the processes being considered.  
 
The ocean is a fundamental climate regulator on seasonal to millennial time scales. Seawater has a heat 
capacity four times larger than air and holds vast quantities of dissolved carbon. Heat, water, and 
biogeochemically relevant gases (e.g., oxygen (O2) and carbon dioxide (CO2)) exchange at the air-sea 
interface, and ocean currents and mixing caused by winds, tides, wave dynamics, density differences, and 
turbulence redistribute these throughout the global ocean (Box 1.1, Figure 1).  
 
Cryosphere 
The cryosphere refers to frozen components of the Earth system that are at or below the land and ocean 
surface. These include snow, glaciers, ice sheets, ice shelves, icebergs, sea ice, lake ice, river ice, permafrost 
and seasonally frozen ground. Cryosphere is widespread in polar regions (Chapter 3) and high mountains 
(Chapter 2), and changes in the cryosphere can have far-reaching and even global impacts (Chapters 2 to 6, 
Cross-Chapter Box 9).  
 
Snow is common in polar and mountain regions. It can ultimately either melt seasonally, or transform into 
ice layers that build glaciers and ice sheets. Snow feeds groundwater and river runoff together with glacier 
melt, causes natural hazards (avalanches, rain-on-snow flood events), and is a critical economic resource for 
hydropower and tourism. Snow plays a major role in maintaining high mountain and Arctic ecosystems, 
affects the Earth’s energy budget by reflecting solar radiation (albedo effect), and influences the temperature 
of underlying permafrost. 
 
Ice sheets and glaciers are land-based ice, built up by accumulating snowfall on their surface. Presently, 
around 10% of Earth’s land area is covered by glaciers or ice sheets, which in total hold about 69% of 
Earth’s freshwater (Gleick, 1996). Ice sheets and glaciers flow, and at their margins ice and/or meltwater is 
discharged into lakes, rivers or the ocean. The largest ice bodies on Earth are the Greenland and Antarctic ice 
sheets. Marine-based sections of ice sheets (e.g., West Antarctic Ice Sheet) sit upon bedrock that largely lies 
below sea level and are in contact with ocean heat, making them vulnerable to rapid and irreversible ice loss. 
Ice sheets and glaciers that lose more ice than they accumulate contribute to global sea level rise.  
 
Ice shelves are extensions of ice sheets and glaciers that float in the surrounding ocean. The transition 
between the grounded part of an ice sheet and a floating ice shelf is called the grounding line. Changes in 
ice-shelf size do not directly contribute to sea level rise, but buttressing of ice shelves restrict the flow of 
land-based ice past the grounding line into the ocean.  
 
Sea ice forms from freezing of seawater, and sea ice on the ocean surface is further thickened by snow 
accumulation. Sea ice may be discontinuous pieces moved on the ocean surface by wind and currents (pack 
ice), or a motionless sheet attached to the coast or to ice shelves (fast ice). Sea ice provides many critical 
functions: it provides essential habitat for polar species and supports the livelihoods of people in the Arctic 
(including Indigenous peoples); regulates climate by reflecting solar radiation; inhibits ocean-atmosphere 
exchange of heat, momentum, and gases (including CO2); supports global deep ocean circulation via dense 
(cold and salty) water formation; and aids or hinders transportation and travel routes in the polar regions.  
 
Permafrost is ground (soil or rock containing ice and frozen organic material) that remains at or below 0°C 
for at least two consecutive years. It occurs on land in polar and high-mountain areas, and also as submarine 
permafrost in shallow parts of the Arctic and Southern oceans. Permafrost thickness ranges from less than 1 
m to greater than 1000 m. It usually occurs beneath an active layer, which thaws and freezes annually. 
Unlike glaciers and snow, the spatial distribution and temporal changes of permafrost cannot easily be 
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observed. Permafrost thaw can cause hazards, including ground subsidence or landslides, and influence 
global climate through emissions of greenhouse gases from microbial breakdown of previously frozen 
organic carbon. 
 
 

 
Box 1.1, Figure 1: Schematic illustration of key components and changes of the ocean and cryosphere, and 
their linkages in the Earth system through the movement of heat, water, and carbon (Section 1.2). Climate 
change-related effects in the ocean include sea level rise, increasing ocean heat content and marine heat 
waves, ocean deoxygenation, and ocean acidification (Section 1.4.1). Changes in the cryosphere include the 
decline of Arctic sea ice extent, Antarctic and Greenland ice sheet mass loss, glacier mass loss, permafrost 
thaw, and decreasing snow cover extent (Section 1.4.2). For illustration purposes, a few examples of where 
humans directly interact with ocean and cryosphere are shown.  
 
[END BOX 1.1 HERE] 
 
 
1.2 Role of the Ocean and Cryosphere in the Earth System 
 
1.2.1 Ocean and Cryosphere in Earth’s Energy, Water and Biogeochemical Cycles 
 
The ocean and cryosphere play a key role in the Earth system. Powered by the Sun’s energy, large quantities 
of energy, water, and biogeochemical elements (predominantly carbon, nitrogen, oxygen, and hydrogen) are 
exchanged between all components of the Earth system, including between the ocean and cryosphere (Box 
1.1, Figure 1).  
 
During an equilibrium (stable) climate state, the amount of incoming solar energy is balanced by an equal 
amount of outgoing radiation at the top of Earth’s atmosphere (Hansen et al., 2011). At the Earth’s surface 
energy from the sun is transformed into various forms (heat, potential, latent, kinetic, and chemical), that 
drive weather systems in the atmosphere and currents in the ocean, fuel photosynthesis on land and in the 
ocean, and fundamentally determine the climate (Trenberth et al., 2014). The ocean has a large capacity to 
store and release heat, and the Earth’s energy budget can be effectively monitored through the heat content 
of the ocean on time scales longer than one year (Palmer and McNeall, 2014; von Schuckmann et al., 2016; 
Cheng et al., 2018). The large heat capacity of the ocean leads to different characteristics of the ocean 
response to external forcings compared with the atmosphere (Sections 1.3, 1.4). The reflective properties of 
snow and ice also play an important role in regulating climate, via the albedo effect. Increased amounts of 
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solar energy are absorbed when snow or ice are replaced by less reflective land or ocean surfaces, resulting 
in a climate change feedback responsible for amplified changes. 
 
Water is exchanged between the ocean, the atmosphere, the land, and the cryosphere as part of the 
hydrological cycle driven by solar heating (Box 1.1, Figure 1; Trenberth et al., 2007; Lagerloef et al., 2010; 
Durack et al., 2016). Evaporation from the surface ocean is the main source of water in the atmosphere, 
which is moved back to the Earth’s surface as precipitation (Gimeno et al., 2012). The hydrological cycle is 
closed by the eventual return of water to the ocean by rivers, streams, and groundwater flow, and through ice 
discharge and melting of ice sheets and glaciers (Yu, 2018). Hydrological extremes related to the ocean 
include floods from extreme rainfall (including tropical cyclones) or ocean circulation-related droughts 
(Sections 6.3, 6.5), while cryosphere-related flooding can be caused by rapid snow melt and meltwater 
discharge events (Sections 2.3, 3.4). 
 
Ninety-two percent of the carbon on Earth that is not locked up in geological reservoirs (e.g., in sedimentary 
rocks or coal, oil and gas reservoirs) resides in the ocean (Sarmiento and Gruber, 2002). Most of this is in the 
form of dissolved inorganic carbon, some of which readily exchanges with CO2 in the overlying atmosphere. 
This represents a major control on atmospheric CO2 and makes the ocean and its carbon cycle one of the 
most important climate regulators in the Earth system, especially on timescales of a few hundred years and 
more (Sigman and Boyle, 2000; Berner and Kothavala, 2001). The ocean also contains as much organic 
carbon (mostly in the form of dissolved organic matter) as the total vegetation on land (Jiao et al., 2010; 
Hansell, 2013). Primary production in the ocean, which is as large as that on land (Field et al., 1998), fuels 
complex food-webs that provide essential food for people.  
 
Ocean circulation and mixing redistribute heat and carbon over large distances and depths (Delworth et al., 
2017). The ocean moves heat laterally from the tropics towards polar regions (Rhines et al., 2008). Vertical 
redistribution of heat and carbon occurs where warm, low-density surface ocean waters transform into cool 
high-density waters that sink to deeper layers of the ocean (Talley, 2013), taking high carbon concentrations 
with them (Gruber et al., 2019). Driven by winds, ocean circulation also brings cold water up from deep 
layers (upwelling) in some regions, allowing heat, oxygen and carbon exchange between the deep ocean and 
the atmosphere (Oschlies et al., 2018; Shi et al., 2018) and fuelling biological production (Sarmiento and 
Gruber, 2006). 
 
1.2.2 Interactions Between the Ocean and Cryosphere 
 
The ocean and cryosphere are interconnected in a multitude of ways (Box 1.1, Figure 1). Evaporation from 
the ocean provides snowfall that builds and sustains the ice sheets and glaciers that store large amounts of 
frozen water on land (Section 4.2.1). The vast ice sheets in Antarctica and Greenland currently hold about 66 
metres of potential global sea level rise (Fretwell et al., 2013), although the loss of a large fraction of this 
potential would require millennia of ice sheet retreat. Ocean temperature and sea level affect ice sheet, 
glacier and ice-shelf stability in places where the base of ice bodies are in direct contact with ocean water 
(Section 3.3.1). The non-linear response of ice melt to ocean temperature changes means that even slight 
increases in ocean temperature have the potential to rapidly melt and destabilise large sections of an ice sheet 
or ice shelf (Section 3.3.1.5). 
 
The formation of sea ice leads to the production of dense ocean water that contributes to the deep ocean 
circulation (Section 3.3.3.2). Paleoclimate evidence and modeling indicates that releases of large amounts of 
glacier and ice sheet meltwater into the surface ocean can disrupt deep overturning circulation of the ocean, 
causing global climate impacts (Knutti et al., 2004; Golledge et al., 2019). Ice sheet meltwater in the 
Antarctic may cause changes in surface ocean salinity, stratification and circulation, that feedback to 
generate further ocean-driven melting of marine-based ice sheets (Golledge et al., 2019) and promote sea ice 
formation (Purich et al., 2018). The cryosphere and ocean further link through the movement of 
biogeochemical nutrients. For example, iron accumulated in sea ice during winter is released to the ocean 
during the spring and summer melt, helping to fuel ocean productivity in the seasonal sea ice zone 
(Tagliabue et al., 2017). Nutrient-rich sediments delivered by glaciers further connect cryosphere processes 
to ocean productivity (Arrigo et al., 2017).  
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1.3 Timescales, Thresholds and Detection of Ocean and Cryosphere Change 
 
It takes hundreds of years to millennia for the entire deep ocean to turn over (Matsumoto, 2007; Gebbie and 
Huybers, 2012), while renewal of the large ice sheets requires many thousands of years (Huybrechts and de 
Wolde, 1999). Long response times mean that the deep ocean and the large ice-sheets tend to lag behind in 
their response to the rapidly changing climate at Earth’s surface, and that they will continue to change even 
after radiative forcing stabilises (e.g., Golledge et al., 2015; Figure 1.1a). Such ‘committed’ changes mean 
that some ocean and cryosphere changes are essentially irreversible on timescales relevant to human 
societies (decades to centuries), even in the presence of immediate action to limit further global warming 
(e.g., Section 4.2.3.5).  
 
While some aspects of the ocean and cryosphere might respond in a linear (i.e., directly proportional) 
manner to a perturbation by some external forcing, this may change fundamentally when critical thresholds 
are reached. A very important example for such a threshold is the transition from frozen water to liquid water 
at around 0°C that can lead to rapid acceleration of ice melt or permafrost thaw (e.g., Abram et al., 2013; 
Trusel et al., 2018). Such thresholds often act as tipping points, as they are associated with rapid and abrupt 
changes even when the underlying forcing changes gradually (Figure 1.1a, 1.1c). Tipping elements include, 
for example, the collapse of the ocean’s large-scale overturning circulation in the Atlantic (Section 6.7), or 
the collapse of the West Antarctic Ice Sheet though a process called marine ice sheet instability (Cross-
Chapter Box 8 in Chapter 3; Lenton et al., 2008). Potential ocean and cryosphere tipping elements form part 
of the scientific case for efforts to limit climate warming to well below 2 oC (IPCC, 2018).  
 
Anthropogenically forced change occurs against a backdrop of substantial natural variability (Figure 1.1b). 
The anthropogenic signal is already detectable in global surface air temperature and several other climate 
variables, including ocean temperature and salinity (IPCC, 2014), but short observational records and large 
year-to-year variability mean that formal detection is not yet the case for many expected ocean and 
cryosphere changes (Jones et al., 2016). ‘Time of Emergence’ refers to the time when anthropogenic change 
signals emerge from the background noise of natural variability in a pre-defined reference period (Figure 
1.1b; Section 5.2, Box 5.1; Hawkins and Sutton, 2012). For some variables, (e.g., for those associated with 
ocean acidification), the current signals emerge from this natural variability within a few decades, whereas 
for others, such as primary production and expected Antarctic-wide sea ice decline, the signal may not 
emerge for many more decades even under high emission scenarios (Collins et al., 2013; Keller et al., 2014; 
Rodgers et al., 2015; Frölicher et al., 2016; Jones et al., 2016).  
 
‘Detection and Attribution’ assesses evidence for past changes in the ocean and cryosphere, relative to 
normal/reference-interval conditions (detection), and the extent to which these changes have been caused by 
anthropogenic climate change or by other factors (attribution) (Bindoff et al., 2013; Cramer et al., 2014; 
Knutson et al., 2017; Figure 1.1d). Reliable detection and attribution is fundamental to our understanding of 
the scientific basis of climate change (Hegerl et al., 2010). For example, the main attribution conclusion of 
the  IPCC 4th Assessment Report (AR4), i.e., that “most of the observed increase in global average 
temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic 
greenhouse gas concentrations”,  has had a strong impact on climate policy (Petersen, 2011). In AR5 this 
attribution statement was elevated to “extremely likely” (Bindoff et al., 2013). Statistical approaches for 
attribution often involve using contrasting forcing scenarios in climate model experiments to detect the 
forcing that best explains an observed change (Figure 1.1d). In addition to passing the statistical test, a 
successful attribution also requires a firm process understanding. Confident attribution remains challenging, 
though, especially when there are multiple or confounding factors that influence the state of a system (Hegerl 
et al., 2010). Particular challenges to detection and attribution in the ocean and cryosphere include the often 
short observational records (Section 1.8.1.1, Figure 1.3), which are particularly confounding given the long 
adjustment timescales to anthropogenic forcing of many properties of interest. 
 
Extreme climate events (e.g., marine heatwaves or storm surges) push a system to near or beyond the ends of 
its normally observed range (Figure 1.1b; chapter 6; Seneviratne et al., 2012). Extremes can be very costly in 
terms of loss of life, ecosystem destruction, and economic damage. In a system affected by climate change, 
the recurrence and intensity of these extreme events can change much faster and have greater impacts than 
changes of the average system state (Easterling et al., 2000; Parmesan et al., 2000; Hughes et al., 2018). Of 
particular concern are ‘compound events’, when the joint probability of two or more properties of a system is 
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extreme at the same time or closely connected in time and space (Cross-Chapter Box 5 in Chapter 1; 
Sections 4.3.4, 6.8). Such a compound event is given, e.g., when marine heatwaves co-occur with very low 
nutrient levels in the ocean potentially resulting in extreme impacts (Bond et al., 2015). The 
interconnectedness of the ocean and cryosphere (Section 1.2.2) can also lead to cascading effects where 
changes in one element trigger secondary changes in completely different but connected elements of the 
systems, including its socio-economic aspects. (Figure 1.1e). An example is the large change in ocean 
productivity triggered by the changes in circulation and iron inputs induced by the large outflow of melt 
waters from Greenland (Kanna et al., 2018). New methodologies for attributing extreme events, and the risks 
they bring to climate change have emerged since AR5 (Trenberth et al., 2015; Stott et al., 2016; Kirchmeier-
Young et al., 2017; Otto, 2017), especially also for the attribution of individual events through an assessment 
of the fraction of attributable risk (Figure 1.1f). 
 
 

 
Figure 1.1: Schematic of key concepts associated with changes in the ocean and cryosphere. (a) Differing responses of 
systems to gradual forcing (e.g., linear, delayed, abrupt, non-linear). (b) Evolution of a dynamical system in time, 
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revealing both natural (unforced) variability and a response to a new (e.g., anthropogenic) forcing. Key concepts 
include (i) the time of emergence and (ii) extreme events near or beyond the observed range of variability. (c) Tipping 
points and the change of their behaviour through time in response to e.g., anthropogenic change (adapted from Lenton 
et al., 2008). The two minima represent two stable fixed points, separated by a maximum representing an unstable fixed 
point, acting as a tipping point. The ball represents the state of the system with the red dash line indicating the stability 
of the fixed point and the system’s response time to small perturbations. (d) Detection and attribution, i.e., the statistical 
framework used to determine whether a change occurs or not (detection), and whether this detected change is caused by 
a particular set of forcings (e.g., greenhouse gases) (attribution). (e) Cascading effects, where changes in one part of a 
system inevitably affect the state in another, and so forth, ultimately affecting the state of the entire system. These 
cascading effects can also trigger feedbacks, altering the forcing. (f) Event attribution and fraction of attributable risk. 
The blue (orange) probability density function shows the likelihood of the occurrence of a particular value of a climate 
variable of interest under natural (present = including anthropogenic forcing) conditions. The corresponding areas 
above the threshold indicate the probabilities Pnat and Pant of exceedance of this threshold. The fraction of attributable 
risk (given by FAR = 1 - Pant/Pnat ) indicates the likelihood that a particular event has occurred as a consequence of 
anthropogenic change (adapted from Stott et al., 2016). 
 
 
1.4 Changes in the Ocean and Cryosphere 
 
Earth’s climate, ocean and cryosphere vary across a wide range of timescales. This includes the seasonal 
growth and melting of sea-ice, interannual variation of ocean temperature caused by the El Niño-Southern 
Oscillation (ENSO), to ice age cycles across tens to hundreds of thousands of years. 
 
Climate variability can arise from internally generated (i.e., unforced) fluctuations in the climate system. 
Variability can also occur in response to external forcings, including volcanic eruptions, changes in the 
Earth’s orbit around the sun, oscillations in solar activity, and changing atmospheric greenhouse gas 
concentrations. 
 
Since the onset of the industrial revolution, human activities have had a strong impact on the climate system, 
including the ocean and cryosphere. Human activities have altered the external forcings acting on Earth’s 
climate (Myhre et al., 2013) by changes in land use (albedo), and changes in atmospheric aerosols (e.g. soot) 
from the burning of biomass and fossil fuels. Most significantly, human activities have led to an 
accumulation of greenhouse gases (including CO2) in the atmosphere as a result of the burning of fossil 
fuels, cement production, agriculture, and land use change. In 2016, the global average atmospheric CO2 
concentration crossed 400 parts per million, a level Earth’s atmosphere did not experience for at least the 
past 800,000 years and possibly much longer (Lüthi et al., 2008; Fischer et al., 2018). These anthropogenic 
forcings have not only warmed the ocean and begun to melt the cryosphere, but have also led to widespread 
biogeochemical changes driven by the oceanic uptake of anthropogenic CO2 from the atmosphere (IPCC, 
2013). 
  
It is now nearly three decades since the first assessment report of the IPCC, and over that time evidence and 
confidence in observed and projected ocean and cryosphere changes have grown (very high confidence; 
Table SM1.1). Confidence in climate warming and its anthropogenic causes has increased across assessment 
cycles; robust detection was not yet possible in 1990, but has been characterised as unequivocal since AR4 
in 2007. Projections of near-term warming rates in early reports have been realised over the subsequent 
decades, while projections have tended to err on the side of caution for sea level rise and ocean heat uptake 
that have developed faster than predicted (Brysse et al., 2013; Section 4.2, 5.2). Areas of concern in early 
reports which were expected but not observable are now emerging. The expected acceleration of sea level 
rise is now observed with high confidence (Section 4.2). There is emerging evidence in sustained 
observations and from long-term palaeoclimate reconstructions for the expected slow-down of Atlantic 
Meridional Overturning Circulation (medium confidence), although this remains to be properly attributed 
(Section 6.7). Significant sea level rise contributions from Antarctic ice sheet mass loss (very high 
confidence), which earlier reports did not expect to manifest this century, are already being observed 
(Section 3.3.1). Other newly emergent characteristics of ocean and cryosphere change (e.g., marine heat 
waves; Section 6.4) are assessed for the first time in SROCC.  
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The IPCC Fifth Assessment Report (AR5) (IPCC, 2013; IPCC, 2014) provides ample evidence of profound 
and pervasive changes in the ocean and cryosphere (Sections 1.4.1, 1.4.2), and along with the recent SR1.5 
report (IPCC, 2018), is the point of departure for the updated assessments made in SROCC. 
 
1.4.1 Observed and Projected Changes in the Ocean 
 
Increasing greenhouse gases in the atmosphere cause heat uptake in the Earth system (Section 1.2) and as 
reported since 1970, there is high confidence3 that the majority (more than 90%) of the extra thermal energy 
in the Earth’s system is stored in the global ocean (IPCC, 2013). Mean ocean surface temperature has 
increased since the 1970s at a rate of 0.11 [0.09 to 0.13] °C per decade (high confidence), and forms part of a 
long-term warming of the surface ocean since the mid-19th century. The upper ocean (0-700 m, virtually 
certain) and intermediate ocean (700-2000 m, likely) have warmed since the 1970s. Ocean heat uptake has 
continued unabated since AR5 (Sections 3.2.1.2.1, 5.2), increasing the risk of marine heat waves and other 
extreme events (Section 6.4). During the 21st century ocean warming is projected to continue even if 
anthropogenic greenhouse gas emissions cease (Sections 1.3, 5.2).  The global water cycle has been altered, 
resulting in substantial regional changes in sea surface salinity (high confidence; Rhein et al., 2013), which is 
expected to continue in the future (Sections 5.2.2, 6.3, 6.5).  
 
The rate of sea level rise since the mid-19th century has been larger than the mean rate of the previous two 
millennia (high confidence). Over the period 1901 to 2010, global mean sea level rose by 0.19 [0.17 to 0.21] 
m (high confidence) (Church et al., 2013; Table SM1.1). Sea level rise continues due to freshwater added to 
the ocean by melting of glaciers and ice sheets, and as a result of ocean expansion due to continuous ocean 
warming, with a projected acceleration and century to millennial-scale commitments for ongoing rise 
(Section 4.2.3). In SROCC, recent developments of ice-sheet modeling are assessed (Sections 1.8, 4.3, 
Cross-Chapter Box 8 in Chapter 3) and the projected sea level rise at the end of 21st century is higher than 
reported in AR5 but with a larger uncertainty range (Sections 4.2.3.2, 4.2.3.3). 
 
By 2011, the ocean had taken up about 30 ±7% of the anthropogenic CO2 that had been released to the 
atmosphere since the industrial revolution (Ciais et al., 2013; Section 5.2). In response, ocean pH decreased 
by 0.1 since the beginning of the industrial era (high confidence), corresponding to an increase in acidity of 
26% (Table SM1.1) and leading to both positive and negative biological and ecological impacts (high 
confidence) (Gattuso et al., 2014). Evidence is increasing that the ocean’s oxygen content is declining 
(Oschlies et al., 2018). AR5 did not come to a final conclusion with regard to potential long-term changes in 
ocean productivity due to short observational records and divergent scientific evidence (Boyd et al., 2014; 
Section 5.2.2). Ocean acidification and deoxygenation are projected to continue over the next century with 
high confidence (Sections 3.2.2.3, 5.2.2). 
 
1.4.2 Observed and Projected Changes in the Cryosphere 
 
Changes in the cryosphere documented in AR5 included the widespread retreat of glaciers (high confidence), 
mass loss from the Greenland and Antarctic ice sheets (high confidence), and declining extents of Arctic sea 
ice (very high confidence) and Northern Hemisphere spring snow cover (very high confidence; IPCC, 2013; 
Vaughan et al., 2013). 
 
A particularly rapid change in Earth’s cryosphere has been the decrease in Arctic sea-ice extent in all seasons 
(Section 3.2.1.1). AR5 assessed that there was medium confidence that a nearly-ice free summer Arctic 
Ocean is likely to occur before mid-century under a high emissions future (IPCC, 2013), and SR1.5 assessed 
that ice-free summers are projected to occur at least once per century at 1.5oC of warming, and at least once 
per decade at 2oC of warming above pre-industrial (IPCC, 2018). Sea ice thickness is decreasing further in 
the Northern Hemisphere and older ice that has survived multiple summers is rapidly disappearing; most sea 
ice in the Arctic is now ‘first year’ ice that grows in the autumn and winter but melts during the spring and 
summer (AMAP, 2017). 
 
AR5 assessed that the annual mean loss from the Greenland ice sheet very likely substantially increased from 
34 [-6 to 74] Gt yr–1 (billion tonnes per year) over the period 1992 to 2001, to 215 [157 to 274] Gt yr–1 over 
                                                   
3 Confidence/likelihood statements in Sections 1.4.1 and 1.4.2 derived from AR5 and SR1.5, unless otherwise specified 
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the period 2002 to 2011 (IPCC, 2013). The average rate of ice loss from the Antarctic ice sheet also likely 
increased from 30 [-37 to 97] Gt yr–1 over the period 1992–2001, to 147 [72 to 221] Gt yr–1 over the period 
2002 to 2011 (IPCC, 2013). The average rate of ice loss from glaciers around the world (excluding glaciers 
on the periphery of the ice sheets), was very likely 226 [91 to 361] Gt yr-1 over the period 1971 to 2009, and 
275 [140 to 410] Gt yr-1 over the period 1993 to 2009 (IPCC, 2013). The Greenland and Antarctic ice sheets 
are continuing to lose mass at an accelerating rate (Section 3.3) and glaciers are continuing to lose mass 
worldwide (Section 2.2.3, Cross-Chapter Box 6 in Chapter 2). Confidence in the quantification of glacier and 
ice sheet mass loss has increased across successive IPCC reports (Table SM1.1) due to the development of 
remote sensing observational methods (Section 1.8.1).  
 
Changes in seasonal snow are best documented for the Northern Hemisphere. AR5 reported that the extent of 
snow cover has decreased since the mid-20th century (very high confidence). Negative trends in both snow 
depth and duration are also detected with station observations (medium confidence), although results depend 
on elevation and observational period (Section 2.2.2). AR5 assessed that permafrost temperatures have 
increased in most regions since the early 1980s (high confidence), and the rate of increase has varied 
regionally (IPCC, 2013). Methane and carbon dioxide release from soil organic carbon is projected to 
continue in high mountain and polar regions (Box 2.2), and SROCC has used multiple lines of evidence to 
reduce uncertainty in permafrost change assessments (Cross-Chapter Box 5 in Chapter 1, Section 3.4.3.1.1).  
 
 
[START CROSS-CHAPTER BOX 1 HERE] 
 
Cross Chapter Box 1: Scenarios, Pathways and Reference Periods 
 
Authors: Nerilie Abram (Australia), William Cheung (Canada), Lijing Cheng (China), Thomas Frölicher 
(Switzerland), Mathias Hauser (Switzerland), Shengping He (Norway/China), Anne Hollowed (USA), Ben 
Marzeion (Germany), Samuel Morin (France), Anna Pirani (Italy), Didier Swingedouw (France) 
 
 
Introduction. Assessing the future risks and opportunities that climate change will bring for the ocean and 
cryosphere, and for their dependent ecosystems and human communities, is a main objective of this report. 
However, the future is inherently uncertain. A well-established methodological approach that SROCC uses 
to assess the future under these uncertainties is through scenario analysis (Kainuma et al., 2018). The 
ultimate physical driver of the ocean and cryosphere changes that SROCC assesses are greenhouse gas 
emissions, while the exposure to hazards and the future risks to natural and human systems are also shaped 
social, economic and governance factors (Cross-Chapter Box 2 in Chapter 1; Section 1.5). This Cross-
Chapter Box introduces the main scenarios that are used in the SROCC assessment. Examples of key climate 
change indicators in the atmosphere and ocean projected under future greenhouse gas emission scenarios are 
also provided (Table CB1.1).    
 
Scenarios and pathways. Scenarios are a plausible description of how the future may develop based on a 
coherent and internally consistent set of assumptions about key driving forces and relationships. Pathways 
refer to the temporal evolution of natural and/or human systems towards a future state. In SROCC, 
assessments of future change frequently use climate model projections forced by pathways of future 
radiative forcing changes related to different socio-economic scenarios.  
 
Representative Concentration Pathways (RCPs) are a set of time series of plausible future concentrations of 
greenhouse gases, aerosols and chemically active gases, as well as land use changes (Moss et al., 2008; Moss 
et al., 2010; van Vuuren et al., 2011a; Figure SM1.1). The word representative signifies that each RCP 
provides only one of many possible pathways that would lead to the specific radiative forcing characteristics. 
The term pathway emphasises the fact that not only the long-term concentration levels, but also the trajectory 
taken over time to reach that outcome are of interest.  
 
Four RCPs were used for projections of the future climate in the 5th phase of the Coupled Model 
Intercomparison Project (CMIP5; Taylor et al., 2012). They are identified by their approximate 
anthropogenic radiative forcing (in W m-2, relative to 1750) by the year 2100: RCP2.6, RCP4.5, RCP6.0, and 
RCP8.5 (Figure SM1.1). RCP8.5 is a high greenhouse gas emission scenario without effective climate 
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change mitigation policies, leading to continued and sustained growth in atmospheric greenhouse gas 
concentrations (Riahi et al., 2011). RCP2.6 represents a low greenhouse gas emission, high mitigation future 
that gives a two in three chance of limiting global atmospheric surface warming to below 2oC by the end of 
the century (van Vuuren et al., 2011b; Collins et al., 2013; Allen et al., 2018). Achieving the RCP2.6 
pathway would require implementation of negative emissions technologies at a not-yet-proven scale to 
remove greenhouse gases from the air, in addition to other mitigation strategies such as energy from 
sustainable sources and existing nature-based strategies (Gasser et al., 2015; Sanderson et al., 2016; Royal 
Society, 2018; National Academies of Sciences, 2019). An even more stringent RCP1.9 pathway is 
considered most compatible with limiting global warming to below 1.5oC (called a 1.5°C-consistent pathway 
in SR1.5; O'Neill et al., 2016; IPCC, 2018), and will be assessed in AR6 using projections of Phase 6 of the 
Coupled Model Intercomparison Project (CMIP6). Global fossil CO₂ emissions rose more than 2% in 2018, 
and 1.6% in 2017, after a temporary slowdown in emissions from 2014 to 2016. Current emissions continue 
to grow in line with the RCP8.5 trajectory (Peters et al., 2012; Le Quéré et al., 2018). 
 
In SROCC, the CMIP5 simulations forced with RCPs are used extensively to assess future ocean and 
cryosphere changes. In particular, RCP2.6 and RCP8.5 are used to contrast the possible outcomes of low 
emission versus high emission futures, respectively (Table CB1.1). In some cases the SROCC assessments 
use literature that is based on the earlier Special Report on Emission Scenarios (SRES) (IPCC, 2000), and 
details of these and their approximate RCP equivalents are provided in Tables SM1.3 and SM1.4. 
  
Shared Socio-economic Pathways (SSPs) complement the RCPs with varying socio-economic challenges to 
adaptation and mitigation (e.g., population, economic growth, education, urbanisation and the rate of 
technological development; O’Neill et al., 2017). The SSPs describe five alternative socio-economic futures 
comprising: sustainable development (SSP1), middle-of-the-road development (SSP2), regional rivalry 
(SSP3), inequality (SSP4), and fossil-fuelled development (SSP5; Figure SM1.1; Kriegler et al., 2016; Riahi 
et al., 2017). The RCPs set plausible pathways for greenhouse gas concentrations and the climate changes 
that could occur, and the SSPs set the stage on which reductions in emissions will – or will not – be achieved 
within the context of the underlying socioeconomic characteristics and shared policy assumptions of that 
world. The combination of SSP-based socio-economic scenarios and RCP-based climate projections 
provides an integrative frame for climate impact and policy analysis. The SSPs will be included in the 
CMIP6 simulations to be assessed in AR6 (O'Neill et al., 2016). In SROCC, the SSPs are used only for 
contextualising estimates from the literature on varying future populations in regions exposed to ocean and 
cryosphere changes. 
 
Baselines and reference intervals. A baseline provides a reference period from which changes can be 
evaluated.  
 
In the context of anthropogenic climate change, the baseline should ideally approximate the ‘pre-industrial’ 
conditions before significant human influences on the climate began. AR5 and SR1.5 (Allen et al., 2018) use 
1850–1900 as the ‘pre-industrial’ baseline for assessing historical and future climate change. Atmospheric 
greenhouse gas concentrations and global surface temperatures had already begun to rise in this interval from 
early industrialisation (Abram et al., 2016; Hawkins et al., 2017; Schurer et al., 2017). However, the scarcity 
of reliable climate observations represents a major challenge for quantifying earlier pre-industrial states 
(Hawkins et al., 2017). To maintain consistency across IPCC reports, the 1850–1900 pre-industrial baseline 
is used wherever possible in SROCC, recognising that this is a compromise between data coverage and 
representativeness of typical pre-industrial conditions. 
  
In SROCC, the 1986–2005 reference interval used in AR5 is referred to as the recent past, and a 2006–2015 
reference is used for present day, consistent with SR1.5 (Allen et al., 2018). The 2006–2015 reference 
interval incorporates near-global upper ocean data coverage and reasonably comprehensive remote-sensing 
cryosphere data (Section 1.8.1), and aligns this report with a more current reference than the 1986–2005 
reference adopted by AR5. This 10-year present day period is short relative to natural variability. However, 
at this decadal scale the bias in the ‘present-day’ interval due to natural variability is generally small 
compared to differences between ‘present-day’ conditions and the ‘pre-industrial’ baseline. There is also no 
indication of global average surface temperature in either 1986–2005 or 2006–2015 being substantially 
biased by short-term variability (Allen et al., 2018), consistent with the AR5 finding that each of the last 
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three decades has been successively warmer at the Earth’s surface than any preceding decade since 1850 
(IPCC, 2013). 
  
SROCC commonly provides future change assessments for two key intervals: A near term interval of 2031–
2050 is comparable to a single generation timescale from present day, and incorporates the interval when 
global warming is likely to reach 1.5oC if warming continues at the current rate (IPCC, 2018).  An end-of-
century interval of 2081–2100 represents the average climate conditions reached at the end of the standard 
CMIP5 future climate simulations, and is relevant to long-term infrastructure planning and climate-resilient 
development pathways (Cross-Chapter Box 2 in Chapter 1). In some cases where committed changes exist 
over multi-century timescales, such as the assessment of future sea-level rise (Section 4.3.2) or deep ocean 
oxygen changes (Section 5.2.4.2, Table 5.5), SROCC also considers model evidence for long-term changes 
beyond the end of the current century. 
 
Key indicators of future ocean and cryosphere change. Table CB1.1 compiles information on key 
indicators of climate change in the atmosphere and ocean. This information is given for different RCPs and 
for changes in the near term and end-of-century assessment intervals, relative to the recent past, noting that 
this does not capture changes that have already taken place since the pre-industrial baseline. AR5 assessed 
that global mean surface warming from the pre-industrial (1850-1900) to the recent past (1986-2005) 
reference period was 0.61oC (likely range of 0.55oC to 0.67oC). SR1.5 assessed that global mean surface 
temperature during the present day interval (2006-2015) was 0.87oC (likely range of 0.75oC to 0.99oC) higher 
than the average over the 1850-1900 pre-industrial period (very high confidence;  IPCC, 2018). 
 
These key climate and ocean change indicators allow for some harmonisation of the risk assessments in the 
chapters of SROCC. Projections of future change across a wider range of ocean and cryosphere components 
is also provided in Figure 1.5. Ocean and cryosphere changes and risks by the end-of-century (2081-2100) 
are expected to be larger under high greenhouse gas emission scenarios, compared with low greenhouse gas 
emission scenarios (very high confidence) (Table CB1.1, Figure 1.5). 
 
Table CB1.1. Projected change in global mean surface air temperature and key ocean variables for the near-term 
(2031-2050) and end-of-century (2081-2100) relative to the recent past (1986-2005) reference period from CMIP5. See 
Table SM1.2 for the list of CMIP5 models and ensemble member used for calculating these projections. Small 
differences in the projections given here compared with AR5 (e.g., Table 12.2 in Collins et al., 2013) reflect differences 
in the number of models available now compared to at the time of the AR5 assessment (Table SM1.2).  

  Near term: 2031-2050 End-of-century: 2081-2100 

 Scenario Mean 5-95% range Mean 5-95% range 

Global mean surface air 
temperature (°C) a 

RCP2.6 0.9 0.5 to 1.4 1.0 0.3 to 1.7 

RCP4.5 1.1 0.6 to 1.6 1.8 1.0 to 2.6 

RCP6.0 1.0 0.5 to 1.5 2.3 1.3 to 3.2 

RCP8.5 1.3 0.7 to 2.0 3.7 2.5 to 4.9 

Global mean sea surface 
temperature (°C) b  

(section 5.2.5) 

RCP2.6 0.64 0.56 to 0.72 0.73 0.60 to 0.87 

RCP8.5 0.95 0.86 to 1.03 2.58 2.34 to 2.82 

Surface pH (units) b 
(section 5.2.2.3) 

RCP2.6 -0.072 -0.072 to -0.072 -0.065 -0.064 to -0.066 

RCP8.5 -0.108 -0.107 to -0.109 -0.315 -0.314 to -0.317 
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Dissolved oxygen (100-
600 m) (% change) 
(section 5.2.2.4)b 

RCP2.6 -0.9 -0.6 to -1.2 -0.6 -0.3 to 0.9 

RCP8.5 -1.4 -1.2 to -1.6 -3.9 -3.5 to -4.5 

Notes: 
a Calculated following the same procedure as AR5 (Table 12.2 in Collins et al., 2013). The 5-95% model range of 
global mean surface air temperature across CMIP5 projections was assessed in AR5 as the likely range, after accounting 
for additional uncertainties or different levels of confidence in models.  
b The 5-95% model range for global mean sea surface temperature, surface pH and dissolved oxygen (100-600 m) as 
referred to in the SROCC assessment as the very likely range (Section 1.9.2, Figure 1.4).   
 
[END CROSS-CHAPTER BOX 1 HERE] 
 
 
1.5 Risk and Impacts Related to Ocean and Cryosphere Change 
 
SROCC assesses the risks (i.e., potential for adverse consequences) and impacts (i.e., manifested risk) 
resulting from climate-related changes in the ocean and cryosphere. Knowledge on risk is essential for 
conceiving and implementing adequate responses. Cross-Chapter Box 2 in Chapter 1 introduces key 
concepts of risk, adaptation, resilience, and transformation, and explains why and how they matter for this 
report.  
 
In SROCC, the term ‘natural system’ describes the biological and physical components of the environment, 
independent of human involvement but potentially affected by human activities. ‘Natural systems’ may refer 
to portions of the total system without necessarily considering all its components (e.g., an ocean upwelling 
system). Throughout the assessment usage of ‘natural system’ does not imply a system unaltered by human 
activities.  
 
‘Human systems’ include physiological, health, socio-cultural, belief, technological, economic, food, 
political, and legal systems, among others. Humans have depended upon the Earth’s ocean (WOA, 2016; 
IPBES, 2018b) and cryosphere (AMAP, 2011; Hovelsrud et al., 2011; Watt-Cloutier, 2018) for many 
millennia (Redman, 1999). Contemporary human populations still depend directly on elements of the ocean 
and cryosphere, and the ecosystem services they provide, but at a much larger scale and with greater 
environmental impact than in pre-industrial times (Inniss and Simcock, 2017).  
 
An ecosystem is a functional unit consisting of living organisms, their non-living environment, and the 
interactions within and between them. Ecosystems can be nested within other ecosystems and their scale can 
range from very small to the entire biosphere. Today, most ecosystems either contain humans as key 
organisms, or are influenced by the effects of human activities in their environment. In SROCC, a social-
ecological system describes the combined system and all of its subcomponents and refers specifically to the 
interaction of natural and human systems. 
 
The ocean and cryosphere are unique systems that have intrinsic value, including the ecosystems and 
biodiversity they support. Frameworks of Ecosystem Services and Nature’s Contributions to People are both 
used within SROCC to assess the impacts of changes in the ocean and cryosphere on humans directly, and 
through changes to the ecosystems that support human life and civilisations (Sections 2.3, 3.4.3.2, 4.3.3.5, 
5.4, 6.4, 6.5, 6.8). The Millennium Ecosystem Assessment (MEA, 2005) established a conceptual Ecosystem 
Services framework between biodiversity, human well-being, and drivers of change. This framework 
highlights that natural systems provide vital life-support services to humans and the planet, including direct 
material services (e.g., food, timber), non-material services (e.g., cultural continuity, health), and many 
services that regulate environmental status (e.g., soil formation, water purification). This framework supports 
decision-making by quantifying benefits for valuation and trade-off analyses. The Ecosystem Services 
framework has been challenged as monetising the relationships of people with nature, and undervaluing 
small-scale livelihoods, cultural values, and other considerations that contribute little to global commerce 
(Díaz et al., 2018). More recent frameworks, such as Nature’s Contributions to People (Díaz et al., 2018), 
used in the Intergovernmental Platform on Biodiversity and Ecosystem Services assessments (IPBES), aim 
to better encompass the non-commercial ways that nature contributes to human quality of life.  
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[START CROSS-CHAPTER BOX 2 HERE] 
 
Cross-Chapter Box 2: Key Concepts of Risk, Adaptation, Resilience and Transformation 
 
Authors: Matthias Garschagen (Germany), Carolina Adler (Switzerland/Australia), Susie Crate (USA), 
Hélène Jacot Des Combes (Fiji/France), Bruce Glavovic (New Zealand/South Africa), Sherilee Harper 
(Canada), Elisabeth Holland (Fiji/USA), Gary Kofinas (USA), Sean O'Donoghue (South Africa), Ben Orlove 
(USA), Zita Sebesvari (Hungary/Germany), Martin Sommerkorn (Norway/Germany) 
  
This box introduces key concepts used in the Special Report on the Ocean and Cryosphere in a Changing 
Climate (SROCC) in relation to risk, adaptation, resilience, and transformation. Building on an assessment 
of the current literature, it provides a conceptual framing for the report and for the assessments within its 
chapters. Full definitions of key terms are provided in SROCC Annex I: Glossary. 
  
Risk and adaptation 
SROCC considers risk from climate change-related effects on the ocean and cryosphere as the result of the 
interaction between: (1) environmental hazards triggered by climate change, (2) exposure of humans, 
infrastructure and ecosystems to those hazards, and (3) systems’ vulnerabilities. Risk refers to the potential 
for adverse consequences, and impacts refer to materialised effects of climate change. Next to assessing risk 
and impacts specifically resulting from climate change-related effects on the ocean, coast, and cryosphere, 
SROCC is also concerned with the options to reduce climate-related risk.  
 
Beyond mitigation, adaptation is a key avenue to reduce risk (Section 1.6). Adaptation can also include 
exploiting new opportunities; however, this box focuses on risk, and thus, the latter is not discussed in detail 
here. Adaptation efforts link into the causal fabric of risk by reducing existing and future vulnerability, 
exposure, and/or (where possible) hazards (Figure CB2.1). Addressing the different risk components 
(hazards, exposure and vulnerability) involves assessing and selecting options for policy and action. Such 
decision-making entails evaluation of the effectiveness, efficiency, efficacy, and acceptance of actions. 
Adaptation responses are more effective when they promote resilience to climate change, consider plausible 
futures and unexpected events, strengthen essential or desired characteristics as well as values of the 
responding system, and/or make adjustments to avoid unsustainable pathways (high agreement, medium 
evidence; Section 2.3; Box 2.4; 4.4.4; 4.4.5). 
 
 

 



FINAL DRAFT Chapter 1 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 1-20 Total pages: 72 

Figure CB2.1: There are options for risk reduction through adaptation. Adaptation can reduce risk by addressing one or 
more of the three risk factors: vulnerability, exposure, and/or hazard. The reduction of vulnerability, exposure, and/or 
hazard potential can be achieved through different policy and action choices over time until limits to adaptation might 
be reached. The figure builds on the conceptual framework of risk used in AR5 (Oppenheimer et al., 2014).   
  
  
Adaptation requires adaptive capacity, which for human systems includes assets (financial, physical, and/or 
ecological), capital (social and institutional), knowledge and technical know-how (Klein et al., 2014). The 
extent of adaptive capacity determines adaptation potential, but does not necessarily translate into effective 
adaptation if awareness of the need to act, the willingness to act, and/or the cooperation needed to act is 
lacking (high confidence; Sections 2.3; Box 2.4; 4.3.2.6.3; 5.5.2.4). 
  
There are limits to adaptation, which include, for example, physical, ecological, technological, economic, 
political, institutional, psychological, and/or socio-cultural aspects (medium evidence, high agreement) (Dow 
et al., 2013; Barnett et al., 2014; Klein et al., 2014). For example, the ability to adapt to sea level rise 
depends, in part, on the elevation of the low-lying islands and coasts in question, but also on the capacity to 
successfully negotiate protection or relocation measures socially and politically (Cross-Chapter Box 9, also 
see Section 6.4.3 for a wider overview). Limits to adaptation are sometimes considered as something 
different from barriers to adaptation. Barriers can in principle be overcome if adaptive capacity is available 
(e.g., where funding is made available), even though overcoming barriers is often hard in reality, particularly 
for resource-poor communities and countries (high confidence; Section 4.4.3). Limits to adaptation are 
reached when adaptation no longer allows an actor or ecosystem to secure valued objectives or key functions 
from intolerable risks (Section 4.4.2; Dow et al., 2013). Defining tolerable risks and key system functions is, 
therefore, of central importance for the assessment of limits to adaptation. 
  
Residual risks (i.e., the risk that endures following adaptation and risk reduction efforts) remain even where 
adaptation is possible (very high confidence; Chapters 2-6; Section 6.3.2; Table 6.2). Residual risks have 
bearing on the emerging debate about loss and damage (Huq et al., 2013; Warner and van der Geest, 2013; 
Boyd et al., 2017; Djalante et al., 2018; Mechler et al., 2018; Roy et al., 2018). This report addresses loss and 
damage in relation to slow onset processes, including ocean changes (Section 5.4.2.3), sea level rise (Section 
4.3), and glacier retreat (Section 2.3.6), and polar cryosphere changes (Section 3.4.3.3.4), as well as rapid 
onset hazards such as tropical cyclones (Chapter 6). The assessment encompasses non-economic losses, 
including the impacts on intrinsic and spiritual attributes with which high mountain societies value their 
landscapes (Section 2.3.5); the interconnected relationship with, and reliance upon, the land, water, and ice 
for culture, livelihoods, and wellbeing in the Arctic (Section 3.4.3.3); and cultural heritage and displacement 
addressed in the integrative Cross-Chapter Box on low-lying islands and coasts (Cross-Chapter Box 9; 
Burkett, 2016; Markham et al., 2016; Tschakert et al., 2017; Huggel et al., 2018).  
  
Building resilience 
Addressing climate change-related risk, impacts (including extreme events and shocks), and trade-offs 
together with shaping the trajectories of social and ecological systems is facilitated by considering resilience 
(Biggs et al., 2012; Quinlan et al., 2016). In SROCC, resilience is understood as the capacity of 
interconnected social, economic, and ecological systems to cope with disturbances by reorganising in ways 
that maintain their essential function, structure, and identity (Walker et al., 2004). Resilience may be 
considered as a positive attribute of a system and an aspirational goal when it contributes to the capacity for 
adaptation and learning without changing the structure, function, and identity of the system (Walker et al., 
2004; Steiner, 2015). Alternately, resilience may be used descriptively as a system property that is neither 
good nor bad (Walker et al., 2004; Chapin et al., 2009; Weichselgartner and Kelman, 2014). For example, a 
system can be highly resilient in keeping its unfavoured attributes, such as poverty or institutional rigidity 
(Carpenter and Brock, 2008). Critics of the resilience concept warn that the application of resilience to social 
systems is problematic when the responsibility for resilience building is shifted onto the shoulders of 
vulnerable and resource-poor populations (e.g., Chandler, 2013; Reid, 2013; Rigg and Oven, 2015; Tierney, 
2015; Olsson et al., 2017). 
  
Applying the concept of resilience in mitigation and adaptation planning builds the capacity of a social-
ecological system to navigate anticipated changes and unexpected events (Biggs et al., 2012; Varma et al., 
2014; Sud et al., 2015). Resilience also emphasises social-ecological system dynamics, including the 
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possibility of crossing critical thresholds and experiencing a regime shift (i.e., state change). Seven general 
strategies for building social-ecological resilience have been identified (Figure CB2.2; Ostrom, 2010; Biggs 
et al., 2012; Quinlan et al., 2016). The concept of resilience also allows analysts, accessors of risk, and 
decision makers to recognise how climate-change related risks often cannot be fully avoided or alleviated 
despite adaptation. For SROCC, this is especially relevant along low-lying coasts, in high mountain areas, 
and in the polar regions (medium evidence, high agreement; Sections 2.3; 2.4; 3.5, 6.8, 6.9). 
 

 
Figure CB2.2: General strategies for enhancing social-ecological resilience to support climate-resilient pathways have 
been identified. The seven strategies are adapted from synthesis papers by Biggs et al. (2012) and Quinlan et al. (2016), 
the illustration of the CRDP builds on Figure SPM9 in AR5 (IPCC, 2014). 
  
 
Many efforts are underway to apply resilience thinking in assessments, management practices, policy-
making, and the day-to-day practices of affected sectors and local communities. For example, leaders of the 
Pacific small island developing states use the Framework for Resilient Development in the Pacific, which 
integrates climate change and disaster risk management (Pacific Community, 2016; Cross-Chapter Box 9). 
In the Philippines, a new framework has been developed to conduct full inventories of actual and projected 
loss and damage due to climate change and associated disasters such as from cyclones. Creating such an 
inventory is difficult due to the disconnect between tools for climate change assessment and those for post 
disaster assessment (Florano, 2018). In Arctic Alaska, evaluative frameworks are being applied to determine 
needs, responsibilities, and alternative actions associated with coastal village relocations (Bronen, 2015; 
Cross-Chapter Box 9). In all these initiatives, resilience is a key consideration for enabling climate-resilient 
development pathways. 
  
Climate-resilient development pathways 
Climate-resilient development pathways (CRDPs) are a relatively new concept to describe climate change 
mitigation and adaptation trajectories that strengthen sustainable development and efforts to eradicate 
poverty and reduce inequalities while promoting fair and cross-scalar adaptation to, and resilience in, a 
changing climate (Kainuma et al., 2018; Roy et al., 2018). CRDPs are increasingly being explored as an 
approach for combining scientific assessments, stakeholder participation, and forward-looking development 
planning, acknowledging that pursuing CRDP is not only a technical challenge of risk management but also 
a social and political process (Roy et al., 2018). Adaptive decision-making over time is key to CRDPs 
(Haasnoot et al., 2013; Wise et al., 2014; Fazey et al., 2016; Ramm et al., 2017; Bloemen et al., 2018; 
Lawrence et al., 2018). CRDPs accommodate both the interacting cultural, social, and ecosystem factors that 



FINAL DRAFT Chapter 1 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 1-22 Total pages: 72 

influence multi-stakeholder decision-making processes, and the overall sustainability of adaptation 
measures.  
 
Adequate climate change mitigation and adaptation allows for opportunities for sustainable development 
pathways and the options for resilience-building. CRDPs involve series of mitigation and adaptation choices 
over time, balancing short-term and long-term goals and accommodating newly available knowledge 
(Denton et al., 2014). The CRDPs approach has been successfully used, for example, in urban, remote, and 
disadvantaged communities, and can showcase the potential to counter maladaptive choices (e.g., Barnett et 
al., 2014; Butler et al., 2014; Maru et al., 2014). CRDPs aim to establish narratives of hope and opportunity 
that can extend beyond risk reduction and coping (Amundsen et al., 2018). Although climate change impacts 
on the ocean and cryosphere elicit many emotions—including fear, anger, despair, and apathy (Cunsolo 
Willox et al., 2013; Cunsolo and Landman, 2017; Cunsolo and Ellis, 2018)—narratives of hope are critical 
in provoking motivation, creative thinking, and behavioural changes in response to climate change (Myers et 
al., 2012; Smith and Leiserowitz, 2014; Feldman and Hart, 2016; Feldman and Hart, 2018; Prescott and 
Logan, 2018; Section 1.8.3). 
  
Much of the adaptation and resilience literature published since AR5 highlights the need for transformations 
that enable effective climate change mitigation (most notably, to decarbonise the economy) (Riahi et al., 
2017), and support adaptation (e.g., Pelling et al., 2015; Few et al., 2017). Transformation becomes 
particularly relevant when existing mitigation and adaptation practices cannot reduce risks and impacts to an 
acceptable level. Transformative adaptation, therefore, involves fundamental modifications of policies, 
policy-making processes, institutions, human behaviour, and cultural values (Pelling et al., 2015; Solecki et 
al., 2017). Successful transformation requires attention to conditions that allow for such changes, including 
timing (e.g., windows of opportunity), social readiness (e.g., some level of willingness), and resources to act 
(e.g., trust, human skill, and financial resources; Kofinas et al., 2013; Moore et al., 2014). Examples related 
to SROCC include shifting from a paradigm of protection reliant on seawalls, to living with saltwater as a 
response to coastal flooding in rural areas (Renaud et al., 2015), or to involving fundamental risk 
management changes in coastal megacities, including retreat (Solecki et al., 2017). Transformation in 
changing ocean and cryosphere contexts can be fostered by transdisciplinary collaboration between actors in 
science, government, the private sector, civil society, and affected communities (Padmanabhan, 2017; Cross-
Chapter Box 3 in Chapter 1; Cross-Chapter Box 4 in Chapter 1). 
 
[END CROSS-CHAPTER BOX 2 HERE] 
 
 
1.5.1 Hazards and Opportunities for Natural Systems, Ecosystems, and Human Systems  
 
Hazards faced by marine and coastal organisms, and the ecosystem services they provide, are generally 
dependent on future greenhouse gas emission pathways, with moderate likelihood under a low emission 
future, but high to very high likelihood under higher emission scenarios (very high confidence) (Mora et al., 
2013; Gattuso et al., 2015). Hazards to marine ecosystems assessed in AR5 (IPCC, 2014) included 
degradation of coral reefs (high confidence), ocean deoxygenation (medium confidence), and ocean 
acidification (high confidence). Shifts in the ranges of plankton and fish were identified with high confidence 
regionally, but with uncertain trends globally. SROCC provides more evidence for global shifts in the 
distribution of marine organisms, and in how the phenology of animals is responding to ocean change 
(Sections 3.2.3, 5.2). The signature of climate change is now detected in almost all marine ecosystems. 
Similar trends of changing habitat due to climate change are reported for the cryosphere (Sections 2.2, 
3.4.3.2). The risk of irreversible loss of many marine and coastal ecosystems increases with global warming, 
especially at 2°C or more (high confidence; IPCC, 2018). Risk also increases for habitat displacements, both 
poleward (Section 3.2.4) and to greater ocean depths (Section 5.2.4), or habitat reductions, such as caused by 
glacier retreat (Section 2.2.3).  
 
Changes in the ocean and cryosphere bring hazards that affect the health, wellbeing, safety, and security of 
populations in coastal, mountain, and polar environments (Section 2.3.5, 3.4.3, 4.3.2). Some impacts are 
direct, such as sea level rise or coastal erosion that can displace coastal residents (4.3.2.3, 4.4.2.6, Box 4.1). 
Other effects are indirect; for example, rising ocean temperatures have led to increases in maximum wind 
speed and rainfall rates in tropical cyclones (Section 6.3), creating hazards with severe consequences for 
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natural and human systems (Sections 4.3, 6.2, 6.3, 6.8). The multiple category 4 and 5 Atlantic hurricanes in 
2017 caused the loss of over 3300 lives and more than 350 billion US$ in economic damages (Cross-Chapter 
Box 9; Andrade et al., 2018; Murakami et al., 2018; NOAA, 2018). In mountain regions, glacial lake 
outburst floods have caused severe impacts on lives, livelihoods, and infrastructure that often extend beyond 
the directly affected areas (Section 2.3.2 and 6.2.2). Some hazards related to ocean and cryosphere change 
involve abrupt and irreversible changes (Section 1.3), which generate sometimes unpredictable risks, and 
multiple hazards can coincide to greatly elevate the total risk (Section 6.8.2). For example, combinations of 
thawing permafrost, sea level rise, loss of sea ice, ocean surface waves, and extreme weather events 
(Thomson and Rogers, 2014; Ford et al., 2017) have damaged Arctic infrastructure (e.g., buildings, roads) 
(AMAP, 2015; AMAP, 2017); impacted reindeer husbandry livelihoods for Sami and other Arctic 
Indigenous peoples; and impeded access to hunting grounds, other communities, and travel routes 
fundamental to the livelihoods, food security, and wellbeing of Inuit and other Northern cultures (Section 
3.4.3). In some Arctic regions, tipping points may have already been reached such that adaptive practices can 
no longer work (Section 3.5).` 
 
Climate change impacts on the ocean and cryosphere can also present opportunities, in at least the near- and 
medium-term. For example, in Nepal warming of high-mountain environments and accelerated melting of 
snow and ice have extended the growing season and crop yields in some regions (Section 2.3; Gaire et al., 
2015; Merrey et al., 2018), while tourism and shipping has increased in the Arctic with loss of sea ice 
(Section 3.2.4). Moreover, rising ocean temperatures redistribute the global fish population, allowing new 
fishing opportunities while reducing some established fisheries (Bell et al., 2011; Fenichel et al., 2016; 
Section 5.4). To gain from new opportunities, while also avoiding or mitigating new or increasing hazards, it 
is necessary to be aware of trade-offs between risks and benefits to understand who is and is not benefiting. 
For example, opportunities can involve trade-offs with mitigation and/or SDGs (Section 3.5.2), and the 
balance of economic costs and benefits may differ substantially between the near-term and long-term future 
(Section 5.4.2.2).  
 
1.5.2 Exposure of Natural Systems, Ecosystems, and Human Systems 
  
Exposure to hazards in cryosphere systems occur in the immediate vicinity of cryosphere components, and at 
regional to global scales where cryosphere changes link to other natural systems. For example, decreasing 
Arctic sea ice increases exposure for organisms that depend upon habitats provided by sea ice, but also has 
far-reaching impacts through the resulting direct albedo feedback and amplification of Arctic climate 
warming (e.g., Pistone et al., 2014) that then locally increases surface melting of the Greenland ice sheet 
(Liu et al., 2016; Stroeve et al., 2017). Additionally, ice loss from ice sheets contribute to the global-scale 
exposure of sea level rise, and more local-scale modifications and losses of coastal habitats and ecosystems 
(Sections 3.2.3 and 4.3.3.5). Interactions within and between natural systems also influence the spatial reach 
of risks associated with cryosphere change. Permafrost degradation, for example, interacts with ecosystems 
and climate on various spatial and temporal scales, and feedbacks from these interactions range from local 
impacts on topography, hydrology and biology, to global scale impacts via biogeochemical cycling (e.g., 
methane release) on climate (Sections 2.2, 2.3, 3.4; Kokelj et al., 2015; Grosse et al., 2016). 
 
Exposure to climate change risk exists for virtually all coastal organisms, habitats and ecosystems (Section 
5.2), through processes such as inundation and salinisation (Section 4.3), ocean acidification and 
deoxygenation (Sections 3.2.3, 5.2.3), increasing marine heatwaves (Section 6.4.1.2), and increases in 
harmful algal blooms and invasive species (Glibert et al., 2014; Gobler et al., 2017; Townhill et al., 2017; 
Box 5.3). Aggregate impacts of multiple drivers are dramatically altering ecosystem structure and function in 
the coastal and open ocean (Boyd et al., 2015; Deutsch et al., 2015; Przeslawski et al., 2015), such as coral 
reefs under increasing pressure from both rising ocean temperature and acidification (Section 5.3.4). 
Increasing exposure to climate change hazards in open ocean natural systems includes ocean acidification 
(O'Neill et al., 2017; Section 5.2.3), changes in ocean ventilation, deoxygenation (Shepherd et al., 2017; 
Breitburg et al., 2018; Section 5.2.2.4), increased cyclone and flood risk (Section 6.3.3), and an increase in 
extreme El Niño and La Niña events (Section. 6.5.1). Heat content is rapidly increasing within the ocean 
(Section 5.2.2), and marine heat waves are becoming more frequent across the world ocean (Section 6.4.1). 
 
People who live close to the ocean and/or cryosphere, or depend directly on their resources for livelihoods, 
are particularly exposed to climate change impacts and hazards (very high confidence) (Barange et al., 2014; 
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Romero-Lankao et al., 2014; AMAP, 2015). These exposures can result in infrastructure damage and failure 
(Sections 2.3.1.3, 3.4.3, 3.5., 4.3.2); loss of habitability (Sections 2.3.7, 3.4.3, 3.5, 4.3.3); changes in air 
quality (Section 6.5.2); proliferation of disease vectors (Sections 3.4.3.2.2, 5.4.2.1.1); increased morbidity 
and mortality due to injury, infectious disease, heat stress, and mental health and wellness challenges 
(Section 3.4.3.3); compromised food and water security (Sections 2.3.1, 3.4.3.3, 4.3.3.6, 5.4.2.1, 6.8.4); 
degradation of ecosystem services (Sections 2.3.1.2, 2.3.3.4, 4.3.3, 5.4.1, 6.4.2.3); economic and non-
economic impacts due to reduced production and social network system disruption (Section 2.3.7); conflict 
(Sections 2.3.1.14,  3.5); and widespread human migration (Sections 2.3.7, 4.4.3.5; Oppenheimer et al., 
2014; van Ruijven et al., 2014; AMAP, 2015; Cunsolo and Ellis, 2018).  
 
This report documents how people residing in coastal and cryosphere regions are already exposed to climate 
change hazards, and which of these hazards are projected to increase in the future. For example, mountain 
communities have been exposed to increased rockfall, rock avalanches, and landslides due to permafrost 
degradation and glacier shrinkage, and to changes in snow avalanche type and seasonal timing (Section 
2.3.1). Cryosphere changes that can impact water availability in mountain regions and for downstream 
populations (Sections 2.3.1, 2.3.4, 2.3.5) have implications for drinking water, irrigation, livestock grazing, 
hydropower production, and tourism (Section 2.3). Some declining mountain glaciers hold sacred and 
symbolic meanings for local communities who will experience spiritual losses (Section 2.3.4, 2.3.5, and 
2.3.6). Exposures to extreme warming, and continued sea-ice and permafrost loss in the Arctic, challenge 
Indigenous communities with close interdependent relationships of economy, life-styles, cultural identity, 
self-sufficiency, Indigenous knowledge, health and wellbeing with the Arctic cryosphere (Section 3.4.3, 3.5).  
 
The population living in low elevation coastal zones (land less than 10 m above sea level) is projected to 
increase to more than one billion by 2050 (Section 4.3.2.2). These people and communities are particularly 
exposed to future sea level rise, rising ocean temperature (including marine heat waves; Section 6.4), 
enhanced coastal erosion, increasing wind, wave height, storm intensity, and ocean acidification (Section 
4.3.4). These exposures bring associated risks for livelihoods linked to fisheries, tourism and trade, as well as 
loss of life, damaged assets, and disruption of basic services including safe water supplies, sanitation, 
energy, and transportation networks (Chapters 4, 5, and 6; Cross-Chapter Box 9).  
 
1.5.3 Vulnerabilities in Natural Systems, Ecosystems, and Human Systems 
  
Direct and indirect risks to natural systems are influenced by vulnerability to climate change as well as 
deterioration of ecosystem services. For example, about half of species assessed on the northeast United 
States continental shelf exhibited high to very high climate vulnerability due to temperature preferences and 
changes in habitat space (Hare et al., 2016), with corresponding northward range shifts for many species 
(Kleisner et al., 2017) and increased vulnerability for organisms or ecosystems unable to migrate or evolve at 
the rate required to adapt to ocean and cryosphere changes (Miller et al., 2018). Non-climatic pressures also 
magnify the vulnerability of ocean and cryosphere ecosystems to climate-related changes, such as 
overfishing, coastal development, and pollution, including plastic pollution (Halpern et al., 2008; Halpern et 
al., 2015; IPBES, 2018a; IPBES, 2018b; IPBES, 2018c; IPBES, 2018d). Conventional (fossil fuel-based) 
plastics produced in 2015 accounted for 3.8% of global CO2 emissions and could reach up to 15% by 2050 
(Zheng and Suh, 2019).  
 
The vulnerability of mountain, Arctic, and coastal communities is affected by social, political, historical, 
cultural, economic, institutional, environmental, geographical, and/or demographic factors such as gender, 
age, race, class, caste, Indigeneity, and disability (Thomas et al., 2019; Sections 2.3.6 and 3.5; Cross-Chapter 
Box 9). Disparities and inequities in such factors may result in social exclusion, inequalities, and non-
climatic challenges to health and wellbeing, economic development and basic human rights (Adger et al., 
2014; Olsson et al., 2014; Smith et al., 2014). Those less advantaged often also have reduced access to and 
control over the social, financial, technological, and environmental resources that are required for adaptation 
and transformation (Oppenheimer et al., 2014; AMAP, 2015), thus limiting options for coping and adapting 
to change (Hijioka et al., 2014). However, even populations with greater wealth and privilege can be 
vulnerable to some climate change risks (Cardona et al., 2012; Smith et al., 2014), especially if sources of 
wealth and wellbeing, depend upon established infrastructure that is poorly suited to ocean or cryosphere 
change.  
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Institutions and governance can shape vulnerability and adaptive capacity, and it can be challenging for 
weak governance structures to respond effectively to extreme or persistent climate change hazards (Sections 
6.4 and 6.9; Cross-Chapter Box 3 in Chapter 1; Berrang-Ford et al., 2014; Hijioka et al., 2014). Furthermore, 
populations can be negatively impacted by inappropriate climate change mitigation and/or adaptation 
policies, particularly ones that further marginalise their knowledge, culture, values, and livelihoods (Field et 
al., 2014; Cross-Chapter Box 4 in Chapter 1).  
 
Vulnerability is not static in place and time, nor homogeneously experienced. The vulnerabilities of 
individuals, groups, and populations to climate change is dynamic and diverse, and reflects changing societal 
and environmental conditions (Thomas et al., 2019). SROCC examines vulnerability following the 
conceptual definition presented in Cross-Chapter Box 2 in Chapter 1, and vulnerability in human systems is 
treated in relative, rather than absolute terms. 
 
 
1.6 Addressing the Causes and Consequences of Climate Change for the Ocean and Cryosphere 
 
Effective and ambitious mitigation of climate change would be required to meet the temperature goal of the 
Paris Agreement (UNFCCC, 2015; IPCC, 2018). Similarly, effective and ambitious adaptation to climate 
change impacts on the ocean and cryosphere is necessary to enable climate-resilient development pathways 
that minimise residual risk, and loss and damage (very high confidence; Cross-Chapter Box 2 in Chapter 1; 
IPCC, 2018). Mitigation refers to human actions to limit climate change by reducing the emissions and 
enhancing the sinks of greenhouse gases. Adaptation refers to processes of adjustment by natural or human 
systems to actual or expected climate and its effects, intended to moderate harm or exploit beneficial 
opportunities. The presidency of the 23rd Conference of the Parties (COP23) of United Nations Framework 
Convention on Climate Change (UNFCCC) introduced the oceans pathway into the climate solution space, 
acknowledging both the importance of the ocean in the climate system and that ocean commitments for 
adaptation and mitigation are available through Nationally Determined Contributions (NDC) under the 
UNFCCC (Gallo et al., 2017). 
 
1.6.1  Mitigation and Adaptation Options in the Ocean and Cryosphere 
 
Mitigation and adaptation pathways to avoid dangerous anthropogenic interference with the climate system 
(United Nations, 1992) are considered in SR1.5 (IPCC, 2018). SROCC assesses several ocean and 
cryosphere-specific measures for mitigation and adaptation including options for to address the causes of 
climate change, support biological and ecological adaptation, and enhance societal adaptation (Figure 1.2). 
Other measures have been proposed, including solar radiation management and several other forms of 
carbon dioxide removal, but these are not addressed in SROCC as they are covered in other products of the 
IPCC Sixth Assessment Cycle (SR1.5 and AR6 Working Group III) and are outside the scope of SROCC. 
SROCC does assess indirect mitigation measures that involve the ocean and the cryosphere (Figure 1.2) by 
supporting biological and ecological adaptation, such as through reducing nutrient and organic carbon 
pollution (which moderates ocean acidification in eutrophied areas) and conservation (which preserves 
biodiversity and habitats) in coastal regions (Billé et al., 2013). 
 
A literature-based expert assessment shows that ocean-related mitigation measures have trade-offs, with the 
greatest benefits derived by combining global and local measures (high confidence; Gattuso et al., 2018). 
Local measures, such as pollution reduction and conservation, provide significant co-benefits and few 
adverse side-effects (high confidence; Sections 5.5.1, 5.5.2). They can be relatively rapidly implemented, 
but are generally less effective in addressing the global problem (high confidence; Sections 5.5.1, 5.5.2). 
Likewise, local efforts to decrease air pollution near mountain glaciers and other cryosphere components, for 
example reducing black carbon emissions, can bring regional-scale benefits for health and in reducing snow 
and ice melt (Shindell et al., 2012; Box 2.2). 
 
Well-chosen human interventions can enhance the adaptive capacity of natural systems to climate change. 
Such interventions through manipulating an ecosystem’s structural or functional properties (e.g., restoration 
of mangroves) may minimise climate change pressures, enhance natural resilience and/or re-direct ecosystem 
responses to reduce cascading risks on societies. In human systems, adaptation can involve both 
infrastructure (e.g., enhanced sea defences) and community-based action (e.g., changes in policies and 
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practices). Adaptation options to ongoing climate change are most effective when considered together with 
mitigation strategies because there are limits to effective adaptation, mitigation actions can make adaptation 
more difficult, and some adaptation measures may increase greenhouse gas emissions. 
 
Adaptation and mitigation decisions are connected with economic concerns. In SROCC, two main economic 
approaches are used. The first comprises the Total Economic Value method and the valuation of ecosystem 
services. SROCC considers the paradigm of sustainable development, and the linkages between climate 
impacts on ecosystem services (Section 5.4.1) and the consequences on sustainable development goals 
including food security or poverty eradication (Section 5.4.2). The second economic approach used are 
formal decision analysis methods, which help to identify options (also called alternatives) that perform best 
or well with regards to given objectives. These methods include cost-benefit analysis, multi-criteria analysis 
and robust decision-making and are specifically relevant for appraising long-term investment decisions in the 
context of coastal adaptation (Section 4.4.4.6). 
 
 

 
Figure 1.2. Overview of the main ocean-cryosphere mitigation and adaptation measures to observed and expected 
changes in the context of this report. A longer description of these measures are given in SM1.3. Solar radiation 
management techniques are omitted because they are covered in other AR6 products. Governance and enabling 
conditions are implicitly embedded in all mitigation and adaptation measures. Some governance-based measures (e.g., 
institutional arrangements) are not included in this figure but are covered in Cross-Chapter Box 3 in Chapter 1 and in 
Chapters 2 to 6. GHG: greenhouse gases. Modified from Gattuso et al. (2018). 
 
 
1.6.2 Adaptation in Natural Systems, Ecosystems, and Human Systems 
 
In AR5, a range of changes in ocean and cryosphere natural systems were linked with medium to high 
confidence to pressures associated with climate change (Cramer et al., 2014). Climate change impacts on 
natural ecosystems are variable in space and time. The multiplicity of pressures these natural systems 
experience impedes attribution of population or ecosystem responses to a specific ocean and/or cryosphere 
change. Moreover, the interconnectivity of populations within ecosystems means that a single ‘adaptive 
response’ of a population, or the aggregate response of an ecosystem (the adaptive responses of the 
interconnected populations), is influenced not just by direct pressures of climate change, but occurs in 
concert with the adaptive responses of other species in the ecosystem, further complicating efforts to 
disentangle specific patterns of adaptation. 
 
Notwithstanding the network of pressures and adaptations, much effort has gone into resolving the 
mechanisms, interactions, and feedbacks of natural systems associated with the ocean and cryosphere. 
Chapters 4, 5, and 6 as well as Cross-Chapter Box 9 assess new knowledge on the adaptive responses of 
wetlands, coral reefs, other coastal habitats, and the populations of marine organisms encountering ocean-
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based risks, including. Likewise, Chapters 2 and 3 describe emerging knowledge on how ecosystems in 
high-mountain and polar areas are adapting to cryosphere decline.  
 
AR5 and SR1.5 have highlighted the importance of evolutionary adaptation as a component of how 
populations adapt to climate change pressures (e.g., Pörtner et al., 2014; Hoegh-Guldberg et al., 2018). 
Acclimatisation (variation in morphology, physiology or behaviour) can result from changes in gene 
expression but does not involve change in the underlying DNA sequence. Responses related to 
acclimatisation can occur both within single generations and over several generations. In contrast, evolution 
requires changes in the genetic composition of a population over multiple generations; for example, by 
differential survival or fecundity of different genotypes (Sunday et al., 2014). Adaptive evolution is the 
subset of evolution attributable to natural selection, and natural selection may lead to populations becoming 
more fit (Sunday et al., 2014) or extend the range of environments where populations persist (van Oppen et 
al., 2015). The efficacy of natural selection is affected by population size (Charlesworth, 2009), standing 
genetic variation, the ability of a population to generate novel genetic variation, migration rates, and the 
frequency of genetic recombination (Rice, 2002). Many studies have shown evolution of traits within and 
across life-stages of populations (Pespeni et al., 2013; Hinners et al., 2017), but there are fewer studies on 
how evolutionary change can impact ecosystem or community function, and whether trait evolution is stable 
(Schaum and Collins, 2014). Although acclimatisation and evolutionary adaptation are separate processes, 
they influence each other, and both adaptive and maladaptive variation of traits can facilitate evolution 
(Schaum and Collins, 2014; Ghalambor et al., 2015). Natural evolutionary adaptation may be challenged by 
the speed and magnitude of current ocean and cryosphere changes, but emerging studies investigate how 
human actions may assist evolutionary adaptation and thereby possibly enhance the resilience of natural 
systems to climate change pressures (e.g., Box 5.4 in Section 5.5.2). Through acclimatisation and 
evolutionary adaptation to the pressures from climate change (and all other persistent pressures), 
populations, species and ecosystems present a constantly changing context for the adaptation of human 
systems to climate change.  
 
There are several human adaptation options for climate change impacts on the ocean and cryosphere. 
Adaptive responses include nature- and ecosystem-based approaches (Renaud et al., 2016; Serpetti et al., 
2017). Additionally, more social-based approaches for human adaptation range from community-based and 
infrastructure-based approaches to managed retreat, along with other forms of internal migration (Black et 
al., 2011; Hino et al., 2017). Building on AR5 (Wong et al., 2014), Chapter 4 describes four main modes of 
adaptation to mean and extreme sea level rise: protect, advance, accommodate, and retreat. This report 
demonstrates that all modes of adaptation include mixes of institutional, individual, socio-cultural, 
engineering, behavioural, and/or ecosystem-based measures (e.g., Section 4.4.2).  
 
The effectiveness and performance of different adaptation options across spatial and social scales is 
influenced by their social acceptance, political feasibility, cost-efficiency, co-benefits, and trade-offs (Jones 
et al., 2012; Adger et al., 2013; Eriksen et al., 2015). Scientific evaluation of past successes and future 
options, including understanding barriers, limits, risks, and opportunities, are complex and inadequately 
researched (Magnan and Ribera, 2016). In the end, adaptation priorities will depend on multiple parameters 
including the extent and rate of climate change, the risk attitudes and social preferences of individuals and 
institutions (and the returns they may gain) (Adger et al., 2009; Brügger et al., 2015; Evans et al., 2016; Neef 
et al., 2018), and access to finances, technology, capacity, and other resources (Berrang-Ford et al., 2014; 
Eisenack et al., 2014). 
 
Since AR5, transformational adaptation (i.e., the need for fundamental changes in private and public 
institutions and flexible decision-making processes to face climate change consequences) has been 
increasingly studied (Cross-Chapter Box 2 in Chapter 1). The recent literature documents how societies, 
institutions, and/or individuals increasingly assume a readiness to engage in transformative change, via their 
acceptance and promotion of fundamental alterations in natural or human systems (Klinsky et al., 2016). 
People living in and near coastal, mountain, and polar environments often pioneer these types of 
transformations, since they are at the forefront of ocean and cryosphere change (e.g., Solecki et al., 2017). 
Community-led and Indigenous-led adaptation research continues to burgeon (Ayers and Forsyth, 2009; 
David-Chavez and Gavin, 2018), especially in many mountain (Section 2.3.2.3), Arctic (Section 3.5), and 
coastal (Section 4.4.4.4, 4.4.5.4, Cross-Chapter Box 9) areas, and demonstrate potential for enabling 
transformational adaptation (Dodman and Mitlin, 2013; Chung Tiam Fook, 2017). Similarly, the concepts of 
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scenario planning and 'adaptation pathway' design have expanded since AR5, especially in the context of 
development planning for coastal and delta regions (Section 4.4, Cross-Chapter Box 9; Wise et al., 2014; 
Maier et al., 2016; Bloemen et al., 2018; Flynn et al., 2018; Frame et al., 2018; Lawrence et al., 2018). 
 
 
1.7  Governance and Institutions 
 
SROCC conceptualises governance as deciding, managing, implementing and monitoring policies in the 
context of ocean and cryosphere change. Institutions are defined as formal and informal social rules that 
shape human behaviour (Roggero et al., 2017). Governance guides how different actors negotiate, mediate 
their interests, and share their rights and responsibilities (Forino et al., 2015; See SROCC Annex I: Glossary 
and Cross-Chapter Box 3 in Chapter 1 for definition). Governance and institutions interface with climate and 
social-ecological change process across local, regional to global scales (Fischer et al., 2015; Pahl-Wostl, 
2019).  
 
SROCC explores how the interlinked social-ecological systems affect challenge current governance systems 
in the context of ocean and cryosphere change. These challenges include three aspects. First, the scale of 
changes to ocean and cryosphere properties driven by global warming, and in the ecosystems, they support 
and services they provide, are poorly matched to existing scales of governance (Sections 2.2.2.1; 2.3.1.3; 
3.2.1; 3.5.3). Second, the nature of changes in ecosystem services resulting from changes in ocean and 
cryosphere properties, including services provided to humans living far from the mountains and coasts, are 
poorly matched to existing institutions and processes (Section 4.4.4). Third, many possible governance 
responses to these challenges could be of limited or diminished effectiveness unless they are coordinated on 
scales beyond that of currently available governance options (Section 6.9.2; Box 5.5)  
 
Hydrological processes in the high mountain cryosphere connect through upstream and downstream areas of 
river basins (Molden et al., 2016; Chen et al., 2018), including floodplains and deltaic regions (Kilroy, 2015; 
Cross-Chapter Box 3 in Chapter 1). These cross-boundary linkages challenge local-scale governance and 
institutions that determine how the river-based ecosystem services that sustain food, water, and energy are 
used and distributed (Rasul, 2014; Warner, 2016; Lele et al., 2018; Pahl-Wostl et al., 2018). Small Island 
States face rising seas that threaten habitability of their homeland and the possibility of losing their nation-
state, cultural identity and voices in international governance (Gerrard and Wannier, 2013; Philip, 2018; 
Section 1.4, Cross-Chapter Box 9), highlighting the need for transboundary components to governance. 
 
These governance challenges cannot be met without working across multiple organisations and institutions, 
bringing varying capacities, frameworks and spatial extents (Cross-Chapter Box 3 in Chapter 1). Progress in 
governance for ocean and cryosphere change will require filling gaps in legal frameworks (Amsler, 2016), 
aligning spatial mismatches (Eriksen et al., 2015; Young, 2016; Cosens et al., 2018), improving the ability 
for nations to cooperate effectively (Downie and Williams, 2018; Hall and Persson, 2018), and integrating 
across divided policy domains, most notably of climate change adaptation and disaster risk reduction (e.g. 
where slow sea level change also alters the implications for civil defense planning and the management of 
extreme events; Mysiak et al., 2018).  
 
Harmonising local, regional and global governance structures would provide an overarching policy 
framework for action and allocation of necessary resources for adaptation. Coordinating the top-down and 
bottom-up governance processes (Bisaro and Hinkel, 2016; Sabel and Victor, 2017; Homsy et al., 2019) to 
increase effectiveness of responses, mobilise and equitably distribute adequate resources, and access private 
and public sector capabilities requires a polycentric approach to governance (Ostrom, 2010; Jordan et al., 
2015). Polycentric governance connotes a complex form of governance with multiple centers of decision-
making working with some degree of autonomy (Carlisle and Gruby, 2017; Baldwin et al., 2018; Mewhirter 
et al., 2018; Hamilton and Lubell, 2019).  
 
[START CROSS-CHAPTER BOX 3 HERE] 
 
Cross-Chapter Box 3: Governance of the Ocean, Coasts and the Cryosphere under Climate Change 
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This Cross-Chapter Box outlines governance and associated institutional challenges and emerging solutions 
relevant to the ocean, coasts and cryosphere in a changing climate. It illustrates these through three cases: [1] 
multi-level interactions in Ocean and Arctic governance; [2] mountain governance; and [3] coastal risk 
governance. Governance refers to how political, social, economic and environmental systems and their 
interactions are governed or ‘steered’ by establishing and modifying institutional and organisational 
arrangements, which regulate social processes, mitigate conflicts and realise mutual gains (North, 1990; 
Pierre and Peters, 2000; Paavola, 2007). Institutions are formal and informal rules and norms, constructed 
and held in common by social actors, that guide, constrain and shape human interactions (North, 1990; 
Ostrom, 2005). Formal institutions include constitutions, laws, policies and contracts, while informal 
institutions include customs, social norms and taboos. Both administrative or state government structures, 
and indigenous or traditional governance structures govern the ocean, coasts and cryosphere. 
  
Understanding governance in a changing climate 
SROCC, together with SR1.5 (IPCC, 2018), highlights the critical role of governance in implementing 
effective climate adaptation. Chapter 2 explores local community institutions offering autonomous 
adaptation in the Alps, Andes, Himalayas and other mountain regions (Section 2.4), focusing on the need for 
transboundary cooperation to support water governance and mitigate conflict. Chapter 3 explores how polar 
governance system facilitate building resilient pathways, knowledge co-production, social learning, 
adaptation, and power-sharing with Indigenous Peoples at the regional level. This would help in increasing 
international cooperation in multi-level governance arenas to strengthen responses supporting adaptation in 
socio-ecological systems (Section 3.5.4). Chapter 4 illustrates how sea level rise governance attempts to 
address conflicting interests in coastal development, risk management and adaptation with a diversity of 
governance contexts and degrees of community participation, with a focus on equity concerns and inevitable 
trade-offs (Section 4.4). Chapter 5 includes a review of existing international legal regimes for addressing 
ocean warming, acidification and deoxygenation impacts on socio-ecological systems and considers ways to 
facilitate appropriate responses to ocean change (Sections 5.4, 5.5). Chapter 6 explores the issues of 
credibility, trust, and reliability in government that arise from promoting ‘paying the costs of preparedness 
and prevention’ as an alternative to ‘bearing the costs of loss and damage’ (Section 6.9). 
  
Climate change challenges existing governance arrangements in a variety of ways. First, there are complex 
interconnections between climate change and other processes that influence the ocean, coasts and 
cryosphere, making it difficult to untangle climate governance from other governance efforts. Second, the 
timeframes of for societal decision-making and government terms are mismatched with the long-term 
commitment of climate change. Third, governance choices have to be made in the face of uncertainty about 
the rate and scale of change that will occur in the medium to long-term (Cross-Chapter Box 5 in Chapter 1). 
Lastly, climate change progressively alters the environment and hence requires continual innovation and 
adjustment of governance arrangements (Bisaro and Hinkel, 2016; Roggero et al., 2018). Novel 
transboundary interactions and conflicts are emerging as well as new multi-level governance structures for 
international and regional cooperation, strengthening shared decision-making among States and other actors 
(Case 1). The prospects of “disappearing states”, glacier retreat, and increasing water scarcity, are resulting 
in States redefining complex water-sharing agreements (Case 2). Coastal risk is escalating, which may 
require participatory governance responses and the co-production of knowledge at the local scale (Case 3; 
see also Cross-Chapter Box 9). 
  
Governance, exercised through legal, administrative and other social processes, is essential to prevent, 
mitigate and adapt to the challenges and risks posed by a changing climate. These governance processes 
determine roles in the exercising of power and hence decision-making (Graham et al., 2003). Governance 
may be an act of governments (e.g. passing laws, providing incentives or information such that citizens can 
respond more effectively to climate change); private sector actions (e.g., insurance); a co-operative effort 
among local actors governing themselves through customary law (e.g., by establishing entitlements or norms 
regulating the common use of scarce resources); a collaborative multi-level effort involving multiple actors 
(state, private and civil society; e.g., UNFCCC); or a multi-national effort (e.g., Antarctic Treaty; see Figure 
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CB3.2). The complexities of governance arrangements in the ocean, coasts and cryosphere (Figure CB3.1), 
and the interactions and emergence of relationships between different governance actors in multiple 
configurations across various spatial scales (Figure CB3.2) are illustrated below. 
  
 

 

 
Figure CB3.1: Spatial distribution of multi-faceted governance arrangements for the ocean, coasts and cryosphere 
(Panel A) sovereignty, sovereign rights, jurisdictions and freedoms defined for different ocean zones and sea by 
UNCLOS (Panel B). Figure CB3.1 is designed to be illustrative and is not comprehensive of all governance 
arrangements for the ocean, coasts and cryosphere  
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Figure CB3.2: Interactions and emergence of network governance arrangements for the ocean, coasts and cryosphere 
across different scales. Adapted from Sommerkorn and Nilsson (2015). 
  
 
Case Study 1 — Multi-level Interactions and Synergies in Governance. The UN Convention on the Law of 
the Sea and the changing Arctic: Climate-change induced sea-level rise (Section 4.2), could shift the 
boundaries and territory of some coastal states, changing the areas where their coastal rights are applied 
under the United Nations Convention on the Law of the Sea (UNCLOS). In extreme cases, inundation from 
sea level rise might lead to loss of territory and sovereignty, the disappearance of islands and the loss of 
international maritime jurisdiction subject to maritime claim. These challenges have limited opportunities for 
recourse in international law and it remains unclear what adequate responses from an international law 
perspective would be (Vidas et al., 2015; Andreone, 2017; Mayer and Crépeau, 2017; Chircop et al., 2018). 
While specific legal arrangements and instruments of environmental protection are in place at a regional, 
sub-regional and national level, they are insufficient to address the new challenges sea level rise brings. 
Institutional responses to the geopolitical transformation caused by climate change, such as through the 
Arctic Council (AC) and the ‘Law of the Sea’ are still evolving. Similar to many international agreements, 
UNCLOS ‘Law of the Sea’ provisions for enforcement, compliance, monitoring and dispute settlement 
mechanisms are not comprehensive, and commonly depend on further, detailed law-making by state parties, 
acting through competent international organizations (Vidas, 2000; Karim, 2015; De Lucia, 2017; Grip, 
2017). Shifts from traditional state-based practices of international law to multi-level and informal 
governance structures that involve state and non-state actors (including Indigenous Peoples) may address 
these challenges (medium confidence; Cassotta, 2012; Shadian, 2014; Young, 2016; Andreone, 2017). The 
Arctic Council (AC), is a regionally focused governance structure blending new forms of formal and 
informal multi-level regional cooperation (Young, 2016). The soft law mechanisms employed draw upon 
best available practice and standards from multiple knowledge systems (Cassotta and Mazza, 2015; Pincus 
and Ali, 2015) in an attempt to respond to the ocean’s global, trans-regional and national climate challenges 
(Section 3.5.4.2). Reconfiguration and restructuring of the AC has been proposed in order to address 
emerging trans-regional and global problems (high confidence; Baker and Yeager, 2015; Pincus and Ali, 
2015; Young, 2016). Within the existing scope, the AC has amplified the voice of Arctic people affected by 
the impacts of climate change and mobilized action (Koivurova, 2016). The influence of actors ‘beyond the 
state’ is emerging (Figure CB3.2). However, the state retains its importance in tackling the new challenges 
produced by climate change, as the role of international cooperation in UNCLOS and the Polar Regions 
demonstrates (Section 3.5.4.2). For example, Article 234 (“Ice-covered areas”) and Article 197 of the 
UNCLOS Convention in protecting the marine environment, states that “States shall cooperate on a global 
basis and, as appropriate, on a regional basis […] taking into account characteristic regional features”. 
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Case Study 2 — Mountain Governance: Water management in Gilgit-Baltistan, Pakistan. Gilgit-Baltistan is 
an arid territory in a mountainous region of northern Pakistan. Meltwater-fed streams supply irrigation water 
for rural livelihoods (Nüsser and Schmidt, 2017). The labour-intensive work of constructing and maintaining 
gravity-fed irrigation canals is done by jirga, traditional community associations. As glaciers retreat due to 
climate change, water sources at the edge of glaciers have been impacted, reducing water available for 
irrigation. In response, villagers constructed new channels accessing more distant water for irrigation needs 
(Parveen et al., 2015). The Aga Khan Development Network (AKDN) supported this substantial task by 
providing funding and developing a new kind of cross-scale governance network, drawing on local residents 
for staff (Walter, 2014), and strengthening community resources, training and networks. Challenges remain, 
including the potential for increased rainfall causing landslides that could damage new canals, and possible 
expansion of Pakistan’s hydropower infrastructure that would further diminish water resources and displace 
villages (Shaikh et al., 2015). On a geopolitical scale, decreased water supplies from the glaciers could 
exacerbate tensions over water resources in the region, impacting water management in many parts of the 
Indus watershed (Uprety and Salman, 2011; Jamir, 2016; see Section 2.3.1.4 for details). 
  
Case Study 3 — Coastal Governance: Risk management for sea level changes in the City of Cape Town, 
South Africa.  Sea-level rise and coastal flooding are the focus of the City of Cape Town’s coastal climate 
adaptation efforts. The Milnerton coastline High Water Mark, a non-static line marking the high tide, is 
creating a governance conflict by moving landwards (due to sea level rise) and intersecting with private 
property boundaries, threatening public beaches and the dune cordon, and placing private property and 
municipal infrastructure at risk in storm conditions (Sowman et al., 2016). Private property owners are using 
a mixture of formal, ad hoc, and in some cases illegal, coastal barrier measures to protect their assets from 
sea level and storm risks, but these are creating additional erosion impacts on the coastline. Legally, the City 
of Cape Town is not responsible for remediating private land impacted by coastal erosion (Smith et al., 
2016). However, city officials feel compelled to take action for the common good using a progressive, multi-
stakeholder participatory approach. This involves opening up opportunities for dialogue and co-producing 
knowledge, instead of a purely legalistic and state-centric compliance approach (Colenbrander et al., 2015). 
The city’s actions are both mindful of international frameworks on climate change and responsive to national 
and provincial legislation and policy. A major challenge that remains is how to navigate the power struggles 
that will be triggered by this consultative process, as different actors define and negotiate their interests, 
roles and responsibilities (see Section 4.4.3; Table 4.9).  
  
Conclusions 
These cases illustrate four important points. First, new governance challenges are emerging due to climate 
change, including: disruptions to long-established cultures, livelihoods and even territorial sovereignty (Case 
1); changes in the accessibility and availability of vital resources (Case 2); and the blurring of public and 
private boundaries of risk and responsibility through accelerated coastal erosion (Case 3; Figure CB3.1). 
Second, new governance arrangements are emerging to address these challenges, including participatory and 
networked structures linking formal and informal networks, and involving state, private sector, indigenous 
and civil society actors in different configurations (Figure CB3.2). Third, climate governance is a complex, 
contested and unfolding process, with governance actors and networks having to learn from experience, to 
innovate and develop context-relevant arrangements that can be adjusted in the face of ongoing change. 
Lastly, there is no single climate governance panacea for the ocean, coasts and cryosphere. Empirical 
evidence on which governance arrangements work well in which context is still limited, but ‘good 
governance’ norms indicate the importance of inclusivity, fairness, deliberation, reflexivity, responsiveness, 
social learning, the co-production of knowledge, and respect for ethnic and cultural diversity. 
 
[END CROSS-CHAPTER BOX 3 HERE] 
 
 
1.8 Knowledge Systems for Understanding and Responding to Change 
 
Assessments of how climate change interacts with the planet and people are largely based on scientific 
knowledge from observations, theories, modelling and synthesis to understand physical and ecological 
systems (Section 1.8.1), societies (e.g., Cross-Chapter Box 2 in Chapter 1, Section 1.5) and institutions (e.g., 
Cross-Chapter Box 3 in Chapter 1). However, humans integrate information from multiple sources to 
observe and interact with their environment, respond to changes, and solve problems. Accordingly, SROCC 
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also recognises the importance of Indigenous knowledge and local knowledge in understanding and 
responding to changes in the ocean and cryosphere (Sections 1.8.2, 1.8.3; Cross-Chapter Box 4 in Chapter 
1). 
 
1.8.1 Scientific Knowledge 
 
1.8.1.1 Ocean and Cryosphere Observations  
 
Long-term sustained observations are critical for detecting and understanding the processes of ocean and 
cryosphere change (Rhein et al., 2013; Vaughan et al., 2013). Scientific knowledge of the ocean and 
cryosphere has increased through time and geographical space (Figure 1.3). In situ ocean subsurface 
temperature and salinity observations have increased in spatial and temporal coverage since the middle of the 
19th century (Abraham et al., 2013), and near global coverage (60°S-60°N) of the upper 2000 metres has 
been achieved since 2007 due to the international Argo network (Riser et al., 2016; Figure 1.3). Improved 
data quality and data analysis techniques have reduced uncertainties in global ocean heat uptake estimates 
(Sections 1.4.1, 5.2.2). In addition to providing deep ocean measurements, repeated hydrographic physical 
and biogeochemical observations since AR5 have led to improved estimates of ocean carbon uptake and 
ocean deoxygenation (Sections 1.4.1, 5.2.2.3, 5.2.2.4). Targeted observational programs have improved 
scientific knowledge for specific regions and physical processes of particular concern in a warming climate, 
including the Greenland and West Antarctic ice sheets (Section 3.3), and the Atlantic Meridional 
Overturning Circulation (AMOC) (Section 6.7). Ocean and cryosphere mass changes and sea level studies 
have benefited from sustained or newly-implemented satellite-based remote sensing technologies, 
complemented by in situ data such as tide gauges measurements (Sections 3.3, 4.2; Dowell et al., 2013; Raup 
et al., 2015; PSMSL, 2016). Glacier length measurements in some locations go back many centuries (Figure 
1.3), but it is the systematic high-resolution satellite monitoring of a large number of the world’s glaciers 
since the late 1970s that has improved global assessments of glacier mass loss (Sections 2.2.3, 3.3.2).  
 
Limitations in knowledge of ocean and cryosphere change remain, creating knowledge gaps for the SROCC 
assessment. Ocean and cryosphere datasets are frequently short, and do not always span the key IPCC 
assessment time intervals (Cross-Chapter Box 1 in Chapter 1), so for many parameters the full magnitude of 
changes since the pre-industrial period is not observed (Figure 1.3). The brevity of ocean and cryosphere 
measurements also means that some expected changes cannot yet be detected with confidence in direct 
observations (e.g., Antarctic sea ice loss in Section 3.2.1, AMOC weakening in Section 6.7.1), or other 
observed changes cannot yet be robustly attributed to anthropogenic factors (e.g., ice sheet mass loss in 
Section 3.3.1). Observations for many key ocean variables (Bojinski et al., 2014), such as ocean currents, 
surface heat fluxes, oxygen, inorganic carbon, subsurface salinity, phytoplankton biomass and diversity, etc., 
do not yet have global coverage or have not reached the required density or accuracy for detection of change. 
Some ocean and cryosphere areas remain difficult to observe systematically, e.g. the ocean under sea ice, 
subsurface permafrost, high mountain areas, marginal seas, coastal areas (Section 4.2.2.3) and ocean 
boundary currents (Hu and Sprintall, 2016), basin interconnections (Section 6.6), and the Southern Ocean 
(Sections 3.2, 5.2.2). Measurements that reflect ecosystem change are often location or species specific, and 
assessments of long-term ocean ecosystem changes are currently only feasible for a limited subset of 
variables, for example coral reef health (e.g., coral reef health) (Section 5.3; Miloslavich et al., 2018). The 
deep ocean below 2000 metres is still rarely observed (Talley et al., 2016), limiting (for example) the 
accurate estimate of deep ocean heat uptake and, consequently the full magnitude of Earth’s energy 
imbalance (e.g., von Schuckmann et al., 2016; Johnson et al., 2018; Sections 1.2, 1.4, 5.2.2). 
 
1.8.1.2 Reanalysis Products  
 
Advances have been made over the past decade in developing more reliable and more highly resolved ocean 
and atmosphere reanalysis products. Reanalysis products combine observational data with numerical models 
through data assimilation to produce physically consistent, and spatially complete ocean and climate 
products (Balmaseda et al., 2015; Lellouche et al., 2018; Storto et al., 2018; Zuo et al., 2018). Ocean 
reanalyses are widely used to understand changes in physical properties (Section 3.2.1, 5.2), extremes 
(Sections 6.3 to 6.6), circulation (Section 6.6, 6.7), and to provide climate diagnostics (Wunsch et al., 2009; 
Balmaseda et al., 2013; Hu and Sprintall, 2016; Carton et al., 2018). Reanalysis products are used in SROCC 
for assessing climate change process that cause changes in the ocean and cryosphere (e.g., Sections 2.2.1, 
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3.2.1, 3.3.1, 3.4.1, 5.2.2, 6.3.1, 6.6.1, 6.7.1). Improvements in reanalysis products provide more realistic 
forcing for regional models, which are used for assessing regional ocean and cryosphere changes that cannot 
be resolved in global-scale models (e.g., Section 2.2.1; Mazloff et al., 2010; Fenty et al., 2017). The weather 
forecasts, and seasonal to decadal predictions building on reanalysis products have important applications in 
the early warning systems that reduce risk and aid human adaptation to extreme events (Sections 6.3.4, 6.4.3, 
6.5.3, 6.7.3, 6.8.5). 
 
1.8.1.3 Model Simulation Data 
 
Models are numerical approximations of the Earth system that allow hypotheses about the mechanisms of 
ocean and cryosphere change to be tested, support attribution of observed changes to specific forcings 
(Section 1.3), and are the best available information for assessing future change (Figure 1.3). General 
Circulation Models (GCMs) typically simulate the atmosphere, ocean, sea ice, and land surface, and 
sometimes also incorporate terrestrial and marine ecosystems. Earth System Models (ESM) are climate 
models that explicitly include the carbon cycle and may include additional components (e.g., atmospheric 
chemistry, ice sheets, dynamic vegetation, nitrogen cycle, but also urban or crop models). The systematic set 
of global-scale model experiments (Taylor et al., 2012) used in SROCC were produced by CMIP5 (Cross-
Chapter Box 1 in Chapter 1), including both GCMs and ESMs.  
 
Models may differ in their spatial resolution, and in the extent to which processes are explicitly represented 
or approximated (parameterised). Model output can be biased due to uncertainties in their physical equations 
or parameterisations, specification of initial conditions, knowledge of external forcing factors, and 
unaccounted processes and feedbacks (Hawkins and Sutton, 2009; Deser et al., 2012; Gupta et al., 2013; Lin 
et al., 2016). Since AR5 there have been advances in modelling the dynamical processes of the Greenland 
and Antarctica ice sheets, leading to better representation of the range of potential future sea level rise 
scenarios (Sections 4.2.3). Downscaling, including the use of regional models, makes it possible to improve 
the spatial resolution of model output in order to better resolve past and future climate change in specific 
areas, such as high mountains and coastal seas (e.g. Sections 2.2.2, 3.2.3, 3.5.4, 4.2.2, 6.3.1). For biological 
processes, such as nutrient levels and organic matter production, model uncertainty at regional scales is the 
main issue limiting confidence in future projections (Sections 5.3, 5.7). While model projections of range 
shifts for fishes agree with theory and observations, at a regional scale there are known deficiencies in the 
ways models represent the impacts of ocean variables such as temperature and productivity (Sections 5.2.3, 
5.7). 
 
1.8.1.4 Palaeoclimate Data 
 
Palaeoclimate data provide a way to establish the nature of ocean and cryosphere changes prior to direct 
measurements (Figure 1.3), including natural variability and early anthropogenic climate change (Masson-
Delmotte et al., 2013; Abram et al., 2016). Palaeoclimate records utilise the accumulation of physical, 
chemical or biological properties within natural archives that are related to climate at the time the archive 
formed. Commonly used palaeoclimate evidence for ocean and cryosphere change comes from marine and 
lake sediments, ice layers and bubbles, tree growth rings, past shorelines and shallow reef deposits. In many 
mountain areas, centuries to millennia of palaeoclimate information is now being lost through widespread 
melting of glacier ice (Cross-Chapter Box 6 in Chapter 2). Palaeoclimate data are spatially limited (Figure 
1.3), but often represent regional to global-scale climate patterns, either individually or as syntheses of 
networks of data (PAGES2K Consortium, 2017).  
 
Palaeoclimate data provide evidence for multi-metre global sea level rises and shifts in climate zones and 
ocean ecosystems during past warm climate states where temperatures were similar to those expected later 
this century (Hansen et al., 2016; Fischer et al., 2018; Section 4.2.2). Palaeoclimate reconstructions give 
context to recent ocean and cryosphere changes that are unusual in the context of variability over past 
centuries to millennia, including acceleration in Greenland and Antarctic Peninsula ice melt (Section 3.3.1), 
declining Arctic sea ice (Section 3.2.1), and emerging evidence for a slowdown of AMOC (Section 6.7.1). 
Assessments of climate model performance across a wider-range of climate states than is possible using 
direct observations alone also draws on palaeoclimate data (Flato et al., 2013), and since AR5 important 
progress has been made to calibrate modelled ice sheet processes and future sea level rise based on 
palaeoclimate evidence (Cross-Chapter Box 8 in Chapter 3). 
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Figure 1.3: Illustrative examples of the availability of ocean and cryosphere data relative to the major time periods 
assessed in SROCC. Upper panel; observed (Keeling et al., 1976) and reconstructed (Bereiter et al., 2015) atmospheric 
carbon dioxide (CO2) concentrations, as well as the Representative Concentration Pathways (RCP) of CO2 for low 
(RCP2.6) and high (RCP8.5) future emission scenarios (van Vuuren et al., 2011a; Cross-chapter box 1 in Chapter 1). 
Lower panel; illustrative examples of data availability for the ocean and cryosphere (Section 1.8.1; Taylor et al., 2012; 
Boyer et al., 2013; Dowell et al., 2013; McQuatters-Gollop et al., 2015; Raup et al., 2015; Olsen et al., 2016; PSMSL, 
2016; PAGES2K Consortium, 2017; WGMS, 2017). The amount of data available through time is shown by the heights 
of the time series for observational data, palaeoclimate data and model simulations, expressed relative to the maximum 
annual data availability (maximum values given on plot; M = million, k = thousand). Spatial coverage of data across the 
globe or the relevant domain is shown by colour scale. See SM1.4 for further details.  
 
 
1.8.2 Indigenous Knowledge and Local Knowledge 
 
Humans create, use, and adapt knowledge systems to interact with their environment (Agrawal, 1995; 
Escobar, 2001; Sillitoe, 2007), and to observe and respond to change (Huntington, 2000; Gearheard et al., 
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2013; Maldonado et al., 2016; Yeh, 2016). Indigenous knowledge (IK) refers to the understandings, skills, 
and philosophies developed by societies with long histories of interaction with their natural surroundings. It 
is passed on from generation to generation, flexible, and adaptive in changing conditions, and increasingly 
challenged in the context of contemporary climate change. Local knowledge (LK) is what non-Indigenous 
communities, both rural and urban, use on a daily and lifelong basis. It is multi-generational, embedded in 
community practices and cultures, and adaptive to changing conditions (FAO, 2018). Each chapter of 
SROCC cites examples of IK and LK related to ocean and cryosphere change. 
 
IK and LK stand on their own, and also enrich and complement each other and scientific knowledge. For 
example, Australian Aboriginal groups’ Indigenous oral history provides empirical corroboration of the sea 
level rise 7,000 years ago (Nunn and Reid, 2016), and their seasonal calendars direct hunting, fishing, 
planting, conservation, and detection of unusual changes today (Green et al., 2010). LK works in tandem 
with scientific knowledge, for example, as coastal Australian communities consider the impacts and trade-
offs of sea-level rise (O'Neill and Graham, 2016). 
  
Both IK and LK are increasingly used in climate change research and policy efforts to engage affected 
communities to facilitate site-specific understandings of, and responses to, the local effects of climate change 
(Hiwasaki et al., 2014; Hou et al., 2017; Mekonnen et al., 2017). IK and LK enrich climate-resilient 
development pathways, particularly by engaging multiple stakeholders and the diversity of socio-economic, 
cultural, and linguistic contexts of populations affected by changes in the ocean and cryosphere (Cross-
Chapter Box 4 in Chapter 1).  
  
Global environmental assessments increasingly recognise the importance of IK and LK (Thaman et al., 
2013; Beck et al., 2014; Díaz et al., 2015). References to IK in IPCC assessment reports increased 60% from 
AR4 to AR5, and highlighted the exposures and vulnerabilities of Indigenous populations to climate change 
risks related to socio-economic status, resource-based dependence, and geographic location (Ford et al., 
2016a). All four assessments of the 2018 Intergovernmental Platform on Biodiversity and Ecosystem 
Services (IPBES, 2018a; IPBES, 2018b; IPBES, 2018c; IPBES, 2018d) engaged IK and LK (Díaz et al., 
2015; Roué and Molnar, 2017; Díaz et al., 2018). Peer-reviewed research on IK and LK is burgeoning (Savo 
et al., 2016), providing information that can guide responses and inform policy (Huntington, 2011; 
Nakashima et al., 2012; Lavrillier and Gabyshev, 2018). However, most global assessments still fail to 
incorporate ‘the plurality and heterogeneity of worldviews’ (Obermeister, 2017), resulting ‘in a partial 
understanding of core issues that limits the potential for locally and culturally appropriate adaptation 
responses’ (Ford et al., 2016b). 
  
IK and LK provide case-specific information that may not be easily extrapolated to the scales of disturbance 
that humans exert on natural systems (Wohling, 2009). Some forms of IK and LK are also not amenable to 
being captured in peer-reviewed articles or published reports, and efforts to translate IK and LK into 
qualitative or quantitative data may mute the multidimensional, dynamic, and nuanced features that give IK 
and LK meaning (DeWalt, 1994; Roncoli et al., 2009; Goldman and Lovell, 2017). Nonetheless, efforts to 
collaborate with IK and LK knowledge holders (Baptiste et al., 2017; Karki et al., 2017; Lavrillier and 
Gabyshev, 2017; Roué et al., 2017; David-Chavez and Gavin, 2018) and to systematically assess published 
IK and LK literature in parallel with scientific knowledge result in increasingly effective usage of the 
multiple knowledge systems to better characterise and address ocean and cryosphere change (Huntington et 
al., 2017; Nalau et al., 2018; Ford et al., 2019). 
 
[START CROSS-CHAPTER BOX 4 HERE] 
 
Cross-Chapter Box 4: Indigenous Knowledge and Local Knowledge in Ocean and Cryosphere Change 
  
Authors: Susan Crate (USA), William Cheung (Canada), Bruce Glavovic (New Zealand), Sherilee Harper 
(Canada), Hélène Jacot Des Combes (Fiji/France), Monica Ell Kanayuk (Canada), Ben Orlove (USA), 
Joanna Petrasek MacDonald (Canada), Anjal Prakash (Nepal/India), Jake Rice (Canada), Pasang Yangjee 
Sherpa (Nepal), Martin Sommerkorn (Norway/Germany) 
  
Introduction 
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This Cross-Chapter Box describes how Indigenous knowledge (IK) and local knowledge (LK) are different 
and unique sources of knowledge, which are critical to observing, responding to, and governing the ocean 
and cryosphere in a changing climate (See SROCC Annex I: Glossary for definitions). International 
organisations recognise the importance of IK and LK in global assessments, including  UN Environment, 
UNDP, UNESCO, IPBES, and the World Bank. IK and LK are referenced throughout SROCC, 
understanding that many climate change impacts affect, and will require responses from, local communities 
(both Indigenous and non-Indigenous) who maintain a close connection with the ocean and/or cryosphere. 
  
Attention to IK and LK in understanding global change is relatively recent, but important (high confidence). 
For instance, in 1980, Alaskan Inuit formed the Alaska Eskimo Whaling Commission (AEWC) in response 
to the International Whaling Commission’s science that underestimated the Bowhead whale population and, 
in 1977, banned whaling as a result (Huntington, 1992). The AEWC facilitated an improved population 
count using a study design based on IK, which indicated a harvestable population (Huntington, 2000). There 
are various approaches for utilising multiple knowledge systems. For example, the Mi’kmaw Elders’ concept 
of Two Eyed Seeing: which is ‘learning to see from one eye with the strengths of Indigenous knowledges, 
and from the other eye with the strengths of Western [scientific] knowledges, and to use both together, for 
the benefit of all’ (Bartlett et al., 2012), to preserve the distinctiveness of each, while allowing for fuller 
understandings and actions (Bartlett et al., 2012: 334). 
 
Knowledge Co-production 
Scientific knowledge, Indigenous knowledge, and local knowledge can complement one another by 
engaging both quantitative data and qualitative information, including people’s observations, responses, and 
values (Huntington, 2000; Crate and Fedorov, 2013; Burnham et al., 2016; Figure CB4.1). However, this 
process of knowledge co-production is complex (Jasanoff, 2004) and IK and LK possess uncertainties of a 
different nature from those of scientific knowledge (Kahneman and Egan, 2011), often resulting in the 
dominance of scientific knowledge over IK and LK in policy, governance, and management (Mistry and 
Berardi, 2016). Working across disciplines (interdisciplinarity; Strang, 2009), and/or engaging multiple 
stakeholders (transdisciplinarity; Klenk and Meehan, 2015; Crate et al., 2017), are approaches used to bridge 
knowledge systems. The use of all knowledge relevant to a specific challenge can involve approaches such 
as: scenario building across stakeholder groups to capture the multiple ways people perceive their 
environment and act within it (Klenk and Meehan, 2015); knowledge co-production to achieve collaborative 
management efforts (Armitage et al., 2011); and working with communities to identify shared values and 
perceptions that enable context-specific adaptation strategies (Grunblatt and Alessa, 2017). Broad 
stakeholder engagement, including affected communities, Indigenous Peoples, local and regional 
representatives, policy makers, managers, interest groups, and organisations, has the potential to effectively 
utilise all relevant knowledge (Obermeister, 2017), and produce results that reduce the disproportionate 
influence that formally educated and economically advantaged groups often exert in scientific assessments 
(Castree et al., 2014).  
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Figure CB4.1: Knowledge co-production using scientific knowledge, Indigenous knowledge and/or local 
knowledge to create new understandings for decision making. Panels A, B, and C represent the use of one, two, and 
three knowledge systems, respectively, illustrating co-production moments in time (collars). Panel A represents a 
context which uses one knowledge system, for example, of Indigenous knowledge used by Indigenous peoples; or of 
the local knowledge used by farmers, fishers, and rural or urban inhabitants; or of scientific knowledge used in contexts 
where substantial human presence is lacking. Panel B depicts the use of two knowledge systems, as described in this 
Cross-Chapter Box in the case of Bowhead whale population counts and in Himalayan flood management. Panel C 
illustrates the use of all three knowledge systems, as in the Pacific case in this Cross-Chapter Box. Each collar 
represents how making use of knowledge from different systems is a matter of both identifying available knowledge 
across systems and of knowledge holder deliberations. In these processes, learning takes place on how to relate 
knowledge from different systems for the purpose of improved decisions and solutions. Knowledge from different 
systems can enrich the body of relevant knowledge while continuing independently, or can be combined to co-produce 
new knowledge. 
  
Contributions to SROCC 
Observations, responses, and governance are three important contributions that IK and LK make in ocean 
and cryosphere change: 
  
Observations: IK and LK observations document glacier and sea ice dynamics, permafrost dynamics, coastal 
processes, etc. (Sections 2.3.2.2.2, 2.5, 3.2.2, 3.4.1.1, 3.4.1.1, 3.4.1.2, 4.3.2.4.2, 5.2.3 and Box 2.4), and how 
they interact with social-cultural factors (West and Hovelsrud, 2010). Researchers have begun documenting 
IK and LK observations only recently (Sections 2.3.1.1, 3.2, 3.4, 3.5, Box 4.4, 5.4.2.2.1). 
  
Responses: Either IK or LK alone (Yager, 2015), or used with scientific knowledge (Nüsser and Schmidt, 
2017) inform responses (Sections 2.3.1.3.2, 2.3.2.2.2, 3.5.2, 3.5.4, 4.4.2, Box 4.4, 5.5.2, 6.8.4, 6.9.2). 
Utilising multiple knowledge systems requires continued development, accumulation, and transmission of 
LK and IK and scientific knowledge towards understanding the ecological and cultural context of diverse 
peoples (Crate and Fedorov, 2013; Jones et al., 2016), resulting in the incorporation of relevant priorities and 
contexts into adaptation responses (Sections 3.5.2, 3.5.4, 4.4.4, 5.5.2, 6.8.4, 6.9.2, Box 2.3). 
  
Governance: Utilising IK and LK in climate decision- and policy-making includes customary Indigenous 
and local institutions (Karlsson and Hovelsrud, 2015), as in the case when Indigenous communities are 
engaged in an integrated approach for disaster risk reduction in response to cryosphere hazards (Carey et al., 
2015). The effective engagement of communities and stakeholders in decisions requires using the multiple 
knowledge systems available (Chilisa, 2011; Sections 2.3.1.3.2`, 2.3.2.3`, 3.5.4`, 4.4.4`, Ch 4 Table 4`, 
5.5.2`, 6.8.4`, 6.9.2`; Sections 2.3.1.3.2`, 2.3.2.3`, 3.5.4`, 4.4.4`, Ch 4 Table 4.9`, 5.5.2`, 6.8.4`, 6.9.2). 
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Examples from regions covered in this report 
IK and LK in the Pacific: Historically, Pacific communities, who depend on marine resources for essential 
protein (Pratchett et al., 2011), use LK for management systems to determine access to, and closure of, 
fishing grounds, the latter to respect community deaths, sacred sites, and customary feasts. Today a hybrid 
system, Locally Managed Marine Protected Areas (LMMAs), is common and integrates local governance 
with NGO or government agency interventions (Jupiter et al., 2014). The expected benefits of these 
management systems support climate change adaptation through sustainable resource management (Roberts 
et al., 2017) and mitigation through improved carbon storage (Vierros, 2017). The challenges to wider use 
include both how to upscale LMMAs (Roberts et al., 2017; Vierros, 2017), and how to assess them as 
climate change adaptation and mitigation solutions (Rohe et al., 2017; Section 5.4). 
  
IK and Pikialasorsuaq: Pikialasorsuaq (North Water Polynya), in Baffin Bay, is the Arctic’s largest polynya, 
or area of open water surrounded by ice, and is also one of the most biologically productive regions in the 
Arctic (Barber et al., 2001). Adjacent Inuit communities depend on Pikialasorsuaq for their food security and 
subsistence economy (Hastrup et al., 2018). They use Qaujimajatuqangit, an IK system, in daily and seasonal 
activities (ICC, 2017). The sea-ice bridge north of the Pikialasorsuaq is no longer forming as reliably as in 
the past, resulting in a polynya that is geographically and seasonally less defined (Ryan and Münchow, 
2017). In response, the Inuit Circumpolar Council initiated the Pikialasorsuaq Commission who formed an 
Inuit-led management authority to (1) oversee monitoring and research to conserve the polynya’s living 
resources; (2) identify an Indigenous Protected Area, to include the polynya and dependent communities; 
and (3) establish a free travel zone for Inuit across the Pikialasorsuaq region (ICC, 2017; Box 3.2). 
  
LK in the Alps: Mountain guides and other local residents engaged in supporting mountain tourism draw on 
LK for livelihood management. A study at Mont Blanc lists specific cryosphere changes which they have 
observed, including glacial shrinkage, reduction in ice and snow cover. As a result, the categorisation of the 
difficulty of a number of routes has changed, and the timing of the climbing season has shifted earlier 
(Mourey and Ravanel, 2017; Section 2.3.5). 
  
LK to Manage Flooding: Climate change is increasing glacial meltwater and rain-induced disasters in the 
Himalayan region and affected communities in China, Nepal, and India use LK to adapt (Nadeem et al., 
2012). For instance, rains upstream in Gandaki (Nepal) flood downstream areas of Bihar, India. Local 
communities’ knowledge of forecasting floods has evolved over time through the complexities of caste, 
class, gender, and ecological flux, and is critical to flood forecasting and disaster risk reduction. Local 
communities manage risk by using a diverse set of knowledge, including phenomenological (e.g., river 
sound), ecological (e.g., red ant movement), and riverine (e.g., river colour) indicators, alongside 
meteorological and official information (Acharya and Prakash, 2018; Section 2.3.2.3). 
  
Knowledge Holders’ Recommendations for Utilising IK and LK in Assessment Reports 
Perspectives from the Himalayas: IK and LK holders in the Himalayas have conducted long-term systematic 
observations in these remote areas for centuries. Contemporary IK details change in phenology, weather 
patterns, and flora and fauna species, which enriches scientific knowledge of glacial retreat and potential 
glacial lake outbursts (Sherpa, 2014). The scientific community can close many knowledge gaps by 
engaging IK and LK holders as counterparts. Suggestions towards this objective are: work with affected 
communities to elicit their knowledge of change, especially IK and LK holders with more specialised 
knowledge (farmers, herders, mountain guides, etc.), and use location- and culture-specific approaches to 
share scientific knowledge and utilise it with IK and LK. 
  
Perspectives from the Inuit Circumpolar Council (ICC), Canada: Engaging Inuit as partners across all 
climate research disciplines ensures that Inuit knowledge and priorities guide research, monitoring, and the 
reporting of results in Inuit homeland. Doing so enhances the effectiveness, impact, and usefulness of global 
assessments, and ensures that Inuit knowledge is appropriately reported in assessments. Inuit seek to achieve 
self-determination in all aspects of research carried out in Inuit homeland (e.g., Nickels et al., 2005). Inuit 
actively produce and utilise climate research (e.g., ITK, 2005; ICC, 2015) and lead approaches to address 
climate challenges spurred by great incentive to develop innovative solutions. Engaging Inuit representative 
organisations and governments as partners in research recognises that the best available knowledge includes 
IK, enabling more robust climate research that in turn informs climate policy. When interpreted and applied 
properly, IK comes directly from research by Inuit and from an Inuit perspective (ICC, 2018). This can be 
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achieved by working with Inuit on scoping and methodology for assessments and supporting inclusion of 
Inuit experts in research, analysis, and results dissemination. 
 
[END CROSS-CHAPTER BOX 4 HERE] 
 
 
1.8.3  The Role of Knowledge in People’s Responses to Climate, Ocean and Cryosphere Change  
 
To hold global average temperature to well below 2 °C above pre-industrial levels, substantial changes in the 
day-to-day activities of individuals, families, communities, the private sector, and governance bodies will be 
required (Ostrom, 2010; Creutzig et al., 2018). Enabling these changes at a meaningful societal scale 
requires sensitivity to communities and their use of multiple knowledge systems to best motivate effective 
responses to the risks and opportunities posed by climate change (medium confidence) (1.8.2, Cross-Chapter 
Box 4 in Chapter 1). Meaningful engagement of people and communities with climate change information 
depends on that information cohering with their perception of how the world works (Crate and Fedorov, 
2013). The values and identities people hold affect how acceptable they find the behavioural changes, 
technological solutions and governance that climate change action requires (Moser, 2016).  
 
Education and climate literacy contribute to climate change action and adaptation (high confidence). 
Although public understanding of humanity’s role in both causing and abating climate change has increased 
in the last decade (Milfont et al., 2017), levels of climate concern vary greatly globally (Lee et al., 2015). 
Educational attainment has the strongest effect on raising climate change awareness (Lee et al., 2015), and 
research documents the value of evidence-based climate change education, particularly during formal 
schooling (Motta, 2018). People further understand climate change as a serious threat when they experience 
it in their lives and have knowledge of its human causes (Lee et al., 2015; Shi et al., 2016). Education and 
tailored climate communication strategies that are respectful of people’s values and identity can aid 
acceptance and implementation of the local to global-scale approaches and policies required for effective 
climate change mitigation and adaptation (Shi et al., 2016; Anisimov and Orttung, 2018; Sections 3.5.4, 4.4), 
while also supporting climate-resilient development pathways (see also Cross-Chapter Box 2 in Chapter 1, 
and FAQ1.2).  
 
Human psychology complicates engagement with climate change, due to complex social factors, including 
values (Corner et al., 2014), identity (Unsworth and Fielding, 2014), ideology (Smith and Mayer, 2019), and 
the framing of climate messaging. Additionally, psychology effects adaptation actions, motivated by 
perceptions that others are already adapting, avoidance of an unpleasant state of mind, feelings of self-
efficacy, and belief in the efficacy of the adaptation action (van Valkengoed and Steg, 2019). Better 
understandings of the psychological implications, across diverse communities and social and political 
contexts, will facilitate a just transition of both emissions reduction and adaptation (Schlosberg et al., 2017). 
Impacts of climate change on natural and human environments (e.g., extreme weather) or human-caused 
modifications to the environment (e.g., adaptation) will raise further psychological challenges.  This includes 
psychological impacts to the emotional wellbeing of people adversely affected by climate change (Ogunbode 
et al., 2018), resulting in solastalgia (Albrecht et al., 2007), a distress akin to homesickness while in their 
home environment (McNamara and Westoby, 2011). 
 
 
1.9 Approaches Taken in this Special Report 
 
1.9.1 Methodologies Relevant to this Report 
 
SROCC assesses literature on ocean and cryosphere change and associated impacts and responses, focusing 
on advances in knowledge since AR5. The literature used is primarily published, peer-reviewed scientific, 
social science and humanities research. In some cases, grey-literature sources (for example, published 
reports from governments, industry, research institutes, and non-government organisations) are used where 
there are important gaps in available peer-reviewed literature. It is recognised that published knowledge from 
many parts of the world most vulnerable to ocean and cryosphere change is still limited (Czerniewicz et al., 
2017).  
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Where possible, SROCC draws upon established methodologies and/or frameworks. Cross-Chapter Boxes in 
Chapter 1 address methodologies used for projections of future change (Cross-Chapter Box 1 in Chapter 1), 
for assessing and reducing risk (Cross-Chapter Box 2 in Chapter 1), for governance options relevant to a 
problem or region (Cross-Chapter Box 3 in Chapter 1), and for utilising Indigenous knowledge and local 
knowledge (Cross-Chapter Box 4 in Chapter 1). It is recognised in the assessment process that multiple and 
non-static factors determine human vulnerabilities to climate change impacts, and that ecosystems provide 
essential services that have both commercial and non-commercial value (Section 1.5). Economic methods 
are also important in SROCC, for estimating the economic value of natural systems, and for aiding decision-
making around mitigation and adaptation strategies (Section 1.6). 
 
1.9.2 Communication of Confidence in Assessment Findings 
 
SROCC uses calibrated language for the communication of confidence in the assessment process 
(Mastrandrea et al., 2010; Mach et al., 2017). Calibrated language is designed to consistently evaluate and 
communicate uncertainties that arise from incomplete knowledge due to a lack of information, or from 
disagreement about what is known or even knowable. The IPCC calibrated language uses qualitative 
expressions of confidence based on the robustness of evidence for a finding, and (where possible) uses 
quantitative expressions to describe the likelihood of a finding (Figure 1.4). 
 
Qualitative expressions (confidence scale) describe the validity of a finding based on the type, amount, 
quality and consistency of evidence, and the degree of agreement between different lines of evidence (Figure 
1.4, step 2). Evidence includes all knowledge sources, including IK and LK where available. Very high and 
high confidence findings are those that are supported by multiple lines of robust evidence with high 
agreement. Low or very low confidence describe findings for which there is limited evidence and/or low 
agreement among different lines of evidence, and are only presented in SROCC if they address a major topic 
of concern.  
 
Quantitative expressions (likelihood scale) are used when sufficient data and confidence exists for findings 
to be assigned a quantitative or probabilistic estimate (Figure 1.4, step 3). In the scientific literature, a 
finding is often said to be significant if it has a likelihood exceeding 95% confidence. Using calibrated IPCC 
language, this level of statistical confidence would be termed extremely likely. Lower levels of likelihood 
than those derived numerically can be assigned by expert judgement to take into account structural or 
measurement uncertainties within the products or data used to determine the probabilistic estimates (e.g. 
Table CB1.1). Likelihood statements may be used to describe how climate changes relate to the ends of 
distribution functions, such as in detection and attribution studies that assess the likelihood that an observed 
climate change or event is different to a reference climate state (Section 1.3). In other situations likelihood 
statements refer to the central region across a distribution of possibilities. Examples are the estimates of 
future changes based on large ensembles of climate model simulations, where the central 66% of estimates 
across the ensemble (i.e., the 17–83% range) would be termed a likely range (Figure 1.4, step 3).  
 
It is increasingly recognised that effective risk management requires assessments not just of ‘what is most 
likely’ but also of ‘how bad things could get’ (Mach et al., 2017; Weaver et al., 2017; Xu and Ramanathan, 
2017; Spratt and Dunlop, 2018; Sutton, 2018). In response to the need to reframe policy-relevant 
assessments according to risk (Section 1.5; Mach et al., 2016; Weaver et al., 2017; Sutton, 2018), an effort is 
made in SROCC to report on potential changes for which there is low scientific confidence or a low 
likelihood of occurrence, but that would have large impacts if realised (Mach et al., 2017). In some cases 
where evidence is limited or emerging, phenomena may instead be discussed according to physically 
plausible scenarios of impact (e.g., Table 6.1).  
 
In some cases, deep uncertainty (Cross-Chapter Box 5 in Chapter 1) may exist in current scientific 
assessments of the processes, rate, timing, magnitude, and consequences of future ocean and cryosphere 
changes. This includes physically plausible high-impact changes, such as high-end sea level rise scenarios 
that would be costly if realised without effective adaptation planning and even then may exceed limits to 
adaptation. Means such as expert judgement, scenario-building, and invoking multiple lines of evidence 
enable comprehensive risk assessments even in cases of uncertain future ocean and cryosphere changes. 
 



FINAL DRAFT Chapter 1 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 1-42 Total pages: 72 

 
Figure 1.4: Schematic of the IPCC usage of calibrated language, with examples of confidence and likelihood 
statements from this report. Figure developed after Mastrandrea et al. (2010), Mach et al. (2017) and Sutton (2018). 
 
 
[START CROSS-CHAPTER BOX 5 HERE]. 
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Cross-Chapter Box 5: Confidence and Deep Uncertainty 
  
Authors: Carolina Adler (Switzerland/Australia), Michael Oppenheimer (USA), Nerilie Abram (Australia), 
Kathleen McInnes (Australia) and Ted Schuur (USA) 
  
Definition and Context 
 Characterising, assessing and managing risks to climate change involves dealing with inherent uncertainties. 
Uncertainties can lead to complex decision-making situations for managers and policy-makers tasked with 
risk management, particularly where decisions relate to possibilities assessed as having low or unknown 
confidence/likelihood, yet would have high impacts if realised. While uncertainty can be quantitatively or 
qualitatively assessed (Section 1.9.2; Figure 1.4), a situation of deep uncertainty exists when experts or 
stakeholders do not know or cannot agree on: (1) appropriate conceptual models that describe relationships 
among key driving forces in a system; (2) the probability distributions used to represent uncertainty about 
key variables and parameters; and/or, (3) how to weigh and value desirable alternative outcomes (adapted 
from Lempert et al., 2003; Marchau et al., 2019b). 
  
The concept of deep uncertainty has been debated and addressed in the literature for some time, with diverse 
terminology used. Terms such as great uncertainty (Hansson and Hirsch Hadorn, 2017), contested uncertain 
knowledge (Douglas and Wildavsky, 1983), ambiguity (Ellsberg, 1961), and Knightian uncertainty (Knight, 
1921), among others, are also present in the literature to refer to the multiple components of uncertainty that 
need to be accounted for in decision making. The purpose of this Cross-Chapter Box is to constructively 
engage with the concept of deep uncertainty, by first providing some context for how the IPCC has dealt 
with deep uncertainty in the past. This is followed by examples of cases from the ocean and cryosphere 
assessments in SROCC, where deep uncertainty has been addressed to advance assessment of risks and their 
management. 
  
How has the IPCC and other literature dealt with deep uncertainty? 
 The IPCC assessment process provides instances of how deep uncertainty can manifest. In assessing the 
scientific evidence for anthropogenic climate change, and its influence on the Earth system in the past and 
future, IPCC assessments can identify areas where a large range of possibilities exist in the scientific 
literature or where knowledge of the underlying processes and responses is lacking. Existing guidelines to 
ensure consistent treatment of uncertainties by IPCC author teams (Mastrandrea et al., 2010; Section 1.9.2) 
may not be sufficient to ensure the desired consistency or guide robust findings when conditions of deep 
uncertainty are present (Adler and Hirsch Hadorn, 2014). 
  
The IPCC, and earlier assessments, encountered deep uncertainty when evaluating numerous aspects of the 
climate change problem. Examining these cases sheds light on approaches to quantifying and reducing deep 
uncertainty. An assessment by the US National Academy of Sciences (Charney et al., 1979; commonly 
referred to as the Charney Report) provides a classic example. Evaluating climate sensitivity to a doubling of 
carbon dioxide concentration, and developing a probability distribution for it, was challenging because only 
two 3-D climate models and a handful of model variants and realisations were available. The panel invoked 
three strategies to eliminate some of these simulations: (1) Using multiple lines of evidence to complement 
the limited model results; (2) estimating the consequences of poor or absent model representations of certain 
physical processes (particularly cumulus convection, high-altitude cloud formation, and non-cloud 
entrainment); and, (3) evaluating mismatches between model results and observations. This triage yielded 
“probable bounds” of 2oC – 3.5oC on climate sensitivity. The panel then invoked expert judgment (Box 12.2 
in Collins et al., 2013) to broaden the range to 3±1.5oC, with 3oC referred to as the “most probable value”. 
The panel did not report its confidence in these judgments. 
  
The literature has expanded greatly since, allowing successive IPCC assessments to refine the approach 
taken in the Charney report. By AR5, four lines of evidence (from instrumental records, paleoclimate data, 
model inter-comparison of sensitivity, and model-climatology comparisons) were assessed to determine that 
“Equilibrium climate sensitivity is likely in the range 1.5°C to 4.5°C (high confidence), extremely unlikely 
less than 1°C (high confidence), and very unlikely greater than 6°C (medium confidence)” (Box 12.2 in 
Collins et al., 2013). The Charney report began the process of convergence of opinion around a single 
probability range (essentially, category (2) in the definition of deep uncertainty, above), at least for 
sensitivity arising from fast feedbacks captured by global climate models (Hansen et al., 2007). Subsequent 
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assessments increased confidence, eliminating deep uncertainty about this part of the sensitivity problem 
over a wide range of probability. 
  
Cases of Deep Uncertainty from SROCC 
 Case A — Permafrost carbon and greenhouse gas emissions: AR5 reported the estimated size of the organic 
carbon pool stored frozen in permafrost zone soils, but uncertainty estimates were not available (Tarnocai et 
al., 2009; Ciais et al., 2013). AR5 further reported that future greenhouse gas emissions (CO2 only) from 
permafrost were the most uncertain biogeochemical feedback on climate of the ten factors quantified (Figure 
6.20 in Ciais et al., 2013). However, the low confidence assigned to permafrost was not due to few studies, 
but rather to divergence on the conceptual framework relating changes in permafrost carbon and future 
greenhouse gas emissions, as well as the probability distribution of key variables. Most large-scale carbon-
climate models still lack key landscape-level mechanisms that are known to abruptly thaw permafrost and 
expose organic carbon to decomposition, and many do not include mechanisms needed to differentiate the 
release of methane versus carbon dioxide with their very different global warming potentials. Studies since 
AR5 on potential methane release from laboratory soil incubations (Schädel et al., 2016; Knoblauch et al., 
2018), actual methane release from the Siberian shallow Arctic ocean shelves (Shakhova et al., 2013; 
Thornton et al., 2016), changes in permafrost carbon stocks from the Last Glacial Maximum until present 
(Ciais et al., 2011; Lindgren et al., 2018), and potential carbon uptake by future plant growth (Qian et al., 
2010; McGuire et al., 2018) have widened rather than narrowed the uncertainty range (Section 3.4.3.1.1). 
Accounting for greenhouse gas release from polar and high mountain (Box 2.2) permafrost, introduces an 
element of deep uncertainty when determining emissions pathways consistent with Article 2 of the Paris 
Agreement (Comyn-Platt et al., 2018). With stakeholder needs in mind, scientists have been actively 
engaged in narrowing this uncertainty by using multiple lines of evidence, expert judgment, and joint 
evaluation of observations and models. As a result, SROCC has reduced uncertainty and introduced 
confidence assessments across some but not all components of this problem (Section 3.4.3.1.1.). 
  
Case B — Antarctic ice sheet and sea level rise: Dynamical ice loss from Antarctica (Cross-Chapter Box 8 
in Chapter 3) provides an example of lack of knowledge about processes, and disagreement about 
appropriate models and probability distributions for representing uncertainty (categories (1) and (2) in the 
definition of deep uncertainty). AR5 used a statistical model and expert judgment to reduce uncertainty 
compared to AR4 (Church et al., 2013). Based on modelling of marine ice sheet processes after AR5, 
SROCC has further reduced uncertainty in the Antarctic contribution to sea level rise. The likely range 
including the potential contribution of marine ice sheet instability is quantified as 0.02-0.23 m for 2081-2100 
(and 0.03-0.28 m for 2100) compared to 1986-2005 under RCP8.5 (medium confidence). However, the 
magnitude of additional rise beyond 2100, and the probability of greater sea level rise than that included in 
the likely range before 2100, are characterised by deep uncertainty (Section 4.2.3).  
 
Policy makers at various levels of governance are considering adaptation investments (e.g., hard 
infrastructure, retreat, and nature-based defences) for multi-decadal time horizons that consider projection 
uncertainty (Sections 4.4.2, 4.4.3). For example, extreme sea levels (e.g., the local “hundred-year flood”) 
now occurring during storms that are historically rare are projected to become annual events by 2100 or 
sooner at many low-lying coastal locations (Section 4.4.3). Sea level rise exceeding the likely range, or an 
alternate pathway to the assumed climate change scenario (e.g., which RCP is used in risk estimation), could 
alter these projections and both factors are characterised by deep uncertainty. Among the strategies used to 
reduce deep uncertainty in these cases are formal and informal elicitation of expert judgment to project ice 
sheet behaviour (Horton et al., 2014; Bamber et al., 2019), and development of plausible sea level rise 
scenarios, including extreme cases (Sections 4.2.3, 4.4.5.3). Frameworks for risk management under deep 
uncertainty in the context of time lags between commitment to ice sheet losses and emissions mitigation, and 
between coastal adaptation planning and implementation, are currently emerging in the literature (Section 
4.4.5.3.4). 
  
Case C — Compound risks and cascading impacts: Compound risks and cascading impacts (Section 6.1, 
6.8, Figure 1.1, Figure 6.1) arise from multiple coincident or sequential hazards (Zscheischler et al., 2018). 
Compound risks are an example of deep uncertainty because their rarity means that there is often a lack of 
data or modelling to characterise the risks statistically under present conditions or future changes (Gallina et 
al., 2016), and there is the potential that climate elements could cross tipping points (e.g., Cai et al., 2016). 
Nevertheless, effective risk reduction strategies can be developed without knowing the statistical likelihoods 
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of such events by acknowledging the possibility that an event can occur (Dessai et al., 2009). Such strategies 
are typically well-hedged against a variety of different futures and adjustable through time in response to 
emerging information (Lempert et al., 2010). Case studies are useful for raising awareness of the possibility 
of compound events and provide valuable learnings for decision makers in the form of analogues (McLeman 
and Hunter, 2010). They can provide a basis for devising scenarios to stress test systems in other regions for 
the purposes of understanding and reducing risk. The case study describing the ocean, climate and weather 
events in the Australian state of Tasmania in 2015/2016 (Box 6.1) provides such an example. It led to 
compound risks that could not have been estimated due to deep uncertainty. The total cost of the co-
occurring fires, floods and marine heat wave to the state government was estimated at about $300 million 
USD, and impacts on the food, energy and manufacturing sectors reduced Tasmania’s anticipated economic 
growth by approximately half (Eslake, 2016). In the aftermath of this event, the government increased 
funding to relevant agencies responsible for flood and bushfire management and independent reviews have 
recommended major policy reforms that are now under consideration (Blake et al., 2017; Tasmanian Climate 
Change Office, 2017). 
  
What can we learn from SROCC cases in addressing deep uncertainty? 
 Using the adapted definition as a framing concept for deep uncertainty (see also Glossary), we find that each 
of the three cases described in this Cross-Chapter Box involve at least one of the three ways that deep 
uncertainty can manifest. In Case A, incomplete knowledge on relationships and key drivers and feedbacks 
(category 1), coupled with broadened probability distributions in post-AR5 literature (category 2), are key 
reasons for deep uncertainty. In Case B, the inability to characterise the probability of marine ice sheet 
instability due to a lack of adequate models resulting in divergent views on the probability of ice loss lead to 
deep uncertainty (categories 1 and 2). In Case C, the Australian example provides insights on the inadequacy 
of models or previous experience for estimating risk of multiple simultaneous extreme events, contributing 
to the exhaustion of resources which were then insufficient to meet the need for emergency response. This 
case also points to the complex task of addressing multiple simultaneous extreme events, and the multiple 
ways of valuing preferred outcomes in reducing future losses (category 3).  
 
The three cases validate the continued iterative process required to meaningfully engage with deep 
uncertainty in situations of risk, through means such as elicitation, deliberation, and application of expert 
judgement, scenario-building, and invoking multiple lines of evidence. These approaches demonstrate 
feasible ways to address or even reduce deep uncertainty in complex decision situations (see also Marchau et 
al., 2019a), considering that possible obstacles and time investment needed to address deep uncertainty, 
should not be underestimated. 
 
[END CROSS-CHAPTER BOX 5 HERE] 
 
 
1.10 Integrated Storyline of this Special Report 
 
The chapters that follow in this special report are framed around geographies or climatic processes where the 
ocean and/or cryosphere are particularly important for ecosystems and people. The chapter order follows the 
movement of water; from Earth’s shrinking mountain and polar cryosphere, into our rising and warming 
ocean.  
 
Chapter 2 assesses High Mountain areas outside of the polar regions, where glaciers, snow and/or permafrost 
are common. Chapter 3 moves to the Polar Regions of the northern and southern high latitudes, which are 
characterised by vast stores of frozen water in ice sheets, glaciers, ice shelves, sea ice and permafrost, and by 
the interaction of these cryosphere elements and the polar oceans. Chapter 4 examines Sea Level Rise and the 
hazards this brings to Low-Lying Regions, Coasts and Communities. Chapter 5 focuses on the Changing 
Ocean, with a particular focus on how climate change impacts on the ocean are altering Marine Ecosystems 
and affecting Dependent Communities. Chapter 6 is dedicated to assessing Extremes and Abrupt Events, and 
reflects the potential for rapid and possibly irreversible changes in Earth’s ocean and cryosphere, and the 
challenges this brings to Managing Risk. The multitude ways in which Low-Lying Islands and Coasts are 
exposed and vulnerable to the impacts of ocean and cryosphere change, along with resilience and adaptation 
strategies, opportunities and governance options specific to these settings, is highlighted in integrative Cross-
Chapter Box 9.  
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This report does not attempt to assess all aspects of the ocean and cryosphere in a changing climate. 
Examples of research themes that will be covered elsewhere in the IPCC Sixth Assessment Cycle and not 
SROCC include: assessments of ocean and cryosphere changes in the Sixth Coupled Model Intercomparison 
Project (CMIP6) experiments (AR6); cryosphere changes outside of polar and high mountain regions (e.g., 
snow cover in temperate and low altitude settings; AR6); and a thorough assessment of mitigation options 
for reducing climate change impacts (SR1.5, AR6 WGIII).  
 
Each chapter of SROCC presents an integrated storyline on the ocean and/or cryosphere in a changing 
climate. The chapter assessments each present evidence of the pervasive changes that are already underway 
in the ocean and cryosphere (Figure 1.5). The impacts that physical changes in the ocean and cryosphere 
have had on ecosystems and people are assessed, along with lessons learned from adaptation measures that 
have already been employed to avoid adverse impacts. The assessments of future change in the ocean and 
cryosphere demonstrate the growing and accelerating changes projected for the future, and identify the 
reduced impacts and risks that choices for a low greenhouse gas emission future would have compared with 
a high emission future (Figure 1.5). Potential adaptation strategies to reduce future risks to ecosystems and 
people are assessed, including identifying where limits to adaptation may be exceeded. The local to global 
scale responses for charting climate-resilient development pathways are also assessed. 
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Figure 1.5: Changes in the ocean and cryosphere that have already occurred, and projected future changes 
this century under low (RCP2.6) and high (RCP8.5) greenhouse gas emission scenarios. Context is shown by 
changes in: (a) atmospheric carbon dioxide concentration {Cross-Chapter Box 1 in Chapter 1, Figure 1.3}; 
and (b) global population including the range of future population scenarios for global, high mountain and 
low-elevation coastal populations across the Shared Socioeconomic Pathways. Additionally, around 4 
million people live in the Arctic (2010), with an increase of 4% projected for 2030 {1.1, 2.1, 4.3, Cross-
Chapter Box 1 in Chapter 1}. Pervasive and intensifying ocean and cryosphere changes are shown in lower 
panels for observed (green) and/or modelled historical (brown) changes, and contrasting differences in future 
changes under high (red; RCP8.5) and low (blue; RCP2.6) greenhouse gas emission scenarios. Changes are 
shown for: (c) global mean surface air temperature change relative to 1986-2005 with likely range. AR5 
assessed that observed surface temperature increase from preindustrial (1850-1900) to 1986-2005 was 0.61 
(± 0.6) oC {Cross-Chapter Box 1 in Chapter 1}; (d) Global mean sea level change (metres) relative to 1986-
2005 with likely range {4.2.3}; (e, f) Greenland and Antarctic ice sheet mass loss, as contribution to global 
sea level (metres), relative to 1992 with ± 1 standard deviation range {3.3.1}; (g) Glacier mass loss, as 
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contribution to global sea level (metres), relative to 2015 with likely range {Cross-Chapter Box 6 in Chapter 
2, Table 4.1}; (h) Global ocean heat content change (0-2000 m depth; in 1021 joules) relative to 1986-2005 
with 5-95% range {Figure 5.1}; (i) Global mean sea surface temperature change (°C) relative to 1986-2005 
with 5-95% range. {Box 5.1, 5.2.2}; (j) Probability ratio of surface ocean marine heatwaves, global mean 
relative to 1850-1900 with 5-95% range. A probability ratio of 10 equals a 10-times increase in the 
probability of experiencing a marine heatwave relative to 1850-1900 {6.4.1}; (k) Global mean surface pH 
(on the total scale) with 5-95% range. Assessed observational trends between 1980-2012 are centred on 1996 
and compiled from open ocean time series site longer than 15 years {Box 5.1, Figure 5.6, 5.2.2}; (l) Arctic 
sea ice extent in September (millions of km2) with likely range. Observed shading denotes 5-95% range 
across three satellite-derived products {3.2.1, 3.2.2 Figure 3.3} (Note: Antarctic sea ice is not shown here 
due to low confidence in future projections {3.2.1); (m) Arctic snow cover in June (land areas north of 60oN 
in millions of km2) plotted as 5-year moving averages with likely range. Observed shading denotes 5-95% 
range across 5 snow products {3.4.1, 3.4.2, Figure 3.11}; (n) Near-surface permafrost extent (millions of 
km2) with likely range {3.4.1, 3.4.2, Figure 3.10}. Differing baseline intervals and temporal coverage of 
observations reflect data limitations for quantifying the full extent of ocean and cryosphere change since the 
preindustrial {1.8.1, Figure 1.3}.   
 
[START FAQ1.1 HERE]  
 
FAQ 1.1: How do changes in the ocean and cryosphere affect our life on planet Earth?  
 
The ocean and cryosphere regulate the climate and weather on Earth, provide food and water, support 
economies, trade and transportation, shape cultures and influence our well-being. Many of the recent 
changes in Earth’s ocean and cryosphere are the result of human activities and have consequences on 
everyone’s life. Deep cuts in greenhouse gas emissions will reduce negative impacts on billions of people 
and help them adapt to changes in their environment. Improving education and combining scientific 
knowledge with Indigenous knowledge and local knowledge helps communities to further address the 
challenges ahead. 
 
The ocean and cryosphere—a collective name for the frozen parts of the Earth—are essential to the climate 
and life-giving processes on our planet.  
 
Changes in the ocean and cryosphere occur naturally, but the speed, magnitude, and pervasiveness of the 
global changes happening right now have not been observed for millennia or longer. Evidence shows that the 
majority of ocean and cryosphere changes observed in the past few decades are the result of human 
influences on Earth’s climate.  
 
Every one of us benefits from the role of the ocean and cryosphere in regulating climate and weather. The 
ocean has absorbed about a third of the carbon dioxide humans have emitted from the burning of fossil fuels 
since the Industrial Revolution, and the majority (more than 90%) of the extra heat within the Earth system. 
In this way, the ocean has slowed the warming humans and ecosystems have experienced on land. The 
reflective surface of snow and ice reduce the amount of the sun’s energy that is absorbed on Earth. This 
effect diminishes as snow and ice melts, contributing to amplified temperature rise across the Arctic. The 
ocean and cryosphere also sustain life-giving water resources, by rain and snow that come from the ocean, 
and by meltwater from snow and glaciers in mountain and polar regions. 
 
Nearly two billion people live near the coast, and around 800 million on land less than 10 m above sea level. 
The ocean directly supports the food, economies, cultures and well-being of coastal populations (see FAQ 
1.2). The livelihoods of many more are tied closely to the ocean through food, trade, and transportation. Fish 
and shellfish contribute about 17% of the non-grain protein in human diets, and shipping transports at least 
80% of international imports and exports. But the ocean also brings hazards to coastal populations and 
infrastructure, and particularly to low-lying coasts. These populations are increasingly exposed to tropical 
cyclones, marine heat waves, sea level rise, coastal flooding and saltwater incursion into groundwater 
resources. 
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In high mountains and the Arctic, around 700 million people live in close contact with the cryosphere. These 
people, including many Indigenous Peoples, depend on snow, glaciers and sea ice for their livelihoods, food 
and water security, travel and transport, and cultures (see FAQ 1.2). They are also exposed to hazards as the 
cryosphere changes, including flood outbursts, landslides and coastal erosion. Changes in the polar and high 
mountain regions also have far-reaching consequences for people in other parts of the world (see FAQ 3.1). 
 
Warming of the climate system leads to sea level rise. Melt from glaciers and ice sheets is adding to the 
amount of water in the ocean, and the heat being absorbed by the ocean is causing it to expand and take up 
more space. Today’s sea level is already about 20 cm higher than in 1900. Sea level will continue to rise for 
centuries to millennia because the ocean system reacts slowly. Even if global warming were to be halted, it 
would take centuries or more to halt ice sheet melt and ocean warming. 
 
Enhanced warming in the Arctic and in high mountains is causing rapid surface melt of glaciers and the 
Greenland ice sheet. Thawing of permafrost is destabilising soils, human infrastructure, and Arctic coasts, 
and has the potential to release vast quantities of methane and carbon dioxide into the atmosphere that will 
further exacerbate climate change. Widespread loss of sea ice in the Arctic is opening up new routes for 
shipping, but at the same time is reducing habitats for key species and affecting the livelihoods of Indigenous 
cultures. In Antarctica, glacier and ice sheet loss is occurring particularly quickly in places where ice is in 
direct contact with warm ocean water, further contributing to sea level rise.  
 
Ocean ecosystems are threatened globally by three major climate change-induced stressors: warming, loss of 
oxygen, and acidification. Marine heat waves are occurring everywhere across the surface ocean, and are 
becoming more frequent and more intense as the ocean warms. These are causing disease and mass-mortality 
that put, for example, coral reefs and fish populations at risk. Marine heat waves last much longer than the 
heat waves experienced on land, and are particularly harmful for organisms that cannot move away from 
areas of warm water.  
 
Warming of the ocean reduces not only the amount of oxygen it can hold, but also tend to stratify it.  As a 
result, less oxygen is transported to depth, where it is needed to support ocean life. Dissolved carbon dioxide 
that has been taken up by the ocean reacts with water molecules to increase the acidity of seawater. This 
makes the water more corrosive for marine organisms that build their shells and structures out of mineral 
carbonates, such as corals, shellfish and plankton. These climate-change stressors occur alongside other 
human-driven impacts, such as overfishing, excessive nutrient loads (eutrophication), and plastic pollution. 
If human impacts on the ocean continue unabated, declines in ocean health and services are projected to cost 
the global economy $428 billion per year by 2050, and $1.979 trillion per year by 2100.  
 
The speed and intensity of the future risks and impacts from ocean and cryosphere change depend critically 
on future greenhouse gas emissions. The more these emissions can be curbed, the more the changes in the 
ocean and cryosphere can be slowed and limited, reducing future risks and impacts. But humankind is also 
exposed to the effects of changes triggered by past emissions, including sea level rise that will continue for 
centuries to come. Improving education and using scientific knowledge alongside local knowledge and 
Indigenous knowledge can support the development of context-specific options that help communities to 
adapt to inevitable changes and respond to challenges ahead. 
 
[END FAQ1.1 HERE] 
 
 
[START FAQ1.2 HERE]  
 
FAQ 1.2: How will changes in the ocean and cryosphere affect meeting the Sustainable Development 
Goals?  
 
Ocean and cryosphere change affect our ability to meet the United Nations Sustainable Development Goals 
(SDGs). Progress on the SDGs support climate action that will reduce future ocean and cryosphere change, 
and as well as the adaptation responses to unavoidable changes. There are also trade-offs between SDGs and 
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measures that help communities to adjust to their changing environment, but limiting greenhouse gas 
emissions opens more options for effective adaptation and sustainable development. 
 
The Sustainable Development Goals (SDGs) were adopted by the United Nations in 2015 to support action 
for people, planet, and prosperity (FAQ 1.2, Figure 1). The 17 goals, and their 169 targets, strive to end 
poverty and hunger, protect the planet, and reduce gender, social, and economic inequities by 2030. 
 
SDG 13 (Climate Action) explicitly recognises that changing climatic conditions are a global concern. 
Climate change is already causing pervasive changes in Earth’s ocean and cryosphere (FAQ 1.1). These 
changes are impacting food, water, and health securities, with consequences for achieving SDG 2 (Zero 
Hunger), SDG 3 (Good Health and Well-Being), SDG 6 (Clean Water and Sanitation), and SDG 1 (No 
Poverty). Climate change impacts on Earth’s ocean and cryosphere also affect the environmental goals for 
SDG 14 (Life below Water) and SDG 15 (Life on Land), with additional implications for many of the other 
SDGs. 
 
SDG 6 (Clean Water and Sanitation) will be affected by ocean and cryosphere changes. Melting mountain 
glaciers bring an initial increase in water, but as glaciers continue to shrink so too will the essential water 
they provide to millions of mountain dwellers, downstream communities, and cities. These populations also 
depend on water flow from the high mountains for drinking, sanitation, and irrigation, and for SDG 7 
(Affordable and Clean Energy). Water security is also threatened by changes in the magnitude and 
seasonality of rainfall, driven by rising ocean temperatures, which increases the risk of severe storms and 
flooding in some regions, or the risk of more severe or more frequent droughts in other regions. Among 
other effects, ongoing sea level rise is allowing salt water to intrude further inland, contaminating drinking 
water and irrigation sources for some coastal populations. Actions to address these threats will likely require 
new infrastructure to manage rain, melt-water, and river flow, in order to make water supplies more reliable. 
These actions would also benefit SDG 3 (Good Health and Well-Being) by reducing the risk of flooding and 
negative health outcomes posed by extreme rainfall and outbursts of glacial melt. 
 
Climate change impacts on the ocean and cryosphere also have many implications for progress on food 
security that is addressed in SDG 2 (Zero Hunger). Changes in rainfall patterns caused by ocean warming 
will increase aridity in some areas and bring more (or more intense) rainfall to others. In mountain regions, 
these changes bring varying challenges for maintaining reliable crops and livestock production. Some 
adaptation opportunities might be found in developing strains of crops and livestock better adapted to the 
future climate conditions, but this response option is also challenged by the rapid rate of climate change. In 
the Arctic, very rapidly warming temperatures, diminishing sea ice, reduced snow cover, and degradation of 
permafrost are restricting the habitats and migration patterns of important food sources (SDG 2 Zero 
Hunger), including reindeer and several marine mammals (SDG 15 Life on Land; SDG 14 Life below 
Water), resulting in reduced hunting opportunities for staple foods that many northern Indigenous 
communities depend upon. 
 
Rising temperatures, and changes in ocean nutrients, acidity, and salinity are altering SDG 14 (Life Below 
Water). The productivity and distributions of some fish species are changing in ways that alter availability of 
fish to long-established fisheries, whereas the range of fish populations may move to become available in 
some new coastal and open ocean areas.  
 
Ocean changes are of concern for small island developing states and coastal cities and communities. Beyond 
possible reductions in marine food supply and related risks for SDG 2 (Zero Hunger), their lives, livelihoods, 
and well-being are also threatened in ways that are linked to several SDGs, including SDG 3 (Good Health 
and Wellbeing), SDG 8 (Decent Work and Economic Growth), SDG 9 (Industry, Innovation, and 
Infrastructure), and SDG 11 (Sustainable Cities and Communities). For example, sea level rise and warming 
oceans can cause inundation of coastal homes and infrastructure, more powerful tropical storms, declines in 
established economies such as tourism, and losses of cultural heritage and identity. Improved community 
and coastal infrastructure can help to adapt to these changes, and more effective and faster disaster responses 
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from health sectors and other emergency services can assist the populations who experience these impacts. 
In some situations the most appropriate responses may involve relocation of critical services and, in some 
cases, communities; and for some populations, migration away from their homeland may become the only 
viable response. 
 
Without transformative adaptation and mitigation, climate change could undermine progress towards 
achieving the 2030 Sustainable Development Goals, and make it more difficult to implement climate-
resilient development pathways in the longer term. Reducing global warming (mitigation) provides the best 
possibility to limit the speed and extent of ocean and cryosphere change and give more options for effective 
adaptation and sustainable development. Progress on SDG 4 (Quality Education), SDG 5 (Gender Equality) 
and SDG 10 (Reduced Inequalities) can moderate the vulnerabilities that shape people’s risk to ocean and 
cryosphere change, while SDG 12 (Responsible Consumption and Production), SDG 16 (Peace, Justice and 
Institutions) and SDG 17 (Partnerships for the Goals) will help to facilitate the scales of adaptation and 
mitigation responses required to achieve sustainable development. Investment in social and physical 
infrastructure that supports adaptation to inevitable ocean and cryosphere changes will enable people to 
participate in initiatives to achieve the SDGs. Current and past IPCC efforts have focused on identifying 
‘climate-resilient development pathways.’ Such adaptation and mitigation strategies, supported by adequate 
investments, and understanding the potential for SDG initiatives to increase the exposure or vulnerability of 
the activities to climate change hazards, could also constitute pathways for progress on the Sustainable 
Development Goals. 
 



FINAL DRAFT Chapter 1 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 1-52 Total pages: 72 

 
FAQ 1.2, Figure 1: The United Nations 2030 Sustainable Development Goals 
 
 
[END FAQ1.2 HERE] 
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SM1.1 Supplementary Material Supporting the Text in Section 1.4.  
 
Table SM1.1. Development of assessments of climate, ocean and cryosphere change across past IPCC working group 1 assessment reports. This table 
supports the text in Section 1.4. The material is derived from the Summary for Policy Makers (SPM) sections of the Working Group I reports of the First Assessment 
Report (IPCC, 1990) the Second Assessment Report (IPCC, 1995), the Third Assessment Report (IPCC, 2001) , the Fourth Assessment Report (IPCC, 2007) and the 
Fifth Assessment Report (IPCC, 2013).  
Report Global context Cryosphere Ocean Sea level 

First Assessment 
Report SPM (1990): 
observed change 

Global mean surface temperature has 
increased by 0.3°C to 0.6°C over the 
last 100 years. The unequivocal 
detection of the enhanced greenhouse 
effect from observations is not likely 
for a decade or more. 

Retreat of most mountain glaciers 
since the end of the nineteenth century. 

 Global sea level has increased by 0.1 
to 0.2 m [over the last 100 years]. 

First Assessment 
Report SPM (1990): 
projected changea 

Likely increase in global mean 
temperature of about 3°C above the 
present (about 4°C above pre-
industrial) before the end of the next 
century, under a business-as-usual 
scenario. 

The West Antarctic ice sheet is of 
special concern. Within the next 
century it is not likely that there will 
be a major outflow of ice from West 
Antarctica due directly to global 
warming. 

Key areas of scientific uncertainty 
[include] the exchange of energy 
between the oceans and the 
atmosphere, between the upper layers 
of the ocean and the deep ocean, and 
transport within the ocean. 

Predicted rise is about 0.2 m in global 
mean sea level by 2030, and 0.65 m by 
the end of the next century. Over the 
next 100 years the effect of the 
Antarctic and Greenland ice sheets is 
expected to be small. Grounds for 
believing that future warming will lead 
to an acceleration in sea level rise. 

Second Assessment 
Report SPM (1995): 
observed change 

Global mean surface air temperature 
has increased by between about 0.3 
and 0.6°C since the late 19th Century. 
The balance of evidence suggests a 
discernible human influence on global 
climate. 

  Global sea level has risen by between 
0.1 and 0.25 m over the past 100 years 
and much of the rise may be related to 
the increase in global mean 
temperature. 

Second Assessment 
Report SPM (1995): 
projected changeb 

The lowest emission scenario with a 
low value of climate sensitivity leads 
to a projected temperature increase of 
about 1°C by 2100. The highest 
emission scenario with a high value of 
climate sensitivity gives warming of 
about 3.5°C [by 2100, relative to 
1990]. 

Models project that between one-third 
and one-half of existing mountain 
glacier mass could disappear over the 
next 100 years.  
 
Little change in the extent of the 
Greenland and Antarctic ice sheets is 
expected over the next 50-100 years. 

Most simulations show a reduction in 
the strength of the north Atlantic 
thermohaline circulation [AMOC]. 

The lowest emission scenario with low 
climate and ice-melt sensitivities gives 
a projected sea level rise of about 0.15 
m from the present to 2100. The 
highest emission scenario combined 
with high climate and ice-melt 
sensitivities gives a sea level rise of 
about 0.95m from present to 2100. 
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Third Assessment 
Report SPM (2001): 
observed change 

The global average surface 
temperature has increased over the 
20th century by about 0.6°C (± 0.2°C). 
There is new and stronger evidence 
that most of the warming observed 
over the last 50 years is attributed to 
human activities. 

Snow cover and ice extent have 
decreased. There are very likely to 
have been decreases of about 10% in 
the extent of snow cover since the late 
1960s.  
 
There has been a widespread retreat of 
mountain glaciers in non-polar regions 
during the 20th century. Northern 
Hemisphere spring and summer sea-
ice extent has decreased by about 10 to 
15% since the 1950s. 

Global ocean heat content has 
increased since the last 1950s.  
 
Warm episodes of the El Nino-
Southern Oscillation (ENSO) 
phenomenon have been more frequent, 
persistent and intense since the mid-
1970s compared with the previous 100 
years. 

Global average sea level rose between 
0.1 and 0.2 m during the 20th century. 
It is very likely that the 20th century 
warming has contributed significantly 
to the observed sea level rise, through 
thermal expansion of sea water and 
widespread loss of land ice. Within 
present uncertainties, observations and 
models are both consistent with a lack 
of significant acceleration of sea level 
rise during the 20th century. 

Third Assessment 
Report SPM (2001): 
projected change3 

Global average temperature and sea 
level are projected to rise under all 
IPCC SRES scenarios. The globally 
average surface temperature is 
projected to increase by 1.4 to 5.8°C 
over the period 1990-2100. 

Northern Hemisphere snow cover and 
sea-ice extent are projected to decrease 
further.  
 
Glaciers and ice caps are projected to 
continue their widespread retreat 
during the 21st century. The Greenland 
ice sheet is likely to lose mass. The 
Antarctic ice sheet is likely to gain 
mass because of greater precipitation. 
Concerns have been expressed about 
the stability of the West Antarctic ice 
sheet, however loss of grounded ice 
leading to substantial sea level rise 
from this source is now widely agreed 
to be very unlikely during the 21st 
century. 

Most models show weakening of the 
ocean thermohaline circulation, but do 
not exhibit complete shut-down of the 
thermohaline circulation by 2100. 
Beyond 2100 the thermohaline 
circulation could completely, and 
possibly irreversibly, shut down in 
either hemisphere.  
 
Increases in tropical cyclone peak 
wind intensities and in mean and peak 
precipitation intensities are likely over 
some areas. 

Global mean sea level is projected to 
rise by 0.09 to 0.88 m between 1990 
and 2100. 
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Fourth Assessment 
Report SPM (2007): 
observed change 

Warming of the climate system is 
unequivocal, as is now evident from 
observations of increases in global 
average air and ocean temperatures, 
widespread melting of snow and ice, 
and rising global average sea level. 
Temperature increase from 1850-1899 
to 2001-2005 is 0.76 [0.57 to 0.95] °C. 
Arctic temperatures increased at 
almost twice the global average rate in 
the past 100 years. 

Mountain glaciers and snow cover 
have declined on average in both 
hemispheres.  
 
Temperatures at the top of the 
permafrost layer have generally 
increases since the 1980s in the Arctic. 
Seasonally frozen ground has 
decreased by around 7% in the 
Northern Hemisphere since 1900, with 
a decrease in spring of up to 15%.  
 
Data since 1978 show that annual 
average Arctic sea ice extent has 
shrunk by 2.7 [2.1 to 3.3]% per 
decade, with larger decreases in 
summer of 7.4 [5.0 to 9.8]% per 
decade.  
 
New data show that losses from the ice 
sheets of Greenland and Antarctic 
have very likely contributed to sea 
level rise over 1993 to 2003. 

Observations since 1961 show that the 
average temperature of the global 
ocean has increased to depths of at 
least 3000 m and that the ocean has 
been absorbing more than 80% of the 
heat added to the climate system.  
 
There is observational evidence for an 
increase of intense tropical cyclone 
activity in the North Atlantic since 
about 1970 (likely), [but] there is no 
clear trend in the numbers of tropical 
cyclones. 

Total 20th century global mean sea 
level rise is estimated to be 0.17 [0.12 
to 0.22] m. There is high confidence 
that the rate of observed sea level rise 
increased from the 19th to the 20th 
Century. It is very likely that 
anthropogenic activity contributed to a 
rise in average sea level. There has 
likely been an increased incidence of 
extreme high sea level. 

Fourth Assessment 
Report SPM (2007): 
projected changec 

Best estimates and likely ranges for 
globally average surface air warming 
at the end of the 21st Century (2090-
2099, relative to 1980-1999) for the 
low scenario is 1.8 [1.1 to 2.9]°C and 
for the high scenario is 4.0 [2.4 to 
6.4]°C. Since IPCCs first report in 
1990, assessed projections have 
suggested global averaged temperature 
increases between about 0.15 and 
0.3°C per decade for 1990 to 2005. 
This can now be compared with 
observed values of about 0.2°C per 
decade, strengthening confidence in 
near-term projections. 

Snow cover is projected to contract. 
Widespread increases in thaw depth 
are projected over most permafrost 
regions. Sea ice is projected to shrink 
in both the Arctic and Antarctic under 
all SRES scenarios. In some 
projections, Arctic late-summer sea ice 
disappears almost entirely by the latter 
part of the 21st century. Contraction of 
the Greenland ice sheet is projected to 
continue to contribute to sea level rise 
after 2100. Dynamical processes 
related to ice flow not included in 
current models but suggested by recent 
observations could increase the 
vulnerability of the ice sheets to 
warming. 

Projections give reductions in average 
global surface ocean pH of between 
0.14 and 0.35 units over the 21st 
century, adding to the present decrease 
of 0.1 units since pre-industrial times. 
It is likely that future tropical cyclones 
will become more intense, with larger 
peak wind speeds and more heavy 
precipitation associated with ongoing 
increases of tropical SST. It is very 
likely that the Atlantic meridional 
overturning circulation [AMOC] will 
slow down during the 21st century. It 
is very unlikely that the AMOC will 
undergo a large abrupt transition 
during the 21st century. Longer-term 
changes in AMOC cannot be assessed 

Model-based likely ranges for globally 
mean sea level rise at the end of the 
21st Century (2090-2099, relative to 
1980-1999) for the low scenario are 
0.18 to 0.38 m and for the high 
scenario are 0.26 to 0.59 m. Models 
used to date do not include the full 
effects of changes in ice sheet flow. 
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with confidence. 

Fifth Assessment 
Report SPM (2013): 
observed change 

Warming of the climate system is 
unequivocal, and since the 1950s, 
many of the observed changes are 
unprecedented over decades to 
millennia. The atmosphere and ocean 
have warmed, the amounts of snow 
and ice have diminished, sea level has 
risen, and the concentrations of 
greenhouse gases have increased. The 
total increase [in global mean surface 
temperature] between the average of 
the 1850-1900 period and the 2003-
2012 period is 0.78 [0.72 to 0.85] °C. 

Over the last two decades the 
Greenland and Antarctic ice sheets 
have been losing mass, glaciers have 
continued to shrink almost worldwide, 
and Arctic sea ice and Northern 
Hemisphere spring snow cover have 
continued to decrease in extent, and 
permafrost temperatures have 
increased in most regions (high 
confidence). See IPCC 2013 (AR5 
SPM) for extensive quantification of 
observed cryosphere changes. 

Ocean warming accounts for more 
than 90% of the energy accumulated 
between 1971 and 2010 (high 
confidence). It is virtually certain that 
the upper ocean (0-700m) warmed 
from 1971 to 2010, and it likely 
warmed between the 1987s and 1971. 
There is no observational evidence of a 
trend in the AMOC. The pH of ocean 
surface water has decreased by 0.1 
since the beginning of the industrial 
era (high confidence), corresponding 
to a 26% increase in hydrogen ion 
concentration. 

Over the period 1901 to 2010, global 
mean sea level rose by 0.19 [0.17 to 
0.21] m. The rate of sea level rise since 
the mid-19th century has been larger 
than the mean rate during the previous 
two millennia. 
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Fifth Assessment 
Report SPM (2013): 
projected changed 

Increase in global mean surface 
temperatures for 2081-2100 relative to 
1986-2005 is projected to likely be in 
the range of 0.3 to 1.7°C for a low 
emission future (RCP2.6) or 2.6 to 
4.8°C for a high emission future 
(RCP8.5). The observed warming from 
1850-1900 (pre-industrial) to 1986-
2005 is 0.61 [0.55 to 0.67]°C. 

Reductions in Arctic sea ice extent 
projected by the end of the 21st 
century range from 43% (RCP2.6) to 
94% (RCP8.5) in September. A nearly 
ice-free Arctic Ocean in September 
before mid-century is likely for 
RCP8.5.  
 
A decrease in Antarctic sea ice extent 
and volume is projected with low 
confidence for the end of the 21st 
century. By the end of the 21st 
century: global glacier volume is 
projected to decrease by 15 to 55% for 
RCP2.6 and by 35-85% for RCP8.5 
(medium confidence),  
 
Northern Hemisphere spring snow 
cover is projected to decrease by 7% 
for RCP2.6 and 25% in RCP8.5, and 
the area of permafrost near the surface 
(upper 3.5m) is projected to decrease 
by between 37% (RCP2.60 to 81% 
(RCP8.5). 

Best estimates of ocean warming in the 
top 100 m are about 0.6°C (RCP2.6) to 
2.0°C (RCP8.5), and about 0.3°C 
(RCP2.6) to 6°C (RCP8.5) at a depth 
of about 1000 m by the end of the 21st 
century. 
 
It is very likely that the AMOC will 
weaken over the 21st century by 11 [1-
24]% in RCP2.6, and 34 [12-54]% in 
RCP8.5. It is very unlikely that the 
AMOC will undergo an abrupt 
transition of collapse in the 21st 
century, however a collapse beyond 
the 21st century for large sustained 
warming cannot be excluded. 
 
A decrease in surface ocean pH by the 
end of the 21st century is in the range 
of 0.06 to 0.07 for RCP2.6 and 0.30 to 
0.32 for RCP8.5. 

Global mean sea level rise for 2081-
2100 relative to 1986-2005 will likely 
be in the ranges of 0.26 to 0.55 m for a 
low emission future (RCP2.6), and 
0.45 to 0.82 m for a high emission 
future (RCP8.5). For RCP8.5, the rise 
by the year 2100 is 0.52 to 0.98 m, 
relative to 1986-2005. It is virtually 
certain that global mean sea level rise 
will continue beyond 2100. 

Notes: 
(a) Business-as-usual scenario used in the First Assessment Report report assumes few or no steps are taken to limit greenhouse gas emissions, and has an atmospheric CO2 
concentration of around 830 ppm by 2100. 
(b) Second Assessment Report uses the IS92 emission scenarios. The lowest emission scenario is IS92c, and the highest emission scenario is IS92e. 
(c) The Third and Fourth Assessment Reports use the SRES emission scenarios, which have a range of atmospheric carbon dioxide concentrations at 2100 of between 540 to 970 
ppm (see SM1.2). 
(d) AR5 uses the RCP emission scenarios (Cross-Chapter Box 1 in Chapter 1; SM1.2). 
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SM1.2 Supplementary Material Supporting the Text in Cross-Chapter Box 1 in Chapter 1  
 
Additional details are provided below on the Representative Concentration Pathways (RCPs), the Shared 
Socio-economic Pathways (SSPs) and the Special Report on Emission Scenarios (SRES), supporting the 
Cross-Chapter Box 1 in Chapter 1.  
 
Five SSP narratives describe alternative pathways for future society (Figure SM1.1). Each SSP looks at how 
the different RCPs could be achieved within the context of the underlying socioeconomic characteristics and 
shared policy assumptions of that world. The SSPs five alternative socio-economic futures compromise: 
sustainable development (SSP1), middle-of-the-road development (SSP2), regional rivalry (SSP3), 
inequality (SSP4), and fossil-fuelled development (SSP5) (Kriegler et al., 2016; Riahi et al., 2017). Across 
these five SSP narratives there are a total of 23 ‘Marker’ SSP scenarios. Appendix 1.A, Figure 2 shows some 
specific SSP Markers compared with the RCPs, according to (O'Neill et al., 2016). SSP5-8.5 represents the 
high end of the range of future pathways, corresponding to RCP8.5. SSP3-7.0 lies between RCP6.0 and 
RCP8.5, and represents the medium to high end of the range of future forcing pathways. SSP4-6.0 
corresponds to RCP6.0, fills in the range of medium forcing pathways. SSP2-4.5 represents the medium part 
of the range of future forcing pathways and updates RCP4.5. SSP5-3.4 (Overshoot) fills a gap in existing 
climate simulations by investigating the implications of a substantial 21st century overshoot in radiative 
forcing relative to a longer-term target. SSP4-3.4 fills in the range of low forcing pathways, and there is 
substantial mitigation policy interest in this scenario that reaches 3.4 W m–2 by 2100. SSP1-2.6 is similar to 
RCP2.6. It is anticipated that it will produce a multi-model mean of less than 2°C warming by 2100. 
 
Table CB1.1 provides projections for near-term and end-of-century changes in climate and ocean parameters 
under different RCP scenarios. Table SM1.2 (below) provides information on the models and ensemble 
members used for these calculating the data presented in Table CB1.1. 
 
Prior to the RCPs, the coupled model intercomparison project used the Special Report on Emission 
Scenarios (SRES) (Nakicenovic and Swart, 2000; Table SM1.3). SRES includes four qualitative storylines, 
yielding four sets of scenarios called ‘families’: A1, A2, B1, and B2. The A1 family describes a future world 
of very rapid economic growth, global population that peaks in mid-century and declines thereafter, and the 
rapid introduction of new and more efficient technologies. The A1 family develops into three groups 
distinguished by their technological emphasis: fossil-fuel intensive (A1FI), non-fossil energy sources (A1T), 
or a balance across all sources (A1B). The A2 family describes a very heterogeneous world. The underlying 
theme is self-reliance and preservation of local identities. The B1 family describes a convergent world with a 
global population that peaks in mid-century and declines thereafter (as in the A1 storyline), but with rapid 
changes in economic structures toward a service and information economy, reductions in material intensity, 
and the introduction of clean and resource-efficient technologies. The B2 family describes a world in which 
the emphasis is on local solutions to economic, social, and environmental sustainability. With respect to 
radiative forcing, RCP4.5 is close to SRES B1, RCP6.0 is close to SRES A1B, and RCP8.5 is somewhat 
higher than A2 and close to the SRES A1FI scenario. RCP2.6 is lower than any of the SRES (Cubasch et al., 
2013; Stocker et al., 2013). Table SM1.3 gives SRES projections for global mean surface air temperature for 
the near-term and end-of-century, and Table SM1.4 gives details of the models used in calculating these 
projections. 
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Figure SM1.1: Radiative forcing (W m–2) time series for historical data (1765–2004), and for future scenarios from the 
Representative Concentration Pathways (RCP; 2005–2100) and their continuation as the extended RCPs (2100–2500), 
and the Shared Socio-economic Pathways (SSP; 2005–2100). The RCP scenarios are shown as dashed curves, and SSPs 
are shown as solid curves (‘Marker’ scenarios are used). Note the change in x-axis scale for the 2005–2100 interval to 
give an improved illustration of radiative forcing scenarios during the 21st century.  
 
 
Table SM1.2. List of the CMIP5 GCM model runs used for Table CB1.1. Ensemble members used are “r1i1p1” except 
otherwise indicated.  

CMIP5 model name Global mean surface air 
temperature 

Global mean 
sea surface 
temperature 

Surface pH  Dissolved oxygen 
(100-600 m) 

 RCP2.6 RCP4.5 RCP6.0 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 

ACCESS1-0  X  X       

ACCESS1.3  X  X       

bcc-csm1-1 X X X X X X     

bcc-csm1-1-m X X X X  X     

BNU-ESM X X  X       

CanESM2 X X  X X X X X   

CCSM4 X X X X X X     

CESM1-BGC  X  X       

CESM1-CAM5 X X X X X X     

CMCC-CESM    X       

CMCC-CM  X  X       

CMCC-CMS  X  X       
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CNRM-CM5 X X  X X X     

CSIRO-Mk3-6-0 X X X X       

CSIRO-Mk3L-1-2  r1i2p1         

EC-EARTH r8i1p1 X  X       

FGOALS_g2 X X  X       

FIO-ESM X X X X       

GFDL-CM3 X X X X X X     

GFDL-ESM2G X X X X X X X X X X 

GFDL-ESM2M X X X X X X X X   

GISS-E2-H X X X X X X     

GISS-E2-H-CC  X  X       

GISS-E2-R X X X X X X     

GISS-E2-R-CC  X  X       

HadGEM2-AO X X X X       

HadGEM2-CC  X  X       

HadGEM2-ES X X r2i1p1 X       

inmcm4  X  X       

IPSL-CM5A-LR X X X X X X X X X X 

IPSL-CM5A-MR X X X X X X X X X X 

IPSL-CM5B-LR  X  X    X  X 

MIROC-ESM X X X X X X     

MIROC-ESM-
CHEM 

X X X X       

MIROC5 X X X X       

MPI-ESM-LR X X  X   X X X X 

MPI-ESM-MR X X  X X X X X X X 

MRI-CGCM3 X X X X       

MRI-ESM1    X       

NorESM1-M X X X X       

NorESM1-ME X X X X X X     
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Table SM1.3. SRES global mean surface air temperature changes, relative to the recent past (1986-2005), and 
approximate RCP equivalent. AR5 assessed that observed warming from the pre-industrial to the 1986-2005 reference 
period was 0.61 oC (likely range of 0.55 oC to 0.67 oC). 

 2031-2050 2080-2099 
Approximate 

RCP equivalent Scenario Mean 5-95% range Mean 5-95% range 

B1 0.8 oC 0.4 to 1.1 oC 1.6 oC 1.0 to 2.2 oC RCP4.5 

A1B 1.1 oC 0.6 to 1.6 oC 2.4 oC 1.7 to 3.2 oC RCP6.0 

A2 1.0 oC 0.6 to 1.5 oC 3.0 oC 2.2 to 3.7 oC RCP8.5 

 
 
Table SM1.4. List of the CMIP3 General Circulation Model runs used for Table SM1.3. 

Global mean surface air temperature in SRES experiments 

CMIP5 model name B1 A1B A2 

BCCR-BCM2-0 run1 run1 run1 

CCCMA-CGCM3-1 run1 run1 run1 

CCCMA-CGCM3-1-T63 run1 run1  

CNRM-CM3 run1 run1 run1 

CSIRO-Mk3-0 run1 run1 run1 

GFDL-CM2-0 run1 run1 run1 

GFDL-CM2-1 run1 run1 run1 

GISS-AOM run1 run1  

GISS-MODEL-E-H  run1  

IAP-FGOALS1-0-G run1 run1  

INGV-ECHAM4  run1 run1 

inmcm3-0 run1 run1 run1 

IPSL-CM4 run1 run1 run1 

MIROC3-2-MEDRES run1 run1 run1 

MIUB-ECHO-G run1 run1 run1 

MPI-ECHAM5 run1 run1 run1 

MRI-CGCM2-3-2A run1 run1 run1 

NCAR-CCSM3-0 run1 run1 run1 

NCAR-PCM1 run2 run2 run1 

UKMO-HadCM3 run1 run1 run1 
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UKMO-HadGEM1  run1  

 
 
SM1.3 Supplementary Material Supporting Figure 1.2 
 
Additional details are provided below on the main responses to observed and expected changes in the ocean 
and cryosphere in a changing climate including mitigation and adaptation measures. These details expand on 
the summary provided in Figure 1.2. 
 
Supporting biological and ecological adaptation (including ecosystem-based management) 
• Pollution reduction: Reduce pollution from land and rivers and atmosphere 
• Conservation: Protect habitats and ecosystems through spatial measures including terrestrial and marine 

protected areas 
• Assisted evolution: Assisted evolution (active intervention to accelerate the rate of naturally occuring 

evolutionary processes) and genetic modifications 
• Restoration and enhancement: of habitats, ecosystems and ecosystem services; ecological engineering; 

assisted migration 
 
Addressing the causes of climate change 
• Reduce atmospheric pollution, including emissions from shipping and black carbon 
• Renewable energy: Energy substitution for fossil energy 
• Increase energy efficiency 
• Carbon capture and storage: Sequestration of CO2 underground on land and under sea floor  
• Direct air capture and storage 
• Bioenergy with carbon capture and storage: Crops are burnt in power plants to generate energy and 

resulting CO2 is captured and stored 
• Biochar and soil carbon: Carbon, including from partly burnt biomass added to soil 
• Afforestation and reforestation: Including blue carbon from marine and coastal vegetation to enhance 

CO2 uptake and avoid further emissions 
• Enhance open-ocean productivity by adding nutrients and cultivating marine plants 
• Enhanced weathering and alkalinization: Addition of natural or man-made alkalinity to enhance CO2 

removal and/or carbon storage 
 
Enhancing societal adaptation 
• Community-based adaptation: Enhance local social capital, gender equity, indigenous knowledge, 

local knowledge... 
• Infrastructure-based adaptation: Building standards, hard defences... 
• Relocate and diversify economics activities 
• Relocate people: Coastal retreat and migration 
 
Change practices and policies: Resource use, consumption modes, urban planning, regulation. 
 
 
SM1.4 Supplementary Material for Figure 1.3  
 
The lower panel of Figure 1.3 gives examples of available data/output for the ocean and cryosphere (Section 
1.8.1). Heights depict the number of observations, parameters or simulations available through time 
expressed relative to the maximum data availability, and colour scale depicts spatial coverage of data across 
the relevant domain. Details and data sources are: 
 
• Physical Ocean (temperature and salinity) observations are from the World Ocean Database (Boyer et 

al., 2013). The data in Figure 1.3 shows the number of observations in the database through time for 
three depth layers, relative to maximum annual values of 1,102,401 for the 0–800 m layer, 382,619 for 
the 800–2000 m layer, and 12,875 for observations deeper than 2000 m. Spatial coverage is calculated as 
the percentage of 3° x 3° ocean grid cells that have observations. Additional detail of the spatial 
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coverage of ocean temperature and salinity observations by depth is given below in Figure SM1.2. 
Database: https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html 

 
 

 
Figure SM1.2: Further detail on the spatial coverage of ocean in situ temperature (upper) and salinity (lower) 
observations from the sea surface to 6000 m depth in the World Ocean Database (Boyer et al., 2013). Coverage is 
calculated as the percentage of 3° x 3° ocean grid cells that have observations. Coverage calculations at each depth 
layer take into account the changing lateral extent of the ocean at different depth levels. The figure is adapted and 
extended based on Rhein et al. (2013) and Meyssignac et al. (2019). 
 
 
• Ocean biogeochemistry (dissolved inorganic carbon; DIC) observations data stem from the Global 

Ocean Data Analysis Project version 2 (GLODAPv2) product (Olsen et al., 2016), in which the vast 
majority of all available DIC data since the early 1970s were assembled. It is composed of data from 724 
scientific cruises covering the global ocean. The data plotted represent the number of distinct samples 
measured as a function of time from the surface down to the bottom of the ocean. The bi-modal 
distribution is a result of the two large survey campaigns that underlie these data, i.e., the JGOFS/WOCE 



FINAL DRAFT Chapter 1 Supplementary Material IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute SM1-13 Total pages: 15 

survey in the 1980s and 1990s (Wallace, 2001) and the ongoing Repeat Hydrography/GOSHIP survey 
after 2000 (Talley et al., 2016). The spatial coverage in any given year is relatively low owing to the 
decadal survey character of the programs. Along any survey line, the spatial coverage tends to be high, 
as a full profile is typically taken at every 1° of latitude/longitude.  
 

• Ocean biology (Continuous Plankton Recorder) observations are from the Global Alliance of 
Continuous Plankton Recorder Surveys (GACS), an international collaboration which encompasses the 
original CPR Survey and twelve other regional CPR Surveys. Data plotted represent the number of 
processed CPR samples (subset from the total number of archived samples) from 1936 to 2013. Until 
1991 surveys only covered the North Atlantic, then extended into the Southern ocean and in 2000 into 
the North Pacific so that for two decades there has been sampling in both hemispheres and 3 ocean 
basins (McQuatters-Gollop et al., 2015). For conversion to spatial area, each sample was considered to 
cover 10 square nautical miles. Data may be requested at: https://www.cprsurvey.org/data/data-request-
form/. 
 

• Sea level observations are from tide gauge data archived in the Permanent Service for Mean Sea Level 
(PSMSL) (PSMSL, 2016). There are a total of 1508 tide gauge sites in the PSMSL database and these 
are located around the world’s coastal and island regions. The maximum number of tide gauges giving 
measurements in a single year in the PSMSL database is 776. Data coverage is calculated as the 
percentage of 3° x 3° ocean grid cells that have observations, and the low level (<10%) of ocean 
coverage is due to tide gauges being located primarily on coasts, rather than across the open ocean. 
Database: https://www.psmsl.org/data/obtaining/ 
 

• Glacier length observations are from the World Glacier Monitoring Service (WGMS, 2017). This 
database is used as an illustrative example, but other glacier databases include the National Snow and Ice 
Data Center and the Randolph Glacier Inventory (containing data for 216000 glaciers worldwide). The 
illustrative data from the WGMS database amalgamate the glacier front variation and glacier 
reconstructed front variation databases, and show the number of glacier length observations through time 
relative to a maximum annual value of 837. The percentage coverage is based on the number of glaciers 
with length observations relative to the total number of glacier identification codes in the WGMS 
database (8490). Database doi: 10.5904/wgms-fog-2017-10. 
 

• Remote sensing (surface ocean) shows the availability through time of systematic and sustained satellite 
monitoring of six surface ocean parameters: sea surface temperature, sea surface salinity, ocean colour, 
ocean wind, ocean height and ocean mass change. Remote sensing (cryosphere) shows the availability 
through time of systematic and sustained satellite monitoring of: sea ice extent, snow cover, glacier and 
ice sheet area, and glacier and ice sheet mass change (Dowell et al., 2013; Raup et al., 2015) 
 

• Palaeoclimate data uses an example from the PAGES2k version 2.0.0 database (PAGES2K Consortium, 
2017) of temperature sensitive records, which include temperature proxies over ice sheets (from ice 
cores) and in the ocean (from corals and marine sediments). Figure 1.3 shows the number of 
palaeoclimate records available through time, relative to an annual maximum of 649. Spatial coverage is 
calculated as the percentage of 3° x 3° surface grid cells across the globe that have palaeoclimate data. 
Database doi: 10.6084/m9.figshare.c.3285353 
 

• Model simulation outputs in Figure 1.3 are based on search results for CMIP5 simulations (Taylor et al., 
2012) in the Earth System Grid Federation database (http://esgf.llnl.gov/), using the search criteria of last 
millennium (p1000; 850–1850 CE), historical (1851–2005 CE), RCP (2005–2100 CE), and RCP-
extended (2100 CE onwards) experiments with monthly resolution output for the ocean. Data availability 
is shown relative to the maximum number of datasets meeting these search criteria (508 for RCP 
experiments).  
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Executive Summary 
 
The cryosphere (including, snow, glaciers, permafrost, lake and river ice) is an integral element of high-
mountain regions, which are home to roughly 10% of the global population. Widespread cryosphere changes 
affect physical, biological and human systems in the mountains and surrounding lowlands, with impacts 
evident even in the ocean. Building on the IPCC’s Fifth Assessment Report (AR5), this chapter assesses new 
evidence on observed recent and projected changes in the mountain cryosphere as well as associated impacts, 
risks and adaptation measures related to natural and human systems. Impacts in response to climate changes 
independently of changes in the cryosphere are not assessed in this chapter. Polar mountains are included in 
Chapter 3, except those in Alaska and adjacent Yukon, Iceland, and Scandinavia, which are included in this 
chapter. 	
	
Observations of cryospheric changes, impacts, and adaptation in high mountain areas	
 
Observations show general decline in low-elevation snow cover (high confidence1), glaciers (very high 
confidence) and permafrost (high confidence) due to climate change in recent decades. Snow-cover 
duration has declined in nearly all regions, especially at lower elevations, on average by 5 days per decade, 
with a likely2 range from 0 to 10 days per decade. Low elevation snow depth and extent have declined, 
although year-to-year variation is high. Mass change of glaciers in all mountain regions (excluding the 
Canadian and Russian Arctic, Svalbard, Greenland and Antarctica) was very likely -490±100 kg m-2 yr-1 
(123±24 Gt yr-1) in 2006–2015. Regionally averaged mass budgets were likely most negative (less than -850 
kg m-2 yr-1) in the southern Andes, Caucasus and central Europe, and least negative in High Mountain Asia (-
150±110 kg m-2 yr-1) but variations within regions are strong. Between 3.6 and 5.2 million km2 are underlain 
by permafrost in the eleven high-mountain regions covered in this chapter corresponding to 27–29% of the 
global permafrost area (medium confidence). Sparse and unevenly distributed measurements show an 
increase in permafrost temperature (high confidence), for example, by 0.19±0.05ºC on average for about 28 
locations in the European Alps, Scandinavia, Canada, and Asia during the past decade. Other observations 
reveal decreasing permafrost thickness and loss of ice in the ground. {2.2.2, 2.2.3, 2.2.4} 	
 
Glacier, snow and permafrost decline has altered the frequency, magnitude and location of most 
related natural hazards (high confidence). Exposure of people and infrastructure to natural hazards 
has increased due to growing population, tourism and development (high confidence). Glacier retreat 
and permafrost thaw have decreased the stability of mountain slopes and the integrity of infrastructure (high 
confidence). The number and area of glacier lakes has increased in most regions in recent decades (high 
confidence), but there is only limited evidence that the frequency of glacier lake outburst floods has changed. 
In some regions, snow avalanches involving wet snow have increased (medium confidence), and rain-on-
snow floods have decreased at low elevations in spring and increased at high elevations in winter (medium 
confidence). The number and extent of wildfires have increased in the Western USA partly due to early snow 
melt (medium confidence). {2.3.2, 2.3.3}	
 
Changes in snow and glaciers have changed the amount and seasonality of runoff in snow-dominated 
and glacier-fed river basins (very high confidence) with impacts on agriculture (medium confidence). 
Winter runoff has increased in recent decades due to more precipitation falling as rain (high confidence). In 
some glacier-fed rivers, summer and annual runoff have increased due to intensified glacier melt, but 
decreased where glacier melt water has lessened as glacier area shrinks. Decreases were observed especially 
in regions dominated by small glaciers, such as the European Alps (medium confidence). In some areas, 
                                                
1 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; 
and for the degree of agreement: low, medium, or high. A level of confidence is expressed using five qualifiers: very 
low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and 
agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of 
agreement are correlated with increasing confidence (see Section 1.9.2 and Figure 1.4 for more details). 
2 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: 
Virtually certain 99–100% probability, Very likely 90–100%, Likely 66–100%, About as likely as not 33–66%, 
Unlikely 0–33%, Very unlikely 0–10%, and Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–
100%, More likely than not >50–100%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed 
likelihood is typeset in italics, e.g., very likely (see Section 1.9.2 and Figure 1.4 for more details). This Report also uses 
the term ‘likely range’ to indicate that the assessed likelihood of an outcome lies within the 17-83% probability range. 
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where glacier and snow meltwater has decreased, especially where other climatic drivers or socio-economic 
stressors are also present, agricultural productivity has declined, e.g., in the Western USA, High Mountain 
Asia and the tropical Andes (medium confidence). There is limited evidence of impacts on operation and 
productivity of hydropower facilities resulting from changes in seasonality and both increases and decreases 
in water input, for example, in Central Europe, Iceland, Western Canada and USA, and low latitude Andes. 
{2.3.1} 
 
Species composition and abundance have markedly changed in high-mountain ecosystems in recent 
decades (very high confidence), partly due to changes in the cryosphere (high confidence). Habitats for 
establishment by formerly absent species have opened up or been altered by reduced snow cover (high 
confidence), retreating glaciers (very high confidence), and thawing of permafrost (medium confidence). 
Reductions in glacier and snow cover have directly altered the structure of many freshwater communities 
(high confidence). Reduced snow cover has negatively impacted the reproductive fitness of some snow-
dependent plant and animal species, including foraging and predator-prey relationships of mammals (high 
confidence). Upslope migration of individual species, mostly due to warming and to a lesser extent due to 
cryosphere-related changes, has often increased local species richness (very high confidence). Some cold-
adapted species, including endemics, in terrestrial and freshwater communities have declined in abundance 
(high confidence). While the plant productivity has generally increased, the actual impact on provisioning, 
regulating, and cultural ecosystem services varies greatly (high confidence). {2.3.3}	
 
Tourism and recreation activities such as skiing, glacier tourism and mountaineering have been 
negatively impacted by declining snow cover, glaciers and permafrost (medium confidence). In several 
regions, worsening route safety has reduced mountaineering opportunities (medium confidence). Variability 
and decline in natural snow cover have compromised the operation of low-elevation ski resorts (high 
confidence). Glacier and snow decline have impacted aesthetic, spiritual and other cultural aspects of 
mountain landscapes (medium confidence), reducing the well-being of people. {2.3.5, 2.3.6}	
 
Adaptation in agriculture, tourism and drinking water supply has aimed to reduce the impacts of 
cryosphere change (medium confidence), though there is limited evidence on their effectiveness owing 
to a lack of formal evaluations, or technical, financial and institutional barriers to implementation. 
Artificial snowmaking has generally been effective to sustain ski tourism in some regions (medium 
confidence). Release and storage of water from reservoirs according to sectoral needs (agriculture, drinking 
water, ecosystems) has reduced the impact of seasonal variability on runoff (medium confidence). {2.3.1, 
2.3.5} 	
 
Future projections of cryospheric changes, their impacts and risks, and adaptation in high mountain 
areas	
 
Snow cover, glaciers and permafrost are projected to continue to decline in almost all regions 
throughout the 21st century (high confidence). Compared to 1986–2005, low elevation snow depth will 
likely decrease by 10–40% for 2031–2050, regardless of Representative Concentration Pathway (RCP) and 
for 2081–2100, likely by 10–40 % for RCP2.6 and by 50–90% for RCP8.5. Projected glacier mass reductions 
between 2015 and 2100 are likely 22–44% for RCP2.6 and 37–57% for RCP8.5. In regions dominated by 
smaller glaciers and relatively little ice cover (e.g., Central Europe, Caucasus, Low Latitudes), glaciers will 
lose more than 80% of their current mass by 2100 under RCP8.5 (medium confidence). Permafrost thaw and 
degradation will increase during the 21st century (very high confidence) but quantitative projections are 
scarce. {2.2.2, 2.2.3, 2.4.4} 
	
Most types of natural hazards are projected to change in frequency, magnitude and areas affected as 
the cryosphere continues to decline (medium confidence). Glacier retreat and permafrost thaw are 
projected to decrease the stability of mountain slopes, and increase the number and area of glacier lakes 
(medium confidence). Resulting landslides and floods, and cascading events, will also emerge where there is 
no record of previous events (medium confidence). Snow avalanches are projected to decline in number and 
runout distance at lower elevation, and avalanches involving wet snow even in winter will occur more 
frequently (medium confidence). Rain-on-snow floods will occur earlier in spring and later in autumn, and be 
more frequent at higher elevations and less frequent at lower elevations (high confidence). {2.3.2, 2.3.3}	
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River runoff in snow-dominated and glacier-fed river basins will change further in amount and 
seasonality in response to projected snow cover and glacier decline (very high confidence) with 
negative impacts on agriculture, hydropower and water quality in some regions (medium confidence). 
The average winter snow melt runoff is projected to increase (high confidence), and spring peaks to occur 
earlier (very high confidence). Projected trends in annual runoff vary substantially among regions, and can 
even be opposite in direction, but there is high confidence that in most regions average annual runoff from 
glaciers will have reached a peak that will be followed by declining runoff at the latest by the end of the 21st 
century. Declining runoff is expected to reduce the productivity of irrigated agriculture in some regions 
(medium confidence). Hydropower operations will increasingly be impacted by altered amount and 
seasonality of water supply from snow and glacier melt (high confidence). The release of heavy metals, 
particularly mercury, and other legacy contaminants currently stored in glaciers and permafrost, is projected 
to reduce water quality for freshwater biota, household use and irrigation (medium confidence). {2.3.1}	
 
Current trends in cryosphere-related changes in high-mountain ecosystems are expected to continue 
and impacts to intensify (very high confidence). While high mountains will provide new and greater 
habitat area, including refugia for lowland species, both range expansion and shrinkage are projected, and at 
high elevations this will lead to population declines (high confidence). The latter increases the risk of local 
extinctions, in particular for freshwater cold-adapted species (medium confidence). Without genetic plasticity 
and/or behavioral shifts, cryospheric changes will continue to negatively impact endemic and native species, 
such as some coldwater fish (e.g. trout) and species whose traits directly depend on snow (e.g. snowshoe 
hares) or many large mammals (medium confidence). The survival of such species will depend on 
appropriate conservation and adaptation measures (medium confidence). Many projected ecological changes 
will alter ecosystem services (high confidence), affecting disturbance regimes (e.g. fire, rock fall, slope 
erosion) with considerable impacts on people (medium confidence). {2.3.3}	
 
Cultural assets, such as snow- and ice-covered peaks in many UNESCO World Heritage sites, and 
tourism and recreation activities, are expected to be negatively affected by future cryospheric change 
in many regions (high confidence). Current adaptation strategies, such as snowmaking to support ski 
tourism, are projected to be less effective in most parts of Europe, North America and Japan already at 1.5°C 
global warming relative to the pre-industrial period, with effectiveness further reduced beyond 2°C warming 
(high confidence). Diversification through year-round activities supports adaptation of tourism under future 
climate change (medium confidence). {2.3.5, 2.3.6}	
	
Enablers and response options to promote adaptation and sustainable development in high mountain 
areas	
 
The already committed and unavoidable climate change affecting all cryosphere elements, irrespective 
of the emission scenario, point to integrated adaptation planning to support and enhance water 
availability, access, and management (medium confidence). Integrated management approaches for water, 
in particular for energy, agriculture, ecosystems and drinking water supply, can be effective at dealing with 
impacts from changes in the cryosphere. These approaches also offer opportunities to support social-
ecological systems, through the development and optimization of storage and the release of water from 
reservoirs (medium confidence), while being cognisant of potential negative implications for some 
ecosystems. Success in implementing such management options depends on the participation of relevant 
stakeholders, including affected communities, diverse knowledge and adequate tools for monitoring and 
projecting future conditions, and financial and institutional resources to support planning and 
implementation (medium confidence). {2.3.1, 2.3.3, 2.4}	
 
Effective governance is a key enabler for reducing disaster risk, considering relevant exposure factors 
such as planning, zoning, and urbanization pressures, as well as vulnerability factors such as poverty, 
which can challenge efforts towards resilience and sustainable development for communities (medium 
confidence). Reducing losses to disasters depend on integrated and coordinated approaches to account for 
the hazards concerned, the degree of exposure, and existing vulnerabilities. Diverse knowledge that includes 
community and multi-stakeholder experience with past impacts complements scientific knowledge to 
anticipate future risks. {CCB-1, 2.3.2, Figure 2.8, Box 2.4, 2.4}  	
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International cooperation, treaties and conventions exist for some mountain regions and 
transboundary river basins with potential to support adaptation action. However, there is limited 
evidence on the extent to which impacts and losses arising from changes in the cryosphere are 
specifically monitored and addressed in these frameworks. A wide range of institutional arrangements 
and practices have emerged over the past three decades that respond to a shared global mountain agenda and 
specific regional priorities. There is potential to strengthen them to also respond to climate-related 
cryosphere risks and open opportunities for development through adaptation (limited evidence, high 
agreement). The Sustainable Development Goals (SDGs), Sendai Framework and Paris Agreement have 
directed some attention in mountain-specific research and practice towards the monitoring and reporting on 
targets and indicators specified therein. {2.3.1, 2.4}  
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2.1 Introduction 
 
High-mountain regions share common features, including rugged terrain, a low-temperature climate regime, 
steep slopes and institutional and spatial remoteness. These features are often linked to physical and social-
ecological processes that, although not unique to mountain regions, typify many of the special aspects of 
these regions. Due to their higher elevation compared with the surrounding landscape, mountains often 
feature cryosphere components, such as glaciers, snow cover and permafrost, with a significant influence on 
surrounding lowland areas even far from the mountains (Huggel et al., 2015a). Hence the mountain 
cryosphere plays a major role in large parts of the world. Considering the close relationship between 
mountains and the cryosphere, high mountain areas are addressed in a dedicated chapter within this special 
report. Almost 10% (671 million people) of the global population lived in high-mountain regions in 2010, 
based on gridded population data (Jones and O'Neill, 2016; Gao, 2019) and a distance of less than 100 km 
from glaciers or permafrost located in mountains areas as defined in Figure 2.1. This population is expected 
to grow to 736–844 million across the shared socio-economic pathways by 2050. Many people living outside 
of mountain areas and not included in these numbers are also affected by changes in the mountain 
cryosphere. 
 
This chapter assesses recent and projected changes in glaciers, snow cover, permafrost and lake and river ice 
in high-mountain areas, their drivers, as well as their impact on the different services provided by the 
cryosphere and related adaptation, with a focus on literature published after the IPCC Fifth Assessment 
Report (AR5). The assessment of cryospheric change is focused on recent decades rather than a perspective 
over a longer period, and future changes spanning the 21st century. A paleo-perspective is covered in IPCC 
Sixth Assessment Report (AR6) Working Group I contribution on ‘The Physical Science Basis’. High 
mountain areas, as discussed here, include all mountain regions where glaciers, snow or permafrost are 
prominent features of the landscape, without a strict and quantitative demarcation, but with a focus on 
distinct regions (Figure 2.1). Mountain regions located in the polar regions are considered in Chapter 3 
except those in Iceland, Scandinavia and Alaska and parts of adjacent Yukon Territory and British 
Columbia, which are included in this chapter. Many changes in the mountain environment are not solely or 
directly related to climate-change induced changes in the cryosphere, but to other direct or indirect effects of 
climate change, or to other consequences of socio-economic development. Consistent with the scope of this 
report with a focus on the ocean and the cryosphere, this section deals primarily with the impacts that can at 
least partially be attributed to cryosphere changes. Even though other drivers may be the dominant driver of 
change in many cases, they are not considered explicitly in this chapter, although unambiguous attribution to 
cryosphere changes is often difficult. 
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Figure 2.1: Distribution of mountain areas (orange shading) and glaciers (blue) as well as regional summary statistics 
for glaciers and permafrost in mountains. Mountains are distinguished based on a ruggedness index (>3.5), a 
logarithmically scaled measure of relative relief (Gruber, 2012). Eleven distinct regions with glaciers, generally 
corresponding to the primary regions in the Randolph Glacier Inventory, RGI v6.0 (RGI Consortium, 2017) are 
outlined, although some cryosphere related impacts presented in this chapter may go beyond these regions. Region 
names correspond to those in the RGI. Diamonds represent regional glacier area (RGI 6.0) and circles the permafrost 
area in all mountains within each region boundary (Obu et al., 2019). Histograms for each region show glacier and 
permafrost area in 200 m elevation bins as a percentage of total regional glacier/permafrost area, respectively. Also 
shown is the median elevation of the annual mean 0°C free-atmosphere isotherm calculated from the ERA-5 re-analysis 
of the European Centre for Medium Range Weather Forecasts over each region’s mountain area for the period 2006 to 
2015, with 25–75% quantiles in grey. The annual 0°C isotherm elevation roughly separates the areas where 
precipitation predominantly falls as snow and rain. Areas above and below this elevation are loosely referred to as high 
and low elevations, respectively, in this chapter. 
 
 
2.2 Changes in the Mountain Cryosphere 
 
2.2.1 Atmospheric Drivers of Changes in the Mountain Cryosphere 
 
Past changes of surface air temperature and precipitation in high-mountain areas have been documented by 
in-situ observations and regional reanalyses (Table SM2.2 and Table SM2.4). However, mountain 
observation networks do not always follow standard measurement procedures (Oyler et al., 2015; Nitu et al., 
2018) and are often insufficiently dense to capture fine-scale changes (Lawrimore et al., 2011) and the 
underlying larger scale patterns. Future changes are projected using global (GCM) or regional (RCM) 
climate models or simplified versions thereof (e.g., Gutmann et al., 2016), used to represent processes at play 
in a dynamically consistent manner, and to relate mountain changes to larger-scale atmospheric forcing 
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based on physical principles. Existing mountain-specific model studies typically cover individual mountain 
ranges, and there is currently no initiative found, such as model inter-comparisons or coordinated model 
experiments, which specifically and comprehensively addresses high mountain meteorology and climate 
globally. This makes it difficult to provide a globally uniform assessment. 
 
2.2.1.1 Surface Air Temperature 
 
Mountain surface air temperature observations in Western North America, European Alps, High Mountain 
Asia show warming over recent decades at an average rate of 0.3°C per decade, with a likely range of ± 
0.2°C, thereby outpacing the global warming rate 0.2 ± 0.1 °C per decade, (IPCC, 2018). Underlying data 
from global and regional studies are compiled in Table SM2.2, and Figure 2.2 provides a synthesis on 
mountain warming trends, mostly based on studies using in-situ observations. Local warming rates depend 
on the season (high confidence). For example, in the European Alps, warming has been found to be more 
pronounced in summer and spring (Auer et al., 2007; Ceppi et al., 2012), while on the Tibetan Plateau 
warming is stronger in winter (Liu et al., 2009; You et al., 2010). Studies comparing observations at lower 
and higher elevation at the global scale indicate that warming is generally enhanced above 500 m above sea 
level (a.s.l.) (e.g., Wang et al., 2016a; Qixiang et al., 2018, Table SM2.2). At the local and regional scale, 
evidence for elevation dependent warming, i.e. that the warming rate is different across elevation bands, is 
scattered and sometimes contradictory (Box 2.1). On the Tibetan Plateau, evidence based on combining in-
situ observations (often scarce at high elevation) with remote sensing and modelling approaches, indicates 
that warming is amplified around 4000 m a.s.l., but not above 5000 m a.s.l. (Qin et al., 2009; Gao et al., 
2018). Studies in the Italian Alps (Tudoroiu et al., 2016) and Southern Himalaya (Nepal, 2016) have shown 
higher warming at lower elevation. Evidence from Western North and South America is conflicting (Table 
SM2.2). In other regions, evidence to assess whether warming varies with elevation is insufficient. In 
summary, there is medium evidence (medium agreement) that surface warming is different across elevation 
bands. Observed changes also depend on the type of temperature indicator: changes in daily mean, minimum 
and maximum temperature can display contrasting patterns depending on region, season and elevation (Table 
SM2.2). 
 
Attribution studies for changes in surface air temperature specifically in mountain regions are rare. Bonfils et 
al. (2008) and Dileepkumar et al. (2018) demonstrated that anthropogenic greenhouse gas emissions are the 
dominant factor in the recent temperature increases, partially compensated by other anthropogenic factors 
(land use change and aerosol emissions for Western USA and Western Himalaya, respectively). These 
findings are consistent with conclusions of AR5 regarding anthropogenic effects (Bindoff et al., 2013). It is 
thus likely that anthropogenic influence is the main contributor to surface temperature increases in high-
mountain regions since the mid-20th century, amplified by regional feedbacks. 
 
Until the mid-21st century, regardless of the climate scenario (Cross-Chapter Box 1 in Chapter 1), surface air 
temperature is projected to continue increasing (very high confidence) at an average rate of 0.3°C per decade, 
with a likely range of ± 0.2°C per decade, locally even more in some regions, generally outpacing global 
warming rates (0.2 ± 0.1 °C per decade; IPCC, 2018) (high confidence). Beyond mid-21st century, 
atmospheric warming in mountains will be stronger under a high greenhouse gas emission scenario 
(RCP8.5), and will stabilize at mid-21st levels under a low greenhouse gas emission scenario (RCP2.6), 
similar to global change patterns (very high confidence). The warming rate will result from the combination 
of regional (high confidence) and elevation-dependent (medium confidence) enhancement factors. 
Underlying evidence of future projections from global and regional studies is provided in Table SM2.3. 
Figure 2.3 provides examples of regional climate projections of surface air temperature, as a function of 
elevation and season (winter and summer) in North America (Rocky Mountains), South America 
(Subtropical Central Andes), Europe (European Alps) and High Mountain Asia (Hindu Kush and 
Karakoram, and Himalaya), based on global and regional climate projections.  
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Figure 2.2: Synthesis of trends in mean annual surface air temperature in mountain regions, reported in 40 studies 
based on 8703 observation stations in total (partly overlapping). Each line refers to a warming rate from one study, 
averaged over the time period indicated by the extent of the line. Colors indicate mountain region (Figure 2.1), and line 
thickness the number of observation stations used. Detailed references are found in Table SM2.2, which also provides 
additional information on trends for individual seasons and other temperature indicators (daily minimum or maximum 
temperature). 
 
 
[START BOX 2.1 HERE] 
 
Box 2.1: Does Atmospheric Warming in the Mountains Depend on Elevation ? 
 
In mountain regions, surface air temperature generally tends to decrease with increasing elevation thus 
directly impacting how much of the precipitation falls as snow as opposed to rain. Therefore, changes in air 
temperature have different consequences for snow cover, permafrost and glaciers at different elevations. A 
number of studies have reported that trends in air temperature vary with elevation, a phenomenon referred to 
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as elevation dependent warming (EDW; Pepin et al., 2015, and references therein), with potential 
consequences beyond those of uniform warming. EDW does not imply that warming is larger at higher 
elevation, and smaller at lower elevation, but it means that the warming rate (e.g., in ºC per decade) is not the 
same across all elevation bands. Although this concept has received wide attention in recent years, the 
manifestation of EDW varies by region, season and temperature indicator (e.g. daily mean, minimum or 
maximum temperature), meaning that a uniform pattern does not exist. The identification of the underlying 
driving mechanisms for EDW and how they combine is complex. 
 
Several physical processes contribute to EDW, and quantifying their relative contributions has remained 
largely elusive (Minder et al., 2018; Palazzi et al., 2019). Some of the processes identified are similar to 
those explaining the amplified warming in the polar regions (Chapter 3). For example, the sensitivity of 
temperature to radiative forcing is increased at low temperatures common in both polar and mountain 
environments (Ohmura, 2012). Because the relationship between specific humidity and downwelling 
radiation is non-linear, in a dry and cold atmosphere found at high elevation, any increase in atmospheric 
humidity due to temperature increase drives disproportionately large warming (Rangwala et al., 2013; Chen 
et al., 2014). Snow-albedo feedback plays an important role where the snow cover is in decline (Pepin and 
Lundquist, 2008; Scherrer et al., 2012), increasing the absorption of solar radiation which in turn leads to 
increased surface air temperature and further snow melt. Other processes are specific to the mountain 
environment. Especially in the tropics, warming can be enhanced at higher elevation by a reduction of the 
vertical temperature gradient, due to increased latent heat release above the condensation level, favored in a 
warmer and moister atmosphere (Held and Soden, 2006). The cooling effect of aerosols, which also cause 
solar dimming, is more pronounced at low elevation and reduced at high elevation (Zeng et al., 2015). While 
many mechanisms suggest that warming should be enhanced at high elevation, observed and simulated EDW 
patterns are usually more complex (Pepin et al., 2015, and references therein). Numerical simulations by 
global and regional climate models, which show EDW, need to be considered carefully because of intrinsic 
limitations due to potentially incomplete understanding and implementation of relevant physical processes, 
in addition to coarse grid spacing with respect to mountainous topography (Ménégoz et al., 2014; Winter et 
al., 2017).  
 
[END BOX 2.1 HERE] 
 
 
2.2.1.2 Rainfall and Snowfall 
 
Past precipitation changes are less well quantified than temperature changes and are often more 
heterogeneous, even within mountain regions (Hartmann and Andresky, 2013). Regional patterns are 
characterized by decadal variability (Mankin and Diffenbaugh, 2015) and influenced by shifts in large scale 
atmospheric circulation (e.g., in Alaska; Winski et al., 2017). While mountain regions do not exhibit clear 
direction of trends in annual precipitation over the past decades (medium confidence that there is no trend), 
snowfall has decreased, at least in part due to higher temperatures, especially at lower elevation (Table 
SM2.4, high confidence). 
 
Future projections of annual precipitation indicate increases of the order of 5 to 20% over the 21st century in 
many mountain regions, including the Hindu Kush and Himalaya, East Asia, East Africa, the European Alps 
and the Carpathian region, and decreases in the Mediterranean and the Southern Andes (medium confidence, 
Table SM2.5). Changes in the frequency and intensity of extreme precipitation events vary according to 
season and region. For example, across the Himalayan-Tibetan Plateau mountains, the frequency and 
intensity of extreme rainfall events are projected to increase throughout the 21st century, particularly during 
the summer monsoon (Panday et al., 2015; Sanjay et al., 2017). This suggests a transition toward more 
episodic and intense monsoonal precipitation, especially in the easternmost part of the Himalayan chain 
(Palazzi et al., 2013). Increases in winter precipitation extremes are projected in the European Alps (Rajczak 
and Schär, 2017). At lower elevation, near term (2031-2050) and end of century (2081-2100) projections of 
snowfall all indicate a decrease, for all greenhouse gas emission scenarios (very high confidence). At higher 
elevation, where temperature increase is insufficient to affect rain/snow partitioning, total winter 
precipitation increases can lead to increased snowfall (e.g., Kapnick and Delworth, 2013; O’Gorman, 2014) 
(medium confidence). 
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2.2.1.3 Other Meteorological Variables 
 
Atmospheric humidity, incoming shortwave and longwave radiation, and near-surface wind speed and 
direction also influence the high-mountain cryosphere. Detecting their changes and associated effects on the 
cryosphere is even more challenging than for surface air temperature and precipitation, both from an 
observation and modelling standpoint. Therefore, most simulation studies of cryosphere changes are mainly 
driven by temperature and precipitation (see, e.g., Beniston et al., 2018, and references therein). 
 
Atmospheric moisture content, which is generally increasing in a warming atmosphere (Stocker et al., 2013), 
affects latent and longwave heat fluxes (Armstrong and Brun, 2008) with implications for the timing and rate 
of snow and ice ablation, and in some areas changes in atmospheric moisture content could be a significant 
driver of cryosphere change (Harpold and Brooks, 2018). Short-lived climate forcers, such as sulphur and 
black carbon aerosols (You et al., 2013), reduce the amount of solar radiation reaching the surface, with 
potential impacts on snow and ice ablation. Solar brightening caused by declining anthropogenic aerosols in 
Europe since the 1980s was shown to have only a minor effect on atmospheric warming at high elevation 
(Philipona, 2013), and effects on the cryosphere were not specifically discussed. 
 
Wind controls preferential deposition of precipitation, post-depositional snow drift and affects ablation of 
snow and glaciers through turbulent fluxes. Near-surface wind speed has decreased on the Tibetan Plateau 
between the 1970s and the early 2000s, and stabilized or increased slightly thereafter (Yang et al., 2014a; 
Kuang and Jiao, 2016). This is consistent with existing evidence for a decrease in near-surface wind speed on 
mid-latitude continental areas since the mid-20th century (Hartmann et al., 2013). In general, the literature on 
past and future changes of near-surface wind patterns in mountain areas is very limited. 
 
2.2.2 Snow Cover 
 
Snow on the ground is an essential and widespread component of the mountain cryosphere. It affects 
mountain ecosystems and plays a major role for mass movement and floods in the mountains. It plays a key 
role in nourishing glaciers and provides an insulating and reflective cover at their surface. It influences the 
thermal regime of the underlying ground, including permafrost, with implications for ecosystems. Climate 
change modifies key variables driving the onset and development of the snow cover (e.g., solid 
precipitation), and those responsible for its ablation (e.g., air temperature, radiation). The snow cover, 
especially in low-lying and mid-elevation areas of mountain regions, has long been identified to be 
particularly sensitive to climate change.  
 
The mountain snow cover is characterized by a very strong interannual and decadal variability, similar to its 
main driving force solid precipitation (Lafaysse et al., 2014; Mankin and Diffenbaugh, 2015). Observations 
spanning several decades are required to quantify trends. Long-term in-situ records are scarce in some 
regions of the world, particularly in High Mountain Asia, Northern Asia and South America (Rohrer et al., 
2013). Satellite remote sensing provides new capabilities for monitoring mountain snow cover on regional 
scales. The satellite record length is often insufficient to assess trends (Bormann et al., 2018). Evidence of 
past changes from regional studies is provided in Table SM2.6. At lower elevation, there is high confidence 
that the mountain snow cover has generally declined in duration (on average by 5 snow cover days per 
decade, with a likely range from 0 to 10 days per decade), mean snow depth and accumulated mass (snow 
water equivalent) since the middle of the 20th century, with regional variations. At higher elevation, snow 
cover trends are generally insignificant (medium confidence) or unknown. 
 
Most of the snow cover changes can be attributed, at lower elevation, to more precipitation falling as liquid 
precipitation (rain) and to increases in melt at all elevations, mostly due to changes in atmospheric forcings, 
especially increased air temperature (Kapnick and Hall, 2012; Marty et al., 2017) which in turn are attributed 
to anthropogenic forcings at a larger scale (Section 2.2.1). Formal anthropogenic attribution studies provide 
similar conclusions in Western North America (Pierce et al., 2008; Najafi et al., 2017). 
 
Assessing the impact of the deposition of short-lived climate forcers on snow cover changes is an emerging 
issue (Skiles et al., 2018 and references therein). This concerns light absorbing particles, in particular, which 
include deposited aerosols such as black carbon, organic carbon and mineral dust, or microbial growth (Qian 
et al., 2015), although the role of the latter has not been specifically quantified. Due to their seasonally 
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variable deposition flux and impact, and mostly episodic nature in case of dust deposition (Kaspari et al., 
2014; Di Mauro et al., 2015), light absorbing particles contribute to interannual fluctuations of seasonal snow 
melt rate (Painter et al., 2018) (medium evidence, high agreement). There is limited evidence (medium 
agreement) that increases in black carbon deposition from anthropogenic and biomass burning sources have 
contributed to snow cover decline in the High Mountain Asia (Li et al., 2016; Zhang et al., 2018) and South 
America (Molina et al., 2015).  
 
Projected changes of mountain snow cover are studied based on climate model experiments, either directly 
from GCM or RCM output, or following downscaling and the use of snowpack models. These projections 
generally do not specifically account for future changes in the deposition rate of light absorbing particles on 
snow (or, if so, simple approaches have been used hitherto; e.g., Deems et al., 2013), so that future changes 
in snow conditions are mostly driven by changes in meteorological drivers assessed in Section 2.2.1. 
Evidence from regional studies is provided in Table SM2.7. Although existing studies in mountain regions 
do not use homogenous reference periods and model configurations, common future trends can be 
summarized as follows. At lower elevation in many regions such as the European Alps, Western North 
America, Himalaya and subtropical Andes, the snow depth or mass is projected to decline by 25% (likely 
range between 10 and 40%), between the recent past period (1986-2005) and the near future (2031-2050), 
regardless of the greenhouse gas emission scenario (Cross-Chapter Box 1 in Chapter 1). This corresponds to 
a continuation of the ongoing decrease in annual snow cover duration (on average 5 days per decade, with a 
likely range from 0 to 10). By the end of the century (2081-2100), reductions of up to 80% (likely range from 
50 to 90%) are expected under RCP8.5, 50% (likely range from 30 to 70 %) under RCP4.5 and 30% (likely 
range from 10 to 40 %) under RCP2.6. At higher elevations, projected reductions are smaller (high 
confidence), as temperature increases at higher elevations affect the ablation component of snow mass 
evolution, rather than both the onset and accumulation components. The projected increase in wintertime 
snow accumulation may result in a net increase in winter snow mass (medium confidence). All elevation 
levels and mountain regions are projected to exhibit sustained interannual variability of snow conditions 
throughout the 21st century (high confidence). Figure 2.3 provides projections of temperature and snow cover 
in mountain areas in Europe, High Mountain Asia (Himalaya and Hindu Kush Karakoram), North America 
(Rockies) and South America (sub-tropical Central Andes), illustrating how changes vary with elevation, 
season, region, future time period and climate scenario. 
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Figure 2.3: Projected change (1986-2005 to 2031-2050 and 2080-2099) of mean winter (December-May; 
June-August in Subtropical Central Andes) snow water equivalent, winter air temperature and summer air 
temperature (June-August; December-February in Subtropical Central Andes) in five high-mountain regions 
for RCP8.5 (all regions) and RCP2.6 (European Alps and Subtropical Central Andes). Changes are averaged 
over 500 m (a,b,c) and 1000 m (d,e) elevation bands. The numbers in the lower right of each panel reflect the 
number of simulations (note that not all models provide snow water equivalent). For the Rocky Mountains, 
data from NA-CORDEX RCMs (25 km grid spacing) driven by CMIP5 GCMs were used (Mearns et al., 
2017). For the European Alps, data from EURO-CORDEX RCMs (12 km grid spacing) driven by CMIP5 
GCMs were used (Jacob et al., 2014). For the other regions, CMIP5 GCMs were used: Zazulie (2016) and 
Zazulie et al. (2018) for the Subtropical Central Andes, and Terzago et al. (2014) and Palazzi et al. 
(2017) for the Hindu Kush and Karakoram and Himalaya. The list of models used is provided in Table 
SM2.8. 
 
 
2.2.3 Glaciers 
 
The high mountain areas considered in this chapter (Figure 2.1), including all glacier regions in the world 
except those in Antarctica, Greenland, the Canadian and Russian Arctic, and Svalbard (which are covered in 
Chapter 3) include ~170,000 glaciers covering an area of ~250,000 km2 (RGI Consortium, 2017) with a total 
ice volume of 87±15 mm sea-level equivalent (Farinotti et al., 2019). These glaciers span an elevation range 
from sea-level, for example in south-east Alaska, to >8000 m a.s.l. in the Himalaya and Karakoram, and 
occupy diverse climatic regions. Their mass budget is determined largely by the balance between snow 
accumulation and melt at the glacier surface, driven primarily by atmospheric conditions. Rapid changes in 
mountain glaciers have multiple impacts for social-ecological systems, affecting not only bio-physical 
properties such as runoff volume and sediment fluxes in glacier-fed rivers, glacier-related hazards, and 
global sea-level (Chapter 4) but also ecosystems and human livelihoods, socio-economic activities and 
sectors such as agriculture and tourism as well as other intrinsic assets such as cultural values. While glaciers 
worldwide have experienced considerable fluctuations throughout the Holocene driven by multidecadal 
variations of solar and volcanic activity, and changes in atmospheric circulation (Solomina et al., 2016), this 
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section focuses on observed glacier changes during recent decades and changes projected for the 21st century 
(Cross-Chapter Box 6 in Chapter 2). 
 
Satellite and in-situ observations of changes in glacier area, length and mass show a globally largely 
coherent picture of mountain glacier recession in the last decades (Zemp et al., 2015), although annual 
variability and regional differences are large (Figure 2.4; very high confidence). The global trend is 
statistically significant despite considerable interannual and regional variations (Medwedeff and Roe, 2017). 
Since AR5’s global 2003-2009 estimate based on Gardner et al. (2013), several new estimates of global-
scale glacier mass budgets have emerged using largely improved data coverage and methods (Bamber et al., 
2018; Wouters et al., 2019; Zemp et al., 2019). 
 
These estimates combined with available regional estimates (Table 2.A.1) that the glacier mass budget of all 
mountain regions (excluding Antarctica, Greenland, the Canadian and Russian Arctic, and Svalbard) was 
very likely -490±100 kg m-2 yr-1 (-123±24 Gt yr-1) during the period 2006-2015 with most negative averages 
(less than -850 kg m-2 yr-1) in the Southern Andes, Caucasus/Middle East and Central Europe. High 
Mountain Asia shows the least negative mass budget (-150±110 kg m-2 yr-1, Figure 2.4), but variations within 
the region are large with most negative regional balance estimates in Nyainqentanglha, Tibet (-620±230 kg 
m-2 yr-1) and slightly positive balances in the Kunlun Mountains for the period 2000-2016 (Brun et al., 2017). 
Due to large ice extent, the total mass loss and corresponding contribution to sea level 2006-2015 is largest 
in Alaska, followed by the Southern Andes and High Mountain Asia (Table 2.A.1). Zemp et al. (2019) 
estimated an increase in mean global-scale glacier mass loss by ~30% between 1986-2005 and 2006 and 
2015. 
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Figure 2.4: Glacier mass budgets for the eleven mountain regions assessed in this Chapter (Figure 2.1) and these 
regions combined. Mass budgets for the remaining polar regions are shown in Chapter 3, Figure 3.8. Regional time 
series of annual mass change are based on glaciological and geodetic balances (Zemp et al., 2019). Superimposed are 
multi-year averages by Wouters et al. (2019) based on the Gravity Recovery and Climate Experiment (GRACE), only 
shown for the regions with glacier area >3,000 km2. Estimates by Gardner et al. (2013) were used in AR5. Additional 
regional estimates available in some regions and shown here are listed in Table 2.A.1. Annual and time-averaged mass-
budget estimates include the errors reported in each study. Glacier areas (A) and volumes (V) are based on RGI 
Consortium (2017) and Farinotti et al. (2019), respectively. Red and blue bars on map refer to regional budgets 
averaged over the period 2006-2015 in units of kg m-2 yr-1 and mm sea-level equivalent (SLE) per year, respectively, 
and are derived from each region’s available mass-balance estimates (Appendix 2.A, Table 1). 
 
 
It is very likely that atmospheric warming is the primary driver for the global glacier recession (Marzeion et 
al., 2014; Vuille et al., 2018). There is limited evidence (high agreement) that human-induced increases in 
greenhouse gases have contributed to the observed mass changes (Hirabayashi et al., 2016). It was estimated 
that the anthropogenic fraction of mass loss of all glaciers outside Greenland and Antarctica increased from 
25 ± 35% during 1851–2010 to 69 ± 24% during 1991–2010 (Marzeion et al., 2014).  
 
Other factors, such as changes in meteorological variables other than air temperature or internal glacier 
dynamics, have modified the temperature-induced glacier response in some regions (high confidence). For 
example, glacier mass loss over the last seven decades on a glacier in the European Alps was intensified by 
higher air moisture leading to increased long-wave irradiance and reduced sublimation (Thibert et al., 2018). 
Changes in air moisture have also been found to play a significant role in past glacier mass changes in 
Eastern Africa (Prinz et al., 2016), while an increase in shortwave radiation due to reduced cloud cover 
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contributed to an acceleration in glacier recession in the Caucasus (Toropov et al., 2019). In the Tien Shan 
mountains changes in atmospheric circulation in the North Atlantic and North Pacific in the 1970s resulted in 
an abrupt reduction in precipitation and thus snow accumulation, amplifying temperature-induced glacier 
mass loss (Duethmann et al., 2015). Deposition of light absorbing particles, growth of algae and bacteria and 
local amplification phenomena such as the enhancement of particles concentration due to surface snow and 
ice melt, and cryoconite holes, have been shown to enhance ice melt (e.g., Ginot et al., 2014; Zhang et al., 
2017; Williamson et al., 2019) but there is limited evidence and low agreement that long-term changes in 
glacier mass are linked to light absorbing particles (Painter et al., 2013; Sigl et al., 2018). Debris cover can  
modulate glacier melt but there is limited evidence on its role in recent glacier changes (Gardelle et al., 2012; 
Pellicciotti et al., 2015). Rapid retreat of calving outlet glaciers in Patagonia was attributed to changes in 
glacier dynamics (Sakakibara and Sugiyama, 2014). 
 
Departing from this global trend of glacier recession, a small fraction of glaciers have gained mass or 
advanced in some regions mostly due to internal glacier dynamics or, in some cases, locally restricted 
climatic causes. For example, in Alaska 36 marine-terminating glaciers exhibited a complex pattern of 
periods of significant retreat and advance during 1948–2012, highly variable in time and lacking coherent 
regional behaviour (McNabb and Hock, 2014). These fluctuations can be explained by internal retreat-
advance cycles typical of tidewater glaciers that are largely independent of climate (Brinkerhoff et al., 2017). 
Irregular and spatially inconsistent glacier advances, for example, in Alaska, Iceland and Karakoram, have 
been associated with surge-type flow instabilities largely independent of changes in climate (Sevestre and 
Benn, 2015; Bhambri et al., 2017; Section 2.3.2). Regional-scale glacier mass gain and advances in Norway 
in the 1990s and in New Zealand between 1983 and 2008 have been linked to local increases in snow 
precipitation (Andreassen et al., 2005) and lower air temperatures (Mackintosh et al., 2017), respectively, 
caused by changes in atmospheric circulation. Advances of some glaciers in Alaska, the Andes, Kamchatka 
and the Caucasus were attributed to volcanic activity causing flow acceleration through enhanced meltwater 
at the ice-bed interface (Barr et al., 2018). 
 
Region-averaged glacier mass budgets have been nearly balanced in the Karakoram since at least the 1970s 
(Bolch et al., 2017; Zhou et al., 2017; Azam et al., 2018), while slightly positive balances since 2000 have 
been reported in the western Kunlun Shan, eastern Pamir, and the central and northern Karakoram mountains 
(Gardelle et al., 2013; Brun et al., 2017; Lin et al., 2017; Berthier and Brun, 2019). This anomalous behavior 
has been related to specific mechanisms countering the effects of atmospheric warming, for example, an 
increase in cloudiness (Bashir et al., 2017) and snowfall (Kapnick et al., 2014) spatially heterogeneous 
glacier mass balance sensitivity (Sakai and Fujita, 2017), feedbacks due to intensified lowland irrigation (de 
Kok et al., 2018), and changes in summer atmospheric circulation (Forsythe et al., 2017). 
 
There is medium evidence (high agreement) that recent glacier mass changes have modified glacier flow. A 
study covering all glaciers in High Mountain Asia showed glacier slowdown for regions with negative mass 
budgets since the 1970s and slightly accelerated glacier flow for Karakoram and West Kunlun regions where 
balances were close to balance (Dehecq et al., 2019). Waechter et al. (2015) report reduced flow velocities 
in the St. Elias Mountains in North America, especially in areas of rapid ice thinning near glacier termini. In 
contrast Mouginot and Rignot (2015) found complex ice flow patterns with simultaneous acceleration and 
deceleration for glaciers of the Patagonian Icefield as well as large interannual variability during the last 
three decades concurrent with general thinning of the icefield. 
 
 
[START CROSS-CHAPTER BOX 6 HERE] 
 
Cross-Chapter Box 6: Glacier Projections in Polar and High-mountain Regions 
 
Century-scale projections for all glaciers on Earth including those around the periphery of Greenland and 
Antarctica are presented here. Projections of the Greenland and Antarctic ice sheets are presented in Chapter 
4. Future changes in glacier mass have global implications through their contribution to sea-level change 
(Chapter 4) and local implication, for example, by affecting fresh water resources (Section 2.3.1). Glacier 
decline can also lead to loss of paleoclimate information contained in glacier ice (Thompson et al., 2017). 
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AR5 included projections of 21st century glacier evolution from four process-based global-scale glacier 
models (Slangen and Van De Wal, 2011; Marzeion et al., 2012; Giesen and Oerlemans, 2013; Bliss et al., 
2014). Results have since been updated (Bliss et al., 2014; Slangen et al., 2017; Hock et al., 2019) using new 
glacier inventory data and/or climate projections, and projections from two additional models have been 
presented (Hirabayashi et al., 2013; Huss and Hock, 2015). These six models were driven by climate 
projections from 8 to 21 General Circulation Models (GCMs) from the Fifth Coupled Model 
Intercomparison Project (CMIP5) (Taylor et al., 2012) forced by various Representative Concentration 
Pathways (RCPs), and results are systematically compared in Hock et al. (2019). 
 
Based on these studies there is high confidence that glaciers in polar and high-mountain regions will lose 
substantial mass by the end of the century. Results indicate global glacier mass losses by 2100 relative to 
2015 of 18% [likely range 11 to 25%] (mean of all projections with range referring to ± one standard 
deviation) for scenario RCP2.6 and 36% [likely range 26 to 47%] for RCP8.5, but relative mass reductions 
vary greatly between regions (Figure CB6.1). Projected end-of-century mean mass losses relative to 2015 
tend to be largest in mountain regions dominated by smaller glaciers and relatively little ice cover, exceeding 
on average 80%, for example, in Central Europe, Caucasus/Middle East, Low Latitudes, and North Asia for 
RCP8.5 (see Figure 2.1 for region definitions). While these glaciers’ contribution to sea level is negligible 
their large relative mass losses have implications for streamflow (Section 2.3.1, FAQ 2.1). 
 
The magnitude and timing of these projected mass losses is assigned medium confidence because the 
projections have been carried out using relatively simple models calibrated with limited observations in some 
regions and diverging initial glacier volumes. For example, mass loss by iceberg calving and subaqueous 
melt processes that can be particularly important components of glacier mass budgets in polar regions 
(McNabb et al., 2015) have only been included in one global-scale study (Huss and Hock, 2015). In addition 
instability mechanisms that can cause rapid glacier retreat and mass loss are not considered (Dunse et al., 
2015; Sevestre et al., 2018; Willis et al., 2018). 
 
The projected global-scale relative mass losses 2015 - 2100 correspond to a sea-level contribution of 94 
[likely range 69 to 119] mm sea-level equivalent (SLE) corresponding to an average rate of 1.1 [likely range 
0.8 to 1.4] mm SLE yr-1 for RCP2.6, and 200 [likely range 156 to 240] mm SLE, a rate of 2.4 [likely range 
1.8 to 2.8] mm SLE yr-1 for RCP8.5, in addition to the sea-level contribution from the Greenland and 
Antarctic ice sheets (Chapter 4). Averages refer to the mean and ranges to ± one standard deviation of all 
simulations. For RCP2.6, rates increase only slightly until approximately year 2040 with a steady decline 
thereafter, as glaciers retreat to higher elevations and reach new equilibrium. In contrast, for RCP8.5, the 
sea-level contribution from glaciers increases steadily for most of the century, reaching an average maximum 
rate exceeding 3 mm SLE yr-1 (Hock et al., 2019). For both RCPs the polar regions are the largest 
contributors with projected mass reductions by 2100 relative to 2015 combined for the Antarctic periphery, 
Arctic Canada, the Greenland periphery, Iceland, Russian Arctic, Scandinavia and Svalbard ranging from 
16% [likely range 9 to 23%] for RCP2.6 to 33% [likely range 22 to 44%] for RCP8.5. Due to extensive ice 
cover, these regions make up roughly 80% of the global sea-level contribution from glaciers by 2100. The 
global projections are similar to those reported in AR5 for the period 2081-2100 relative to 1986-2005, if 
differences in period length and domain are accounted for (AR5’s glacier estimates excluded the Antarctic 
periphery). The eleven mountain regions covered in Chapter 2 are likely to lose 22 to 44% of their glacier 
mass by 2100 relative to 2015 for RCP2.6 and 37 to 57% for RCP8.5. Worldwide many glaciers are 
expected to disappear by 2100 regardless emission scenario, especially in regions with smaller glaciers (very 
high confidence) (Rabatel et al., 2013; Huss and Fischer, 2016; Rabatel et al., 2017).    
 
The global-scale projections (Figure CB6.1) are consistent with results from regional-scale studies using 
more sophisticated models. Kraaijenbrink et al. (2017) projected mass losses for all glaciers in High 
Mountain Asia of 64 ± 5% (RCP8.5) by the end of the century (2071-2100) compared to 1996-2015. A high-
resolution regional glaciation model including ice dynamics indicated that by 2100 glacier volume in western 
Canada will shrink by ~70% (RCP2.6) to ~90% (RCP8.5) relative to 2005 (Clarke et al., 2015). Zekollari et 
al. (2019) projected that the glaciers in the European Alps will largely disappear by 2100 (94±4% mass loss 
relative to 2017) for RCP 8.5, while projected mass losses are 63±11% for RCP2.6. 
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AR5 concluded with high confidence that due to a pronounced imbalance between current glacier mass and 
climate, glaciers are expected to further recede even in the absence of further climate change. Studies since 
AR5 agree and provide further evidence (Mernild et al., 2013; Marzeion et al., 2018). 
 
 

Figure CB6.1: Projected glacier mass evolution between 2015 and 2100 relative to each region’s glacier 
mass in 2015 (100%) based on three RCP emission scenarios (Cross-Chapter Box 1 in Chapter 1). Thick 
lines show the averages of 46 to 88 model projections based on four to six glacier models for the same RCP, 
and the shading marks ± 1 standard deviation (not shown for RCP4.5 for better readability). Global 
projections are shown excluding and including the Antarctic (A) and Greenland (G) periphery. Regional sea-
level contributions are given for three RCPs for all regions with >0.5 mm SLE between 2015 and 2100. The 
Low Latitudes region includes the glaciers in (sub)tropical south and central America, eastern Africa and 
Indonesia. Region Alaska includes adjacent glaciers in the Yukon and British Columbia. Regions are sorted 
by glacier volume according to Farinotti et al. (2019). Data based on Marzeion et al. (2012); Giesen and 
Oerlemans (2013); Hirabayashi et al. (2013); Bliss et al. (2014); Huss and Hock (2015); Slangen et al. 
(2017). Modified from Hock et al. (2019). 
 
[END CROSS-CHAPTER BOX 6 HERE] 
 
 
2.2.4 Permafrost 
 
This section assesses permafrost, but not seasonally frozen ground, in high-mountain areas. As mountains 
also exist in polar areas, some overlap exists between this section and Chapter 3. Observations of permafrost 
are scarce (Tables 2.1 and 2.2, PERMOS, 2016; Bolch et al., 2018) and unevenly distributed among and 
within mountain regions. Unlike glaciers and snow, permafrost is a subsurface phenomenon that cannot 
easily be observed remotely. As a consequence, its distribution and change are less understood than for 
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glaciers or snow, and in many mountain regions it can only be inferred (Gruber et al., 2017). Permafrost 
thaw and degradation impact people via runoff and water quality (Section 2.3.1), hazards and infrastructure 
(Section 2.3.2) and greenhouse gas emissions (Box 2.2). 
 
AR5 and IPCC’s Special Report on ‘Managing the Risks of Extreme Events and Disasters to Advance 
Climate Change Adaptation’ (SREX) assessed permafrost change globally, but not separately for mountains. 
AR5 concluded that permafrost temperatures had increased in most regions since the early 1980s (high 
confidence), although warming rates varied regionally, and attributed this warming to increased air 
temperature and changes in snow cover (high confidence). The temperature increase for colder permafrost 
was generally greater than for warmer permafrost (high confidence). SREX found a likely warming of 
permafrost in recent decades and expressed high confidence that its temperatures will continue to increase. 
AR5 found decreases of northern high-latitude near surface permafrost for 2016–2035 to be very likely and a 
general retreat of permafrost extent for the end of the 21st century and beyond to be virtually certain. While 
some permafrost phenomena, methods of observation and scale issues in scenario simulations are specific to 
mountainous terrain, the basic mechanisms connecting climate and permafrost are the same in mountains and 
polar regions. 
 
Between 3.6 and 5.2 million km2 are underlain by permafrost in the eleven high-mountain regions outlined in 
Figure 2.1 (medium confidence) based on data from two modelling studies (Gruber, 2012; Obu et al., 2019). 
For comparison, this is 14–21 times the area of glaciers (Section 2.2.3) in these regions (Figure 2.1) or 27–
29% of the global permafrost area. The distribution of permafrost in mountains is spatially highly 
heterogeneous, as shown in detailed regional modelling studies (Boeckli et al., 2012; Bonnaventure et al., 
2012; Westermann et al., 2015; Azócar et al., 2017; Zou et al., 2017). 
 
Permafrost in the European Alps, Scandinavia, Canada, Mongolia, the Tien Shan and the Tibetan Plateau has 
warmed during recent decades and some observations reveal ground-ice loss and permafrost degradation 
(high confidence). The heterogeneity of mountain environments and scarcity of long-term observations 
challenge the quantification of representative regional or global warming rates. A recent analysis finds that 
permafrost at 28 mountain locations in the European Alps, Scandinavia, Canada as well as High Mountain 
Asia and North Asia warmed on average by 0.19 ± 0.05 °C per decade between 2007 and 2016 (Biskaborn et 
al., 2019). Over longer periods, observations in the European Alps, Scandinavia, Mongolia, the Tien Shan 
and the Tibetan Plateau (see also Cao et al., 2018) show general warming (Table 2.1, Figure 2.5) and 
degradation of permafrost at individual sites (e.g., Phillips et al., 2009). Permafrost close to 0ºC warms at a 
lower rate than colder permafrost because ground-ice melt slows warming. Similarly, bedrock warms faster 
than debris or soil because of low ice content. For example, several European bedrock sites (Table 2.1) have 
warmed rapidly, by up to 1ºC per decade, during the past two decades. By contrast, total warming of 0.5–
0.8ºC has been inferred for the second half of the 20th century based on thermal gradients at depth in an 
ensemble of European bedrock sites (Isaksen et al., 2001; Harris et al., 2003). Warming has been shown to 
accelerate at sites in Scandinavia (Isaksen et al., 2007) and in mountains globally within the past decade 
(Biskaborn et al., 2019). During recent decades, rates of permafrost warming in the European Alps and 
Scandinavia exceeded values of the late 20th century (limited evidence, high agreement). 
 
The observed thickness of the active layer, the layer of ground above permafrost subject to annual thawing 
(see Glossary) and freezing, increased in the European Alps, Scandinavia (Christiansen et al., 2010), and on 
the Tibetan Plateau during the past few decades (Table 2.2), indicating permafrost degradation. Geophysical 
monitoring in the European Alps during approximately the past 15 years revealed increasing subsurface 
liquid water content (Hilbich et al., 2008; Bodin et al., 2009; PERMOS, 2016), indicating gradual ground-ice 
loss.  
 
During recent decades, the velocity of rock-glaciers in the European Alps exceeded values of the late 20th 
century (limited evidence, high agreement). Some rock glaciers, i.e. masses of ice-rich debris that show 
evidence of past or present movement, show increasing velocity as a transient response to warming and 
water input, although continued permafrost degradation would eventually inactivate them (Ikeda and 
Matsuoka, 2002). Rock-glacier velocities observed in the European Alps in the 1990s were on the order of a 
few decimetres per year and during approximately the past 15 years they often were about 2–10 times higher 
(Bodin et al., 2009; Lugon and Stoffel, 2010; PERMOS, 2016). Destabilisation, including collapse and rapid 
acceleration, has been documented (Delaloye et al., 2010; Buchli et al., 2013; Bodin et al., 2016). One 



FINAL DRAFT Chapter 2 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 2-21 Total pages: 94 

particularly long time series shows velocities around 1960 just slightly lower than during recent years (Hartl 
et al., 2016). In contrast to nearby glaciers, no clear change in rock-glacier velocity or elevation was detected 
at a site in the Andes between 1955 and 1996 (Bodin et al., 2010). The majority of similar landforms 
investigated in the Alaska Brooks Range increased their velocity since the 1950s, while few others slowed 
down (Darrow et al., 2016).  
 
Decadal-scale permafrost warming and degradation are driven by air temperature increase and additionally 
affected by changes in snow cover, vegetation and soil moisture. Bedrock locations, especially when steep 
and free of snow, produce the most direct signal of climate change on the ground thermal regime (Smith and 
Riseborough, 1996), increasing the confidence in attribution. Periods of cooling, one or few years long, have 
been observed and attributed to extraordinary low-snow conditions (PERMOS, 2016). Extreme increases of 
active-layer thickness often correspond with summer heat waves (PERMOS, 2016) and permafrost 
degradation can be accelerated by water percolation (Luethi et al., 2017). Similarity and synchronicity of 
interannual to decadal velocity changes of rock glaciers within the European Alps (Bodin et al., 2009; 
Delaloye et al., 2010) and the Tien Shan (Sorg et al., 2015), suggests common regional forcing such as 
summer air temperature or snow cover. 
 
Because air temperature is the major driver of permafrost change, permafrost in high-mountain regions is 
expected to undergo increasing thaw and degradation during the 21st century, with stronger consequences 
expected for higher greenhouse gas emission scenarios (very high confidence). Scenario simulations for the 
Tibet Plateau until 2100 estimate permafrost area to be strongly reduced, for example by 22–64% for 
RCP2.6 and RCP8.5 and a spatial resolution of 0.5º (Lu et al., 2017). Such coarse-scale studies (Guo et al., 
2012; Slater and Lawrence, 2013; Guo and Wang, 2016), however, are of limited use in quantifying changes 
and informing impact studies in steep terrain due to inadequate representation of topography (Fiddes and 
Gruber, 2012). Fine-scale simulations, on the other hand, are local or regional, limited in areal extent and 
differ widely in their representation of climate change and permafrost. They reveal regional and elevational 
differences of warming and degradation (Bonnaventure and Lewkowicz, 2011; Hipp et al., 2012; Farbrot et 
al., 2013) as well as warming rates that differ between locations (Marmy et al., 2016) and seasons (Marmy et 
al., 2013). While structural differences in simulations preclude a quantitative summary, these studies agree 
on increasing warming and thaw of permafrost for the 21st century and reveal increased loss of permafrost 
under stronger atmospheric warming (Chadburn et al., 2017). Permafrost thaw at depth is slow but can be 
accelerated by mountain peaks warming from multiple sides (Noetzli and Gruber, 2009) and deep 
percolation of water (Hasler et al., 2011). Near Mont Blanc in the European Alps, narrow peaks below 3850 
m a.s.l. may lose permafrost entirely under RCP 8.5 by the end of the 21st century (Magnin et al., 2017). As 
ground-ice from permafrost usually melts slower than glacier ice, some mountain regions will transition 
from having abundant glaciers to having few and small glaciers but large areas of permafrost that is thawing 
(Haeberli et al., 2017). 
 
 
Table 2.1: Observed changes in permafrost mean annual ground temperature (MAGT) in mountain regions. Values are 
based on individual boreholes or ensembles of several boreholes. The MAGT refers to the last year in a period and is 
taken from a depth of 10–20 m unless the borehole is shallower. Region names refer to Figure 2.1. Numbers in brackets 
indicate how many sites are summarised for a particular surface type and area, the underscored value is an average. 

Elevation 
[m a.s.l.] 

Surface Type Period MAGT 
[ºC] 

MAGT trend 
[ºC per decade] 

Reference 

Global 
>1000 various (28) 2006–2017 not specified 0.2 ± 0.05 Biskaborn et al. (2019) 
Central Europe (Alps) 
2500–3000 debris or 

coarse blocks 
(>10) 

1987–2005  
2006–2017 

> –3 
> –3 

0.0–0.2 
0.0–0.6 

PERMOS (2016) 
Noetzli et al. (2018) 

3500–4000 bedrock (4) 2008–2017 >–5.5 0.0–1.0 Pogliotti et al. (2015) 
Magnin et al. (2015) 
Noetzli et al. (2018) 

Scandinavia 
1402–1505 moraine (3) 1999–2009 0 to –0.5 0.0–0.2 Isaksen et al. (2011) 
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1500–1894 bedrock (2) 1999–2009 –2.7 0.5 Christiansen et al. 
(2010) 

High-mountain Asia (Tien Shan) 
~3330 bare soil (2) 1974–2009 –0.5 to –0.1 0.3–0.6 Zhao et al. (2010)  
3500 meadow (1) 1992–2011 –1.1 0.4 Liu et al. (2017)  
High-mountain Asia (Tibetan Plateau) 
4530–4960 unknown (6) 2005–2016 –1.5 to –0.3 0.1–0.5 Noetzli et al. (2018)  
~4650 
~4650 
~4650 

meadow (6) 
steppe (3) 
bare soil (1) 

2002–2012 
2002–2012 
2003–2012 

–1.52 to –0.41 
–0.79 to –0.17 
–0.22 

0.08–0.24 
0.09–0.18 
0.15 

Wu et al. (2015) 
Wu et al. (2015) 
Wu et al. (2015) 

4500–5000 unknown (6) 2002–2011 –1.5 to –0.16 0.08–0.24 Peng et al. (2015) 
North Asia (Mongolia) 
1350–2050 steppe (6) 2000–2009 –0.06 to –1.54 0.2–0.3 Zhao et al. (2010) 

 
 
Table 2.2: Observed changes of active-layer thickness (ALT) in mountain regions. Numbers in brackets indicate how 
many sites are summarised for a particular surface type and area. Region names refer to Figure 2.1. 
Elevation 
[m a.s.l.] 

Surface  
Type 

Period ALT in last year 
[m] 

ALT trend  
[cm per decade] 

Reference 

Scandinavia 
353–507 peatland (9) 1978–2006 

1997–2006 
~0.65–0.85 7–13 

13–20 
Åkerman and 
Johansson (2008) 

Central Europe (Alps) 
2500–2910 bedrock (4) 2000–2014 4.2–5.2 10–100 PERMOS (2016) 
High Mountain Asia (Tien Shan)   
3500 meadow (1) 1992–2011 1.70 19 Liu et al. (2017) 
High Mountain Asia (Tibetan Plateau) 
4629–4665 
4638–4645 
4635 

meadow (6) 
steppe (3) 
bare soil 
(1) 

2002–2012 
2002–2012 
2002–2012 

2.11–2.32 
2.54–3.03 
3.38 

34.8–45.7 
39.6–67.2 
18.9 

Wu et al. (2015) 
Wu et al. (2015) 
Wu et al. (2015) 

4848 meadow 2006–2014 1.92–2.72 15.2–54 Lin et al. (2016) 
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Figure 2.5: Mean annual ground temperature from boreholes in debris and bedrock in the European Alps, Scandinavia 
and High-Mountain Asia. Temperatures differ between locations and warming trends can be interspersed by short 
periods of cooling. One location shows degrading of permafrost. Overall, the number of observed boreholes is small 
and most records are short. The depth of measurements is approximately 10 m, and years without sufficient data are 
omitted (Noetzli et al., 2018). 
 
 
2.2.5 Lake and River Ice 
 
Based on limited evidence, AR5 reported shorter seasonal ice cover duration during the past decades (low 
confidence), however, did not specifically address changes in mountain lakes and rivers. Observations of 
extent, timing, duration and thickness of lake and river ice rely mostly on in-situ measurements (e.g. Sharma 
et al., 2019) and, increasingly on remote sensing (Duguay et al., 2014). Lake and river ice studies focusing 
specifically on mountain regions are rare but observations from lakes in the European Alps, Scandinavia, and 
the Tibetan Plateau show highly variable trends in ice cover duration during the past decades. 
 
For example, Cai et al. (2019) reported shorter ice cover duration for 40 lakes and longer duration for 18 
lakes on the Tibetan Plateau during the period 2000-2017. Similarly, using microwave remote sensing, Du et 
al. (2017) found shorter ice cover duration for 43 out of 71 lakes >50 km2 including lakes on the Tibetan 
Plateau during 2002-2015, but only five of these had statistically significant trends (p  <  0.05), due to large 
interannual variability. The variable trends in the duration of lake ice cover on the Tibetan Plateau 
between 2002 and 2015 corresponded to variable trends in surface water temperatures. Of 52 study lakes 
in this region, 31 lakes showed a mean warming rate of 0.055 ± 0.033 °C per year, and 21 lakes showed a 
mean cooling rate of -0.053 ± 0.038 °C per year during 2001-2012 (Zhang et al., 2014). Kainz et al. 
(2017) reported a significant (p  <  0.05) increase in the interannual variability in ice cover duration for a 
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subalpine lake in Austria during 1921-2015 in addition to a significant trend in later freeze on, earlier ice-
break up and shorter ice cover duration. A significant (p < 0.05) trend towards shorter ice cover duration was 
found for another Austrian alpine lake during 1972-2015 (Niedrist et al., 2018). 
 
Highly variable trends were also found in the timing and magnitude of river ice jams during 1903-2015, as 
reported by Rokaya et al. (2018) for Canadian rivers, including rivers in the mountains. Most of the 
variability in river ice trends could be explained by variable water flow, in particular due to flow regulation. 
 
There is high confidence that air temperature and solar radiation are the most important drivers to explain 
observed changes of lake ice dynamics (Sharma et al., 2019). In mountainous regions where the interannual 
variability in ice cover duration is high, additional drivers become important, for example, morphometry, 
wind exposure, salinity, and hydrology, in particular hydrological processes driven by glaciers (Kropácek et 
al., 2013; Song et al., 2014; Yao et al., 2016; Gou et al., 2017). Despite high spatial and temporal variability 
in lake and river ice cover dynamics in mountain regions there is limited evidence (high agreement) that 
further air temperature increases will result in a general trend towards later freezing, earlier break-up, and 
shorter ice cover duration in the future (Gebre et al., 2014; Du et al., 2017). 
 
Overall, there is only limited evidence on changes in lake and river ice specifically in the mountains, indicating 
a trend, but not universally, towards shorter lake ice cover duration consistent with increased water 
temperature. 
 
 
[START BOX 2.2 HERE] 
 
Box 2.2: Local, Regional and Global Climate Feedbacks Involving the Mountain Cryosphere 
 
The cryosphere interacts with the environment and contributes to several climate feedbacks, most notably 
ones involving the snow cover, referred to as the snow albedo feedback. The presence or absence of snow on 
the ground drives profound changes in the energy budget of land surfaces, hence influencing the physical 
state of the overlying atmosphere (Armstrong and Brun, 2008). The reduction of snow on the ground, 
potentially amplified by aerosol deposition and modulated by interactions with the vegetation, increases the 
absorption of incoming solar radiation and leads to atmospheric warming. In mountain regions, this positive 
feedback loop mostly operates at the local scale and is seasonally variable, with most visible effects at the 
beginning and end of the snow season (Scherrer et al., 2012). Examples of other mechanisms contributing to 
local feedbacks are introduced in Box 2.1. At the regional scale, feedbacks associated with light-absorbing 
particles deposition and enhanced snow albedo feedback were shown to induce surface air warming (locally 
up to 2°C) (Ménégoz et al., 2014) with accelerated snow cover reduction (Ji, 2016; Xu et al., 2016), and may 
also influence the Asian monsoon system (Yasunari et al., 2015). However, many of these studies have 
considered so-called rapid adjustments, without changes in large scale atmospheric circulation patterns, 
because they used regional or global models constrained by large scale synoptic fields. In summary, regional 
climate feedbacks involving the high mountain cryosphere, particularly the snow albedo feedback, have only 
been detected in large mountain regions such as the Himalaya, using global and regional climate models 
(medium confidence). 
 
Global-scale climate feedbacks from the cryosphere remain largely unexplored with respect to the proportion 
originating from high-mountains. Although mountain topography affects global climate (e.g., Naiman et al., 
2017), there is little evidence for mountain-cryosphere specific feedbacks, largely because of the limited 
spatial extent of the mountain cryosphere. The most relevant feedback probably relates to permafrost in 
mountains, which contain about 28% of the global permafrost area (Section 2.2.4). Organic carbon stored in 
permafrost can be decayed following thaw and transferred to the atmosphere as carbon dioxide or methane 
(Schuur et al., 2015). This self-reinforcing effect accelerates the pace of climate change and operates in polar 
(Section 3.4.1.2.3) and mountain areas alike (Mu et al., 2017; Sun et al., 2018a). In contrast to polar areas, 
however, there is limited evidence and low agreement on the total amount of permafrost carbon in mountains 
because of differences in upscaling and difficulties to distinguish permafrost and seasonally-frozen soils due 
to the lack of data. For example, on the Tibet Plateau, the top 3 m of permafrost are estimated to contain 
about 15 petagrams (Ding et al., 2016) and mountain soils with permafrost globally are estimated to contain 
approximately 66 petagrams of organic carbon (Bockheim and Munroe, 2014). At the same time, there is 
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limited evidence and high agreement that the average density (kg C m-2) of permafrost carbon in mountains 
is lower than in other areas. For example, densities of soil organic carbon are low in the sub-arctic Ural 
(Dymov et al., 2015) and 1–2 orders of magnitude lower in subarctic Sweden (Fuchs et al., 2015) in 
comparison to lowland permafrost, and 50% lower in mountains than in steppe-tundra in Siberia and Alaska 
(Zimov et al., 2006). Some mechanisms of soil carbon decay and transfer to the atmosphere in mountains are 
similar to those in lowland areas, for example collapse following thaw in peatlands (Mu et al., 2016; Mamet 
et al., 2017), and some are specific to areas with steep slopes, for example drainage of water from thawing 
permafrost leading to soil aeration (Dymov et al., 2015). There is no global-scale analysis of the climate 
feedback from permafrost in mountains. Given that projections indicate increasing thaw and degradation of 
permafrost in mountains during the 21st century (very high confidence) (Section 2.2.4), a corresponding 
increase in greenhouse gas emissions can be anticipated but is not quantified. 
 
[END BOX 2.2 HERE] 
 
 
2.3 Mountain Social-Ecological Systems: Impacts, Risks and Human Responses 
 
2.3.1 Water Resources 
 
The mountain cryosphere is an important source of freshwater in the mountains themselves and in 
downstream regions. The runoff per unit area generated in mountains is on average approximately twice as 
high as in lowlands (Viviroli et al., 2011) making mountains a significant source of fresh water in sustaining 
ecosystem and supporting livelihoods in and far beyond the mountain ranges themselves. The presence of 
snow, glaciers, and permafrost generally exert a strong control on the amount, timing and biogeochemical 
properties of runoff (FAQ 2.1). Changes to the cryosphere due to climate change can alter fresh water 
availability with direct consequences for human populations and ecosystems. 
 
2.3.1.1 Changes in River Runoff 
 
AR5 reported increased winter flows and a shift in timing towards earlier spring snowmelt runoff peaks 
during previous decades (robust evidence, high agreement). In glacier-fed river basins, it was projected that 
meltwater yields from glaciers will increase for decades in many regions but then decline (very high 
confidence). These findings have been further supported and refined by a wealth of new studies since AR5. 
 
Recent studies indicate considerable changes in the seasonality of runoff in snow and glacier dominated river 
basins (very high confidence; Table SM2.9). Several studies have reported an increase in average winter 
runoff over the past decades, for example in western Canada (Moyer et al., 2016), the European Alps 
(Bocchiola, 2014; Bard et al., 2015) and Norway (Fleming and Dahlke, 2014), due to more precipitation 
falling as rain under warmer conditions. Summer runoff has been observed to decrease in basins, for example 
in western Canada (Brahney et al., 2017) and the European Alps (Bocchiola, 2014), but to increase in several 
basins in High Mountain Asia (Mukhopadhyay and Khan, 2014; Duethmann et al., 2015; Reggiani and 
Rientjes, 2015; Engelhardt et al., 2017). Both increases, for example, in Alaska (Beamer et al., 2016) and the 
Tien Shan (Wang et al., 2015; Chen et al., 2016), and decreases, for example, in western Canada (Brahney et 
al., 2017) have also been found for average annual runoff. In western Austria, Kormann et al. (2015) 
detected an increase in annual flow at high elevations and a decrease at low elevations between 1980-2010. 
 
These contrasting trends for summer and annual runoff often result from spatially variable changes in the 
contribution of glacier and snow melt. As glaciers shrink, annual glacier runoff typically first increases, until 
a turning point, often called “peak water” is reached, upon which runoff declines (FAQ 2.1). There is robust 
evidence and high agreement that peak water in glacier-fed rivers has already passed with annual runoff 
declining especially in mountain regions with predominantly smaller glaciers, for example, in the low-
latitude Andes (Frans et al., 2015; Polk et al., 2017), western Canada (Fleming and Dahlke, 2014; Brahney et 
al., 2017) and the Swiss Alps (Huss and Fischer, 2016). A global modelling study (Huss and Hock, 2018) 
suggests that peak water has been reached before 2019 for 82-95 % of the glacier area in the low latitude 
Andes, 40-49 % in Western Canada and USA, and 55-67 % in Central Europe and the Caucasus (Figure 2.6). 
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Projections indicate a continued increase in winter runoff in many snow and/or glacier-fed rivers over the 
21st century (high confidence) regardless of the climate scenario, for example, in North America (Schnorbus 
et al., 2014; Sultana and Choi, 2018), central Europe (Addor et al., 2014; Bosshard et al., 2014), Scotland 
(Capell et al., 2014) and High Mountain Asia (Kriegel et al., 2013) due to increased winter snow melt and 
more precipitation falling as rain in addition to increases in precipitation in some basins (Table SM2.9). 
There is robust evidence (high agreement) that summer runoff will decline over the 21st century in many 
basins for all emission scenarios, for example, in western Canada and USA (Shrestha et al., 2017), the 
European Alps (Jenicek et al., 2018), High Mountain Asia (Prasch et al., 2013; Engelhardt et al., 2017) and 
the tropical Andes (Baraer et al., 2012), due to less snowfall and decreases in glacier melt after peak water. A 
global-scale projection suggests that decline in glacier runoff by 2100 (RCP8.5) may reduce basin runoff by 
10 percent or more in at least one month of the melt season in several large river basins, especially in High 
Mountain Asia during dry seasons, despite glacier cover of less than a few percent (Huss and Hock, 2018). 
 
Projected changes in annual runoff in glacier dominated basins are complex including increases and 
decreases over the 21st century for all scenarios depending on the time period and the timing of peak water 
(high confidence) (Figure 2.6). Local and regional-scale projections in High Mountain Asia, Central Europe 
and Western Canada and USA suggest that peak water will generally be reached before or around the middle 
of the century. These finding are consistent with results from global-scale modelling of glacier runoff (Bliss 
et al., 2014; Huss and Hock, 2018) indicating generally earlier peak water in regions with little ice cover and 
smaller glaciers (e.g., Low Latitudes, central Europe and the Caucasus) and later peak water in regions with 
extensive ice cover and large glaciers (e.g., Alaska, Southern Andes). In some regions (e.g., Iceland) peak 
water from most glacier area is projected to occur earlier for RCP2.6 than RCP8.5, caused by decreasing 
glacier runoff as glaciers find a new equilibrium. In contrast melt-driven glacier runoff continues to rise for 
the higher emission scenario. There is very high confidence that spring peak runoff in many snow-dominated 
basins around the world will occur earlier in the year, up to several weeks, by the end of the century caused 
by earlier snow melt (e.g., Coppola et al., 2014; Bard et al., 2015; Yucel et al., 2015; Islam et al., 2017; 
Sultana and Choi, 2018).  
 
In addition to changes in ice and snow melt, changes in other variables such as precipitation and 
evapotranspiration due to atmospheric warming or vegetation change affect runoff amounts and timing (e.g., 
Bocchiola, 2014; Lutz et al., 2016). Changes in meltwater from ice and snow often dominates the runoff 
response to climate change at higher elevations, while changes in precipitation and evapotranspiration 
become increasingly important at lower elevations (Kormann et al., 2015). Permafrost thaw may affect 
runoff by releasing water from ground ice (Jones et al., 2018) and indirectly by changing hydrological 
pathways or ground water recharge as permafrost degrades (Lamontagne-Hallé et al., 2018). The relative 
importance of runoff from thawing permafrost compared to runoff from melting glaciers is expected to be 
greatest in arid areas where permafrost tends to be more abundant (Gruber et al., 2017). Because glaciers 
react more rapidly to climate change than permafrost, runoff in some mountain landscapes may become 
increasingly affected by permafrost thaw in the future (Jones et al., 2018). 
 
In summary, there is very high confidence that glacier and snow cover decline have affected and will 
continue to change the amounts and seasonality of river runoff in many snow-dominated and/or glacier-fed 
river basins. The average winter runoff is expected to increase (high confidence), and spring peak maxima 
will occur earlier (very high confidence). Although observed and projected trends in annual runoff vary 
substantially among regions and can even be opposite in sign, there is high confidence that average annual 
runoff from glaciers will have reached a peak, with declining runoff thereafter, at the latest by the end of the 
21st century in most regions. The projected changes in runoff are expected to affect downstream water 
management, related hazards and ecosystems (Section 2.3.2, 2.3.4).  
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Figure 2.6: Timing of peak water from glaciers in different regions (Figure 2.1) under two emission scenarios (RCP2.6 
and RCP8.5). Peak water refers to the year when annual runoff from the initially glacierized area will start to decrease 
due to glacier shrinkage after a period of melt-induced increase. The bars are based on Huss and Hock (2018) who used 
a global glacier model to compute the runoff of all individual glaciers in a region until year 2100 based on 14 GCMs. 
Depicted is the area of all glaciers that fall into the same 10-year peak water interval expressed as a percentage of each 
region's total glacier area, i.e., all bars for the same RCP sum up to 100% glacier area. Shadings of the bars distinguish 
different glacier sizes indicating a tendency for peak water to occur later for larger glaciers. Circles mark timing of peak 
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water from individual case studies based on observations or modelling (Table SM2.10). Circles refer to results from 
individual glaciers regardless of size or a collection of glaciers covering <150 km2 in total, while triangles refer to 
regional-scale results from a collection of glaciers with >150 km2 glacier coverage. Case studies based on observations 
or scenarios other than RCP2.6 and RCP8.5 are shown in both the left and right set of panels. 
 
 
[START FAQ 2.1 HERE] 
 
 
FAQ 2.1: How does glacier shrinkage affect river runoff further downhill? 
 
Glaciers supply water that supports human communities both close to the glacier and far away from the 
glacier, for example for agriculture or drinking water. Rising temperatures cause mountain glaciers to melt 
and changes the water availability. At first, as the glacier melts, more water runs downhill away from the 
glacier. However, as the glacier shrinks, the water supply will diminish and farms, villages and cities might 
lose a valuable water source.  
 
Melting glaciers can affect river runoff, and thus freshwater resources available to human communities, not 
only close to the glacier but also far from mountain areas. As glaciers shrink in response to a warmer 
climate, water is released from long-term glacial storage. At first, glacier runoff increases because the glacier 
melts faster and more water flows downhill from the glacier. However, there will be a turning point after 
several years or decades, often called ‘peak water’, after which glacier runoff and hence its contribution to 
river flow downstream will decline (FAQ 2.1; Figure 1a). Peak water runoff from glaciers can exceed the 
amount of initial yearly runoff by 50 percent or more. This excess water can be used in different ways, such 
as for hydropower or irrigation. After the turning point, this additional water decreases steadily as the glacier 
continues to shrink, and eventually stops when the glacier has disappeared, or retreated to higher elevations 
where it is still cold enough for the glacier to survive. As a result, communities downstream lose this 
valuable additional source of water. Total amounts of river runoff will then depend mainly on rainfall, snow 
melt, ground water and evaporation. 
 
Furthermore, glacier decline can change the timing in the year and day when the most water is available in 
rivers that collect water from glaciers. In mid- or high latitudes, glacier runoff is greatest in the summer, 
when the glacier ice continues to melt after the winter snow has disappeared (FAQ 2.1, Figure 1b-d), and 
greatest during the day when air temperature and solar radiation are at their highest (FAQ 2.1, Figure 1e-g). 
As peak water occurs, more intense glacier melt rates also increase these daily runoff maxima significantly. 
In tropical areas, such as parts of the Andes, seasonal air temperature variations are small, and alternating 
wet and dry seasons are the main control on the amount and timing of glacier runoff throughout the year. 
 
The effects of glaciers on river runoff further downhill depend on the distance from the glacier. Close to the 
glaciers (e.g., within several kilometres), initial increases in yearly glacier runoff until peak water followed 
by decreases can affect water supply considerably, and larger peaks in daily runoff from the glaciers can 
cause floods. Further away from the glaciers the impact of glacier shrinkage on total river runoff tends to 
become small or negligible. However, the melt water from glaciers in the mountains can be an important 
source of water in hot and dry years or seasons when river runoff would otherwise be low, and thereby also 
reducing variability in total river runoff from year to year, even hundreds of kilometres away from the 
glaciers. Other components of the water cycle such as rainfall, evaporation, groundwater and snow melt can 
compensate or strengthen the effects of changes in glacier runoff as the climate changes. 
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FAQ 2.1, Figure 1: A simplified overview of changes in runoff from a river basin with large (e.g., >50%) glacier cover 
as the glaciers shrink, showing the relative amounts of water from different sources - glaciers, snow (outside the 
glacier), rain and groundwater. Three different time scales are shown: annual runoff from the entire basin (upper panel); 
runoff variations over one year (middle panel) and variations during a sunny then a rainy summer day (lower panel). 
Note that seasonal and daily runoff variations are different before, during and after peak flow. The glacier’s initial 
negative annual mass budget becomes more negative over time until eventually the glacier has melted away. This is a 
simplified figure so permafrost is not addressed specifically and the exact partitioning between the different sources of 
water will vary between river basins. 
 
[END FAQ 2.1 HERE] 
 
 
2.3.1.2 Water Quality 
 
Glacier decline can influence water quality by accelerating the release of stored anthropogenic legacy 
pollutants, with impacts to downstream ecosystem services. These legacy pollutants notably include 
persistent organic pollutants (POPs), particularly polychlorinated biphenyls (PCBs) and dichlorodiphenyl-
trichloroethane (DDT), polycyclic aromatic hydrocarbons, and heavy metals (Hodson, 2014) and are 
associated with the deposition and release of black carbon. There is limited evidence that some of these 
pollutants found in surface waters in the Gangetic Plain during the dry season originate from Himalayan 
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glaciers (Sharma et al., 2015), and glaciers in the European Alps store the largest known quantity of 
POPs in the Northern Hemisphere (Milner et al., 2017). Although their use has declined or ceased 
worldwide, polychlorinated biphenyls have been detected in runoff from glacier melt due to the lag time of 
release from glaciers (Li et al., 2017). Glaciers also represent the most unstable stores of DDT in European 
and other mountain areas flanking large urban centres and glacier-derived DDT is still accumulating in lake 
sediments downstream from glaciers (Bogdal et al., 2010). However, bioflocculation (the aggregation of 
dispersed organic particles by the action of organisms) can increase the residence time of these contaminants 
stored in glaciers thereby reducing their overall toxicity to freshwater ecosystems (Langford et al., 2010). 
Overall the effect on freshwater ecosystems of these contaminants is estimated to be low (medium 
confidence) (Milner et al., 2017). 
 
Of the heavy metals, mercury is of particular concern and an estimated 2.5 tonnes has been released by 
glaciers to downstream ecosystems across the Tibetan Plateau over the last 40 years (Zhang et al., 2012). 
Mercury in glacial silt, originating from grinding of rocks as the glacier flows over them, can be as large or 
larger than the mercury flux from melting ice due to anthropogenic sources deposited on the 
glacier (Zdanowicz et al., 2013). Both glacier erosion and atmospheric deposition contributed to the high 
rates of total mercury export found in a glacierized watershed in coastal Alaska (Vermilyea et al., 2017) and 
mercury output is predicted to increase in glacierized mountain catchments (Sun et al., 2017; Sun et al., 
2018b) (medium confidence). However, a key issue is how much of this glacier-derived mercury, largely in 
the particulate form, is converted to toxic methyl mercury downstream. Methyl mercury can be incorporated 
into aquatic food webs in glacier streams (Nagorski et al., 2014) and bio-magnify up the food chain (Lavoie 
et al., 2013). Water originating from rock glaciers can also contribute other heavy metals that exceed 
guideline values for drinking water quality (Thies et al., 2013). In addition, permafrost degradation can 
enhance the release of other trace elements (e.g., aluminium, manganese and nickel) (Colombo et al., 2018). 
Indeed, projections indicate that all scenarios of future climate change will enhance the mobilisation of 
metals in metamorphic mountain catchments (Zaharescu et al., 2016). The release of toxic contaminants, 
particularly where glacial melt waters are used for irrigation and drinking water in the Himalayas and the 
Andes, is potentially harmful to human health both now and in the future (Hodson, 2014) (medium 
confidence). 
 
Soluble reactive phosphorus concentrations in rivers downstream of glaciers are predicted to decrease with 
declining glacier coverage (Hood et al., 2009) as a large percentage is associated with glacier-derived 
suspended sediment (Hawkings et al., 2016). In contrast, dissolved organic carbon (DOC), dissolved 
inorganic nitrogen and dissolved organic nitrogen concentrations in pro-glacial rivers is projected to increase 
this century due to glacier shrinkage (Hood et al., 2015; Milner et al., 2017) (robust evidence, medium 
agreement). Globally, mountain glaciers are estimated to release about 0.8 Tera g yr-1 (Li et al., 2018) of 
highly bioavailable DOC that may be incorporated into downstream food webs (Fellman et al., 2015; Hood 
et al., 2015). Loss rates of DOC from glaciers in the high mountains of the Tibetan Plateau were estimated to 
be ∼0.19 Tera g C yr-1, (Li et al., 2018) higher than other regions suggesting that DOC is released more 
efficiently from Asian mountain glaciers (Liu et al., 2016). Glacier DOC losses are expected to accelerate as 
they shrink, leading to a cumulative annual loss of roughly 15 Tera g C yr-1 of glacial dissolved organic 
carbon by 2050 from melting glaciers and ice-sheets (Hood et al., 2015). Permafrost degradation is also a 
major and increasing source of bioavailable DOC (Abbott et al., 2014; Aiken et al., 2014). Major ions 
calcium, magnesium, sulphate and nitrate (Colombo et al., 2018) are also released by permafrost degradation 
as well as acid drainage leaching into alpine lakes (Ilyashuk et al., 2018). 
 
Increasing water temperature has been reported in some high mountain streams (e.g., Groll et al., 2015; Isaak 
et al., 2016) due to decreases in glacial runoff, producing changes in water quality and species richness 
(Section 2.3.3). In contrast, water temperature in regions with extensive glacier cover are expected to show a 
transient decline, due to an enhanced cooling effect from increased glacial meltwater (Fellman et al., 2014).  
 
In summary, changes in the mountain cryosphere will cause significant shifts in downstream nutrients (DOC, 
nitrogen, phosphorus) and influence water quality through increases in heavy metals, particularly mercury, 
and other legacy contaminants (medium evidence, high agreement) posing a potential threat to human health. 
These threats are more focused where glaciers are subject to substantial pollutant loads such as High 
Mountain Asia and Europe, rather than areas like Alaska and Canada. 
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2.3.1.3 Key Impacts and Vulnerability  
 
2.3.1.3.1 Hydropower 
Hydropower comprises about 16% of electricity generation globally but close to 100%, in many 
mountainous countries (Hamududu and Killingtveit, 2012; IHA, 2018). It represents a significant source of 
revenue for mountainous regions (Gaudard et al., 2016). Due to the dependence on water resources as key 
input, hydropower operations are expected to be affected by changes in runoff from glaciers and snow cover 
(Section 2.3.1.1, FAQ 2.1). Both increases and decreases in annual and/or seasonal water input to 
hydropower facilities have been recorded in several high-mountain regions, for example, in Switzerland 
(Hänggi and Weingartner, 2012; Schaefli et al., 2019); Canada (Jost et al., 2012; Jost and Weber, 2013)  
Iceland (Einarsson and Jónsson, 2010) and High Mountain Asia (Ali et al., 2018). However, there is only 
limited evidence (medium agreement) that changes in runoff have led to changes in hydropower plant 
operation. For example, in Iceland, the National Power Company observed in 2005 that flows into their 
energy system were greater than historical flows. By incorporating the most recent runoff data into strategies 
for reservoir management it was possible to increase production capacity (Braun and Fournier, 2016). 
 
There is robust evidence (medium agreement) that water input to hydropower facilities will change in the 
future due to cryosphere-related impacts on runoff (Section 2.3.1.1). For example, in the Skagit river basin in 
British Columbia and northern Washington (Lee et al., 2016) and in California (Madani and Lund, 2010) 
projections (SRES A1B) show more runoff in winter and less in summer, and in India (Ali et al., 2018) snow 
and glacier runoff to hydropower plants is projected to decline in several basins. In some cases, catchments 
that are close together are projected to evolve in contrasting directions in terms of runoff, for example in the 
European Alps (Gaudard et al., 2013; Gaudard et al., 2014). Increased runoff due to changes in the 
cryosphere will increase the risk of overflows (non-productive discharge), particularly during winter and 
spring melt, with the greatest impacts on run-of-river power plants (e.g., in Canada; Minville et al., 2010; 
Warren and Lemmen, 2014) (medium confidence). 
 
There is medium evidence (high agreement) that changes in glacier- and moraine-dammed lakes, and 
changes in sediment supply will affect hydropower generation (Colonia et al., 2017; Hauer et al., 2018). 
Many glacier lakes have increased in volume, and can damage hydropower infrastructure when they empty 
suddenly (Engeset et al., 2005; Jackson and Ragulina, 2014; Carrivick and Tweed, 2016) (Section 2.3.2). If 
large enough, hydropower reservoirs can reduce the downstream negative impacts of changes in the 
cryosphere by storing and providing freshwater during hot, dry periods or by alleviating the effects of glacier 
floods (Jackson and Ragulina, 2014; Colonia et al., 2017). In mountain rivers, sediment volume and type 
depend on connectivity between hillslopes and the valley floor (Carrivick et al., 2013), glacier activity (Lane 
et al., 2017) and on water runoff regime feedbacks with river channel dynamics (Schmidt and Morche, 
2006). An increase in suspended sediment loading under current reservoir operating policies is projected for 
some hydropower facilities, e.g., in British Columbia and northern Washington (Lee et al., 2016).  
 
Only a few studies have addressed the economic effects on hydropower due directly to changes in the 
cryosphere. For example in Peru, Vergara et al. (2007) studied the effect of both reduced glacier runoff and 
runoff with no glacier input once the glaciers have completely melted for the Carlton del Pato hydropower 
plant in Peru, and found an economic cost of between USD 5 and 20 million per year, with the lower figure 
for the cost of energy paid to the producer and the higher figure the society cost. Costs calculated for all of 
Peru, where ~80% of electricity comes from hydropower range from USD 60-212 million per year. If the 
cost of rationing energy is considered, the national cost is estimated as USD 1500 million per year. 
 
Other factors than changes in the cryosphere, such as market policies and regulation, may have greater 
significance for socio-economic development of hydropower in the future (Section 2.3.1.4, Gaudard et al., 
2016). Hence, despite the efforts of hydropower agencies and regulatory bodies to quantify changes or to 
develop possible adaptation strategies (IHA, 2018), only a few organisations are incorporating current 
knowledge of climate change into their investment planning. The World Bank uses a decision tree approach 
to identify potential vulnerabilities in a hydropower project incurred from key uncertain factors and their 
combinations (Bonzanigo et al., 2015). 
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2.3.1.3.2 Agriculture 
High mountains have supported agricultural livelihoods for centuries. Rural communities are dependent on 
adequate levels of soil moisture at planting time, derived in part in many cases from irrigation water which 
includes glacier and snow meltwater; as a result, they are exposed to risk which stems from cryosphere 
changes (high confidence) (Figure 2.8). The relative poverty of many mountain communities contributes to 
their vulnerability to the impacts of these cryosphere changes (McDowell et al., 2014; Carey et al., 2017; 
Rasul and Molden, 2019) (medium evidence, high agreement). Glacier and snow melt water contribute 
irrigation water to adjacent lowlands as well. Pastoralism, an important livelihood strategy in mountain 
regions, is also impacted by cryosphere changes, but described in Section 2.3.6. 
 
There is medium evidence (medium agreement) that reduction in streamflow due to glacier retreat or reduced 
snow cover has led to reduced water availability for irrigation of crops and declining agricultural yields in 
several mountain areas, for example in the tropical Andes (Bury et al., 2011), High Mountain Asia (e.g., 
Nüsser and Schmidt, 2017), and the Rocky Mountains, USA (Frans et al., 2016; McNeeley, 2017; Table 
SM2.11). 
 
In addition to the effects on agriculture of changing availability of irrigation water, reductions in snow cover 
can also impact agriculture through its direct effects on soil moisture, as reported for Nepal, where lesser 
snow cover has led to the drying of soils and lower yields of potatoes and fodder (Smadja et al., 2015). 
Agriculture in high mountain areas is sensitive to other climatic driver as well. Rising air temperatures 
increase crop evapotranspiration, thus increasing water demand for crop production to maintain optimal yield 
(Beniston and Stoffel, 2014); they are also associated with upslope movement of cropping zones, which 
favours some farmers in high mountain areas, who are increasingly able to cultivate new crops, such as 
onions, garlic and apples in Nepal (Huntington et al., 2017; Hussain et al., 2018) and maize in Ecuador 
(Skarbø and VanderMolen, 2014). Dry spells and unseasonal frosts have also impacted agriculture in Peru 
(Bury et al., 2011). 
 
Adaptation activities in mountain agriculture related at least partially to cryospheric changes are detailed in 
Table SM2.12 and their geographic spread shown in Figure 2.9. Agriculture in these areas is sensitive to 
non-climate drivers as well, such as market forces and political pressures (Montana et al., 2016; Sietz and 
Feola, 2016; Figueroa-Armijos and Valdivia, 2017) and shifts in water governance (Rasmussen, 2016). The 
majority of the adaptation activities are autonomous, though some are planned or carried out with support 
from national governments, non-governmental organizations (NGOs), or international aid organizations. 
Though many studies report on benefits from these activities which accrue to community members as 
increased harvests and income, systematic evaluations of these adaptation strategies are generally lacking. A 
range of factors, discussed below, place barriers which limit the scale and scope of these activities in the 
mountain agricultural sector, including a lack of finance and technical knowledge, low adaptive capacity 
within communities, ill-equipped state organizations, ambiguous property rights and inadequate institutional 
and market support (medium evidence, high agreement). Section 2.3.6 examines two other responses to 
decreasing irrigation water: wage labour migration, which often serves as an adaptation strategy, and 
displacement of entire communities, an indication of the limits to adaptation; this displacement is also due in 
some cases to natural hazards. 

To cope with the reduced water supplies, planted areas have been reduced in a number of different places in 
Nepal (Gentle and Maraseni, 2012; Sujakhu et al., 2016). Adaptation responses within irrigation systems 
include the adoption of new irrigation technologies or upgrading existing technologies, adopting water 
conservation measures, water rationing, constructing water storage infrastructure, and change in cropping 
patterns (Rasul et al., 2019; Figure 2.9). Water-delivery technologies which reduce loss are adopted in Chile 
(Young et al., 2010) and Peru (Orlove et al., 2019). Similarly, greenhouses have been adopted in Nepal 
(Konchar et al., 2015) to reduce evapotranspiration, and reduce frost damage, though limited access to 
finance is a barrier to these activities. Box 2.3 describes innovative irrigation practices in India. Local 
pastoral communities have responded to these challenges with techniques broadly similar to those in 
agricultural settings by expanding irrigation facilities, e.g. in Switzerland (Fuhrer et al., 2014). In addition to 
adopting new technologies, some water-users make investments to tap more distant sources of irrigation 
water. Cross-Chapter Box 3 in Chapter 1 discusses such efforts in northern Pakistan, where landslides, 
associated with cryosphere change, have also damaged irrigation systems.   
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The adoption of new crops and varieties is an adaptation response found in several regions. Farmers in 
northwest India have increased production of lentils and vegetables, which provide important nutrients to the 
local diet, with support from government watershed improvement programs which help address decreased 
availability of irrigation water, though stringent requirements for participation in the programs have limited 
access by poor households to this assistance (Dame and Nüsser, 2011). Farmers who rely on irrigation in the 
Naryn River basin in Kyrgyzstan have shifted from the water-intensive fruits and vegetables to fodder crops 
such as barley and alfalfa, which are more profitable. Upstream communities, with greater access to water 
and more active local institutions, are more willing to experiment with new crops than those further 
downstream (Hill et al., 2017). In other areas, crop choices also reflect responses to rising temperatures along 
with new market opportunities such as the demand for fresh vegetables by tourists in Nepal (Konchar et al., 
2015; Dangi et al., 2018) and the demand for roses in urban areas in Peru (SENASA, 2017). Indigenous 
Knowledge and Local Knowledge, access to local and regional seed supply networks, proximity to 
agricultural extension and support services also facilitate the adoption of new crops (Skarbø and 
VanderMolen, 2014). 

Local institutions and embedded social relations play a vital role in enabling mountain communities to 
respond to the impacts of climate-driven cryosphere change. Indigenous pastoral communities who have 
tapped into new water sources to irrigate new areas in Peru have also strengthened the control of access to 
existing irrigated pastures (Postigo, 2014) and Bolivia (Yager, 2015). In an example of indigenous 
populations in the USA, two tribes who share a large reservation in the northern Rockies rely on rivers which 
receive glacier meltwater to irrigate pasture, and to maintain fisheries, domestic water supplies, and 
traditional ceremonial practices. Tribal water managers have sought to install infrastructure to promote more 
efficient water use and to protect fisheries, but these efforts have been impeded by land and water 
governance institutions in the region and by a history of social marginalization (McNeeley, 2017).  
 
High mountain communities have sought new financial resources from wage labour (Section 2.3.7), tourism 
(Mukherji et al., 2019) and government sources to support adaptation activities. Local water user 
associations in Kyrgyzstan and Tajikistan have adopted less water-intensive crops and reorganized the use 
and maintenance of irrigation systems, investing government relief payments after floods (Stucker et al., 
2012). Similar measures are reported from India and Pakistan (Dame and Mankelow, 2010; Clouse, 2016; 
Nüsser and Schmidt, 2017), Nepal (McDowell et al., 2013) and Peru (Postigo, 2014). In contrast, fewer 
adaptation measures have been adopted in Uzbekistan, due to low levels of capital availability and to 
agricultural policies, including centralized water management, crop production quotas and weak agricultural 
extension, which limit the response capacity of farmers (Aleksandrova et al., 2014).  
 
Lowland agricultural areas which receive irrigation water from rivers fed by glacier melt and snowmelt are 
projected to face negative impacts in some regions (limited evidence, high agreement). In the Rhone basin in 
Switzerland, many irrigated pasture areas are projected to face water deficits by 2050, under the A1B 
scenario (Fuhrer et al., 2014; Cross Chapter Box 1 in Chapter 1). For California and the southwestern USA, a 
shift to peak snowmelt earlier in the year would create more frequent floods, and a reduced ability of existing 
reservoirs to store water by 2050 under RCP8.5 (Pagán et al., 2016) and by 2100 under RCP2.6, RCP4.5 and 
RCP8.5 (Pathak et al., 2018). The economic values of these losses have been estimated at USD 10.8 – 48.6 
billion by around 2050 (Sturm et al., 2017). A similar transition to runoff peaks earlier in the year by 2010 
under RCP2.6, RCP4.5 and RCP8.5, creating challenges for management of irrigation water, has been 
reported for the countries in central Asia which are dependent on snowcover and glaciers of the Tien Shan 
(Xenarios et al., 2018). In India and Pakistan, where over 100 million farmers receive irrigation from the 
Indus and Ganges Rivers, which also have significant inputs from glaciers and snowmelt, also face risks of 
decreasing water supplies from cryosphere change by 2100 (Biemans et al., 2019; Rasul and Molden, 2019).   
 
 
[START BOX 2.3 HERE] 
 
Box 2.3: Local Responses to Water Shortage in Northwest India 
 
Agriculture in Ladakh, a cold arid mountain region (~100,000 km2) in the western Himalaya of India with 
median elevation of 3350 m a.s.l. and mean annual precipitation of less than 100 mm, is highly dependent on 
streams for irrigation in the agricultural season in the spring and summer (Nüsser et al., 2012; Barrett and 
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Bosak, 2018). Glaciers in Ladakh, largely located at 5000-6000 m a.s.l. and small in size have retreated since 
at least since the late 1960s although less pronounced than in many other Himalayan regions (Chudley et al., 
2017; Schmidt and Nüsser, 2017). However, the effect of glaciers on streamflow in Ladakh is poorly 
constrained, and measurements on changes in runoff and snow cover are lacking (Nüsser et al., 2018). 
 
To cope with seasonal water scarcity at critical times for irrigation, villagers in the region have developed 
four types of artificial ice reservoirs: basins, cascades, diversions and a form known locally as ice stupas. All 
these types of ice reservoirs capture water in the autumn and winter, allowing it to freeze, and hold it until 
spring, when it melts and flows down to fields (Clouse et al., 2017; Nüsser et al., 2018). In this way, they 
retain a previously unused portion of the annual flow and facilitate its use to supplement the decreased flow 
in the following spring (Vince, 2009; Shaheen, 2016). Frozen basins are formed from water which is 
conveyed across a slope through channels and check dams to shaded surface depressions near the villages. 
Cascades and diversions direct water to pass over stone walls, slowing its movement and allowing it to 
freeze. Ice stupas direct water through pipes into fountains, where it freezes into conical shapes (Box 2.3 
Figure 1). These techniques use local materials and draw on Local Knowledge (Nüsser and Baghel, 2016).  
 
A study examined 14 ice reservoirs, including ice stupas, and concluded that they serve as “site-specific 
water conservation strategies” and that they can be regarded as appropriate local technologies to reduce 
seasonal water scarcity at critical times (Nüsser et al., 2018). It listed the benefits of ice reservoirs as 
improved water availability in spring, reduction of seasonal water scarcity and resulting crop failure risks, 
and the possibility of growing cash crops. However, the study questioned their usefulness as a long-term 
adaptation strategy, because their operation depends on winter runoff and freeze-thaw cycles, both of which 
are sensitive to interannual variability, and often deviate from the optimum range required for effective 
functioning of the reservoirs. It also raised questions about the financial costs and labour requirements, 
which vary across the four types of ice reservoirs. 
 

 
 
Box 2.3, Figure 1: Ice stupas in Ladakh, India (Photo: Padma Rigzi) 
 
[END BOX 2.3 HERE] 
 
 
2.3.1.3.3 Drinking water supply 
Only a few studies provide detailed empirical assessments of the effects of cryosphere change on the 
amounts of drinking water supply. Decreases in drinking water supplies due to reduced glacier and snow 



FINAL DRAFT Chapter 2 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 2-35 Total pages: 94 

meltwater have been reported for rural areas in the Nepal Himalaya (McDowell et al., 2013; Dangi et al., 
2018), but the tropical Andes have received the most attention, including both urban conglomerates and 
some rural areas, where water resources are especially vulnerable to climate change due to water scarcity and 
increased demands (Chevallier et al., 2011; Somers et al., 2018), amidst rapidly retreating glaciers (Burns 
and Nolin, 2014). 
 
The contribution of glacier water to the water supply of La Paz, Bolivia, between 1963 and 2006 was 
assessed at 15% annually and 27% during the dry season (Soruco et al., 2015), though rising as high as 86% 
during extreme drought months (Buytaert and De Bièvre, 2012). Despite a 50% area loss, the glacier retreat 
has not contributed to reduced water supplies for the city, because increased melt rates have compensated for 
reductions in glacier volume. However, for a complete disappearance of the glaciers, assuming no change in 
precipitation, a reduction in annual runoff by 12% and 24% in the dry season was projected (Soruco et al., 
2015) similar to reductions projected by 2050 under a RCP8.5 scenario for a basin in southern Peru 
(Drenkhan et al., 2019). Huaraz and Huancayo in Peru are other cities with high average contribution of melt 
water to surface water resources (up to ~20%; Buytaert et al., 2017) and rapid glacier retreat in their 
headwaters (Rabatel et al., 2013). 
 
Overall, risks to water security and related vulnerabilities are highly heterogeneous varying even at small 
spatial scales with populations closer to the glaciers being more vulnerable, especially during dry months and 
droughts (Buytaert et al., 2017; Mark et al., 2017). A regional-scale modelling study including all of Bolivia, 
Ecuador and Peru (Buytaert et al., 2017) estimated that roughly 390,000 domestic water users, mostly in 
Peru, rely on a high (>25%) long-term average contribution from glacier melt, with this number rising to 
almost 4 million in the driest month of a drought year. Despite high confidence in declining longer-term melt 
water contributions from glaciers in the tropical Andes (Figure CB6.1), major uncertainties remain how these 
will affect future human water use. Regional-scale water balance simulations forced by multi-model climate 
projections (Buytaert and De Bièvre, 2012), suggest a relatively limited effect of glacier retreat on water 
supply in four major cities (Bogota, La Paz, Lima, Quito) due to the dominance of human factors influencing 
water supply (Carey et al., 2014; Mark et al., 2017; Vuille et al., 2018), though uncertainties are large. 
Population growth and limited funding for infrastructure maintenance exacerbate water scarcity, though 
water managers have established programs in Quito and in Huancayo and the Santa and Vilcanota basins 
(Peru) to improve water management through innovations in grey infrastructure and ecosystem-based 
adaptations (Buytaert and De Bièvre, 2012; Buytaert et al., 2017; Somers et al., 2018). 
 
In summary, there is limited evidence (medium agreement) that glacier decline places increased risks to 
drinking water supply. In the Andes future increases in water demand due to population growth and other 
socio-economic stressors are expected to outpace the impact of climate change induced changes on water 
availability regardless the emission scenario. 
 
2.3.1.4 Water Governance and Response Measures 
 
Cryospheric changes induced by climate change, and their effects on hydrological regime and water 
availability, bear relevance for the management and governance of water as a resource for communities and 
ecosystems (Hill, 2013; Beniston and Stoffel, 2014; Carey et al., 2017), particularly in areas where snow and 
ice contribute significantly to river runoff (medium confidence) (Section 2.3.1.1). In river basins influenced 
by glacier melt, changes in the cryosphere increase the variability of water availability (Figure 2.6). 
However, water availability is one aspect relevant for water management and governance, given that 
multiple and diverse decision-making contexts and governance approaches and strategies can influence how 
the water resource is accessed and distributed (medium confidence) (De Stefano et al., 2010; Beniston and 
Stoffel, 2014). 
 
A key risk factor that influences how water is managed and governed, rests on existing and unresolved 
conflicts that may or may not necessarily arise exclusively from demands over shared water resources, 
raising tensions within and across borders in river basins influenced by snow and glacier melt (Valdés-
Pineda et al., 2014; Bocchiola et al., 2017). For example, in Central Asia, competing demand for water for 
hydropower and irrigation between upstream and downstream countries has raised tensions (Bernauer and 
Siegfried, 2012; Bocchiola et al., 2017). Similarly, competing demand for water is also reported in Chile 
(Valdés-Pineda et al., 2014) and in Peru (Vuille, 2013; Drenkhan et al., 2015). Since AR5, some studies have 
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examined the impacts and risks related to projections of cryosphere-related changes in streamflow in 
transboundary basins in the 21st century, and suggest that these changes create barriers in effectively 
managing water in some settings (medium confidence). For instance, within the transnational Indus River 
basin, climate change impacts may reduce streamflow by the end of this century, thus putting pressure on 
established water sharing arrangements between nations (Jamir, 2016) and sub-national administrative units 
(Yang et al., 2014b). In this basin, management efforts may be hampered by current legal and regulatory 
frameworks for evaluating new dams, which do not take into account changes in streamflow that may result 
from climate change (Raman, 2018). Within the transnational Syr Darya and Amu Darya basins in Central 
Asia, competition for water between multiple uses, exacerbated by reductions in flow later in this century, 
may hamper future coordination (Reyer et al., 2017; Yu et al., 2019). However, other evidence from Central 
Asia suggests that relative water scarcity may not be the only factor to exacerbate conflict in this region 
(Hummel, 2017). Overall, there is medium confidence in the ability to meet future water demands in some 
mountain regions, given the combined uncertainties associated with accurate projections of water supply in 
terms of availability and the diverse socio-cultural and political contexts in which decisions on water access 
and distribution are taken. 
 
Since AR5, several studies highlight that integrated water management approaches, focused on the 
multipurpose use of water that includes water released from the cryosphere, which are important as 
adaptation measures, particularly for sectors reliant on this water source to sustain energy production, 
agriculture, ecosystems and drinking water supply (Figure 2.9). These measures, backed by effective 
governance arrangements to support them, demonstrate an ability to address increasing challenges to water 
availability arising from climate change in the mountain cryosphere, providing co-benefits through the 
optimization of storage and the release of water from high mountain reservoirs (medium confidence). Studies 
in Switzerland (e.g., Haeberli et al., 2016; Brunner et al., 2019), Peru (e.g., Barriga Delgado et al., 2018; 
Drenkhan et al., 2019), Central Asia (Jalilov et al., 2018) and Himalaya (Molden et al., 2014; Biemans et al., 
2019) highlight the potential of water reservoirs in high mountains, including new reservoirs located in 
former glacier beds, alleviating seasonal water scarcity for multiple water usages. However, concerns are 
also raised in the environmental literature about their actual and potential negative impacts on local 
ecosystems and biodiversity hotspots, such as wetlands and peat bogs, which have been reported for small 
high mountain reservoirs e.g. in the European Alps (Evette et al., 2011) and for large dam construction 
projects in High Mountain Asia (e.g., Dharmadhikary, 2008). 
 
Transboundary cooperation at regional scales are reported to further support efforts that address the potential 
risks to water resources in terms of its availability and its access and distribution governance (Dinar et al., 
2016). Furthermore, the UN 2030 Agenda and its Sustainable Development Goals (SDGs) (UN, 2015) may 
offer additional prospects to strengthen water governance under a changing cryosphere, given that 
monitoring and reporting on key water-related targets and indicators, and their interaction across other 
SDGs, direct attention to the provision of water as a key condition for development (Section 2.4). However, 
there is limited evidence to date to assess their effectiveness on an evidentiary basis. 
 
2.3.2 Landslide, Avalanche and Flood Hazards 
 
High mountains are particularly prone to hazards related to snow, ice and permafrost as these elements exert 
key controls on mountain slope stability (Haeberli and Whiteman, 2015). This section assesses knowledge 
gained since previous IPCC reports, in particular SREX (e.g., Seneviratne et al., 2012), and AR5 Working 
Group II (Cramer et al., 2014). In this section, observed and projected changes in hazards are covered first, 
followed by exposure, vulnerability and resulting impacts and risks, and finally disaster risk reduction and 
adaptation. Cryospheric hazards that constitute tipping points are also listed in Table 6.1 in Chapter 6.  
 
Hazards assessed in this section range from localised effects on mountain slopes and adjacent valley floors 
(distance of reach of up to several kilometres) to events reaching far into major valleys and even surrounding 
lowlands (reach of tens to hundreds of kilometres), and include cascading events. Changes in the cryosphere 
due to climate change influence the frequency and magnitude of hazards, the processes involved, and the 
locations exposed to the hazards (Figure 2.7). Natural hazards and associated disasters are sporadic by 
nature, and vulnerability and exposure exhibit strong geographic variations. Assessments of change are 
based not only on direct evidence, but also on laboratory experiments, theoretical considerations and 
calculations, and numerical modelling. 
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2.3.2.1 Observed and Projected Changes 
 
2.3.2.1.1 Unstable slopes, landslides and glacier instabilities 
Permafrost degradation and thaw as well as increased water flow into frozen slopes can increase the rate of 
movement of frozen debris bodies, and lower their surface due to loss of ground ice (subsidence). Such 
processes affected engineered structures such as buildings, hazard protection structures, roads, or rail lines in 
all high mountains during recent decades (Section 2.3.4). Movement of frozen slopes and ground 
subsidence/heave are strongly related to ground temperature, ice content, and water input (Wirz et al., 2016; 
Kenner et al., 2017). Where massive ground ice gets exposed, retrogressive thaw erosion develops (Niu et 
al., 2012). The creep of rock glaciers (frozen debris tongues that slowly deform under gravity) is in principle 
expected to accelerate in response to rising ground temperatures, until substantial volumetric ice contents 
have melted out (Kääb et al., 2007; Arenson et al., 2015a). As documented for instance for sites in the 
European Alps and Scandinavia for recent years to decades, rock glaciers replenished debris-flow starting 
zones at their fronts, so that the intensified material supply associated with accelerated movement (Section 
2.2.4) contributed to increased debris-flow activity (higher frequency, larger magnitudes) or slope 
destabilization, (Stoffel and Graf, 2015; Wirz et al., 2016; Kummert et al., 2017; Eriksen et al., 2018).  
 
There is high confidence that the frequency of rocks detaching and falling from steep slopes (rock fall) has 
increased within zones of degrading permafrost over the past half-century, for instance in high mountains in 
North America, New Zealand, and Europe (Allen et al., 2011; Ravanel and Deline, 2011; Fischer et al., 
2012; Coe et al., 2017). Compared to the SREX and AR5 reports, the confidence in this finding increased. 
Available field evidence agrees with theoretical considerations and calculations that permafrost thaw 
increases the likelihood of rock fall (and also rock avalanches, which have larger volumes compared to rock 
falls) (Gruber and Haeberli, 2007; Krautblatter et al., 2013). These conclusions are also supported by 
observed ice in the detachment zone of previous events in North America, Iceland and Europe (Geertsema et 
al., 2006; Phillips et al., 2017; Sæmundsson et al., 2018). Summer heat waves have in recent years triggered 
rock instability with delays of only a few days or weeks in the European Alps (Allen and Huggel, 2013; 
Ravanel et al., 2017). This is in line with theoretical considerations about fast thaw of ice-filled frozen 
fractures in bedrock (Hasler et al., 2011) and other climate impacts on rock stability, such as from large 
temperature variations (Luethi et al., 2015). Similarly, permafrost thaw increased the frequency and volumes 
of landslides from frozen sediments in many mountain regions in recent decades (Wei et al., 2006; Ravanel 
et al., 2010; Lacelle et al., 2015). At lower elevations in the French Alps, though, climate-driven changes 
such as a reduction in number of freezing days is projected to lead to a reduction in debris flows (Jomelli et 
al., 2009). 
 
A range of slope instability types was found to be connected to glacier retreat (Allen et al., 2011; Evans and 
Delaney, 2015). Debris left behind by retreating glaciers (moraines) slid or collapsed, or formed fast flowing 
water-debris mixtures (debris flows) in recent decades, for instance in the European and New Zealand Alps 
(Zimmermann and Haeberli, 1992; Blair, 1994; Curry et al., 2006; Eichel et al., 2018). Over decades to 
millennia, or even longer, rock slopes adjacent to or formerly covered glaciers, became unstable, and, in 
some cases, eventually collapsed. Related, landslide activity increased in recently deglacierized zones in 
most high mountains (Korup et al., 2012; McColl, 2012; Deline et al., 2015; Kos et al., 2016; Serrano et al., 
2018). For example, according to Cloutier et al. (2017) more than two-thirds of the large landslides that 
occurred in northern British Columbia between 1973 and 2003, occurred on cirque walls that have been 
exposed after glacier retreat from the mid-19th century on. Ice-rich permafrost environments following 
glacial retreat enhanced slope mass movements (Oliva and Ruiz-Fernández, 2015). At lower elevations, re-
vegetation and rise of tree limit are able to stabilize shallow slope instabilities (Curry et al., 2006). Overall, 
there is high confidence that glacier retreat in general has in most high mountains destabilized adjacent 
debris and rock slopes over time scales from years to millennia, but robust statistics about current trends in 
this development are lacking. This finding reconfirms, and for some processes increases confidence in 
related findings from the SREX and AR5 reports. 
 
Ice break-off and subsequent ice avalanches are natural processes at steep glacier fronts. How climate-driven 
changes in geometry and thermal regime of such glaciers influenced ice avalanche hazards over years to 
decades depended strongly on local conditions, as shown for the European Alps (Fischer et al., 2013; 
Faillettaz et al., 2015). The few available observations are insufficient to detect trends. Where steep glaciers 
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are frozen to bedrock, there is, however, medium evidence and high agreement from observations in the 
European Alps and from numerical simulations that failures of large parts of these glaciers were and will be 
facilitated in the future due to an increase in basal ice temperature (Fischer et al., 2013; Faillettaz et al., 
2015; Gilbert et al., 2015) . 
 
In some regions, glacier surges constitute a recurring hazard, due to wide-spread, quasi-periodic and 
substantial increases in glacier speed over a period of a few months to years, often accompanied by glacier 
advance (Harrison et al., 2015; Sevestre and Benn, 2015). In a number of cases, mostly in North America 
and High Mountain Asia (Bevington and Copland, 2014; Round et al., 2017; Steiner et al., 2018), surge-
related glacier advances dammed rivers, causing major floods. In rare cases, glacier surges directly inundated 
agricultural land and damage infrastructure (Shangguan et al., 2016). Sevestre and Benn (2015) suggest that 
surging operates within a climatic envelope of temperature and precipitation conditions, and that shifts in 
these conditions can modify surge frequencies and magnitudes. Some glaciers have reduced or stopped surge 
activity, or are projected to do so within decades, as a consequence of negative glacier mass balances (Eisen 
et al., 2001; Kienholz et al., 2017). For such cases, also related hazards can be expected to decrease. In 
contrast, intensive or increased surge activity (Hewitt, 2007; Gardelle et al., 2012; Yasuda and Furuya, 2015) 
occurred in a region on and around the western Tibet plateau which exhibited no significant change or even 
positive glacier mass balances in recent decades (Brun et al., 2017). Enhanced melt-water production was 
suggested to be able to trigger or enhance surge-type instability, in particular for glaciers that contain ice 
both at the melting point and considerably below (Dunse et al., 2015; Yasuda and Furuya, 2015; Nuth et al., 
2019). 
 
A rare type of glacier instability with large volumes (~ 107–108 m3) and high mobility (up to 200–300 km/h) 
results from the complete collapse of large sections of low-angle valley glaciers and subsequent combined 
ice/rock/debris avalanches. The largest of such glacier collapses have been reported in the Caucasus 
Mountains in 2002 (Kolka Glacier, ~130 fatalities) (Huggel et al., 2005; Evans et al., 2009), and in the Aru 
Range in Tibet in 2016 (twin glacier collapses with 9 fatalities) (Kääb et al., 2018). Whereas there is no 
evidence that climate change has played a direct role in the 2002 event, changes in glacier mass balance, 
water input into the glaciers, and the frozen regime of the glacier beds were involved in the 2016 collapses 
and at least partly linked with climate change (Gilbert et al., 2018). Besides the 2016 Tibet cases, it is 
unknown if such massive and rare collapse-like glacier instabilities can be attributed to climate change. 
 
2.3.2.1.2 Snow avalanches 
Snow avalanches can occur either spontaneously due to meteorological factors such as loading by snowfall 
or liquid water infiltration following, e.g. surface melt or rain-on-snow, or can be triggered by the passage of 
people in avalanche terrain, the impact of falling ice or rocks, or by explosives used for avalanche control 
(Schweizer et al., 2003). There is no published evidence found, addressing the links between climate change 
and accidental avalanches triggered by recreationists or workers. Changes in snow-cover characteristics are 
expected to induce changes in spontaneous avalanche activity including changes in friction and flow regime 
(Naaim et al., 2013; Steinkogler et al., 2014). 
 
Ballesteros-Cánovas et al. (2018) reported increased avalanche activity in some slopes of the Western Indian 
Himalaya over the past decades related to increased frequency of wet-snow conditions. In the European 
Alps, avalanche numbers and runout distance have decreased with decreasing snow depth and increasing air 
temperature (Teich et al., 2012; Eckert et al., 2013). In the European Alps and Tatras mountains, over past 
decades, there has been a decrease in avalanche mass and run-out distance, a decrease of avalanches with a 
powder part since the 1980s, a decrease of avalanche numbers below 2000 m, and an increase above (Eckert 
et al., 2013; Lavigne et al., 2015; Gadek et al., 2017). A positive trend in the proportion of avalanches 
involving wet snow in December through February was shown for the last decades (Pielmeier et al., 2013; 
Naaim et al., 2016). Land use and land cover changes also contributed to changes in avalanches (García-
Hernández et al., 2017; Giacona et al., 2018). Correlations between avalanche activity and the El Niño-
Southern Oscillation (ENSO) were identified from 1950 to 2011 in North and South America but there was 
no significant temporal trend reported for avalanche activity (McClung, 2013). Mostly inconclusive results 
were reported by Sinickas et al. (2015) and Bellaire et al. (2016) regarding the relationship between 
avalanche activity, climate change and disaster risk reduction activities in North America. In summary, in 
particular in Europe, there is medium confidence in an increase in avalanche activity involving wet snow, and 
a decrease in the size and run-out distance of snow avalanches over the past decades. 
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Future projections mostly indicate an overall decrease in snow depth and snow cover duration at lower 
elevation (Section 2.2.2), but the probability of occurrence of occasionally large snow precipitation events is 
projected to remain possible throughout most of the 21st century (Section 2.2.1). Castebrunet et al. (2014) 
estimated an overall 20 and 30% decrease of natural avalanche activity in the French Alps for the mid and 
end of the 21st century, respectively, under A1B scenario, compared to the reference period 1960–1990. 
Katsuyama et al. (2017) reached similar conclusions for Northern Japan, and Lazar and Williams (2008) for 
North America. Avalanches involving wet snow are projected to occur more frequently during the winter at 
all elevations due to surface melt or rain-on-snow (e.g., Castebrunet et al., 2014, for the French Alps), and 
the overall number and runout distance of snow avalanches is projected to decrease in regions and elevations 
experiencing significant reduction in snow cover (Mock et al., 2017). In summary, there is medium evidence 
and high agreement that observed changes in avalanches in mountain regions will be exacerbated in the 
future, with generally a decrease in hazard at lower elevation, and mixed changes at higher elevation 
(increase in avalanches involving wet snow, no clear direction of trend for overall avalanche activity). 
 
2.3.2.1.3 Floods 
Glacier-related floods, including floods from lake outbursts (called glacier lake outburst floods or GLOFs), 
are documented for most glacierized mountain ranges and are among the most far-reaching glacier hazards. 
Past events affected areas tens to hundreds of kilometres downstream (Carrivick and Tweed, 2016). 
Retreating glaciers produced lakes at their fronts in many high-mountain regions margins in recent decades 
(Frey et al., 2010; Gardelle et al., 2011; Loriaux and Casassa, 2013). Lake systems in High Mountain Asia 
also often developed at the surface of downwasting, low-slope glaciers where they coalesced from 
temporally variable supraglacial lakes (Benn et al., 2012; Narama et al., 2017). Corroborating SREX and 
AR5 findings, there is high confidence that current global glacier shrinkage caused new lakes to form and 
existing lakes to grow in most regions, for instance in South America, High-Mountain Asia and Europe 
(Loriaux and Casassa, 2013; Paul and Mölg, 2014; Zhang et al., 2015; Buckel et al., 2018). Exceptions 
occurred and are expected to occur in the future for few lakes where evaporation, run-off and reduced 
meltwater influx in total led to a negative water balance (Sun et al., 2018a). Also, advancing glaciers 
temporarily dammed rivers, lake sections, or fjords (Stearns et al., 2015), for instance through surging 
(Round et al., 2017), causing particularly large floods once the ice dams breached. Outbursts from water 
bodies in and under glaciers are able to cause floods similar to those from surface lakes but little is known 
about the processes involved and any trends under climate change. In some cases, the glacier thermal regime 
played a role so that climate-driven changes in thermal regime are expected to alter the hazard potential, 
depending on local conditions (Gilbert et al., 2012). Another source of large water bodies under glaciers and 
subsequent floods has been subglacial volcanic activity (Section 2.3.2.1.4). There is also high confidence that 
the number and area of glacier lakes will continue to increase in most regions in the coming decades, and 
new lakes will develop closer to steep and potentially unstable mountain walls where lake outbursts can be 
more easily triggered by the impact of landslides (Frey et al., 2010; ICIMOD, 2011; Allen et al., 2016a; 
Linsbauer et al., 2016; Colonia et al., 2017; Haeberli et al., 2017). 
 
In contrast to the number and size of glacier lakes, trends in the number of glacier-related floods are not well 
known for the recent decades (Carrivick and Tweed, 2016; Harrison et al., 2018), although a number of 
phases of increased and decreased flood activity have been documented for individual glaciers in North 
America and Greenland, spanning decades (Geertsema and Clague, 2005; Russell et al., 2011). A decrease in 
moraine-dammed glacier lake outburst floods in recent decades suggests a response of lake outburst activity 
being delayed by some decades with respect to glacier retreat (Harrison et al., 2018) but inventories might 
significantly underestimate the number of events (Veh et al., 2018). For the Himalaya, Veh et al. (2019) 
found no increase in the number of glacier lake outburst floods since the late 1980s. The degradation of 
permafrost and the melting of ice buried in lake dams have been shown to lower dam stability and contribute 
to outburst floods in many high-mountain regions (Fujita et al., 2013; Erokhin et al., 2017; Narama et al., 
2017). 
 
Floods originating from the combination of rapidly melting snow and intense rainfall, referred to as rain-on-
snow events, are some of the most damaging floods in mountain areas (Pomeroy et al., 2016; Il Jeong and 
Sushama, 2018). The hydrological response of a catchment to a rain-on-snow event depends on the 
characteristics of the precipitation event, but also on turbulent fluxes driven by wind and humidity, which 
typically provide most of the melting energy during such events (Pomeroy et al., 2016), and the state of the 
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snowpack, in particular the liquid water content (Würzer et al., 2016). An increase in the occurrence of rain-
on-snow events in high-elevation zones, and a decrease at the lowest elevations were reported (western USA, 
1949–2003, McCabe et al. (2007); Oregon, 1986–2010, Surfleet and Tullos (2013); Switzerland, 1972–2016, 
Moran-Tejéda et al. (2016), central Europe, 1950–2010, Freudiger et al. (2014). These trends are consistent 
with studies carried out at the scale of the Northern Hemisphere (Putkonen and Roe, 2003; Ye et al., 2008; 
Cohen et al., 2015). There are no studies found on this topic in Africa and South America. In summary, 
evidence since AR5 suggests that rain-on-snow events have increased over the last decades at high 
elevations, particularly during transition periods from autumn to winter and winter to spring (medium 
confidence). The occurrence of rain-on-snow events has decreased over the last decade in low-elevation or 
low-latitude areas due to a decreasing duration of the snowpack, except for the coldest months of the year 
(medium confidence). 
 
Il Jeong and Sushama (2018) projected an increase in rain-on-snow events in winter and a decrease in spring, 
for the period 2041–2070 (RCP4.5 and RCP8.5) in North America, corroborated by Musselman et al. (2018). 
Their frequency in the Swiss Alps is projected to increase at elevations higher than 2000 m a.s.l. (SRES 
A1B, 2025, 2055, and 2085) (Beniston and Stoffel, 2016). This study showed that the number of rain-on-
snow events may increase by 50%, with a regional temperature increase of 2°C to 4°C, and decrease with a 
temperature rise exceeding 4°C. In Alaska, an overall increase of rain-on-snow events is projected, however 
with a projected decline in the southwestern/southern region (Bieniek et al., 2018). In summary, evidence 
since AR5 suggests that the frequency of rain-on-snow events is projected to increase and occur earlier in 
spring and later in autumn at higher elevation and to decrease at lower elevation (high confidence). 
 
2.3.2.1.4 Combined hazards and cascading events 
The largest mountain disasters in terms of reach, damage and lives lost that involve ice, snow and permafrost 
occurred through a combination or chain of processes. New evidence since SREX and AR5 have these 
findings (Anacona et al., 2015; Evans and Delaney, 2015). Some process chains occur frequently, while 
others are rare, specific to local circumstances and difficult to anticipate. Glacier lake outbursts were in many 
mountain regions and over recent decades documented to have been triggered by impact waves from snow-, 
ice- or rock-avalanches, landslides, iceberg calving events, or by temporary blockage of surface or 
subsurface drainage channels (Benn et al., 2012; Narama et al., 2017). Rock-slope instability and 
catastrophic failure along fjords caused tsunamis (Hermanns et al., 2014; Roberts et al., 2014). For instance, 
a landslide-generated wave in 2015 at Taan Fjord, Alaska, ran up 193 m on the opposite slope and then 
travelled more than 20 km down the fjord (Higman et al., 2018). Earthquakes have been a starting point for 
different types of cascading events, for instance by causing snow-, ice- or rock-avalanches, and landslides 
(van der Woerd et al., 2004; Podolskiy et al., 2010; Cook and Butz, 2013; Sæmundsson et al., 2018). 
Glaciers and their moraines, including morainic lake dams seem, however, not particularly prone to 
earthquake-triggered failure (Kargel et al., 2016). 
 
Landslides and rock avalanches in glacier environments were often documented to entrain snow and ice that 
fluidize, and incorporate additional loose glacial sediments or water bodies, thereby multiplying their 
mobility, volume and reach (Schneider et al., 2011; Evans and Delaney, 2015). Rock avalanches onto 
glaciers triggered glacier advances in recent decades, for instance in North America, New Zealand and 
Europe, mainly through reducing surface melt (Deline, 2009; Reznichenko et al., 2011; Menounos et al., 
2013). In glacier-covered frozen rock walls, particularly complex thermal, mechanical, hydraulic and 
hydrologic interactions between steep glaciers, frozen rock and its ice content, and unfrozen rock sections 
lead to combined rock/ice instabilities that are difficult to observe and anticipate (Harris et al., 2009; Fischer 
et al., 2013; Ravanel et al., 2017). There is limited evidence of observed direct event chains to project future 
trends. However, from the observed and projected degradation of permafrost, shrinkage of glaciers and 
increase in glacier lakes it is reasonable to assume that event chains involving these could increase in 
frequency or magnitude, and that according hazard zones could expand. 
 
Volcanoes covered by snow and ice often produce substantial meltwater during eruptions. This typically 
results in floods and/or lahars (mixtures of meltwater and volcanic debris) which can be exceptionally 
violent and cause large-scale loss of life and destruction to infrastructure (Barr et al., 2018). The most 
devastating example from recent history occurred in 1985, when the medium-sized eruption of Nevado del 
Ruiz volcano, Colombia, produced lahars that killed more than 23,000 people some 70 km downstream 
(Pierson et al., 1990). Hazards associated with ice and snow-clad volcanoes have been reported mostly from 
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the Cordilleras of the Americas, but also from the Aleutian arc (USA), Mexico, Kamchatka (Russia), Japan, 
New Zealand and Iceland (Seynova et al., 2017). In particular under Icelandic glaciers, volcanic activity and 
eruptions melted large amounts of ice and caused especially large floods if water accumulated underneath 
the glacier (Björnsson, 2003; Seneviratne et al., 2012). There is medium confidence that the overall hazard 
related to floods and lahars from ice- and snow-clad volcanoes will gradually diminish over years-to-decades 
as glaciers and seasonal snow-cover continue to decrease under climate change (Aguilera et al., 2004; Barr et 
al., 2018). On the other hand, shrinkage of glaciers may uncover steep slopes of unconsolidated volcanic 
sediments, thus decreasing in the future the resistance of these volcano flanks to heavy rain fall and 
increasing the hazard from related debris flows (Vallance, 2005). In summary, future changes in snow and 
ice are expected to modify the impacts of volcanic activity of snow and ice-clad volcanoes (high confidence) 
although in complex and locally variable ways and at a variety of time-scales (Barr et al., 2018; Swindles et 
al., 2018). 
 
 

 
Figure 2.7: Anticipated changes in high mountain hazards under climate change, driven by changes in snow cover, 
glaciers and permafrost, overlay changes in the exposure and vulnerability of individuals, communities, and mountain 
infrastructure. 
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2.3.2.2 Exposure, Vulnerability and Impacts 
 
2.3.2.2.1 Changes in exposure 
Confirming findings from SREX, there is high confidence that the exposure of people and infrastructure to 
cryosphere hazards in high-mountain regions has increased over recent decades, and this trend is expected to 
continue in the future (Figure 2.7). In some regions, tourism development has increased exposure, where 
often weakly regulated expansion of infrastructure such as roads, trails, and overnight lodging brought more 
visitors into remote valleys and exposed sites (Gardner et al., 2002; Uniyal, 2013). As an example for the 
consequences of increased exposure, many of the more than 350 fatalities resulting from the 2015 
earthquake-triggered snow-ice avalanche in Langtang, Nepal, were foreign trekkers and their local guides 
(Kargel et al., 2016). Further, several thousand religious pilgrims were killed during the 2013 Kedarnath 
glacier flood disaster (State of Uttarakhand, Northern India) (Kala, 2014). The expansion of hydropower 
(Section 2.3.1) is another key factor, and in the Himalaya alone, up to two-thirds of the current and planned 
hydropower projects are located in the path of potential glacier floods (Schwanghart et al., 2016). Changes in 
exposure of local communities, for instance through emigration driven by climate-change related threats 
(Grau and Aide, 2007; Gosai and Sulewski, 2014), or increased connectivity and quality of life in urban 
centres (Tiwari and Joshi, 2015), are complex and vary regionally. The effects of changes in exposure on 
labour migration and relocation of entire communities are discussed in Section 2.3.6. 
 
2.3.2.2.2 Changes in vulnerability 
Considering the wide-ranging social, economic, and institutional factors that enable communities to 
adequately prepare for, respond to, and recover from climate change impacts (Cutter and Morath, 2013), 
there is limited evidence and high agreement that mountain communities, particularly within developing 
countries, are highly vulnerable to the adverse effects of enhanced cryosphere hazards. There are few studies 
that have systematically investigated the vulnerability of mountain communities to natural hazards (Carey et 
al., 2017). Coping capacities to withstand impacts from natural hazards in mountain communities are 
constrained due to a number of reasons. Fundamental weather and climate information is lacking to support 
both short-term early warning for imminent disasters, and long-term adaptation planning (Rohrer et al., 
2013; Xenarios et al., 2018). Communities may be politically and socially marginalised (Marston, 2008). 
Incomes are typically lower and opportunities for livelihood diversification restricted (McDowell et al., 
2013). Emergency responders can have difficulties accessing remote mountain valleys after disasters strike 
(Sati and Gahalaut, 2013). Cultural or social ties to the land can limit freedom of movement (Oliver-Smith, 
1996). Conversely, there is evidence that some mountain communities exhibit enhanced levels of resilience, 
drawing on long-standing experience, and Indigenous Knowledge and Local Knowledge gained over many 
centuries of living with extremes of climate and related disasters (Gardner and Dekens, 2006). In the absence 
of sufficient data, few studies have considered temporal trends in vulnerability (Huggel et al., 2015a). 
 
2.3.2.2.3 Impacts on livelihoods 
Empirical evidence from past events shows that cryosphere-related landslides and floods can have severe 
impacts on lives and livelihoods, often extending far beyond the directly affected region, and persisting for 
several years. Glacier lake outburst floods alone have over the past two centuries directly caused at least 400 
deaths in Europe, 5745 deaths in South America, and 6300 deaths in Asia (Carrivick and Tweed, 2016), 
although these numbers are heavily skewed by individual large events occurring in Huaraz and Yungay, Peru 
(Carey, 2005) and Kedarnath, India (Allen et al., 2016b). 
 
Economic losses associated with these events are incurred through two pathways. The first consists of direct 
losses due to the disasters, and the second includes indirect costs from the additional risk and loss of 
potential opportunities, or from additional investment that would be necessary to manage or adapt to the 
challenges brought about by the cryosphere changes. Nationwide economic impacts from glacier floods have 
been greatest in Nepal and Bhutan (Carrivick and Tweed, 2016). The disruption of vital transportation 
corridors that can impact trading of goods and services (Gupta and Sah, 2008; Khanal et al., 2015), and the 
loss of earnings from tourism can represent significant far-reaching and long-lasting impacts (Nothiger and 
Elsasser, 2004; IHCAP, 2017). The Dig Tsho flood in the Khumbu Himal of Nepal in 1985 damaged a 
hydropower plant and other properties, with estimated economic losses of USD 500 million (Shrestha et al., 
2010). Less tangible, but equally important impacts concern the cultural and social disruption resulting from 
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temporary or permanent evacuation (Oliver-Smith, 1979). According to the International Disaster - 
Emergency Events Database (EM-DAT), over the period 1985–2014, absolute economic losses in mountain 
regions from all flood and mass movements (including non-cryosphere origins) were highest in the Hindu-
Kush Himalaya region (USD 45 billion), followed by the European Alps (USD 7 billion), and the Andes 
(USD 3 billion) (Stäubli et al., 2018). For example, a project to dig a channel in Tsho Rolpa glacier in Nepal 
that lowered a glacial lake cost USD 3 million in 2000 (Bajracharya, 2010), and similar measures have been 
taken at Imja Tsho Lake in Nepal in 2016 (Cuellar and McKinney, 2017). Other impacts are related to 
drinking and irrigation water and livelihoods (Section 2.3.1). In summary, there is high confidence that in the 
context of mountain flood and landslide hazards, exposure, and vulnerability growing in the coming century, 
significant risk reduction and adaptation strategies will be required to avoid increased impacts. 
 
2.3.2.3 Disaster Risk Reduction and Adaptation 
 
There is medium confidence that applying an integrative socio-ecological risk perspective to flood, avalanche 
and landslide hazards in high-mountain regions paves the way for adaptation strategies that can best address 
the underlying components of hazard, exposure and vulnerability (Carey et al., 2014; McDowell and Koppes, 
2017; Allen et al., 2018; Vaidya et al., 2019). Some degree of adaptation action has been identified in a 
number of countries with glacier-covered mountain ranges, mostly in the form of reactive responses (rather 
than formal anticipatory plans) to high-mountain hazards (Xenarios et al., 2018; McDowell et al., 2019) 
(Figure 2.9). However, scientific literature reflecting on lessons learned from adaptation efforts generally 
remains scarce. Specifically for flood and landslide hazards, adaptation strategies that were applied include: 
hard engineering solutions such as lowering of glacier lake levels, channel engineering, or slope stabilisation 
that reduce the hazard potential; nature-based solutions such as revegetation efforts to stabilise hazard-prone 
slopes or channels; hazard and risk mapping as a basis for land zoning and early warning systems that reduce 
potential exposure; various community-level interventions to develop disaster response programmes, build 
local capacities and reduce vulnerability. For example, there is a long tradition of engineered responses to 
reduce glacier flood risk, most notably beginning in the mid-20th century in Peru (Box 2.4), Italian and 
Swiss Alps (Haeberli et al., 2001), and more recently in the Himalaya (Ives et al., 2010). There is no 
published evidence that avalanche risk management, through defence structures design and norms, control 
measures and warning systems, has been modified as an adaptation to climate change, over the past decades. 
Projected changes in avalanche character bear potential reductions of the effectiveness of current approaches 
for infrastructure design and avalanche risk management (Ancey and Bain, 2015). 
 
Early warning systems necessitate strong local engagement and capacity building to ensure communities 
know how to prepare for and respond to emergencies, and to ensure the long-term sustainability of any such 
project. In Pakistan and Chile, for instance, glacier flood warnings, evacuation and post-disaster relief have 
largely been community-led (Ashraf et al., 2012; Anacona et al., 2015). 
 
Cutter et al. (2012) highlight the post-recovery and reconstruction period as an opportunity to build new 
resilience and adaptive capacities. Ziegler et al. (2014) exemplify consequences when such process is rushed 
or poorly supported by appropriate long-term planning, as illustrated following the 2013 Kedarnath glacier 
flood disaster, where guest houses and even schools were being rebuilt in the same exposed locations, driven 
by short-term perspectives. As changes in the mountain cryosphere, together with socio-economic, cultural 
and political developments are producing conditions beyond historical precedent, related responses are 
suggested to include forward-thinking planning and anticipation of emerging risks and opportunities 
(Haeberli et al., 2016). 
 
Researchers, policy-makers, international donors and local communities do not always agree on the timing of 
disaster risk reduction projects and programs, impeding full coordination (Huggel et al., 2015b; Allen et al., 
2018). Several authors highlight the value of improved evidential basis to underpin adaptation planning. 
Thereby, transdisciplinary and cross-regional collaboration that places human societies at the centre of 
studies provides a basis for more effective and sustainable adaptation strategies (McDowell et al., 2014; 
Carey et al., 2017; McDowell et al., 2019; Vaidya et al., 2019). 
 
In summary, the evidence from regions affected by cryospheric floods, avalanches and landslides generally 
confirms the findings from the SREX report (Chapter 3), including the requirement for multi-pronged 
approaches customised to local circumstances, integration of Indigenous Knowledge and Local Knowledge 
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(Cross-Chapter Box 4 in Chapter 1) together with improved scientific understanding and technical capacities, 
strong local participation and early engagement in the process, and high-level communication and exchange 
between all actors. Particularly for mountain regions, there is high confidence that integration of knowledge 
and practices across natural and social sciences, and the humanities, is most efficient in addressing complex 
hazards and risks related to glaciers, snow, and permafrost. 
 
 
[START BOX 2.4 HERE] 
 
Box 2.4: Challenges to Farmers and Local Population Related to Shrinkages in the Cryosphere: 

Cordillera Blanca, Peru 
 
The Cordillera Blanca of Peru contains most of the glaciers in the tropics, and its glacier coverage declined 
significantly in the recent past (Burns and Nolin, 2014; Mark et al., 2017). Since the 1940s, glacier hazards 
have killed thousands (Carey, 2005) and remain threatening. Glacier wastage has also reduced river runoff in 
most of its basins in recent decades, particularly in the dry season (Baraer et al., 2012; Vuille et al., 2018). 
Residents living adjacent to the Cordillera Blanca have long recognized this glacier shrinkage, including 
rural populations living near glaciers and urban residents worried about glacier lake floods and glacier 
landslides (Jurt et al., 2015; Walter, 2017). Glacier hazards and the glacier runoff variability increase 
exposure and uncertainty while diminishing adaptive capacity (Rasmussen, 2016). 
 
Cordillera Blanca residents’ risk of glacier-related disasters is amplified by intersecting physical and societal 
factors. Cryosphere hazards include expanding or newly forming glacial lakes, slope instability, and other 
consequences of rising temperatures, and precipitation changes (Emmer et al., 2016; Colonia et al., 2017; 
Haeberli et al., 2017). Human vulnerability to these hazards is conditioned by factors such as poverty, 
limited political influence and resources, minimal access to education and healthcare, and weak government 
institutions (Hegglin and Huggel, 2008; Carey et al., 2012; Lynch, 2012; Carey et al., 2014; Heikkinen, 
2017). Early warning systems have been, or are being, installed at glacial lakes Laguna 513 and Palcacocha 
to protect populations (Muñoz et al., 2016). Lake 513 was lowered by 20 m for outburst prevention in the 
early 1990s but nonetheless caused a destructive flood in 2010, though much smaller and less destructive 
than a flood that would have been expected without previous lake mitigation works (Carey et al., 2012; 
Schneider et al., 2014). An early warning system was subsequently installed, but some local residents 
destroyed it in 2017 due to political, social and cultural conflicts (Fraser, 2017). The nearby Lake Palcacocha 
also threatens populations (Wegner, 2014; Somos-Valenzuela et al., 2016). The usefulness for ground-level 
education and communication regarding advanced early warning systems has been demonstrated in Penu 
(Muñoz et al., 2016).  
 
Vulnerability to hydrologic variability and declining glacier runoff is also shaped by intertwining human and 
biophysical drivers playing out in dynamic hydro-social systems (Bury et al., 2013; Rasmussen et al., 2014; 
Drenkhan et al., 2015; Carey et al., 2017). Water security is influenced by both water availability (supply 
from glaciers) as well as by water distribution, which is affected by factors such as water laws and policies, 
global demand for agricultural products grown in the lower Santa River basin, energy demands and 
hydroelectricity production, potable water usage, and livelihood transformations over time (Carey et al., 
2014; Vuille et al., 2018). In some cases, the formation of new glacial lakes can create opportunities as well 
as hazards, such as new tourist attractions and reservoirs of water, thereby showing how socioeconomic and 
geophysical forces intersect in complex ways (Colonia et al., 2017). 
 
[END BOX 2.4 HERE]  
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Figure 2.8: Observed changes in the cryosphere and impacts on ecosystems, other natural systems and human systems 
over past decades that can at least partly be attributed to changes in the cryosphere. Only observations documented in 
the scientific literature are shown, but impacts may also be experienced elsewhere. Shading denotes mountainous areas. 
Confidence levels (high shown by filled; medium shown by unfilled tetrix boxes) refer to confidence in attribution to 
cryospheric changes. Figure is based on observed impacts listed in Table SM2.11. 
 
 
2.3.3 Ecosystems 
 
Widespread climate-driven ecological changes have occurred in high-mountain ecosystems over the past 
century. Those impacts were assessed in a dedicated manner only in earlier IPCC assessments (Beniston and 
Fox, 1996; Gitay et al., 2001; Fischlin et al., 2007) but not in AR5 (Settele et al., 2014). Two of the most 
evident changes include range shifts of plants and animals in Central Europe and the Himalaya but also for 
other mountain regions (e.g., Morueta-Holme et al., 2015; Evangelista et al., 2016; Freeman et al., 2018; 
Liang et al., 2018; You et al., 2018; He et al., 2019), and increases in species richness on mountain summits 
(Khamis et al., 2016; Fell et al., 2017; Steinbauer et al., 2018) of which some have accelerated during recent 
decades (e.g., Steinbauer et al., 2018), though slowing over the past ten years in Austria (e.g., Lamprecht et 
al., 2018). While many changes in freshwater communities have been directly attributed to changes in the 
cryosphere (Jacobsen et al., 2012; Milner et al., 2017), separating the direct influence of atmospheric 
warming from the influence of concomitant cryospheric change and independent biotic processes has been 
often challenging for terrestrial ecosystems (Grytnes et al., 2014; Lesica and Crone, 2016; Frei et al., 2018; 
Lamprecht et al., 2018). Changing climate in high mountains places further stress on biota, which are already 
impacted by land use and its change, direct exploitation, and pollutants (Díaz et al., 2019; Wester et al., 
2019). Species are required to shift their behaviors, including seasonal aspects, and distributional ranges to 
track suitable climate conditions (Settele et al., 2014). In SR1.5, climate change scenarios exceeding mean 
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global warming of 1.5° C relative to preindustrial levels have been estimated to lead to major impacts on 
species abundances, community structure, and ecosystem functioning in high-mountain areas (Hoegh-
Guldberg et al., 2018). The size and isolation of mountain habitats (Steinbauer et al., 2016; Cotto et al., 
2017), which may vary strongly with the topography of mountain ridges (Elsen and Tingley, 2015; Graae et 
al., 2018), affects critically the survival of species as they migrate across mountain ranges, increasing in 
general the risks for many species from climate change (Settele et al., 2014; Dobrowski and Parks, 2016). 
 
2.3.3.1   Terrestrial Biota 
The cryosphere can play a critical role in moderating and driving how species respond to climate change in 
high mountains (high confidence). Many mountain plant and animal species have changed abundances and 
migrated upslope while expanding or contracting their ranges over the past decades to century, whereas 
others show no change (Morueta-Holme et al., 2015; Suding et al., 2015; Lesica and Crone, 2016; Fadrique 
et al., 2018; Freeman et al., 2018; Rumpf et al., 2018; Johnston et al., 2019; Rumpf et al., 2019) (medium 
agreement, robust evidence). These responses are often linked directly to warming, yet a changing 
cryosphere, e.g. in the form of decreasing snow thickness or altered seasonality of snow (e.g., Matteodo et 
al., 2016; Kirkpatrick et al., 2017; Amagai et al., 2018; Wu et al., 2018) or indirectly leading to changes in 
soil moisture (Harpold and Molotch, 2015), can play a significant role for growth, fitness and survival of 
many species (e.g., Grytnes et al., 2014; Winkler et al., 2016) (medium evidence, high agreement).   
 
Cryospheric changes were found to be beneficial for some plant species and for ecosystems in some regions, 
improving a number of ecosystem services, such as by provisioning new habitat for endemic plant species 
and increasing plant productivity (high confidence). Decreasing snow-cover duration, glacier retreat and 
permafrost thaw have already and will over coming decades allow plant species, including some endemic 
species, to increase their abundance and extend their range in many mountain ranges (Yang et al., 2010a; 
Grytnes et al., 2014; Elsen and Tingley, 2015; Dolezal et al., 2016; Wang et al., 2016b; D'Amico et al., 2017; 
Liang et al., 2018; Yang et al., 2018; You et al., 2018; He et al., 2019).  Over recent decades, plant 
colonization after glacier retreat has been swift e.g. at many sites with favorable soils in the European Alps 
(Matthews and Vater, 2015; Fickert and Grüninger, 2018) or has even accelerated compared to 100 years ago 
(Fickert et al., 2016). At other sites of the European Alps (D'Amico et al., 2017) and in other mountain 
ranges (e.g., Andes and Alaska; Darcy et al., 2018; Zimmer et al., 2018) the rate of colonization remains 
slow due to soil type, soil formation and phosphorous limitation (Darcy et al., 2018). In Bhutan, snowlines 
have ascended and new plant species have established themselves in these areas, yet despite range expansion 
and increased productivity, yak herders describe impacts on the ecosystem services as mostly negative 
(Wangchuk and Wangdi, 2018). Earlier snowmelt often leads to earlier plant growth and, provided there is 
sufficient water, including from underlying permafrost, plant productivity has increased in many alpine 
regions (e.g., Williams et al., 2015; Yang et al., 2018). Decreased snow-cover duration has led to 
colonization of snowbed communities by wide-ranging species in several regions, e.g. Australian Alps 
(Pickering et al., 2014), though this can lead to declines in the abundance of resident species, e.g. Swiss Alps 
(Matteodo et al., 2016).  
 
Cryospheric change in high mountains directly harms some plant species and ecosystems in some regions, 
degrading a number of ecosystem services, such as maintaining regional and global biodiversity, and some 
provisioning services, e.g. fodder or wood production, in terms of timing and magnitude (high confidence). 
In mountains, microrefugia (a local environment different from surrounding areas) and isolation have 
contributed to high plant endemism that increases with elevation (Steinbauer et al., 2016; Zhang and Zhang, 
2017; Muellner-Riehl, 2019). Microrefugia may enable alpine species to persist if global warming remains 
below 2°C relative pre-industrial levels (Scherrer and Körner, 2011; Hannah et al., 2014; Graae et al., 2018) 
(medium evidence, medium agreement). Yet, where glaciers have been retreating over recent decades, cool 
microrefugia have shifted location or decreased in extent (Gentili et al., 2015). In regions with insufficient 
summer precipitation, earlier snowmelt and absence of permafrost lead to insufficient water supply during 
the growing season, and consequently an earlier end of peak season, altered species composition, and a 
decline in greenness or productivity (Trujillo et al., 2012; Sloat et al., 2015; Williams et al., 2015; Yang et 
al., 2018) (medium evidence, high agreement). Across elevations, alpine-restricted species show greater 
sensitivity to the timing of snowmelt than wide-ranging species (Lesica, 2014; Winkler et al., 2018), and 
though the cause is often not known, some alpine-restricted species have declined in abundance or 
disappeared in regions with distinctive flora (Evangelista et al., 2016; Giménez-Benavides et al., 2018; 
Lamprecht et al., 2018; Panetta et al., 2018) (medium evidence, high agreement). 
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The shrinking cryosphere represents a loss of critical habitat for wildlife that depend on snow and ice cover, 
affecting well-known and unique high-elevation species (high confidence). Areas with seasonal snow and 
glaciers are essential habitat for birds and mammals within mountain ecosystems for foraging, relief from 
climate stress, food caching and nesting grounds (Hall et al., 2016; Rosvold, 2016) (robust evidence). Above 
5,000 m a.s.l. in Peru, there was recently a first observation of bird nesting for which its nesting may be 
glacier obligate (Hardy et al., 2018). The insulated and thermally stable region under the snow at the soil-
snow interface, termed the subnivean, has been affected by changing snowpack, limiting winter activity and 
decreasing population growth for some mountain animals, including frogs, rodents and small carnivores 
(Penczykowski et al., 2017; Zuckerberg and Pauli, 2018; Kissel et al., 2019) (medium evidence). Many 
mountain animals have been observed to change their behavior in a subtle manner, e.g. in foraging or 
hunting behavior, due to cryospheric changes (e.g., Rosvold, 2016; Büntgen et al., 2017; Mahoney et al., 
2018) (medium evidence, high agreement). In the Canadian Rocky Mountains, grizzly bear have moved to 
new snow-free habitat after emerging in spring from hibernation to dig for forage, which may increase the 
risk of human-bear encounters (Berman et al., 2019). In the U.S. Central Rocky Mountains, migratory 
herbivores, such as elk, moose and bison, track newly emergent vegetation that greens soon after snowmelt 
(Merkle et al., 2016). For elk this was found to increase fat gain (Middleton et al., 2018). Due to loss of snow 
patches that increase surface water and thus insect abundance, some mammal species, e.g. reindeer and ibex, 
have changed their foraging behavior to evade the biting insects with negative impacts on reproductive 
fitness (Vors and Boyce, 2009; Büntgen et al., 2017).  
 
Many endemic plant and animal species including mammals and invertebrates in high-mountain regions are 
vulnerable to further decreasing snow-cover duration, i.e. later onset of snow accumulation and/or earlier 
snowmelt (high confidence) (Williams et al., 2015; Slatyer et al., 2017). Winter-white animals for which coat 
or plumage color is cued by day length will confront more days with brown snowless ground, which has 
already contributed to range contractions for several species, including hares and ptarmigan (Imperio et al., 
2013; Sultaire et al., 2016; Pedersen et al., 2017) (robust evidence). Under all climate scenarios, the duration 
of this camouflage mismatch will increase, enhancing predation rates thereby decreasing populations of coat-
color changing species (e.g., 24% decrease by late century under RCP 8.5 for snowshoe hares; Zimova et al., 
2016; see also Atmeh et al., 2018; Wilson, 2018) (medium evidence, high agreement). For roe deer (Plard et 
al., 2014) and mountain goats (White et al., 2017), climate-driven changes in snowmelt duration and summer 
temperatures will reduce survival considerably under RCP 4.5 and 8.5 scenarios (medium evidence, high 
agreement).     
 
2.3.3.2   Freshwater Biota 
  
Biota in mountain freshwater ecosystems is affected by cryospheric change through alterations in both the 
quantity and timing of runoff from glaciers and snowmelt. Where melt water from glaciers decreases, river 
flows have become more variable, with water temperature and overall channel stability increasing and 
habitats becoming less complex (Giersch et al., 2017; Milner et al., 2017) (medium evidence, medium 
agreement). 
 
Analysis of three invertebrate datasets from tropical (Ecuador), temperate (Italian Alps) and sub-Arctic 
(Iceland) alpine regions indicates that a number of cold-adapted species have decreased in abundance below 
a threshold of watershed glacier cover varying from 19–32%. With complete loss of the glaciers 11–38% of 
the regional species will be lost (Jacobsen et al., 2012; Milner et al., 2017) (medium confidence). As 
evidenced in Europe (Pyrenees, Italian Alps) and North America (Rocky Mountains) (Brown et al., 2007; 
Giersch et al., 2015; Giersch et al., 2017; Lencioni, 2018) the loss of these invertebrates, many of them 
endemic, as glacier runoff decreases and transitions to a regime more dominated by snowmelt leading to a 
reduction in turnover between and within stream reaches (beta diversity) and regional (gamma) diversity 
(very high confidence). Regional genetic diversity within individual riverine invertebrate species in mountain 
headwater areas has decreased with the loss of environmental heterogeneity (Giersch et al., 2017), as 
decreasing glacier runoff reduces the isolation of individuals permitting a greater degree of genetic 
intermixing (Finn et al., 2013; Finn et al., 2016; Jordan et al., 2016; Hotaling et al., 2018) (medium evidence, 
high agreement).  However, local (alpha) diversity, dominated by generalist species of invertebrates and 
algae, has increased (Khamis et al., 2016; Fell et al., 2017; Brown et al., 2018) (very high confidence) in 
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certain regions as species move upstream, although not in the Andes, where downstream migration has been 
observed (Jacobsen et al., 2014; Cauvy-Fraunié et al., 2016).  
 
Many climate variables influence fisheries, through both direct and indirect pathways. The key variables 
linked to cryospheric change include: changes in air and water temperature, precipitation, nutrient levels and 
ice cover (Stenseth et al., 2003). A shrinking cryosphere has significantly affected cold mountain resident 
salmonids (e.g., brook trout, Salvelinus fontinalis), causing further migration upstream in summer thereby 
shrinking their range (Hari et al., 2006; Eby et al., 2014; Young et al., 2018). Within the Yanamarey 
watershed of the Cordillera Blanca in Peru, fish stocks have either declined markedly or have become extinct 
in many streams, possibly due to seasonal reductions of fish habitat in the upper watershed resulting from 
glacier recession (Bury et al., 2011; Vuille et al., 2018). In contrast, glacier recession in the mountains of 
coastal Alaska and to a lesser extent the Pacific Northwest have created a large number of new stream 
systems that have been, and could continue to be with further glacier retreat, colonized from the sea by 
salmon species that contribute to both commercial and sport fisheries (Milner et al., 2017; Schoen et al., 
2017) (medium confidence). Changes in water temperature will vary seasonally, and a potential decreased 
frequency of rain-on-snow events in winter compared to rain-on-ground would increase water temperature, 
benefiting overwintering survival (Leach and Moore, 2014). Increased water temperature remaining below 
thermal tolerance limits for fish and occurring earlier in the year can benefit overall fish growth and increase 
fitness (Comola et al., 2015) (medium evidence, medium agreement). 
 
In the future, increased primary production dominated by diatoms and golden algae will occur in streams as 
glacier runoff decreases, although some cold-tolerant diatom species will be lost, resulting in a decrease in 
regional diversity (Fell et al., 2017; Fell et al., 2018). Reduced glacier runoff is projected to improve water 
clarity in many mountain lakes, increasing biotic diversity and the abundance of bacterial and algal 
communities and thus primary production (Peter and Sommaruga, 2016) (limited evidence). Extinction of 
range-restricted prey species may increase as more favourable conditions facilitate the upstream movement 
of large-bodied invertebrate predators (Khamis et al., 2015) (medium confidence). Modelling studies indicate 
a reduction in the range of native species, notably trout, in mountain streams, (Papadaki et al., 2016; Vigano 
et al., 2016; Young et al., 2018) (medium evidence, high agreement), which will potentially impact sport 
fisheries. In Northwest North America, where salmon are important in native subsistence as well as 
commercial and sport fisheries, all species will potentially be affected by reductions in glacial runoff from 
mountain glaciers over time (Milner et al., 2017; Schoen et al., 2017), particularly in larger systems where 
migratory corridors to spawning grounds are reduced (medium confidence).  
 
In summary, cryospheric change will alter freshwater communities with increases in local biodiversity but 
range shrinkage and extinctions for some species causes regional biodiversity to decrease (robust evidence, 
medium agreement, i.e. high confidence). 
 
 2.3.3.3   Ecosystem Services and Adaptation 
  
The trend to a higher productivity in high-mountain ecosystems due to a warmer environment and 
cryospheric changes, affects provisioning and regulating services (high confidence). Due to earlier snowmelt, 
the growing season has begun earlier, e.g. on the Tibetan Plateau, and in the Swiss Alps (Wang et al., 2017; 
Xie et al., 2018), and in some regions earlier growth has been linked to greater plant production or greater 
net ecosystem production, i.e. carbon uptake (Scholz et al., 2018; Wang et al., 2018; Wu et al., 2018). In 
other areas productivity has decreased, despite a longer growing season, e.g. in U.S. Rocky Mountains, U.S. 
Sierra Nevada Mountains, Swiss Alps, and Tibetan Plateau (Arnold et al., 2014; Sloat et al., 2015; Wang et 
al., 2017; De Boeck et al., 2018; Knowles et al., 2018) (robust evidence, medium agreement). Changed 
productivity of the vegetation in turn can affect the timing, quantity and quality of water supply, a critical 
regulating service ecosystems play in high mountain areas (Goulden and Bales, 2014; Hubbard et al., 2018) 
(medium confidence). Permafrost degradation has dramatically changed some alpine ecosystems through 
altered soil temperature and permeability, decreasing the climate regulating service of a vast region and 
leading to lowered ground water and new and shrinking lakes on the Tibetan Plateau (Jin et al., 2009; Yang 
et al., 2010b; Shen et al., 2018) (medium evidence, high agreement).  
 
Ecosystems and their services are vulnerable to changes in the intensity and/or the frequency of a disturbance 
regime that exceed the previous range of variation (Johnstone et al., 2016; Camac et al., 2017; Fairman et al., 
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2017); cf. 3.4.3.2 Ecosystems and their Services) (high confidence). For example for fire in the Western 
USA, mountain ecosystems are experiencing an increase in the number and extent of wildfires, which have 
been attributed to many factors including climate factors such as earlier snowmelt and vapor-pressure deficit 
(Settele et al., 2014; Westerling, 2016; Kitzberger et al., 2017; Littell, 2018; Littell et al., 2018). Similarly, 
landslides and floods in many areas have been attributed to cryospheric changes (Section 2.3.2). 
Disturbances can feedback and diminish many of the ecosystem services such as provisioning, regulating, 
and cultural services (Millar and Stephenson, 2015; McDowell and Koppes, 2017; Mcdowell et al., 2018; 
Murphy et al., 2018; Maxwell et al., 2019). , Consistent with AR5 findings (Settele et al., 2014) the capacity 
of many freshwater and terrestrial mountain species to adapt naturally to climate change is projected to be 
exceeded for high warming levels, leading to species migration across mountain ranges or loss with 
consequences for many ecosystem services (Elsen and Tingley, 2015; Dobrowski and Parks, 2016; Pecl et 
al., 2017; Rumpf et al., 2019)  (robust evidence, medium agreement, i.e. high confidence). Although the 
adaptive potential of aquatic biota to projected changes in glacial runoff is not fully understood (Lencioni et 
al., 2015), dispersion and phenotypic plasticity together with additional microrefugia formation due to 
cryospheric changes, is expected to help threatened species to better adapt, perhaps even in the long term 
(Shama and Robinson, 2009). Likewise, traits shaped by climate and with high genetically-based standing 
variation may be used to spatially identify, map, and manage global “hotspots” for evolutionary rescue from 
climate change (Jones et al., 2018; Mills et al., 2018). Nature conservation increases the potential for 
mitigating adverse effects on many of these ecosystem services, including those that are essential for the 
support of the livelihoods and the culture of mountain peoples, including economical aspects such as 
recreation and tourism (e.g., Palomo, 2017; Elsen et al., 2018; Wester et al., 2019) (medium confidence).  
 
2.3.4 Infrastructure and Mining 
 
There is high confidence that permafrost thaw has had negative impacts on the integrity of infrastructure in 
high-mountain areas. Like in polar regions (Section 3.4.3.3.4), the local effects of infrastructure together 
with climate change degraded permafrost beneath and around structures (Dall’Amico et al., 2011; Doré et 
al., 2016) Infrastructure on permafrost in the European Alps, mostly found near mountain summits but not in 
major valleys, has been destabilised by permafrost thaw, including mountain stations in France and Austria 
(Ravanel et al., 2013; Keuschnig et al., 2015; Duvillard et al., 2019) as well as avalanche defence structures 
(Phillips and Margreth, 2008) and a ski lift (Phillips and Morrow, 2007) in Switzerland. On the Tibet 
Plateau, deformation or damage has been found on roads (Yu et al., 2013; Chai et al., 2018), power 
transmission infrastructure (Guo et al., 2016) and around an oil pipeline (Yu et al., 2016). For infrastructure 
on permafrost, engineering practices suitable for polar and high-mountain environments (Doré et al., 2016) 
as well as specific for steep terrain (Bommer et al., 2010) have been developed to support adaptation. 
 
In some mountain regions, glacier retreat and related processes of change in the cryosphere have afforded 
greater accessibility for extractive industries and related activities to mine minerals and metals (medium 
confidence). Accelerated glacier shrinkage and retreat have been reported to facilitate mining activities in 
Chile, Argentina and Peru (Brenning, 2008; Brenning and Azócar, 2010; Anacona et al., 2018) and 
Kyrgyzstan (Kronenberg, 2013; Petrakov et al., 2016), which also interact with and have consequences for 
other social, cultural, economic, political, and legal measures, where climate change impacts also play a role 
(Brenning and Azócar, 2010; Evans et al., 2016; Khadim, 2016; Anacona et al., 2018). However, negative 
impacts due to cryosphere changes may also occur. One study projects that reductions in glacier meltwater 
and snowmelt in the watershed in the Chilean Andes will lead to a reduction of water supply to a copper 
mine by 2075–2100 of 28% under scenario A2 and of 6% under B2; construction of infrastructure to draw 
water from other sources will cost between US$ 16–137 million (Correa-Ibanez et al., 2018). 
 
Conversely, there is also evidence suggesting that some of these mining activities affect glaciers locally, and 
the mountain environment around them, further altering glacier dynamics, glacier structure and permafrost 
degradation, due mainly to excavation, extraction, and use of explosives (Brenning, 2008; Brenning and 
Azócar, 2010; Kronenberg, 2013), and deposition of dust and other mine waste material close to or top of 
glaciers during extraction and transportation (Brenning, 2008; Torgoev and Omorov, 2014; Arenson et al., 
2015b; Jamieson et al., 2015). These activities have reportedly generated slope instabilities (Brenning, 2008; 
Brenning and Azócar, 2010; Torgoev and Omorov, 2014), glacier mass loss due to enhanced surface melt 
from dust and debris deposition (Torgoev and Omorov, 2014; Arenson et al., 2015b; Petrakov et al., 2016), 
and even glacier advance by several kilometres (Jamieson et al., 2015), although their impact is considered 
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less than that reported for changes in glaciers due to climatic change (limited evidence, medium agreement). 
Glacier Protection Laws and similar measures have been introduced in countries such as Chile and Argentina 
to address these impacts (Khadim, 2016; Anacona et al., 2018; Navarro et al., 2018). In addition, the United 
Nations Human Rights Council passed a declaration in 2018 to “protect and restore water-related 
ecosystems” in mountain areas as elsewhere from contamination by mining (UNHRC, 2018); however, 
evidence on the effectiveness of these measures remains inconclusive. 
 
2.3.5 Tourism and Recreation 
 
The mountain cryosphere provides important aesthetic, cultural, and recreational services to society (Xiao et 
al., 2015). These services support tourism, providing economic contributions and livelihood options to 
mountain communities and beyond. The relevant changes in the cryosphere affecting mountain tourism and 
recreation include shorter seasons of snow cover, more winter precipitation falling as rain instead of snow, 
and declining glaciers and permafrost (Sections 2.2.1, 2.2.2 and 2.2.3). Downhill skiing, the most popular 
form of snow recreation, occurs in 67 countries (Vanat, 2018). The Alps in Europe support the largest ski 
industry (Vanat, 2018). In Europe, the growth of alpine skiing and winter tourism after 1930 brought major 
economic growth to alpine regions and transformed winter sports into a multi-billion USD industry 
(Denning, 2014). Sixteen percent of skier visits occur in the USA, where expenditures from all recreational 
snow sports generated more than 695,000 jobs and 72.7 billion USD in trip-related spending in 2016 
(Outdoor Industry Association, 2017). While the number of ski resorts in the USA has been decreasing since 
the 1980s, China added 57 new ski resorts in 2017 (Vanat, 2018). Although the bulk of economic activity is 
held within mountain communities, supply chains for production of ski equipment and apparel span the 
globe. Steiger et al. (2017) point out that Asia, Africa and South America are underrepresented in the ski 
tourism literature, and Africa and the Middle East are not significant markets from a ski tourism perspective. 
 
Skiing’s reliance on favourable atmospheric and snow conditions make it particularly vulnerable to climate 
change (Arent et al., 2014; Hoegh-Guldberg et al., 2018). Snow reliability, although not universally defined, 
quantifies whether the snow cover is sufficient for ski resorts operations. Depending on the context, it 
focuses on specific periods of the winter season, and may account for interannual variability and/or for snow 
management (Steiger et al., 2017). The effects of less snow, due to strong correlation between snow cover 
and skier visits, cost the economy of the USA 1 billion USD and 17,400 jobs per year between 2001 and 
2016 in years of less seasonal snow (Hagenstad et al., 2018). Efforts to reduce climate change impacts and 
risks to economic losses focus on increased snowmaking, i.e., artificial production of snow (Steiger et al., 
2017), summertime slope preparation (Pintaldi et al., 2017), grooming (Steiger et al., 2017), and snow 
farming, i.e. storage of snow (Grünewald et al., 2018). The effectiveness of snow management methods as 
adaptation to long-term climate change depends on sufficiently low air temperature conditions needed for 
snowmaking, water and energy availability, compliance with environmental regulations (de Jong, 2015), and 
ability to pay for investment and operating costs. When these requirements are met, evidence over the past 
decades shows that snow management methods have generally proven efficient in reducing the impact of 
reduced natural snow cover duration for many resorts (Dawson and Scott, 2013; Hopkins and Maclean, 
2014; Steiger et al., 2017; Spandre et al., 2019a). The number of skier visits was found to be 39% less 
sensitive to natural snow variations in Swiss ski resorts with 30% areal snowmaking coverage (representing 
the national average), compared to resorts without snowmaking (Gonseth, 2013). In some regions, many 
resorts (mostly smaller, low-elevation resorts) have closed due to unfavourable snow conditions brought on 
by climate change and/or the associated need for large capital investments for snowmaking capacities (e.g., 
in north-eastern USA; Beaudin and Huang, 2014)). To offset loss in ski tourism revenue, a key adaptation 
strategy is diversification, offering other non-snow recreation options such as mountain biking, mountain 
coasters and alpine slides, indoor climbing walls and water parks, festivals and other special events (Figure 
2.9; Hagenstad et al., 2018; Da Silva et al., 2019). 
 
In the near term (2031–2050) and regardless of the greenhouse gas emission scenario, risks to snow 
reliability exist for many resorts, especially at lower elevation, although snow reliability is projected to be 
maintained at many resorts in North America (Wobus et al., 2017) and in the European Alps, Pyrenees and 
in Scandinavia (Marke et al., 2015; Steiger et al., 2017; Scott et al., 2019; Spandre et al., 2019a; Spandre et 
al., 2019b). At the end of the century (2081–2100), under RCP8.5 snow reliability is projected to be unviable 
for most ski resorts under current operating practices in North America, the European Alps and Pyrenees, 
Scandinavia and Japan, with some exceptions at high elevation or high latitudes (Steiger et al., 2017; Wobus 
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et al., 2017; Suzuki-Parker et al., 2018; Scott et al., 2019; Spandre et al., 2019a; Spandre et al., 2019b). Only 
few studies have used RCP2.6 in the context of ski tourism, and results indicate that the risks at the end of 
the century (2081–2100) are expected to be similar to the near term impacts (2031–2050) (Scott et al., 2019; 
Spandre et al., 2019a). 
 
The projected economic losses reported in the literature include an annual loss in hotel revenues of 560 
million Euro (2012 value) in Europe, compared to the period 1971–2000 under a 2°C global warming 
scenario (Damm et al., 2017). This estimate includes population projections but does not account for snow 
management. In the USA, Wobus et al. (2017) estimate annual revenue losses from tickets (skiing) and day 
fees (cross country skiing and snowmobiling) due to reduced snow season length, range from 340 to 780 
million USD in 2050 for RCP4.5 and RCP8.5, respectively, and from 130 million USD to 2 billion USD in 
2090 for RCP4.5 and RCP8.5, respectively, taking into account snow management and population 
projections. Total economic losses from these studies would be much higher if all costs were included (costs 
for tickets, transport, lodging, food, and equipment). Regardless of the climate scenario, as risk of financial 
unviability increases, there are reported expectations that companies would need to forecast when their assets 
may become stranded assets and require devaluation or conversion to liabilities, and report this on their 
balance sheets (Caldecott et al., 2016). Economic impacts are projected to occur in other snow-based winter 
activities including events (e.g., ski races) and other recreation activities such as cross-country skiing, 
snowshoeing, backcountry skiing, ice climbing, sledding, snowmobiling and snow tubing. By 2050, 13 (out 
of 21) prior Olympic Winter Games locations are projected to exhibit adequate snow reliability under 
RCP2.6, and 10 under RCP8.5. By 2080, the number decreases to 12 and 8, respectively (Scott et al., 2018). 
Even for cities remaining cold enough to host ski competitions, costs are projected to rise for making and 
stockpiling snow, as was the case in Sochi, Russia, 2014 and Vancouver, Canada, 2010 (Scott et al., 2018), 
and preserving race courses such as salting (Hagenstad et al., 2018). 
 
In summer, cryosphere changes are impacting glacier-related activities (hiking, sightseeing, skiing and 
climbing and mountaineering) (Figure 2.8). In recent years, several ski resorts operating on glaciers have 
ceased summer operations due to unfavourable snow conditions and excessive operating costs (e.g., Falk, 
2016). Snow management and snowmaking are increasingly used on glaciers (Fischer et al., 2016). Glacier 
retreat has led to increased moraine instability which can compromise hiker and climber safety along 
established trails and common access routes, e.g. in Iceland (Welling et al., 2019), though it has made some 
areas in the Peruvian Andes more accessible to trekkers (Vuille et al., 2018). In response, some hiking routes 
have been adjusted and ladders and fixed anchors installed, (Duvillard et al., 2015; Mourey and Ravanel, 
2017). As permafrost thaws, rock falls on and off glaciers are increasingly observed, threatening the safety of 
hikers and mountaineers, e.g. in Switzerland (Temme, 2015) and New Zealand (Purdie et al., 2015). Glacier 
retreat and permafrost thaw have induced major changes to iconic mountaineering routes in the Mont-Blanc 
area with impacts on mountaineering practices, such as shifts in suitable climbing seasons, and reduced route 
safety (Mourey and Ravanel, 2017; Mourey et al., 2019). Cryosphere decline has also reduced opportunities 
for ice-climbing and reduced attractions for summer trekking in the Cascade Mountains, USA (Orlove et al., 
2019). In response to these impacts, tour companies have shifted to new sites, diversified to offer other 
activities or simply reduced their activities (Furunes and Mykletun, 2012) (Figure 2.9). Steps to improve 
consultation and participatory approaches to understand risk perception and design joint action between 
affected communities, authorities and operators, are evident, e.g. in Iceland (Welling et al., 2019). In some 
cases, new opportunities are presented such as marketing “climate change tourism” where visitors are 
attracted by ‘last chance’ opportunities to view a glacier; e.g. in New Zealand (Stewart et al., 2016), in China 
(Wang et al., 2010) or through changing landscapes such as new lakes, for instance in Iceland (Þórhallsdóttir 
and Ólafsson, 2017) or to view the loss of a glacier, e.g. in the Bolivian Andes (Kaenzig et al., 2016). The 
opening of a trekking route promoting this opportunity created tensions between a National Park and a local 
indigenous community in the Peruvian Andes over the management and allocation of revenue from the route 
(Rasmussen, 2019). The consequences of ongoing and future glacier retreat are projected to negatively 
impact trekking and mountaineering in the Himalaya (Watson and King, 2018). Reduced snow cover has 
also negatively impacted trekking in the Himalaya, since tourists find the mountains less attractive as a 
destination, and the reduced water availability affects the ability of hotels and campsites to serve visitors 
(Becken et al., 2013). 
 
In summary, financial risks to mountain communities that depend on tourism for income, are high and 
include losses to revenues generated from recreation primarily in the winter season. Adaptation to 
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cryosphere change for ski tourism focuses on snowmaking and is expected to be moderately effective for 
many locations in the near term (2031–2050), but it is unlikely to substantially reduce the risks in most 
locations in the longer term (end of century) (high confidence). Determining the extent to which glacier 
retreat and permafrost thaw impact upon overall visitor numbers in summer tourism, and how any losses or 
increased costs are offset by opportunities, is inconclusive. Furthermore, tourism is also impacted by 
cryospheric change that impacts on water resources availability, increasing competition for its use (Section 
2.3.1.3). 
 
 

 
Figure 2.9: a) Documented number of individual adaptation actions distributed across seven of the high-mountain 
regions addressed in this Chapter, with pie charts indicating the number of adaptation measures for sectors addressed in 
this chapter (left pie chart), and the relative proportion of these classified as either ‘formal’, ‘autonomous’ or 
‘undefined’ (right pie chart). Note that for regions with less than 5 reported adaptation measures were excluded from 
the figure (i.e. Caucasus, Iceland and Alaska), however these are detailed in Table SM2.9. b) Number of publications 
reported in the assessed literature over time. In some cases, multiple adaptation measures are discussed in a single 
publication (Table SM2.9). 
 
 
2.3.6 Cultural Values and Human Well-being 
 
Cryosphere changes also impact cultural values, which are held by populations in high mountains and other 
regions around the world; these impacts often harm human well-being (Tschakert et al., 2019) (medium 
evidence, high agreement). Cultural values were covered extensively in AR5, with particular emphasis on 
small island states and the Arctic; the research on cultural values in high-mountain regions is relatively new. 
Out of a total of 247 UNESCO World Heritage natural sites recognized for their outstanding universal value, 
46 sites include glaciers within their boundaries, where the presence of glaciers is stated among the principal 
reason (5 sites), or secondary reason (28 sites), for World Heritage inscription; complete glacier extinction is 
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projected by 2100 in 8 to 21 of these sites, under RCP2.6 and RCP8.5 scenarios, respectively, compromising 
the outstanding universal value placed on these sites, which have been inscribed at least partly for their 
exceptional glaciers (Bosson et al., 2019). UNESCO defines “outstanding universal value” as “cultural 
and/or natural significance which is so exceptional as to transcend national boundaries and to be of common 
importance for present and future generations of all humanity” (UNESCO, 2012). Furthermore, in 
recognising the importance of the cultural and intangible value placed by communities on aspects of their 
surrounding environment, such as those afforded by crysosphere elements in the high mountains, are 
mentioned under the workplan of the Warsaw International Mechanism as a specific work area under ‘Non-
economic loss and damage’ (UNFCCC Secretariat, 2014; Serdeczny, 2019). 
 
Cultural values include spiritual, intrinsic and existence values, as well as aesthetic dimensions, which are 
also an element of tourism and recreation (Section 2.3.6), though they focus more directly on ties to sacred 
beings or to inherent rights of entities to exist. However, these values overlap, since the visual appeal of 
natural landscapes links with a sense of the immensity of mountain landscapes, glaciers and fresh snow 
(Paden et al., 2013; Gagné et al., 2014). Moreover, different stakeholders, such as local communities, tourists 
and policy-makers, may place different emphasis on specific cultural values (Schirpke et al., 2016). For the 
indigenous Manangi community of the Annapurna Conservation Area of Nepal, the loss of glaciers which 
they have observed threatens their ethnic identity (Konchar et al., 2015). Villagers in the Italian Alps also 
report that glacier retreat weakens their identity (Jurt et al., 2015). 
 
Spiritual and intrinsic values in high-mountain regions often, but not exclusively, rest on deeply-held 
religious beliefs and other local customs (medium evidence, high agreement). Some communities understand 
mountains through a religious framework (Bernbaum, 2006). In settings as diverse as the Peruvian Andes, 
the Nepal Himalaya, the Alps, the North Cascades (US), Mount Kilimanjaro and the Hengduan Mountains of 
southwest China, local populations view glacier retreat as the product of their failure to show respect to 
sacred beings or to follow proper conduct. Experiencing deep concern that they have disturbed cosmic order, 
they seek to behave in closer accord with established traditions; they anticipate that the retreat will continue, 
leading to further environmental degradation and to the decline of natural and social orders—a prospect 
which causes them distress (Becken et al., 2013; Gagné et al., 2014; Allison, 2015). In the USA, the snow-
covered peaks of the Cascades have also evoked a deep sense of awe and majesty, and an obligation to 
protect them (Carroll, 2012; Duntley, 2015). Similar views are found in the Italian Alps, where villagers 
speak of treating glacier peaks with “respect,” and state that glacier retreat is due, at least in part, to humans 
“disturbing” the glaciers (Brugger et al., 2013), resulting in an emotion which Albrecht et al. (2007) termed 
solastalgia, a kind of deep environmental distress or ecological grief (Cunsolo and Ellis, 2018). 
 
Glacier retreat threatens the Indigenous Knowledge and Local Knowledge of populations in mountain 
regions; this knowledge constitutes a cultural service to wider society by contributing to scientific 
understanding of glaciers (Cross-Chapter Box 4 in Chapter 1). Though this knowledge is dynamic, and 
records previous states of glaciers, it has been undermined by the complete disappearance of glaciers in a 
local area (Rhoades et al., 2008). This knowledge of glaciers is often tied to religious beliefs and practices. It 
is based on direct observation, stories passed down from one generation to another within community, 
placenames, locations of structures and other sources (Gagné et al., 2014). Residents of mountain areas can 
provide dates for previous locations of glacier fronts, sometimes documenting these locations through the 
presence of structures (Brugger et al., 2013). Much like other cases of data from citizen science (Theobald et 
al., 2015), their observations often overlap with the record of instrumental observations (Deng et al., 2012), 
and can significantly extend this record (Mark et al., 2010). 
 
An additional cultural value is the contribution of glaciers to the understanding of human history. Glacier 
retreat has supported the increase of knowledge of past societies by providing access to archaeological 
materials and other cultural resources that had previously been covered by ice. The discovery of Oetzi, a 
mummified Bronze Age man whose remains were discovered in 1991 in the Alps near the Italian-Austrian 
border, marked the beginning of scientific research with such materials (Putzer and Festi, 2014). Subsequent 
papers described objects that were uncovered in retreating glaciers and shrinking ice patches in the 
Wrangell-Saint Elias Range (Dixon et al., 2005), the Rocky Mountains (Lee, 2012) and Norway (Bjørgo et 
al., 2016). This field provides new insight into human cultural history and contributes to global awareness of 
climate change (Dixon et al., 2014). Though climate change permits the discovery of new artefacts and sites, 
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it also threatens these objects and places, since they become newly exposed to harsh weather (Callanan, 
2016). 
 
2.3.7 Migration, Habitability and Livelihoods 
 
High-mountain communities have historically included mobility in their sets of livelihood strategies, as a 
means to gain access to production zones at different elevations within mountain zones and in lowland areas, 
and as a response to the strong seasonality of agricultural and pastoral livelihoods. Cryosphere changes in 
high-mountain areas have influenced human mobility and migration during this century by altering water 
availability and increasing exposure to mass movements and floods and other cryospheric induced disasters 
(Figure 2.7) (Barnett et al., 2005; Carey et al., 2017; Rasul and Molden, 2019). These changes affect three 
forms of human mobility: transhumant pastoralism, temporary or permanent wage labour migration, and 
displacement, in which entire communities resettle in new areas. 
 
Transhumant pastoralism, involving movements between summer and winter pastures, is a centuries-old 
practice in high-mountain areas (Lozny, 2013). In High Mountain Asia and other regions, it is declining, due 
to climatic factors, including changes in snow distribution and glaciers, and to non-climatic factors, and is 
projected to continue declining, at least in the short term (medium evidence, high agreement). The changes in 
snow and glaciers adversely affect herders at their summer residences and winter camps in the Himalaya 
(Namgay et al., 2014) and in Scandinavian mountains (Mallory and Boyce, 2018). Reduced winter snowfall 
has led to poorer pasture quality in Nepal (Gentle and Maraseni, 2012) and India (Ingty, 2017). Other climate 
change impacts, including erratic snowfall patterns and a decrease in rainfall, are perceived by herders in 
Afghanistan, Nepal and Pakistan to have resulted in vegetation of lower quality and quantity (Shaoliang et 
al., 2012; Joshi et al., 2013; Gentle and Thwaites, 2016). Heavy snowfall incidents in winter caused deaths of 
a large number of livestock in northern Pakistan in 2009 (Shaoliang et al., 2012). Herders in Nepal reported 
of water scarcity in traditional water sources along migration routes (Gentle and Thwaites, 2016). Increased 
glacier meltwater has caused lakes on the Tibet Plateau to increase in size, covering pasture areas and 
leading pastoralists to alter their patterns of seasonal movement (Nyima and Hopping, 2019). However, 
rising temperatures, with associated effects on snow cover, have some positive impacts. Seasonal migration 
from winter to summer pastures start earlier in northern Pakistan, and residence in summer pasture lasts 
longer (Joshi et al., 2013), as it does in Afghanistan (Shaoliang et al., 2012). 
 
Wage labour migration is also a centuries-old practice in the Himalaya, the Andes and the European Alps 
(Macfarlane, 1976; Cole, 1985; Viazzo, 1989). Studies show that migration is a second-order effect of 
cryosphere changes, since the first-order effects, a decrease in agricultural production (Section 2.3.1.3.1), 
have led in a number of regions to increased wage labour migration to provide supplementary income 
(medium evidence, high agreement). Wage labour migration linked to cryosphere changes occurs on several 
time scales, including short-term, long-term and permanent migration, and on different spatial scales; though 
migration usually takes place within the country of origin, and sometimes within the region; cases of 
international migration have also been recorded (Merrey et al., 2018). The studies since AR5 on migration 
driven by cryosphere changes are concentrated in High Mountain Asia and the Andes, supporting the 
finding, reported in AR5 Working Group II (Section 12.7), that stress on livelihoods is an important driver of 
climate change induced migration. The research on such migration also supports the finding in SR15 
(Section 4.3.5.6) that migration can have mixed outcomes on reducing socio-economic vulnerability, since 
cases of increase and of reduction of vulnerability are both found in migration from high-mountain regions 
that is driven by cryosphere changes.  
 
Changing water availability, mass movements and floods are cryosphere processes which drive wage labour 
migration (medium evidence, high agreement). A debris flow in central Nepal in 2014, in a region where 
landslides have increased in recent decades, led more than half the households to migrate for months (van 
der Geest and Schindler, 2016). In the Santa River drainage, Peru, rural populations have declined 10% 
between 1970 and 2000, and the area of several major subsistence crops also declined (Bury et al., 2013). 
Research in this region suggests that seasonal wage labour migration from small basins within the main 
Santa basin is largest in the small drainages in which glacier retreat has reduced meltwater flow most 
significantly; where this process is not as acute, and streamflow is less reduced, migration rates are lower  
(Wrathall et al., 2014). A study from a region in the central Peruvian Andes shows that the residents of the 
villages that have the highest dependence on glacier meltwater travel further and stay away longer than the 
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residents of the villages where glacier meltwater forms a smaller portion of stream flow (Milan and Ho, 
2014). However, the inverse relation between reliance on cryosphere-related water sources and migration 
was noted in a case in the Naryn River drainage in Kyrgyzstan, where the villages that are more dependent 
on glacier meltwater had lower, rather than higher, rates of wage labour migration than the villages which 
were less dependent on it; the villages with lower rates of such migration also had more efficient water 
management institutions than the others (Hill et al., 2017). Several studies, which project cryosphere-related 
emigration to continue in the short term, emphasize decreased water availability, due to glacier retreat as a 
driver in Kyrgyzstan (Chandonnet et al., 2016) and Peru (Oliver-Smith, 2014), and to reduced snow cover in 
Nepal (Prasain, 2018). In most cases, climate is only one of several drivers (employment opportunities and 
better educational and health services in lowland areas are others). 
 
Several studies show that wage labour migration is more frequent among young adults than among other age 
groups, supporting the observation in AR5 that climate change migrants worldwide are concentrated in this 
age (limited evidence, high agreement). This age-specific pattern is found in a valley in northern Pakistan in 
which agriculture relies on glacier meltwater for irrigation; as river flow decreases, the returns to agricultural 
labour have declined, and emigration has increased, particularly among the youth, who are assigned, by local 
cultural practices, to carry out the heaviest work (Parveen et al., 2015). Emigration has increased in recent 
decades from two valleys in highland Bolivia which rely on glacier meltwater, as water supplies have 
declined, though other factors also contribute to emigration, including land fragmentation, increasing 
household needs for income, the lack of local wage-labour opportunities and an interest among the young in 
educational opportunities located in cities (Brandt et al., 2016). In Nepal, young members of high-elevation 
pastoral households impacted by cryosphere change have been increasingly engaged in tourism and labour 
migration since 2000 (Shaoliang et al., 2012); similar responses are reported for Sikkim in the Indian 
Himalaya (Ingty, 2017). A recent study documents the inter-generational dynamics of emigration from a 
livestock-raising community in the Peruvian Andes, where glacier retreat has led to reduced streamflow that 
support crucial dry-season pasture (Alata et al., 2018). Though people 50 years old or older in this 
community are accustomed to living in the high pasture zones, younger people use livestock-raising as a 
means of accumulating capital. They sell off their animals and move to towns at lower elevations. This loss 
of young adults has reduced the capacity of households to undertake the most demanding tasks, particularly 
in periods of inclement weather, accelerating the decline of herding. As a result, the human and animal 
populations of the communities are shrinking. 
 
Recent research on cryosphere-driven migration shows some cases of complex livelihood interactions or 
feedback loops, in which migration is not merely a result of changes in agricultural livelihoods, but also has 
impacts, either positive or negative, on these livelihoods (medium confidence). In some instances, the 
different livelihood strategies complement each other to support income and well-being. A review of 
migration in the Himalaya and Hindu Kush found that households that participated in labour migration and 
received remittances had improved adaptive capacity, and lowered exposure to natural hazards (Banerjee et 
al., 2018). In other cases, the households and communities, which undertake wage labour migration, 
encounter conflicts or incompatibilities between migration and agricultural livelihoods. Sustainable 
management of land, water and other resources is highly labour intensive, and hence labour mobility 
constrains and limits the adoption of sustainable practices (Gilles et al., 2013). Moreover, the labour 
available to a household is differentiated by age. In northern Pakistan, where cryosphere changes are 
reducing streamflow the emigration of young people has led to a decline not only in the labour in fields and 
orchards, but also a decline in the maintenance of irrigation infrastructure, leading to an overall reduction of 
the agricultural livelihoods in the community (Parveen et al., 2015). 
 
In addition to affecting pastoral transhumance and increasing wage labour migration, cryosphere changes 
impact human mobility by creating cases of displacement. These cases differ from wage labour migration 
because they involve entire communities. As a result, they are irreversible, unlike cases in which individuals 
undertake long-term or permanent migration from their communities but retain the possibility of returning, 
because, for example, some relatives or former neighbours have remained in place. In this way, these cases 
of displacement represent cryosphere-driven challenges to habitability. Though natural hazards have 
historically led some communities to relocate (Section 2.3.2.1.4, Box 2.4), cryosphere changes have 
contributed to instances of displacement. Unreliable water availability and increased risks of natural hazards 
are responsible for resettlement of villages in certain high-mountain areas (McDonald, 1989; Parveen et al., 
2015). A village in western Nepal moved to lower elevation after decreasing snowfall reduced the flow of 
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water in the river on which their pastoralism and agriculture depended (Barnett et al., 2005). Three villages 
in Nepal faced severe declines in agricultural and pastoral livelihoods because decreased snow cover led to 
reduced soil moisture and to the drying up of springs, which were the historical source of irrigation water; in 
conjunction with an international non-governmental organisation (INGO), the residents planned a move to a 
lower area (Prasain, 2018).  
 
The issue of habitability arises in the cases, mentioned above, of communities that relocate after floods or 
debris flows destroy houses and irrigation infrastructure, or damage fields and pastures. It occurs as well in 
the cases of households with extensive long-term migration, where agricultural and pastoral livelihoods are 
undermined by reduced water supply caused by cryospheric change (Barnett et al., 2005). In addition, the 
loss of cultural values, including spiritual and intrinsic values (Section 2.3.5), can contribute to decisions to 
migrate (Kaenzig, 2015). Combined with the patterns of permanent emigration, this issue of habitability 
raises the issue of limits to adaptation in mountain areas (Huggel et al., 2019). Projections of decreased 
streamflow by 2100 in watersheds with strong glacier meltwater components in Asia, Europe, and North and 
South America (Section 2.3.1.1) indicate that threats to habitability may continue through this period and 
affect the endeavours of achieving the sustainable development goals (SDGs) in developing countries (Rasul 
et al., 2019). 
 
 
2.4 International Policy Frameworks and Pathways to Sustainable Development 
 
The governance of key resources that are affected by climate-related changes in the cryosphere, such as 
water, is a relevant aspect for climate resilient sustainable development in mountains at the catchment level 
(Section 2.3.1.4). In this section, we address broader policy frameworks that are expected to shape a solution 
space through global action. An important development since AR5, at the global level, is the adoption of key 
frameworks that include the Paris Agreement (UNFCCC, 2015), UN 2030 Agenda and its Sustainable 
Development Goals (SDGs) (UN, 2015), and the Sendai Framework for Disaster Risk Reduction (UNISDR, 
2015), which call for integrated and coordinated climate adaptation action that is also relevant for and 
applicable in mountain regions. 
 
In international climate policy, the importance of averting, minimizing and addressing loss and damage 
associated with adverse impacts of climate change is articulated in the Paris Agreement under Article 8, 
more specifically (UNFCCC, 2015). However, despite evident impacts of climate change on the mountain 
cryosphere (Section 2.3.2), there is limited evidence or reference in the literature to loss and damage for 
mountains, globally (Huggel et al., 2019). With already committed and unavoidable climate change, its 
effects on the high-mountain cryosphere (Section 2.2) and related impacts and risks (Section 2.3), substantial 
adverse effects are expected in the coming decades (Huggel et al., 2019), especially at high emission 
scenarios, which renders this issue a relevant aspect for planning climate resilient development in mountains. 
At least in one region, a concrete example for responding to and translating the Paris Agreement in a 
transboundary mountain setting, is reported. In 2015, through policy measures afforded by the Alpine 
Convention, the ministers for the environment of the Alpine countries established the Alpine Climate Board, 
who at the XV Alpine Conference in April 2019, presented a climate target system that includes strategic 
targets for ‘climate-resilient Alps’ (Hojesky et al., 2019). The implementation and monitoring of these 
initiatives, however, remains to be assessed on an evidentiary basis. Furthermore, mechanisms afforded 
through the workplan of the Warsaw International Mechanism, specifically its work area under ‘Non-
economic loss and damage’, are prospects relevant to address impacts to cultural and intrinsic values 
associated with losses in the high mountain cryosphere (UNFCCC Secretariat, 2014; Serdeczny, 2019). 
 
Monitoring and reporting on progress towards sustainable development through the implementation of the 
SDGs (UN, 2015) is receiving some research attention in the context of mountain regions (Rasul and 
Tripura, 2016; Gratzer and Keeton, 2017; Bracher et al., 2018; Wymann von Dach et al., 2018 ; Kulonen et 
al., 2019; Mishra et al., 2019), noting key mountain-specific considerations to improve the conditions under 
which the SDGs may serve a purpose in the mountain context. For example, previous research has identified 
a need for disaggregated data for SDG indicators and targets at subnational scales, with relevant area units 
that are both within country boundaries and/or across borders in transboundary settings (Rasul and Tripura, 
2016; Bracher et al., 2018; Wymann von Dach et al., 2018 ). Furthermore, the use of non-standardized proxy 
data can further limit the potential for comparisons between countries and within regions (Bracher et al., 
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2018; Kulonen et al., 2019). On substance, assessments of the economic performance of livelihood options, 
combined with robust socioeconomic data for mountain systems, are still lacking in many parts of the world, 
compromising the ability for meaningful comparison and aggregation of data and knowledge for monitoring 
and reporting on progress of SDGs at regional or global scales (Gratzer and Keeton, 2017). 
 
Disasters associated with natural hazards in high mountains are placing many communities and their 
potential for sustainable development at risk (Wymann von Dach et al., 2017; Keiler and Fuchs, 2018; 
Vaidya et al., 2019). The Sendai Framework for Disaster Risk Reduction 2015–2030 (UNISDR, 2015) offers 
a global policy framework under which risks, including climate change, can be accounted for and addressed 
at national scales. However, there is limited evidence in monitoring and reporting on progress on targets 
therein (Wymann von Dach et al., 2017), particularly in systematically reporting on root causes of disasters 
in high mountains and associated compounded risks and cascading impacts, and even more so when 
accounting for impacts related to climate change. Technical guidelines available for the high-mountain 
context provide complementary means to monitor and report on the effectiveness of measures to reduce 
associated risks with changes in the cryosphere (e.g., GAPHAZ, 2017). 
 
Other relevant frameworks include the Convention Concerning the Protection of the World Cultural and 
Natural Heritage, enacted to protect the planet's most significant and irreplaceable places from loss or 
damage (UNESCO, 1972). In it, conservation strategies are listed that aim at preserving natural and cultural 
heritage across regions, including sites that contain glaciers (Section 2.3.6), and are suggested as means to 
further support efforts towards the promotion of knowledge, collective cultural memory, and climate policy 
(Bosson et al., 2019). 
 
Overall, there are promising prospects through international policy frameworks to support governance and 
adaptation to climate-related changes in the mountain cryosphere whilst addressing sustainable development, 
with evidence suggesting that treaties and conventions are relevant enablers to support cooperation and 
implementation at the mountain region scale (Dinar et al., 2016). However, there is limited evidence to 
systematically assess for effectiveness in addressing specific challenges posed by changes in the mountain 
cryosphere, globally. 
 
 
2.5 Key Gaps in Knowledge and Prospects 
 
Impacts associated with climate-related changes in the high-mountain cryosphere are evident in the 
observations reported in this chapter (Section 2.3). However, uncertainties remain with detection and 
attribution of key atmospheric drivers that influence much of these climate-related changes (Section 2.2.1), 
due to limited spatial density and/or temporal extent of observation records at high elevations. For example, 
trends in total or solid precipitation at high elevation remain highly uncertain, due to intrinsic uncertainties 
with in-situ observation methods, and large natural variability. There are clear knowledge gaps in the 
distribution and characteristics of cryospheric variables, in particular the extent and ice content of permafrost 
in mountains but also current glacier ice volumes, trends in lake and river ice, and the spatial and temporal 
variation of snow cover. These knowledge gaps persist despite a wealth of new data since AR5 especially 
from Earth observation satellites which overcome much of the remoteness and inaccessibility of high 
mountains, yet still face challenges for observations in mountains such as dealing with cloud cover and 
rugged terrain. Along with improved capacities to generate and integrate diverse observation data, initiatives 
such as citizen science (e.g., Dickerson-Lange et al., 2016; Wikstrom Jones et al., 2018) or Indigenous 
Knowledge and Local Knowledge (Section 1.8.2, Cross Chapter Box 4 in Chapter 1) can also complement 
some observations that are based on conventional instruments and models. Radiative forcing effects of light 
absorbing particles, and understanding their spatiotemporal dynamics, is a key knowledge gap for the 
attribution of changes in high-mountain snow and glacier and the understanding of regional feedbacks 
(Section 2.2.2, Box 2.2). 
 
These observational knowledge gaps currently impede efforts to quantify trends, and to calibrate and validate 
models that simulate the past and future evolution of the cryosphere and its impacts. Specific uncertainties 
are associated with projections of future climate change trends at high elevations due mostly to current limits 
in regional climate models and downscaling methods to capture the subtle interplays between large-scale 
climate change and local phenomena influenced by complex topography and high relief (Section 2.2.1). 
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Coarse-scale simulations of future permafrost conditions in high mountains are fraught with difficulties in 
capturing fine-scale variation of topography, surface cover and near-surface materials (Section 2.2.4). 
Improved cross-disciplinary studies bringing together current observation and modelling approaches in each 
specific field hold potential to contribute to addressing these gaps in the future. 
 
Experiences with changes in water availability, and with changes in frequency and/or magnitude of natural 
hazards, demonstrate the relevance of integrated approaches to understand past impacts and prepare for 
future risks, where exposure and the underpinning existing vulnerabilities of mountain social-ecological 
systems influence the extent of these impacts (Section 2.3.2.3). However, there is insufficient understanding 
of the effects of cryospheric change on some natural hazards such as glacier outburst floods and on 
infrastructure, for example for transportation. Increased wildfire risk with a shrinking cryosphere is an 
uncertainty both spatially and temporally and with consequent effects on mountain ecosystems, particularly 
with respect to soil carbon and potential biome shifts. Overall, few studies have taken a comprehensive risk 
approach to systematically characterise and compare magnitude and extent of past impacts and future risk 
across high-mountain regions, including compound risks and cascading impacts where instances of deep 
uncertainty in responses and outcomes may arise (Cross Chapter Box 5 in Chapter 1). Furthermore, a key 
knowledge gap is the capacity to economically quantify cryosphere-specific impacts and potential risks. 
 
With ecosystems, particularly the terrestrial component, uncertainty exists at which community changes can 
be directly linked to cryospheric change as distinct from those due to atmospheric warming. In some cases, 
the changes can be linked, e.g. where a receding glacier creates new habitat, but rising air temperature allow 
some species to establish that would not otherwise be able to. A major research gap is in our understanding 
of the fate of legacy pollutants such as mercury downstream of their release from glaciers and permafrost in 
terms of quantity and regional differences, freshwater sinks, and potential effects to ecosystems and human 
health. Similarly, the effect of permafrost thaw on water quality and ecosystems due to the increasing release 
of natural heavy metals and nutrients represents a gap in knowledge. 
 
While adaptation measures are reported for high-mountain cryosphere changes (Figure 2.9 a), it stands as a 
relatively new and developing area of research since AR5 (Figure 2.9 b), with particular gaps in terms of 
systematically evaluating their cost-benefits and long-term effectiveness as ‘fit-for-purpose’ solutions in the 
mountain context. Improved inter-comparability of successful adaptation cases, including the transferability 
of evidence for how adaptation can address both climate change and sustainable development objectives in 
different mountain regions, are prospects to support an evidentiary basis for future assessments of adaptation 
to cryosphere changes in the high mountains (Adler et al., 2019; McDowell et al., 2019). 
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Appendix 2.A: Additional Information on Global and Regional Glacier Mass Change Estimates for 
2006–2015 

 
Two global-scale estimates of recent glacier mass changes have been published since AR5 (Wouters et al., 
2019; Zemp et al., 2019) that include area-averaged estimates for large-scale glacier regions as defined by 
the Randolph Glacier Inventory (RGI Consortium, 2017). Zemp et al. (2019) is based on extrapolation of 
geodetic and glaciological observations, while Wouters et al. (2019) use gravimetric measurements from the 
Gravity Recovery and Climate Experiment (GRACE). For some regions, additional estimates are available 
mostly based on remote sensing data (Table 2.A.1). 
 
These estimates were used to derive an average mass change rate for the period 2006-2015 for each glacier 
region covered in both Chapter 2 and 3. Where several estimates were available for this period or similar 
periods, these were averaged and uncertainties obtained from standard error propagation assuming the 
estimates to be independent. The GRACE estimates were only considered in regions with extensive ice cover 
due to generally large uncertainties in regions with little ice cover (Wouters et al., 2019). The estimates for 
the polar regions by Box et al. (2018) were not used since they are based on an earlier version of the data by 
Wouters et al. (2019). 
 
Individual regional estimates for overlapping periods between 2000 and 2017 were recalculated to represent 
the period 2006-2015, prior to averaging with other existing estimates. For Western Canada and USA the 
mass change rate by Menounos et al. (2019) for 2000-2009 was assumed to hold for 2006-2009, and the rate 
of -12±5 Gt yr-1 for 2009-2018 was assumed to be valid for 2009-2015. For Iceland the mass change rate by 
Björnsson et al. (2013) for 2003-2010 was assumed to hold for 2006-2010, and the rate by Foresta et al. 
(2016) for 2011-2015 was used for the remaining years. The estimate for Iceland by Nilsson et al. (2015) for 
the period 2003-2009 is similar to the estimate by Björnsson et al. (2013), but was not used since it is based 
on spatially relatively scarce remote sensing data compared to Björnsson et al. (2013), which is based on 
detailed glaciological and geodetic balances. The GRACE estimate for Iceland was not used since it deviates 
strongly from the estimate by Zemp et al. (2019) which is well-constrained by direct observations in this 
region, while the GRACE estimate may have been affected by the mass change signal from ice masses in 
southeast Greenland and processes in the Earth mantle cause by isostatic adjustments since the end of the 
19th century(Sørensen et al., 2017). For the Low Latitudes (>99% of glacier area in the Andes) available 
mass loss estimates differ considerably. Zemp et al. (2019)‘s high estimate relies on extrapolation of 
observations from less than 1% of the glacier area, while the low estimate by Braun et al. (2019) for the 
Andes may underestimate mass loss due to incomplete coverage and systematic errors in their derived digital 
elevation models due to radar penetration. In the absence of other estimates for this period the average of 
both estimates is used. For Arctic Canada and the Southern Andes, the estimates by Zemp et al. (2019) were 
not considered since they rely on observations from less than 5% of the glacier area. The regional estimates 
by Gardner et al. (2013) for the period 2003-2009 informed AR5 and are given for comparison but not 
included in the composite estimate for 2006 - 2015. 
 
Table 2A.1. Regional estimates of glacier mass budget in three different units. Only estimates from the studies marked 
in bold were used to derive the average SROCC estimates. Regional glacier area A and volume V are taken from the 
Randolph Glacier Inventory (RGI Consortium, 2017) and Farinotti et al. (2019), respectively. Method geod. refers to 
the geodetic method (using elevation changes) and gl. refers to the glaciological method (based on in-situ mass-balance 
observations). Results are given for various aggregated areas including among others all regions combined (global), and 
global excluding the Antarctic (A) and Greenland (G) periphery. All regional estimates (in kg m-2 yr-1) are shown in 
Figures 2.4 and 3.8). 

Mass budget  kg m-2 yr-1 Gt yr-1 mm SLE yr-

1 Reference Method 

Alaska,  
A=86,725 km2, 
V=43.3±11.2 mm SLE 

2003-2009 -570±200 -50±17 0.14±0.05 Gardner et al. (2013) GRACE 

1986-2005 -610±280 -53±24 0.15±0.07 Box et al. (2018) GRACE, 
gl. 

1994-2013 -865±130 -75±11 0.21±0.03 Larsen et al. (2015) geod. 

2006-2015 -710±340 -61±30 0.17±0.08 Box et al. (2018) GRACE, 
gl. 

2006-2015 -570±180 -49±16 0.14±0.04 Wouters et al. (2019) GRACE 
2006-2015 -830±190 -71±17 0.20±0.05 Zemp et al. (2019)  gl., geod. 
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2006-2015 -700±180 -60±16 0.17±0.04 SROCC  

Western Canada and 
USA, 
A=14,524 km2, 
V=2.6±0.7 mm SLE 

2003-2009 -930±230 -14±3 0.04±0.01 Gardner et al. (2013) gl. 
2000-2009 -200±250 -3±3 0.01±0.01 Menounos et al. (2019) geod. 
2009-2018 -860±320 -12±5 0.03±0.01 Menounos et al. (2019)  geod. 
2006-2015 -410±1500 -6±22 0.02±0.06 Wouters et al. (2019) GRACE 

2006-2015 -800±400 -11±6 0.03±0.02 Zemp et al. (2019) gl., geod. 
2006-2015 -500±910 -8±13 0.02±0.04 SROCC  

Iceland, 
A=11,060 km2, 
V=9.1±2.4 mm SLE* 

2003-2009 -910±150 -10±2 0.03±0.01 Gardner et al. (2013) GRACE, 
gl. 

1986-2005 -360±630 -4±7 0.01±0.02 Box et al. (2018) GRACE, 
gl. 

1995-2010 -860±140 -10±2 0.03±0.00 Björnsson et al. (2013) gl. geod. 
2003-2010 -995±140 -11±2 0.03±0.00 Björnsson et al. (2013)  gl. geod. 
2003-2009 -890±250 -10±3 0.03±0.01 Nilsson et al. (2015) geod. 
2011-2015 -590±70 -6±1 0.02±0.00 Foresta et al. (2016) geod. 
2006-2015 -910±190 -10±2 0.03±0.01 Wouters et al. (2019) GRACE 
2006-2015 -620±410 -7±4 0.02±0.01 Zemp et al. (2019) gl., geod. 
2006-2015 -690±260 -7±3 0.02±0.01 SROCC  

Scandinavia, 
A=2949 km2, 
V=0.7±0.2 mm SLE 

2003-2009 -610±140 -2±0 0.01±0.00 Gardner et al. (2013) gl. 

1986-2005 -120±1170 -0±3 0.00±0.01 Box et al. (2018) GRACE, 
gl. 

2006-2015 230±3820 1±11 -0.00±0.03 Wouters et al. (2019) GRACE 
2006-2015 -660±270 -2±1 0.01±0.00 Zemp et al. (2019) gl., geod 

2006-2015 -370±1220 -1±4 0.00±0.01 Box et al. (2018) GRACE, 
gl. 

2006-2015 -660±270 -2±1 0.01±0.00 SROCC  

North Asia, 
A=2410 km2, 
V=0.3±0.1 mm SLE 

2003-2009 -630±310 -2±0 0.01±0.00 Gardner et al. (2013) gl. 
2006-2015 890±1850 2±5 -0.01±0.01 Wouters et al. (2019) GRACE 
2006-2015 -400±310 -1±1 0.00±0.00 Zemp et al. (2019) gl., geod. 
2006-2015 -400±310 -1±1 0.00±0.00 SROCC  

Central Europe, 
A=2092 km2, 
V=0.3±0.1 mm SLE 

2003-2009 -1060±170 -2±0 0.01±0.00 Gardner et al. (2013) gl. 
2006-2015 100±510 0±1 -0.00±0.00 Wouters et al. (2019) GRACE 
2006-2015 -910±70 -2±0 0.01±0.00 Zemp et al. (2019) gl., geod. 
2006-2015 -910±70 -2±0 0.01±0.00 SROCC  

Caucasus and Middle 
East, 
A=1307 km2, 
V=0.2±0.0 mm SLE 

2003-2009 -900±160 -1±0 0.00±0.00 Gardner et al. (2013) gl. 
2006-2015 -650±3000 -1±4 0.00±0.01 Wouters et al. (2019) GRACE 
2006-2015 -880±570 -1±1 0.00±0.00 Zemp et al. (2019) gl., geod. 
2006-2015 -880±570 -1±1 0.00±0.00 SROCC  

High Mountain Asia,  
A=97,605 km2, 
V=16.9±2.7 mm SLE 

2003-2009 -220±100 -26±12 -0.07±0.03 Gardner et al. (2013) GRACE, 
geod. 

2006-2015 -110±140 -11±14 0.03±0.04 Wouters et al. (2019) GRACE 
2006-2015 -190±70 -18±7 0.05±0.02 Zemp et al. (2019) gl., geod. 
2000-2016 -180±40 -16±4 0.04±0.01 Brun et al. (2017) geod. 
2006-2015 -150±110 -14±11 0.04±0.03 SROCC  

Low Latitudes, 
A=2341 km2, 
V=0.2±0.1 mm SLE 

2003-2009 -1080±360 -4±1 0.01±0.00 Gardner et al. (2013) gl. 
2000-2013 -230±40 -1±0 0.00±0.00 Braun et al. (2019) geod. 

2006-2015 1560±510 4±1 -0.01±0.00 Wouters et al. (2019) GRACE 
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2006-2015 -940±820 -2±2 0.01±0.00 Zemp et al. (2019) gl., geod 
2006-2015 -590±580 -1±1 0.00±0.00 SROCC  

Southern Andes, 
A=29,429 km2, 
V=12.8±3.3 mm SLE 

2003-2009 -990±360 -29±10 0.08±0.03 Gardner et al. (2013) GRACE 
2006-2015 -1070±240 -31±7 0.09±0.02 Wouters et al. (2019) GRACE 
2006-2015 -1300±380 -35±11 0.10±0.03 Zemp et al. (2019) gl., geod 
2000-2015 -640±20 -19±1 0.05±0.00 Braun et al. (2019) geod. 
2011-2017 -1280±120 -21±2 0.06±0.01 Foresta et al. (2018)** geod. 
2006-2015 -860±170 -25±4 0.07±0.01 SROCC  

New Zealand, 
A=1162 km2, 
V=0.2±0.0 mm SLE 

2003-2009 -320±780 0±1 0.00±0.00 Gardner et al. (2013) gl. 
2006-2015 110±780 0±1 0.00±0.00 Wouters et al. (2019) GRACE 
2006-2015 -590±1140 -1±1 0.00±0.00 Zemp et al. (2019) gl., geod 
2006-2015 -590±1140 -1±1 0.00±0.00 SROCC  

Arctic Canada North, 
 A=105,111 km2, 
V=64.8±16.8 mm SLE 

2003-2009 -310±40 -33±4 0.09±0.01 Gardner et al. (2013) GRACE, 
geod. 

1958-1995 -114±110 -12±12 0.03±0.03 Noël et al. (2018) Model 
1996-2015 -270±110 -28±12 0.08±0.03 Noël et al. (2018) Model 
1991-2014 -170±50 -16±2 0.04±0.00 Millan et al. (2017) 

model  1991-2005 -60±20 -6±1 0.02±0.00 Millan et al. (2017) 
2005-2014 -340±30 -33±3 0.09±0.01 Millan et al. (2017) 
2003-2009 -260±60 -50±9 0.17±0.02 Nilsson et al. (2015) geod. 
2006-2015 -400±110 -41±12 0.11±0.03 Noël et al. (2018) Model 
2006-2015 -390±30 -41±4 0.12±0.01 Wouters et al. (2019) GRACE 
2006-2015 -540±800 -56±84 0.15±0.23 Zemp et al. (2019) gl., geod. 
2006-2015 -380±80 -39±8 0.11±0.02 SROCC  

Arctic Canada South,  
A=40,888 km2, 
V=20.5±5.3 mm SLE 

2003-2009 -660±110 -27±4 0.07±0.01 Gardner et al. (2013) GRACE, 
geod. 

1958-1995 -280±100 -12±5 0.03±0.01 Noël et al. (2018) Model 
1996-2015 -510±100 -22±5 0.06±0.01 Noël et al. (2018) Model 
2003-2009 -550±130 -23±5 0.06±0.01 Nilsson et al. (2015) geod. 
2006-2015 -650±100 -28±5 0.08±0.01 Noël et al. (2018) Model 
2006-2015 -940±210 -39±9 0.11±0.02 Wouters et al. (2019) GRACE 
2006-2015 -540±700 -22±28 0.06±0.08 Zemp et al. (2019) gl., geod. 
2006-2015 -800±220 -33±9 0.09±0.03 SROCC  

Greenland periphery, 
A=89,717 km2, 
V=33.6±8.7 mm SLE 

2003-2009 -420±70 -38±7 0.10±0.02 Gardner et al. (2013) geod. 
1958-1996 -140±190 -11±16 0.03±0.04 Noël et al. (2017) Model 
1997-2015 -400±180 -36±16 0.10±0.04 Noël et al. (2017) Model 
2006-2015 -510±190 -42±16 0.11±0.04 Noël et al. (2017) model 
2006-2015 -635±200 -53±17 0.15±0.05 Zemp et al. (2019) gl., geod. 
2006-2015 -570±200 -47±16 0.13±0.04 SROCC  

Svalbard, 
A=33,959 km2, 
V=17.3±4.5 mm 
SLE*** 

2003-2009 -130±60 -5±2 0.01±0.01 Gardner et al. (2013) GRACE, 
geod. 

1986-2005 -240±120 -8±4 0.02±0.01 Box et al. (2018) GRACE, 
gl. 

2003-2009 -120±80 -4±3 0.01±0.01 Nilsson et al. (2015) geod. 
2003-2013 -260 -9 0.02 Aas et al. (2016) Model 
2004−2013 -210 -7 0.02 Østby et al. (2017) Model 

2006-2015 -250±160 -8±5 0.02±0.02 Box et al. (2018) GRACE, 
gl. 
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2006-2015 -200±40 -7±2 0.02±0.00 Wouters et al. (2019) GRACE 
2006-2015 -400±230 -13±7 0.04±0.02 Zemp et al. (2019) gl., geod 
2006-2015 -270±170 -9±5 0.02±0.01 SROCC  

Russian Arctic, 
A=51,592 km2, 
V=32.0±8.3 mm SLE 

2003-2009 -210±80 -11±4 0.03±0.01 Gardner et al. (2013) GRACE, 
geod. 

1986-2005 -210±190 -11±10 0.03±0.03 Box et al. (2018) GRACE, 
gl. 

2003-2009 -140±50 -7±3 0.02±0.01 Nilsson et al. (2015) geod. 
2006-2015 -200±250 -11±13 0.03±0.04 Box et al. (2018) G., gl. 

2006-2015 -220±40 -11±2 0.03±0.01 Wouters et al. (2019) GRACE 

2006-2015 -400±370 -20±16 0.06±0.04 Zemp et al. (2019) gl., geod 
2006-2015 -300±270 -15±12 0.04±0.03 SROCC  

Antarctic periphery, 
A=132,867 km2, 
V=69.4±18 mm SLE 

2003-2009 -50±70 -6±10 0.02±0.03 Gardner et al. (2013) geod. 
2006-2015 -90±860 -11±108 0.03±0.3 Zemp et al. (2019) gl., geod 
2006-2015 -90±860 -11±108 0.03±0.3 SROCC  

11 Mountain regions 
covered in Chapter 2, 
A=251,604 km2, 
V=87±15 mm SLE 

2006-2015 -490±100 -123±24 0.34±0.07 SROCC  

Arctic regions**** 
A =422,000 km2, 
V =221±25 mm SLE 

2006-2015 -500±70 -213±29 -0.59±0.08 SROCC  

Global excl. A+G 
periphery, 
A=483,155 km2, 
V=221±23 mm SLE 

2006-2015 -460±60 -220±30 0.61±0.08 SROCC  

Global, 
A =705,739 km2, 
V =324±84 mm SLE 

2006-2015 -390±160 -
278±113 0.77±0.31 SROCC  

Notes: 
*Björnsson and Pálsson (2008) report a volume of ~9 mm SLE based on radio-echo sounding data. **only Northern 
and Southern Patagonian Ice Fields (38% of regional area). ***Fürst et al. (2018) report a volume of 15.3±2.6 mm SLE. 
****including Alaska, Iceland, and Scandinavia (covered in Chapter 2), and Arctic Canada, Greenland periphery, 
Russian Arctic and Svalbard (covered in Chapter 3). 
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SM2.1 Details of High-Mountain Regional Glacier and Permafrost Areas 
 
The regional glacier and permafrost areas shown in Figure 2.1 are listed in Table SM2.1. Glacier area is 
taken from the Randolph Glacier Inventory (RGI6.0, RGI Consortium (2017)) and includes all glaciers 
within the depicted region boundaries, whereas permafrost area includes only the permafrost in mountains. 
Regional permafrost area is calculated on a grid with 30 arc-second resolution (~1km), as the sum of 
fractional permafrost area multiplied by the area of each grid cell; permanent snow and ice are masked based 
on landcover data from the European Space Agency Climate Change Initiative (ESA CCI Land Cover). The 
areas are then masked by the regions outlined in Figure 2.1 and by a ruggedness index larger than 3.5 
(Gruber, 2012) which, in this chapter, defines mountains. 
 
Two global-scale permafrost modeling studies (Gruber, 2012; Obu et al., 2019) provide suitable data with 
models differing in input, model structure, and assumptions. The data by Obu et al. (2019), extended to the 
southern hemisphere, are used since they provide permafrost fractional area (permafrost probability) directly. 
Their model was forced by remotely-sensed land-surface temperature, land cover and ERA-Interim climate 
reanalysis data, and statistically accounted for subgrid variability of ground temperature due to snow and 
landcover. By contrast, (Gruber, 2012)used heuristics and mean annual air temperature to derive an 
approximate index of fractional permafrost area. Bounds of uncertainty were estimated by using two forcing 
climate data sets (reanalysis data from National Centers for Environmental Prediction (NCEP) and data from 
the Climatic Research Unit, CRU TS 2.0), and several sets of model parameters, resulting in five maps in 
total. Assuming the index to represent the fractional permafrost area, aggregated results for high-mountain 
permafrost areas are similar to the estimate based on Obu et al. (2019). For high-mountain areas, the five 
models by Gruber (2012) yield areas varying from 3.6 to 5.2 million km2 and the model of Obu et al. (2019) 
results in 3.7 million km2. The percentage of permafrost in high-mountain areas relative to the global 
permafrost area, computed separately for each model, is 27–29% for Gruber (2012) and 27% for Obu et al. 
(2019). 
 
 
Table SM2.1: Glacier and permafrost area in high-mountain regions shown in Figure 2.1. Glacier area is from the 
Randolph Glacier Inventory (RGI6.0, RGI Consortium (2017)). Permafrost areas are based on Obu et al. (2019). 

High Mountain Region Glacier Area 
(km2) 

Permafrost Area 
(km2) 

Alaska 86,725 307,767 
Western Canada and USA 14,524 256,254 
Iceland 11,060 4,023 
Scandinavia 2,949 8,306 
Central Europe 2,092 7,124 
Caucasus and Middle East 1,307 10,181 
North Asia 2,410 2,234,058 
High Mountain Asia 97,605 866,667 
Low Latitudes 2,341 673 
Southern Andes 29,429 27,172 
New Zealand 1,162 180 
All high-mountain regions 251,614 3,722,405 
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SM2.2 Details of Studies on Temperature Observations and Projections 
 
 
Table SM2.2: Overview of studies reporting trends in past surface air temperature including mean annual, seasonal and monthly mean values of daily mean, minimum and 
maximum temperature, per high mountain region (as defined in Figure 2.1) with published observations. Global syntheses are listed at the top of the table. Obs. stations refers to 
observation stations. Elevations are in meters (m) above sea level. 

Location Temperature (temp.) indicator Trend 
(°C per 
decade) 

Time 
period 

Dataset Reference 

Global syntheses 
>500 m, 30–70˚N Annual mean value of minimum daily temp. +0.21 1951–1989 250 obs. stations Diaz and Bradley (1997)  
<500 m, 30–70˚N Annual mean value of minimum daily temp. +0.04 “ 993 obs. stations “ 
>500 m with mean annual temp. 
from -5 to +5˚C  

Mean annual temp. +0.23  1948–2002 269 obs. stations Pepin and Lundquist (2008) 

>500 m with mean annual temp.  
<-5 or >+5°C 

Mean annual temp. +0.12  “ 1084 obs. stations “ 

> 500 m Mean annual temp. +0.40 1982–2010 640 obs. stations Zeng et al. (2015) 
< 500 m Mean annual temp. +0.32 “ 2020 obs. stations “ 
> 500 m Mean annual temp. +0.30 1961–2010 910 obs. stations Wang et al. (2016)  
< 500 m Mean annual temp. +0.24 “ 1742 obs. stations “ 
> 500 m  Winter mean temp. +0.4 1961–2010 739 obs. stations Qixiang et al. (2018)   
< 500 m Winter mean temp. +0.35 “ 1262 obs. station “ 
Western Canada and USA 
Colorado and Pacific Northwest,  
< 4000 m 

Annual mean value of minimum daily temp. +0.37  1979–2006 Gridded dataset (based on 
obs. stations without 
homogenization) 

Diaz and Eischeid (2007) 

> 4000 m Annual mean value of minimum daily temp. +0.75 “ “ “ 
Mt. Washington, NE USA, 1905 m Mean annual temp. +0.35 1970–2005 1 obs. station Ohmura (2012) 
Pinkham Notch, NE USA, 613 m Mean annual temp. +0.31 “ 1 obs. station “ 
NW USA  Annual mean value of minimum daily temp. +0.17  1981–2012 Gridded dataset (based on 

homogenized obs. station) 
Oyler et al. (2015) 

Whole N America, > 500 m Mean annual temp. +0.14  1948–1998 552 obs. stations Pepin and Seidel (2005) 
Central Europe 
Switzerland Mean annual temp. +0.35 1959–2008 Gridded dataset (based on 91 

homogenized obs. stations) 
Ceppi et al. (2012) 

“ Autumn mean temp. +0.17 “ “ “ 
“ Winter mean temp. +0.40 “ “ “ 
“ Spring mean temp. +0.39 “ “ “ 
“ Summer mean temp. +0.46 “ “ “ 
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Switzerland Mean annual temp. +0.13 1864–2016 Gridded dataset (based on 19 
homogenized obs. stations) 

Begert and Frei (2018) 

Switzerland, 203–815 m Mean annual temp. +0.35  1981–2017 47 obs. stations Rottler et al. (2019) 
Switzerland, 910–1878 m “ +0.31 “ 34 obs. stations “ 
Switzerland, 1968–3850 m “ +0.25 “ 12 obs. stations “ 
Swiss Alps Mean April temp. +0.51  1961–2011 6 obs. stations Scherrer et al. (2012) 
Jungfraujoch, 3580 m Mean annual temp. +0.43 1970–2011  1 obs. station Ohmura (2012) 
Sonnblick, 3109 m Mean annual temp. +0.30 1980–2011 1 obs. station “ 
Col de Porte, 1325 m Winter mean temp. (December–April) +0.3 1960–2017 1 obs. station Lejeune et al. (2019) 
Mont-Blanc, 4300 m Mean temp. (from englacial obs.) +0.14 1900–2004 1 obs. site Gilbert and Vincent (2013) 
Trentino, 203–875 m  Mean annual temp. +0.49 1976–2010 12 obs. stations Tudoroiu et al. (2016)   
Trentino, 925–2125 m “ +0.27 “ 12 obs. stations “  
Abruzzo Region Mean annual temp. +0.15  1951–2012 24 obs. stations Scorzini and Leopardi (2019)   
Central Pyrenees Annual mean value of maximum daily temp. +0.11 1910–2013 155 obs. stations Pérez-Zanón et al. (2017) 
“ “ +0.57 1970–2013 “ “ 
“ Annual mean value of minimum daily temp. +0.06 1910–2013 “ “ 
“ “ +0.23 1970–2013 “ “ 
Caucasus and Middle East 
Whole area Mean annual temp. +0.14 1958–2000 Reanalysis data Diaz et al. (2003) 
“ “ +0.26 1974–1998 “ “ 
Central Palestinian Mountains Mean annual temp. +0.33 1970–2011 6 obs. stations Hammad and Salameh (2019)   
Southern Andes 
18°S to 42°S Mean annual temp. -0.05 1950–2010 75 obs. stations Vuille et al. (2015)  
Central Andes, 10°S–25°S, free 
atmosphere (500 hPa) 

Mean annual temp. +0.16 to 
+0.41 

1979–2008 Reanalyses Russell et al. (2017) 

Subtropical Andes, 30°S–37°S Winter mean temp. +0.4 1980–2005 Reanalysis  Zazulie et al. (2017) 
“ “ +0.2  “ Gridded observation dataset “ 
“ Summer mean temp. +0.3 “ Reanalysis “ 
“ “ No trend “ Gridded observation dataset “ 
Low latitudes (Andes and Africa) 
Tropical Andes, 2°N–18°S Mean annual temp. +0.13 1950–2010 546 obs. stations Vuille et al. (2015)  
La Paz, Bolivia Mean annual temp. -0.70 1985–2010 1 obs. station Ohmura (2012) 
East Africa Mean annual temp. +0.18 1958–2000 Reanalysis Diaz et al. (2003) 
“ “ +0.18 1974–1998 “  
South and East Africa, > 500 m Mean annual temp. +0.14  1948–1998 41 obs. stations Pepin and Seidel (2005) 
High Mountain Asia 
Hindu Kush-Himalaya Mean annual temp. +0.1 1901–2014 122 obs. stations Krishnan et al. (2019) 
“ “ +0.2 1951–2014 “ “ 
Mukteshwar, India, 2311 m  Mean annual temp. +0.48 1980–2010 1 obs. station Ohmura (2012) 
Toutouhe, China, 4535 m  Mean annual temp. +0.02 1970–2005 1 obs. station “ 
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Himalaya Mean annual temp. +0.06 1958–2000  Reanalysis Diaz et al. (2003) 
“ “ +0.23 1974–1998 “ “ 
Tibetan Plateau Mean temp., wet season (May–Sep) +0.40 1979–2011 83 obs. stations Gao et al. (2015) 
“ Mean temp., dry season (Oct–Apr) +0.54 “ “ “ 
Tibetan Plateau, > 3000 m Mean annual temp. +0.69  1981–2006 47 obs. stations Qin et al. (2009) 
Tibetan Plateau, 1000–3000 m “ +0.55  “ 24 obs. stations “ 
Tibetan Plateau, 4500–5000 m Mean value of winter minimum daily temp. +0.85   1961–2006 Obs. stations. Liu et al. (2009) 
“ Annual mean value of minimum daily temp. +0.53 “ Obs. stations. “ 
Tibetan Plateau, > 2000 m Mean value of winter minimum daily temp. +0.61 “  116 obs. stations. “ 
“ Annual mean value of minimum daily temp. +0.42 “ “ “ 
Tibetan Plateau, > 2000 m Mean annual temp. +0.16   1955–1996 97 obs. stations Liu and Chen (2000) 
“ Winter mean temp. +0.32 “ 97 obs. stations “ 
China 600–800m Mean annual temp. +0.05 1961–1990 12 obs. stations “  
Tibetan Plateau, 2400–2600 m Mean annual temp. +0.15 “ 4 obs. stations “  
Tibetan Plateau, 4200–4400 m Mean annual temp. +0.25 “ 6obs. stations “  
Tibetan Plateau, > 2000 m Mean annual temp. +0.28 1961–2007 72 obs. stations Guo et al. (2012) 
Tibetan Plateau, > 2000 m Winter mean temp. +0.40 1961–2004 71 obs. stations You et al. (2010a)  
“ Summer mean temp. +0.20 “  “ “ 
“ Mean annual temp. +0.25 “ “ “ 
Tibetan Plateau Winter mean temp. +0.37 1961–2001 ERA40 Reanalysis You et al. (2010b) 
“ Summer mean temp. +0.17  “ “ “ 
 Mean annual temp. +0.23 “ “ “ 
Indian Himalaya Mean annual temp. +0.16 1901–2002 3 obs. stations Bhutiyani et al. (2007) 
Himalaya (Nepal), 1200–2000 m Annual mean value of maximum daily temp. +0.57 1963–2009 3 obs. station Nepal (2016) 
Himachal Pradesh Winter mean temp. +0.23 1975–2006 4 obs. stations Dimri and Dash (2012) 
Kashmir Winter mean temp. +0.2 1975–2006 12 obs. stations “ 
Australia 
Australia, > 500 m Mean annual temp. +0.16 1948–1998 14 obs. stations Pepin and Seidel (2005) 
Japan 
Fuji San, 3775 m Mean annual temp. +0.35 1985–2005 1 obs. station Ohmura (2012) 
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Table SM2.3: Overview of studies reporting future trends in surface air temperature including mean annual, seasonal and monthly mean values of daily mean, minimum and 
maximum temperature, per high mountain region (as defined in Figure 2.1). Global syntheses are listed at the top of the table. Obs. stations refer to observation stations. Elevations 
are in meters (m) above sea level. 

Location Temperature (temp.) 
indicator 

Change  
(˚C per decade) 

Time period Scenario Method Reference 

Global scale 
13 mountain ranges  Mean annual temp. +0.48 1961–1990 vs 2070–

2099 
SRES-A1F1 Downscaled GCMs Nogués-Bravo et al. (2007)   

13 mountain ranges  Mean annual temp. +0.25 1961–1990 vs 2070–
2099 

SRES B1 “ “ 

Alaska 
N America, >55°N  Mean annual temp. +0.61 1961–1990 to 2070–

2099 
SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007)   

“ “ +0.35 “ SRES B1 “ “ 
Western Canada and USA 
Colorado Rockies Spring temp. (April) up to +1 1995–2005 to 2045–

2055 
SRES A2 Pseudo-GW runs: 

RCMs 
Letcher and Minder (2015) 

N America, <55°N Mean annual temp. +0.49 1961–1990 to 2070–
2099 

SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007) 

N America, <55°N Mean annual temp. +0.27 “ SRES B1 “ “ 
Iceland 
Full domain Mean annual temp. +0.21 to +0.40  2000–2100 RCP8.5 Downscaled GCMs 

using RCMs 
Gosseling (2017) 

Central Europe 
European Alps Mean annual temp. +0.25 1961–1990 to 2021–

2050 
SRES A1B Downscaled GCMs 

using RCMs 
Gobiet et al. (2014) 

“ “ +0.36 1961–1990 to 2069–
2098 

“ “ “ 

Switzerland Mean annual temp. +0.14 1981–2010 to 2070–
2099 

RCP2.6 Downscaled GCMs 
using RCMs 
(EURO-CORDEX) 

CH2018 (2018) 

“ “ +0.26 “ RCP4.5 “ “ 
“ “ +0.49 “ RCP8.5 “ “ 
Austria Mean annual temp. +0.23 1971–2000 to 2071–

2100 
RCP4.5 Downscaled GCMs 

using RCMs 
(EURO-CORDEX) 

Chimani et al. (2016) 

“ “ +0.4 “ RCP8.5 “ “ 
Scandinavia 
Whole area, < 500 m Winter mean temp. +0.45  1961–1990 to 2070–

2099 
SRES A1B Downscaled GCMs 

using RCMs 
Kotlarski et al. (2015) 
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Whole area, ~1500 m Summer mean temp. +0.27 “ “ “ “ 
Whole area Mean annual temp. +0.54 1961–1990 to 2070–

2099 
SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007) 

“ “  +0.31 1961–1990 to 2070–
2099 

SRES B1 Downscaled GCMs “  

Caucasus and Middle East 
Iran mountain areas Mean annual temp. +0.45 1961–1990 to 2071–

2000 
SRES A2 Downscaled GCM Babaeian et al. (2015)  

“ “ +0.30 “ SRES B2 “  
North Asia 
Whole area Mean annual temp. +0.76 1961–1990 to 2070–

2099 
SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007) 

“ “  +0.43 “ SRES B1 “ “  
Southern Andes 
Whole area Mean annual temp. +0.34 1961–1990 to 2070–

2099 
SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007) 

“ “  +0.18 “ SRES B1 “ “  
“ Winter and summer temp. +0.2 2006–2100 RCP4.5 CMIP5 GCMs Zazulie et al. (2018)  
“ “ ~+0.5  “ RCP8.5 “ “ 
Low Latitudes (Andes) 
Tropical Andes Mean annual temp. +0.3 1961–2000 to 2080–

2100  
RCP8.5 Downscaled GCMs Vuille et al. (2018) 

Bolivian Andes Mean annual temp. +0.34 to +0.4 1950–2000 to 2040–
2069 

SRES A1B Downscaled GCMs Rangecroft et al. (2016) 

“ “ +0.38 to +0.44 1950–2000 to 2070–
2099 

“ “ “ 

Quelccaya ice cap, Peru, 5680 
m 

Mean annual temp. +0.25 2006–2100 RCP4.5 Bias corrected 
CMIP5 GCMs 

Yarleque et al. (2018) 

“ “ +0.57 “ RCP8.5 “  
High-Mountain Asia 
Himalaya/ Tibetan Plateau, 
~1600 m 

Mean value of winter 
minimum daily temp. 

+0.32  1971–2000 to 2071–
2100 

RCP8.5 CMIP5 GCMs Palazzi et al. (2017) 

Himalaya/ Tibetan Plateau, 
~4100 m 

“ +0.75 “ “ “ “ 

Hindu-Kush Himalaya Winter mean temp. +0.6  1976–2005 to 2066–
2095 

RCP8.5 RCMs Sanjay et al. (2017) 

 Summer mean temp. +0.54 “ “ “ “ 
Himalaya Winter mean temp. +0.57  1970–2005 to 2070–

2099 
RCP8.5 RCMs Dimri et al. (2018) 

 Summer mean temp. +0.45 “ “ “ “ 
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Tibetan Plateau, ~4500 m Mean annual temp. +0.65  2006–2050 RCP8.5 Downscaled GCMs Guo et al. (2016) 
Tibetan Plateau, 2000–2200 m “ +0.51  “ “ “ “  
Kashmir Himalaya Annual mean value of 

minimum daily temp.  
+0.07 1980–2010 to 2041–

2070 
RCP2.6 Downscaled GCM Shafiq et al. (2019)  

“ “ +0.13 “ RCP8.5 “ “ 
“ “ +0.04 1980–2010 to 2071–

2100 
RCP2.6 “ “ 

“ “ +0.15 “ RCP8.5 “ “ 
“ Annual mean value of 

maximum daily temp. 
+0.11 1980–2010 to 2041–

2070 
RCP2.6 “ “ 

“ “ +0.19 “ RCP8.5 “ “ 
“ “ +0.08 1980–2010 to 2071–

2100 
RCP2.6 “ “ 

“ “ +0.22 “ RCP8.5 “ “ 
New Zealand 
New Zealand  Mean annual temp. +0.33 1961–1990 to 2070–

2099 
SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007) 

“ “ +0.17 1961–1990 to 2070–
2099 

SRES B1 Downscaled GCMs “ 
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SM2.3 Details of Studies on Precipitation Observations and Projections 
 
 
Table SM2.4: Overview of recent studies providing evidence for past changes in precipitation, per high mountain region (as defined in Figure 2.1). Obs. stations refer to observation 
stations. Elevations are in meters (m) above sea level. 

Location Precipitation (precip.) indicator Change Time 
period 

Dataset Reference 

Alaska 
Alaska Annual precip. Increase +8% to +40%, depending on 

the region 
1949–2016 18 obs. stations Wendler et al. (2017) 

Western Canada and USA 
California Winter precip. Insignificant 1920–2014 Gridded dataset based on 

102 obs. stations 
Mao et al. (2015) 

Canada Ratio of snowfall to total precip. Decrease, more pronounced in 
Western Canada 

1948–2012 Gridded dataset based on 
obs. stations 

Vincent et al. (2015) 

Iceland 
Whole area Winter precip. Insignificant 1961–2000 Reanalysis and 40 obs. 

stations 
Crochet (2007) 

Central Europe 
European Alps Total precip. Insignificant, dominated by internal 

variability 
1901–2008 Gridded dataset based on 

obs. stations 
Masson and Frei 
(2016) 

European Alps Daily precip. Insignificant change due to high 
variability 

1980–2010 43 obs. stations Kormann et al. 
(2015a) 

Swiss Alps Fraction of days with snowfall 
over days with precip. (annual), 
<1000 m 

-20 %  1961–2008 Subset within 52 obs. 
stations 

Serquet et al. (2011) 

“ “, 1000–2000 m -10% to -20% “ “ “ 
“ “, >2000 m -5% “ “ “ 
“ Fraction of days with snowfall 

over days with precip. (spring), 
<1000 m 

-30 to -50 %  “ Subset within 28 obs. 
stations 

“ 

“ “, 1000–2000 m -10% to -30% “ “ “ 
“ “, >2000 m -5% to -10% “ “ “ 
Abruzzo Region Total precip. -1.8%/dec. (not significant) 1951–2012 46 obs. stations Scorzini and 

Leopardi (2019) 
Pyrenees Total precip. Insignificant decrease (-0.6%/decade) 1950–1999 24 obs. stations López-Moreno 

(2005) 
Carpathian mountain regions Total precip. No significant trend 1961–2010 Gridded data based on obs. 

stations. 
Spinoni et al. (2015) 

Scandinavia 
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Finland Annual snowfall over total precip. 
ratio 

Decrease (-1.9% per decade) 1909–2008 3 obs. stations Irannezhad et al. 
(2017) 

Caucasus and Middle East 
Greater Caucasus Total precip. -9 mm yr-1 1936–2012 90 obs. stations Elizbarashvili et al. 

(2017)  
Adjara mountains “ +6 mm yr-1 “ Subset of 90 obs. stations “ 
Southern Andes 
Chile and Argentina Annual precip. General decrease (up to ~ -6 mm yr-1) 

with positive values in the southwest 
corner of the region 

1979–2010 Gridded dataset from obs. 
stations, and reanalyses 

Rusticucci et al. 
(2014) 

Subtropical Andes, 30°S–37°S Winter precip. < -0.1 mm d-1 per dec, insignificant  1980–2005 Gridded dataset from obs. 
stations, and reanalyses 

Zazulie et al. (2017) 

“ “ -0.1 mm d-1 per dec 1980–2005 “ “ 
“ Summer precip. -0.3 mm d-1 per dec, insignificant 1980–2005 “ “ 
“ “ -0.2 mm d-1 per dec, insignificant 1980–2005 “ “ 
Low Latitudes (Andes and Africa) 
Claro River (Colombian 
Andean Central mountain 
range) 

Annual precip. Insignificant 1981–2003 7 obs. stations Ruiz et al. (2008) 

47 mountain protected areas in 
five National Parks in the 
tropical belt (30°S–30°N, 
including Central America, 
South America, Africa, South 
Asia, Southeast Asia) 

Annual precip. Insignificant, except decrease in 
Africa 

1982–2006 Gridded dataset from obs. 
stations, and reanalyses 

Krishnaswamy et al. 
(2014) 

Kenya Mean precip. Decrease (March to May, long rains) 
and increase (October to December, 
short rains). 

1979–2011 50 obs. stations Schmocker et al. 
(2016) 

North Asia 
Northern Altai Annual precip. -0.14 mm yr-1 1966–2015 9 obs. stations Zhang et al. (2018) 
Southern Altai “ +0.89 mm yr-1 “ 8 obs. stations “ 
High Mountain Asia 
Hindu-Kush Karakoram Precip. (December to April) Insignificant 1950–2010 Gridded dataset from obs. 

station, and reanalyses 
Palazzi et al. (2013) 

Himalaya Precip. (June to September) -0.021 mm d-1 yr-1 to -0.01 mm d-1 yr-

1 
1950–2009 “ “ 

Karakoram Winter precip. Significant increasing trend 1961–1999 17 obs. stations Archer and Fowler 
(2004) 

Middle and East Tian Shan Snowfall fraction Decrease, from 27% to 25%  1960–2014 Gridded dataset based on 
obs. stations 

Chen et al. (2016) 
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West Tian Shan Winter total precip. +23% 1960–2014 In-situ “ 
Monsoon-dominated regions, 
easternmost Himalaya 

Annual precip. trend -13.7 ± 2.4 mm yr-1   1994–2012 7 obs. stations Salerno et al. (2015) 

“ Precip. during monsoon months -9.3 mm yr-1 “ “ “ 
Northwestern Indian Himalaya Snowfall fraction Significant decreasing trend (3 out of 

7 stations) 
1991–2005 10 obs. stations Bhutiyani et al. 

(2010) 
“ Winter precip. trend Increasing but statistically 

insignificant  
1866–2006 Subset of 10 obs. stations “ 

“ Monsoon and annual precip. trend Significant decreasing  “ “ “ 
Tibetan Plateau Annual precip. +1.43 mm yr-1, large spatial 

variations 
1960–2014 71 obs. stations  Deng et al. (2017) 

Hengduan Mountain region Annual precip. Insignificant decrease 1961–2011 90 obs. stations Xu et al. (2018) 
 Springtime precip. Insignificant increase  “ “ “ 
Hindu Kush-Himalaya Precip. >95th, precip. intensity Insignificant changes 1960–2000 Gridded datasets using 

obs. stations, 5 specific 
obs. stations 

Panday et al. (2015) 

New Zealand and Australia 
New Zealand Total precip. amount  Absence of marked trends, seasonally 

and geographically variable  
1900–2010 294 obs. stations Caloiero (2014); 

Caloiero (2015) 
SE Australia Total annual precip. Reduction since 1970s 1901–2012 Obs. stations Grose et al. (2015) 
Japan 
Whole region Intense precip. +30 % per century 1898–2003 Obs. stations (61 at daily 

time resolution) 
Fujibe et al. (2005) 

“ Weak precip. -20% per century “ “ “ 
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Table SM2.5: Overview of recent studies providing evidence for future changes in precipitation, per high mountain region (as defined in Figure 2.1). Obs. stations refer to 
observation stations. Elevations are in meters (m) above sea level. 

Location Precipitation (precip.) 
indicator 

Change Time period Scenario Method Reference 

Alaska 
South and 
Southeast Alaska 

Snow day fraction -15% to +7% 1970–1999 to 2040–
2069 

RCP4.5 Statistically 
downscaled GCMs 

Littell et al. (2018) 

“ “ -25% to +4% “ RCP8.5 “ “ 
“ “ -22% to 4 % 1970–1999 to 2070–

2099 
RCP4.5 “ “ 

“ “ -41% to -6 % “ RCP8.5 “ “ 
Western Canada and USA 
Western US, 
“Warm mountain 
sites” 

Snowfall amount -70% to -35% 1950-2005 to 2040-2069 RCP8.5 Statistically 
downscaled GCMs 

Lute et al. (2015) 

Western US, “Cold 
mountain sites” 

“ -20 % to -5 % “ “ “ “ 

Western US, 
“Warm mountain 
sites” 

90% percentile of 
snowfall events 

-30 % “ “ “ “ 

Western US, “Cold 
mountain sites” 

90% percentile of 
snowfall events 

+5 % “ “ “ “ 

Southern California Total winter snowfall; 
1500–2000 m 

-40% 1981–2000 to 2041–
2060 

RCP2.6 Downscaled GCMs Sun et al. (2016) 

“ “ ; 2000–2500 m -22% “ “ “ “ 
“ “ ; >2500 m -8% “ “ “ “ 
“ Total winter snowfall; 

1500–2000 m 
-52% “ RCP8.5 “ “ 

“ “ ; 2000–2500 m -28% “ “ “ “ 
“ “ ; >2500 m -11% “ “ “ “ 
“ Total winter snowfall; 

1500-2000 m 
-43% 1981–2000 to 2081–

2100 
RCP2.6 “ “ 

“ “ ; 2000–2500 m -26% “ “ “ “ 
“ “ ; >2500 m -13% “ “ “ “ 
“ Total winter snowfall; 

1500-2000 m 
-78 % “ RCP8.5 “ “ 

“ “ ; 2000–2500 m -48% “ “ “ “ 
“ “ ; >2500 m -18% “ “ “ “ 
Western Canada Winter precip. +11% 1979–1994 to 2045–

2060 
RCP8.5 Downscaled GCMs Erler et al. (2017) 
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“ “ +17% 1979–1994 to 2085–
2100 

“ “  “ 

Iceland 
Whole area Total precip. Insignificant 1981–2000 to 2081–

2100 
RCP4.5, 
RCP8.5 

Downscaled GCMs 
using RCMs 

Gosseling (2017) 

Central Europe 
Greater Alpine 
Region 

Winter precip.  +12.3% 1971–2000 to 2071–
2100 

RCP4.5 5 EUROCORDEX 
GCM/RCM pairs 

Smiatek et al. 
(2016) 

“ Spring precip. +5.7% “ “ “ “ 
“ Summer precip. -1.7% “ “ “ “ 
“ Fall precip. +2.3% “ “ “ “ 
“ Number of days with 

precip. > 15 mm 
+10.9%  “ “ “ “ 

Alpine Region Mean winter (December 
to February) precip. 

+8 % 1981–2010 to 2020–
2049 

RCP4.5 EUROCORDEX 
GCM/RCM pairs 
(0.11°) 

Rajczak and Schär 
(2017) 

“ “ +6 % “ RCP8.5 “ “ 
“ “ +12 % 1981–2010 to 2070–

2100 
RCP4.5 “ “ 

“ “ +17% “ RCP8.5 “ “ 
Switzerland Annual mean precip.  +0.6 % 1981–2010 to 2070–

2099 
RCP2.6 EUROCORDEX 

GCM/RCM pairs 
CH2018 (2018) 

“ Winter (December to 
February) mean precip. 

+8.8% “ “ “ “ 

“ Annual mean precip.  +3% “ RCP4.5 “ “ 
“ Winter (December to 

February) mean precip. 
+12.9% “ “ “ “ 

“ Annual mean precip.  +3.3% “ RCP8.5 “ “ 
“ Winter (December to 

February) mean precip. 
+23.7% “ “ “ “ 

Austria Annual mean precip.  +7.1%  1971–2000 to 2071–
2100 

RCP4.5 EUROCORDEX 
GCM/RCM pairs 

Chimani et al. 
(2016) 

“ Winter (December to 
February) mean precip. 

+10.6% “ “ “ “ 

“ Annual mean precip.   +8.7% “ RCP8.5 “ “ 
“ Winter (December to 

February) mean precip. 
+22.7% “ “ “ “ 

Alps Annual solid precip. 
Amount 

-25 % 1981–2010 to 2070–
2099 

RCP4.5 EUROCORDEX 
GCM/RCM pairs 
(0.11°) 

Frei et al. (2018) 
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“ “ -45% “ RCP8.5 “ “ 
Pyrenees, <1500 m Frequency and intensity 

of heavy snowfall events 
Decrease  1960–1990 to 2070–

2100 
SRES A2 Dynamically 

downscaled GCM 
López-Moreno et 
al. (2011)  

Pyrenees, >2000 m “ Insignificant except at high 
altitude (+30% increase) 

“ “ “ “ 

Pyrenees, > 2000 m “ +20-30% “ SRES B2 “ “ 
Carpathian 
mountains 

Summer mean precip. Decrease by up to -20 mm per 
month  

1971–2000 to 2071–
2100 

RCP8.5 Multiple 
GCM/RCM pairs 

Alberton et al. 
(2017) 

Scandinavia 
Scandinavian 
mountains (high 
elevation) 

Annual snowfall +20%  1961–1990 to 2071–
2100 

SRES A1B Multiple 
GCM/RCM pairs 

Räisänen and 
Eklund (2012) 

Caucasus and Middle East 
Iran mountain areas Mean precip. Precip. increase 1961–1990 to 2071–

2000 
SRES A2 Downscaled GCM Babaeian et al. 

(2015)   
“ “ “ “ SRES B2 “  
Alborz mountains Annual precip., winter 

precip. 
No significant change detected 1981–2000 to 2081–

2100 
RCP4.5, 
RCP8.5 

3 CMIP5 GCMs Zarenistanak 
(2018)  

Low Latitudes (Andes) 
Subtropical Andes, 
30°S-37°S 

Winter and summer 
precip. 

No clear trend  2006–2100 RCP4.5, 
RCP8.5 

GCMs  Zazulie et al. 
(2018) 

Tropical Andes Annual precip. Geographically variable. Precip. 
increase up to ~2000 m. No 
significant changes on eastern 
slope >2000 m, decrease in the 
western slope >4000 m 

1961–1990 to 2071–
2100 

SRES A2, B2 Downscaled GCM Urrutia and Vuille 
(2009) 

Central Andes Annual precip. -19% to -33% 1961-2010 to 2071-2100 RCP8.5 Multiple GCMs Neukom et al. 
(2015) 

High-Mountain Asia 
Himalaya Summer precip. +0.008 to +0.014 mm d-1 yr-1 2006–2100 RCP8.5 GCM multi-

member ensemble 
Palazzi et al. 
(2013) 

Eastern Himalaya Annual precip.  +15 to +27% (most in summer)  1970–1999 to 2070–
2099 

SRES B1, A1B, 
A2 and RCP8.5  

CMIP3 and CMIP5 
GCMs 

Panday et al. 
(2015) 

Western Himalaya-
Karakoram 

Annual precip. +1 to +5% (due to increase in 
winter precip.) 

“ “ “ “ 

Hindu Kush 
Himalaya 

Daily 99% precip. 
quantile 

+50% on average 1981–2010 to 2071–
2100 

RCP8.5 Downscaled GCMs Wijngaard et al. 
(2017) 

Northwest 
Himalaya and 
Karakoram 

Precip., June to 
September 

-0.1% 1976–2005 to 2036–
2065 

RCP4.5 CORDEX 
GCM/RCM pairs 

Sanjay et al. (2017) 
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“ Precip., December to 
April 

+7% “ “ “ “ 

“  Precip., June to 
September 

+3.5%  1976–2005 to 2066–
2095 

“ “ “ 

“ Precip., December to 
April 

+14.1% “ “ “ “ 

“ Precip., June to 
September 

+3.7% 1976–2005 to 2036–
2065 

RCP8.5 “ “ 

“ Precip., December to 
April 

+12.8% “ “ “ “ 

“ Precip., June to 
September 

+3.9% 1976–2005 to 2066–
2095 

“ “ “ 

“ Precip., December to 
April 

12.9% “ “ “ “ 

Central Himalaya Precip., June to 
September 

4.4% 1976–2005 to 2036–
2065 

RCP4.5 “ “ 

“ Precip., December to 
April 

-0.7% “ “ “ “ 

“ Precip., June to 
September 

+10.5% 1976–2005 to 2066–
2095 

“ “ “ 

“  Precip., December to 
April 

+1.5% “  “ “ “ 

“ Precip., June to 
September 

+9.1% 1976–2005 to 2036–
2065 

RCP8.5 “ “ 

“ Precip., December to 
April 

-1.3% “ “ “ “ 

“ Precip., June to 
September 

+19.1% 1976–2005 to 2066–
2095 

“ “ “ 

“ Precip., December to 
April 

-8.8%  “ “ “ “ 

Southeast Himalaya 
and Tibetan Plateau 

Precip., June to 
September 

+6.8% 1976–2005 to 2036–
2065 

RCP4.5 “ “ 

“ Precip., December to 
April 

+3.1% “ “ “ “ 

“  Precip., June to 
September 

+10.4% 1976–2005 to 2066–
2095 

“ “ “ 

“ Precip., December to 
April 

+3.7% “ “ “ “ 

“ Precip., June to 
September 

10.2% 1976–2005 to 2036–
2065 

RCP8.5 “ “ 
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“ Precip., December to 
April 

+0.9% “ “ “ “ 

“ Precip., June to 
September 

22.6% 1976–2005 to 2066–
2095 

“ “ “ 

“ Precip., December to 
April 

+0.6% “ “ “ “ 

Tibetan Plateau Total precip. +3.2%  1961–2005 to 2006–
2035 

RCP2.6, 
RCP8.5 

CMIP5 GCMs Su et al. (2013) 

“ “  +6%  1961–2005 to 2036–
2099 

RCP2.6 “ “ 

“ “ +12% “ RCP8.5 “  “ 
Eastern Tibetan 
Plateau 

Annual snowfall -15% 1986–2005 to 2080–
2099 

RCP4.5 RCM driven by 
several GCMs 

Zhou et al. (2018)  

Kashmir Himalaya Annual precip.  +9% 1980–2010 to 2041–
2070 

RCP2.6 Downscaled GCM Shafiq et al. (2019) 

“ “ +12% “ RCP8.5 “ “ 
“ “ +11% 1980–2010 to 2071–

2100 
RCP2.6 “ “ 

“ “ +14% “ RCP8.5 “ “ 
Northern Tian Shan Total precip. +5 % 1976–2005 to 2070–

2099 
RCP8.5 CMIP5 GCMs Yang et al. (2017) 

Western Tian Shan 
and northern 
Kunlun Mountains  

Solid precip. -26.5% “ “ “ “ 

Australia 
SE Australia Annual precip.  -5 % (high variability) 1950–2005 to 2020–

2039 
RCP2.6 Downscaled GCMs Grose et al. (2015) 

“ “ -5 % (high variability) “  RCP8.5 “ “ 
“ “ -5 % (high variability) 1950–2005 to 2080–

2099 
RCP2.6 “ “ 

“ “ -10 % (high variability) “ RCP8.5 “ “ 
Japan 
Tokai region 99th percentile of daily 

precip. 
From +10% to +50% in winter 
(December to February) 

1984–2004 to 2080–
2100 

RCP8.5 Single dynamically 
downscaled GCM 
(MRI AGCM) 

Murata et al. 
(2016) 

Central Japan Winter snowfall 
(November to March)  

Decrease in most parts of Japan 
(up to -300 mm) increase in the 
central part of northern Japan 

1950–2011 to 2080–
2099 

+4°C warming 
in 2080–2099 
with respect to 
1861–1880, 
under RCP8.5 

MRI-AGCM3.2 
(dynamically 
downscaled)  

Kawase et al. 
(2016) 
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“ Heavy snowfall (10 years 
return period) 

Increase (10 mm) in the inland 
areas of central and in northern 
Japan 

“  “ “ “ 
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SM2.4 Details of Studies on Snow Cover Observations and Projections 
 
 
Table SM2.6: Synthesis of recent studies reporting past changes in snow cover in high mountain areas, per high mountain region (as defined in Figure 2.1). SWE is snow water 
equivalent. Obs. stations refer to observation stations. Elevations are in meters (m) above sea level. 

Location Snow variable Change Time period Dataset Reference 
Alaska 
Whole area Duration Decrease 20th century Remote sensing Brown et al. (2017) 
“ SWE  Decrease 20th century “  “ 
Mountainous Alaska Snow at high 

elevation 
Increase 1840–present Indirect evidence from glacier 

accumulation 
Winski et al. (2017) 

Western Canada and USA 
Western USA Springtime SWE Decrease for 92% stations 1955–present In-situ observations Mote et al. (2018) 
“ April 1 SWE -15 to -30% 1955 –present “ “ 
Western USA Annual maximum 

SWE  
Decrease by 41% on average for 13% of 
pixels  

1982– 2016 Gridded product based on in-
situ observations 

Zeng et al. (2018) 

Canada Duration Decrease 2 to 12 days per decade 1950– 2012 In-situ observations DeBeer et al. (2016) 
Iceland 
Whole area Duration Decrease 0 to 10 days per decade 1980–2010 Remote sensing Brown et al. (2017) 
Central Europe 
European Alps and 
Pyrenees 

Snow depth Decrease at low elevation, step decrease in 
late 1980s 

Mid 20th 
century– 
present 

In-situ, reanalyses Beniston et al. (2018) 
Reid et al. (2016)  

European Alps  SWE Decrease at low elevation, step decrease in 
late 1980s 

Mid 20th 
century– 
present 

54 obs. stations  Marty et al. (2017b) 

European Alps  Duration Insignificant trend, decrease at 700–900 m 
in the SE and SW Alps 

1985–2011 Optical remote sensing Hüsler et al. (2014) 

Swiss Alps Onset date 12 days later on average 1970–2015 11 obs. stations Klein et al. (2016) 
“ Melt-out date 26 days earlier on average “ “ “ 
Austrian Alps, 500–2000 
m 

Snow cover days -13 to -18 depending on the region 1950–1979 to 
1980–2009 

Modelling based on in-situ 
observations 

Marke et al. (2018) 

Austrian Alps, 2000– 
2500 m 

“ -12 to -14 depending on the region “ “ “ 

Austrian Alps, >2500 m “ -20 (central Austria) “ “ “ 
French Alps, 1800 m  Duration -24 days 1958–2009 Local reanalysis Durand et al. (2009) 
French Alps Melt onset 2 weeks earlier > 3000 m 1980–2015 In-situ observations Thibert et al. (2013) 
“ Melt intensity 15% stronger >3000 m “ In-situ obs. and modelling “ 
Pyrenees, <1000 m Snow cover duration Decrease in majority of stations 1975–2002 In-situ observations Pons et al. (2010); 

Beniston et al. (2018) 
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Pyrenees, >1000 m “ Decrease in majority of stations  “ “ 
Pyrenees, Andorra, 1645 
m 

Number of days with 
snow depth above 5, 
30 and 50 cm 

Increase until ~1980 then decrease (not 
statistically significant, high variability) 

1935–2015 In-situ observations Albalat et al. (2018) 

Scandinavia 
Norway Snow depth and SWE Decrease at low elevation 20th century In-situ observations Skaugen et al. (2012); 

Dyrrdal et al. (2013); 
Beniston et al. (2018) 

“ “ Increase at higher elevation 20th century “ “ 
Northern Finland Snow cover duration -2.4 days per decade 1961–2014 Gridded dataset based on in-

situ observations 
Luomaranta et al. (2019) 

Southern Finland “ -5.7 days per decade “ “ “ 
Caucasus and Middle East 
Central Caucasus, 2300 
m 

Amount of winter 
snow 

Declining since late 1980s 1968–2013 In-situ observations Volodicheva et al. (2014) 

North-Western Iran Snow cover duration 
and mean snow depth 

Decrease at most stations 1981–2011 28 in-situ observations Arkian et al. (2014) 

Southern Andes 
Whole area Snow covered area Insignificant decrease (high variability) 2000–2015 Optical remote sensing Malmros et al. (2018) 
Whole area Snow covered area Decrease 1979�2006 Passive microwave satellite Le Quesne et al. (2009) 
Low Latitudes (including tropical Andes) 
Compared to mid and high latitude mountain areas seasonal snow cover has limited relevance in the tropical Andes and other tropical areas, except in 
the immediate vicinity of glaciers. Satellite-based observations are too short to address long-term trends. 

Saavedra et al. (2018) 

High Mountain Asia 
Himalaya and Tibetan 
Plateau 

Snow covered area Insignificant trend (high variability 
compared to record length) 

2000– 2015 Optical remote sensing Tahir et al. (2015); 
Gurung et al. (2017); 
Bolch et al. (2018); Li et 
al. (2018) 

Himalaya  SWE -10.60 kg m-2 yr-1 for areas > 500 m  1987– 2009 Passive microwave remote 
sensing 

Smith and Bookhagen 
(2018); Wang et al. (2018) 

Australia 
SE Australia SWE Reduction, especially in springtime Mid-20th 

century– 
present 

In-situ observations Fiddes et al. (2015); Di 
Luca et al. (2018) 

“  Duration Reduction, especially in springtime “ “ “ 
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Table SM2.7: Synthesis of recent studies reporting 21st century projections in snow cover in high mountain areas, per high mountain region (as defined in Figure 2.1). 
Location Snow variable Change Time period Scenario Method Reference 
Alaska       
Mountainous 
Alaska 

SWE -10 to -30% 1970–1999 to 2040–
2069 

RCP8.5  Multiple 
GCM/RCM pairs 

Littell et al. (2018) 

“ SWE -40 to -60% 1970–1999 to 2070–
2099 

“ “ “ 

Western Canada and USA 
Western USA April 1 SWE -50% 1965–2005 to 2010–

2040 
RCP8.5  M Multiple 

GCM/RCM pairs 
Naz et al. (2016) 

“ Duration -10 to -100 days 1976–2005 to 2071–
2100 

RCP8.5 “ Musselman et al. (2018) 

“ Peak annual SWE -6.2 kg m-2 per 
decade 

2013–2038 RCP8.5 Post-processed 
CMIP5 GCM 

Fyfe et al. (2017) 

Iceland 
Low elevation Snow depth -100% 1981–2000 to 2081–

2100 
RCP8.5 Single RCM Gosseling (2017) 

Top of central 
Vatnajökull 

Snow depth +20% 1981–2000 to 2081–
2100 

“ “ “  

Central Europe 
European Alps  Winter SWE <1500 m -40 %  1971–2000 to 2020–

2049 
SRES A1B Multiple 

GCM/RCM pairs 
Steger et al. (2012); Gobiet et 
al. (2014); Beniston et al. 
(2018) 

“ “ -70%  1971–2000 to 2070–
2099 

“ “ “ 

“ “  -10%  1971–2000 to 2020–
2049 

“ “ “ 

“  -40%  1971–2000 to 2070–
2099 

“ “ “ 

French Alps, 1500 
m 

Winter mean snow depth -20% 1986–2005 to 2030–
2050 

RCP2.6 Adjusted multiple 
GCM/RCM pairs 

Verfaillie et al. (2018) 

“ “ -30 % “ RCP8.5 “ “ 
“ “ -30 % 1986–2005 to 2080–

2100 
RCP2.6 “ “ 

“ “  -80 % “ RCP8.5 “ “ 
European Alps Similar results as above and strengthening of the asymmetrical seasonal snow decline pattern (stronger trend for reduced 

snow cover duration in spring than in fall). 
Marty et al. (2017a); Terzago et 
al. (2017) 
Hanzer et al. (2018) 

Scandinavia 
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Northern 
Scandinavia 

Duration and SWE Decrease at low 
elevation, marginal 
changes at high 
elevation 

1971–2000 to 2010–
2100 

A1B GCM downscaled 
using RCM 

Räisänen and Eklund (2012); 
Beniston et al. (2018) 

Norway Duration -14% to -32% 1981–2010 to 2021–
2050 

RCP4.5 Adjusted multiple 
GCM/RCM pairs 

Scott et al. (2019) 

“ “ -15% to -50% “ RCP8.5 “ “ 
“ “ -34% to -64% 1981–2010 to 2071–

2100 
RCP4.5 “ “ 

“ “ -38% to -89% “ RCP8.5 “ “ 
Caucasus and Middle East 
West Caucasus, 
567 m 

Snow cover duration -35 to 40% 1991–2000 to 2041–
2050 

B2 Downscaled GCM Shkolnik et al. (2006); Sokratov 
et al. (2014) 

Southern Andes 
Whole area Mean SWE -13% 1980–2010 to 2035–

2065 
RCP4.5 Multiple RCM López-Moreno et al. (2017) 

“ “ -17% “ RCP8.5 “ “ 
“ Duration 7 days “ RCP4.5 “ “ 
“ “ 10 days “ RCP8.5 “ “ 
Limarí river basin, 
north-central Chile 

Peak SWE (> 5000m) -32 % 1961–1990 to 2071–
2000 

B2 Single GCM/RCM 
pair 

Vicuña et al. (2011) 

“ “ ; 2500–3000 m -82% “ “ “ “ 
“ “ ; 2000–2500 m -100% “ “ “ “ 
“ Peak SWE (> 5000m) -41 %  “ A2 “ “ 
“ “ ; 2500–3000 m -96 % “ “ “ “ 
“ “ ; 2000–2500 m -100 % “ “ “ “ 
High Mountain Asia 
Hindu Kush and 
Karakoram 

Winter snow depth 
(December to April) 

-7 % 1986–2005 to 2031–
2050  

RCP8.5 Multiple GCMs Terzago et al. (2014) 

“ “ -28 % 1986–2005 to 2081–
2100 

“ “ “ 

Himalaya “ -25 % 1986–2005 to 2031–
2050 

“ “ “ 

“ “ -55% 1986–2005 to 2081–
2100 

“ “ “ 

New Zealand and Australia 
Australia SWE Reduction, especially 

below 1000 m 
1980–1999 to 2030–
2049  

SRES A1B Multiple 
downscaled GCMs 

Hendrikx et al. (2013) 

Australia SWE -15 % 1990–2009 to 2020–
2040 

SRES A2 Multiple 
downscaled GCMs 

Di Luca et al. (2018) 
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“ “ -60 % 1990–2009 to 2060–
2080 

“  “ “ 

New Zealand SWE; 1000 m -3% to -44 %  1980–1999 to 2030–
2049  

SRES A1B Multiple 
downscaled GCMs 

Hendrikx et al. (2012) 

“ “; 2000 m -8 % to -22 %  “ “ “ “ 
“ “; 1000 m -32% to -79%  1980–1999 to 2080–

2099 
“ “ “ 

“ “; 2000 m -6% to -51 %  “ “ “ “ 
Japan 
Japan Winter snow depth, low 

elevation 
-50 %  Base: 1990s Future: time 

period corresponding to 
2°C warming. 

+2°C global 
warming (from 
SRES A1B) 

Multiple 
downscaled GCMs 
(time sampling) 

Katsuyama et al. (2017) 

“ “; high elevation -10 %  “ “ “ “ 
mountain 
catchment 

SWE -36% 1981–2000 to 2046–
2065 

SRES A1B Multiple 
downscaled GCMs 

Bhatti et al. (2016) 
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SM2.5 Details on Climate Models used in Figure 2.3 
 
 
Table SM2.8: List of CMIP5 General Circulation Models (GCM) and where available, Regional Climate Models (RCM) used for projecting the winter and summer air temperature 
(T) and snow water equivalent (SWE), for RCP2.6 and RCP8.5, for the five regions represented in Figure 2.3: Rocky Mountains in North America, Subtropical Central Andes, 
European Alps, Hindu Kush and Karakoram, and Himalaya. For the Rocky Mountains, Hindu Kush and Karakoram, and Himalaya only RCP8.5 data were used. 

  
Rocky 
Mountains 

Subtropical Central 
Andes 

European Alps Hindu Kush and Karakoram; 
Himalaya 

GCM (default is r1i1p1) RCM  
(driven by corresponding 
GCM) 

RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP8.5 

  
T SWE T SWE T SWE T SWE T SWE T SWE 

ACCESS1-0 
     

X 
     

X 
 

ACCESS1-3 
     

X 
     

X 
 

Bcc-csm1-1 
   

X 
 

X 
     

X 
 

BNU-ESM 
           

X 
 

CanESM2 
           

X 
 

 
CCCma-CanRCM4 X X 

          

 
UQAM-CRCM5 X X 

          

CCSM4 
   

X X X X 
    

X 
 

CESM1-BGC 
     

X 
     

X X 

CESM1-CAM5 
   

X X X X 
    

X 
 

CMCC-CM 
     

X 
      

X 

CNRM-CM5 
   

X X X X 
    

X 
 

 
CLMcom-CCLM4-8-17 

        
X X 
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Rocky 
Mountains 

Subtropical Central 
Andes 

European Alps Hindu Kush and Karakoram; 
Himalaya 

 
CNRM-ALADIN53 

      
X 

 
X X 

  

 
SMHI-RCA4  

        
X 

   

CSIRO-Mk3-6-0 
           

X 
 

EC-Earth (r8i1p1) 
            

X 

EC-EARTH 
   

X 
 

X 
       

FGOALS-g2 
           

X 
 

GFDL-CM3 
           

X 
 

GFDL-ESM2G 
           

X 
 

 
NCAR-WRF X X 

          

GISS-E2-R 
           

X 
 

HadGEM2-CC 
     

X 
     

X 
 

HadGEM2-ES 
   

X 
 

X 
       

 
NCAR-WRF X X 

          

 
CLMcom-CCLM4-8-17 

        
X X 

  

 
SMHI-RCA4 

        
X 

   

ICHEC-EC-EARTH 
(r12i1p1) 

             

 
CLMcom-CCLM4-8-17 

        
X X 

  

 
SMHI-RCA4  

      
X 

 
X 
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Rocky 
Mountains 

Subtropical Central 
Andes 

European Alps Hindu Kush and Karakoram; 
Himalaya 

ICHEC-EC-EARTH 
(r3i1p1) 

             

 
DMI-HIRHAM5 

      
X 

 
X 

   

IPSL-CM5A-LR 
           

X 
 

IPSL-CM5A-MR 
           

X 
 

 
SMHI-RCA  

        
X 

   

IPSL-CM5B-LR 
           

X 
 

MIROC5 
   

X 
 

X 
     

X 
 

MIROC-ESM-CHEM 
           

X 
 

MIROC-ESM 
           

X 
 

MRI-CGCM3 
   

X X X X 
    

X 
 

MPI-M-MPI-ESM-LR 
             

 
NCAR-WRF X X 

          

 
UQAM-CRCM5 X X 

          

 
CLMcom-CCLM4-8-17 

        
X X 

  

 
MPI-CSC-REMO2009 

      
X X X X 

  

 
SMHI-RCA4  

        
X 

   

MPI-M-MPI-ESM-LR 
(r2i1p1) 

             

 
MPI-CSC-REMO2009 

      
X X X X 
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Rocky 
Mountains 

Subtropical Central 
Andes 

European Alps Hindu Kush and Karakoram; 
Himalaya 

MPI-M-MPI-ESM-MR 
             

 
UQAM-CRCM5 X X 

          

MRI-ESM1 
     

X X 
      

NorESM1-M 
           

X 
 

Ensemble members  7 7 8 4 14 5 5 2 13 7 23 3 
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SM2.6 Synthesis of Recent Studies Reporting on Past and Projected Changes of River Runoff 
 
 
Table SM2.9: Synthesis of recent studies reporting on past and projected changes in river runoff, per high mountain region (as defined in Figure 2.1). Entries per region are sorted 
according to increasing percentage of glacier cover for past and projected changes separately. Note that studies on annual runoff that are listed in Table SM2.9 are not listed here. 
The year of peak water given there indicates the year before which annual runoff is increasing and beyond which it is decreasing.  

Location Basin area (% 
glacier cover) 

Variable 
(change) 

Cause Time period Method Scenario Reference 

Global-scale 
97 snow 
sensitive basins 
in 421 basins in 
northern 
hemisphere 

(glacier melt not 
considered in 
model) 

Spring-summer 
snowmelt runoff 
(decrease) 

Transition of snowfall 
to rainfall 

1955–2005 
to 2006–
2080 

Model, 19 
GCMs 

RCP8.5 Mankin et al. (2015)   

Alaska 
Gulf of Alaska 420,300 km2 

(17 %) 
Annual runoff 
(+1-2 km3 yr-1) 

Increased glacier melt 1980–2014 Model Past Beamer et al. (2016)  

Gulkana, 
Wolverine 

24.6 km2 and 
31.5 km2 (>50%) 

Summer Runoff 
(increase) 

Increased glacier melt 1966–2011 2 stream 
gauges  

Past O’Neel et al. (2014) 

Gulf of Alaska 420,300 km2 Annual runoff 
(+25–46%) 

Increased glacier melt 1984–2014 
to 2070–
2099 

Downscaled 
GCMs 

RCP4.5 RCP8.5 Beamer et al. (2016) 

“ “ Dec.–Feb. runoff 
(+93–201%) 

Transition of snowfall 
to rainfall 

“ “ “ “ 

“ “ Spring peak 
(1month earlier) 

Earlier snowmelt “ “ “ “ 

Western Canada and USA 
South and 
Central 
Columbia Basin 

0.1–19 % August runoff 
(decrease) 

Decreased snow and 
glacier melt 

1975–2012 20 stream 
gauges, 
hydro-graph 
separation 

Past Brahney et al. (2017) 

Canadian Rocky 
Mountains and 
adjacent ranges 

166–1,170 km2 
(0–23.4%), no 
data in some 
basins  

Summer runoff 
(decrease in 
glacierized 
basins) 

Decreased glacier 
melt, decreased 
precipitation 

1955–2010, 
depending on 
sites 

6 stream 
gauges 

Past Fleming and Dahlke (2014)  
 

Bridge river, 
British Columbia 
(Canada) 

139 km2  
(52.6% in 2014) 

Winter runoff 
(increase) 

Increased glacier melt 1979–2014 stream gauge Past Moyer et al. (2016) 

“ “ Summer runoff 
(decrease) 

Decreased glacier melt “ “ “ “ 
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Sierra Nevada, 
northeast of 
California (USA) 

4,781 km2  
(0 %) 

Winter runoff 
(~+19%) 

Transition of snowfall 
to rainfall, increased 
precipitation 

1964–2014 
to 2015–
2064 

7 GCMs RCP4.5, RCP8.5 Sultana and Choi (2018) 

“ “ Spring peak  
(1 month early) 

Earlier snowmelt “ “ “ “ 

Athabasca 
(Canada) 

161,000 km2 
(0 %) 

Summer runoff 
(+6-76 %) 

Increased snowmelt, 
increased precipitation 

1983–2013 
to 2061–
2100 

Downscaled 1 
GCM 

RCP4.5 RCP8.5 Shrestha et al. (2017) 

“ “ Winter runoff 
(+3–114%) 

Transition of snowfall 
to rainfall 

“ “ “ “ 

Whole USA (not significant) Winter runoff 
(increase in 
snow-dominated 
basins) 

Transition of snowfall 
to rainfall 

1961–2005 
to 2011–
2050 

Downscaled 
10 GCMs 

RCP8.5 Naz et al. (2016) 

“ “ Spring peak 
(earlier in snow-
dominated 
basins) 

Earlier snowmelt “ “ “ “ 

Western North 
America 

(not significant) Winter runoff 
(increase) 

Transition of snowfall 
to rainfall 

1965–2005 
to 2010–
2050 

downscaled 
10 GCMs 

RCP8.5 Pagán et al. (2016) 

“ “ Summer runoff 
(decrease) 

Decreased snowmelt “ “ “ “ 

“ “ Spring peak  
(611 days 
earlier) 

Earlier snowmelt “ “ “ “ 

Western USA (not significant) Spring peak 
(1.5–4 weeks 
early) 

Earlier snowmelt 1960–2005 
to 2080–
2100 

downscaled 
10 GCMs 

RCP4.5, RCP8.5 Li et al. (2017) 

British Columbia 0-8% Winter runoff 
(+45–95 %) 

Increased snowmelt, 
increased rainfall 

1961–1990 
to 2041–
2070 

downscaled 8 
GCMs 

SRES B1, A1B Schnorbus et al. (2014) 

“ “ Summer runoff  
(-58% to -9%) 

Decreased snowmelt, 
transition of snowfall 
to rainfall 

“ “ “ “ 

Nooksack (USA) 2,000 km2 
(< 1 %) 

Winter runoff 
(+39–88 %) 

Transition of snowfall 
to rainfall 

1950–1999 
to 2060–
2090 

downscaled 3 
GCMs 

SRES A2, B1 Dickerson-Lange and 
Mitchell (2014) 

“ “ Summer runoff 
(-50% to -26 %) 

Decreased snowmelt “ “ “ “ 

“ “ Spring peak  Earlier snowmelt “ “ “ “ 
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(1 month early) 
“ “ Annual peak 

(increase, 1 
month later) 

Decreased snowmelt, 
increased extreme 
precipitation 

“ “ “ “ 

Fraser, N. 
America 

240,000 km2 
(1.5 %) 

Winter runoff 
(increase) 

Transition of snowfall 
to rainfall 

1980–2009 
to 2040–
2069 

downscaled 
12 GCMs 

RCP4.5 RCP8.5 Islam et al. (2017) 

“ “ Summer runoff 
(decrease) 

Decreased snowmelt, 
transition of snowfall 
to rainfall 

“ “ “ “ 

“ “ Annual peak 
(20-30 days 
earlier) 

Earlier snowmelt “ “ “ “ 

Central Europe 
Alps (some including 

glaciers ) 
Winter runoff 
(increase in 
glacier- or snow-
dominated 
basins) 

Transition of snowfall 
to rainfall 

1961–2005 177 stream 
gauges 

Past Bard et al. (2015) 

“ “ Spring peak 
(earlier) 

Earlier snowmelt and 
glacier melt 

“ “ “ “ 

Alps, (northern 
Italy) 

~100–10,000 
km2 (some 
including 
glaciers ) 

Winter runoff 
(increase at > 
1800 m a.s.l.) 

Transition of snowfall 
to rainfall 

1921–2011 23 stream 
gauges 

Past Bocchiola (2014) 

“ “ Summer runoff 
(decrease) 

Decreased snowmelt 
and glacier melt, 
increased 
evapotranspiration 

“ “ “ “ 

Western Austria (0–71.9 %) Annual flow 
(increase at high 
elevations, 
decrease at low 
elevations) 

Increased and 
decreased glacier melt 

1980–2010 32 steam 
gauges  

Past Kormann et al. (2015b) 

Middle and 
upper Rhine 

144,231 km2 
(<1%) 

Winter runoff 
(+4-51%) 

Transition of snowfall 
to rainfall, earlier 
snowmelt 

1979–2008 
to 2021–
2050 and 
2070– 2099 

10 GCM-
RCMs 

SRES A1B Bosshard et al. (2014) 

“ “ Summer runoff 
(-40% to -9%) 

Decreased snowmelt “ “ “ “ 
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Gigerwaldsee 
(Switzerland) 

97 km2 (<1%) Summer runoff 
(decrease) 

Decreased glacier melt 1992–2021 
to 2035–
2064 and 
2069–2098 

7 GCM-
RCMs 

SRES A1B Etter et al. (2017) 

Swiss Alps  20–1,577 km2  
(0-4%) 

Summer runoff  
(-32 to -56%) 

Transition of snowfall 
to rainfall, Earlier 
snowmelt 

1980–2009 
to  2070–
2099 

10 GCM-
RCMs 

SRES A1B Jenicek et al. (2018) 

Swiss Alps  231–1,696 km2 
(0–22 %) 

Winter runoff 
(increase at high 
elevations) 

Transition of snowfall 
to rainfall 

1980–2009 
to 2020–
2049, 2045–
2074, 2070–
2099 

10 GCM-
RCMs 

RCP2.6, SRES A1B, 
A2 

Addor et al. (2014) 

European Alps Glacierized 
European Alps 

Annual runoff 
(decrease) 

Decreased glacier melt 1980–2009 
to 2010–
2039, 2040–
2069, 2070–
2099 

4 GCMs RCP2.6, RCP4.5, 
RCP8.5 

Farinotti et al. (2016) 

“ “ Summer runoff 
(decrease) 

Decreased glacier melt “ “ “ “ 

Alps, Po (Italy) 71,000 km2 
(small) 

Winter runoff 
(increase) 

Transition of snowfall 
to rainfall 

1960–1990 
to 2020–
2050 

2 RCMs SRES A1B Coppola et al. (2014) 

“ “ Spring peak  
(1 month earlier) 

Earlier snowmelt “ “ “ “ 

Canton 
Graubünden 

7,214 km2 (2.4%, 
~20% in high 
elevation 
catchments) 

Winter runoff 
(increase) 

Transition of snowfall 
to rainfall 

2000–2010 
to 2021–
2050, 2070–
2095 

10 RCMs SRES A1B Bavay et al. (2013) 
 

“ “ Summer runoff 
(decrease) 

Decreased snowmelt, 
decreased precipitation 

“ “ “ “ 

“ “ Spring peak 
(earlier) 

Earlier snowmelt “ “ “ “ 

Göscheneralpsee, 
Dammareuss 
subcatchment 
(central 
Switzerland) 

95 km2 (20%),  
10 km2 (50%) 

Summer runoff 
(decrease) 

Decreased snow melt, 
decreased glacier melt 

1981–2010 
to 2021–
2050, 2070–
2099 

10 RCMs SRES A1B Kobierska et al. (2013) 

Findelen, Swiss 
Alps 

21.18 km2  
(70%) 

Annual runoff 
(decrease) 

Decreased glacier melt 1976–2086 1 RCM SRES A2 Uhlmann et al. (2013) 

“ “ Spring peak 
(earlier) 

Earlier snowmelt “ “ “ “ 
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Scandinavia 
Arctic coastal 
Norway 

56-422 km2 (0–
34.9%), no data 
in some basins  

Winter runoff 
(increase) 

Transition of snowfall 
to rainfall 

1955–2010, 
depending on 
sites 

7 stream 
gauges 

Past Fleming and Dahlke (2014) 

“ “ Summer runoff 
(decrease basins 
including 
glaciers) 

Decreased glacier melt “ “ “ “ 

Whole 
Scandinavia 

(including 
glaciers) 

Winter runoff 
increase ~40%, 
excl. southern 
Sweden and 
Denmark) 

Transition of snowfall 
to rainfall 

1980–2009 
to 2041–
2070 

6 GCM-
RCMs 

SRES A1B Räty et al. (2017) 

“ “ Summer runoff 
(decrease ~40%) 

Decreased snowmelt, 
increased 
evapotranspiration 

“ “ “ “ 

Caucasus and Middle East 
Eastern Anatolia 
(Turkey) 

(0%) Snowmelt peak 
(~1 week earlier) 

Earlier snowmelt 1970–2010 15 stream 
gauges 

Past Yucel et al. (2015) 

“ “ Snowmelt peak 
(~4 week earlier) 

Earlier snowmelt 1961–1990 
to 2070–
2099 

singe GCM-
RCM 

SRES A2 “ 

Euphrates-Tigris 880,000 km2 
(0%) 

Snowmelt peak 
(18–39 days 
earlier) 

Earlier snowmelt 1961–1990 
to 2041–
2070, 2071–
2099 

3GCM-RCMs SRES A1F1, A2, B1 Bozkurt and Sen (2013) 

Low Latitudes (tropical Andes) 
La Paz (Bolivia) 18-78 km2  

(5–12%) 
Annual runoff 
(no significant 
change) 

Decreased ice melt 
compensated by 
increased precipitation 

1963–1007 4 stream 
gauges and 
model 

Past Soruco et al. (2015) 

Zongo (Bolivia) 3 km2  
(35 % in 1987) 

Annual runoff  
(-4% and -24% 
in later period) 

Decreased glacier melt 1987–2010 
to 2030–
2050, 2080–
2100 

11 
downscaled 
GCMs 

RCP4.5 Frans et al. (2015) 

“ “ Wet season 
runoff (increase) 

Transition of snowfall 
to rainfall 

“ “ “ “ 

Southern Andes 
Elqui (Chile) 222-3,572 km2 

(7.02 km2 in 
total) 

Annual runoff 
(no significant 
change) 

Decreased glacier melt 
compensated by 
increased precipitation 

1970–2009 4 stream 
gauges 

Past Balocchi et al. (2017) 
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Rio del Yeso 
(Andes of central 
Chile) 

62 km2  
(19%) 

Annual runoff 
(decrease) 

Decreased snowmelt 2000–2015 Model Past Burger et al. (2019) 

Juncal (Chile) (including 
glaciers ) 

Seasonal runoff 
peak (1month 
early) 

Earlier snowmelt, 
transition of snowfall 
to rainfall 

2001–2010 
to 2041–
2050, 2051–
2060, 2060–
2100 

12 GCMs RCP4.5, RCP8.5 Ragettli et al. (2016) 

High Mountain Asia 
Astore, Gilgit, 
Katchura, (upper 
Indus) 

3,750 km2, 
12,800 km2, 
115,289 km2, 
(not significant) 

Spring and 
summer runoff 
(increase) 

Increased snowmelt, 
transition of snowfall 
to rainfall 

1970–2005 stream gauge Past Reggiani and Rientjes 
(2015) 

Hunza, (upper 
Indus) 

13,925 km2, 
(including 
glaciers) 

Spring and 
Summer runoff 
(decrease) 

Decreased glacier melt “ “ “ “ 

Naryn (Tien 
Shan) 

3,879 km2 (10% 
in 1970s) and 
5,547 km2 (12% 
in 1970s) 

Spring and 
autumn runoff 
(Increase) 

Increased snowmelt 
and ice melt 

1965–2007 2 stream 
gauges 

Past Kriegel et al. (2013) 

“ “ Winter-early 
spring runoff 
(increase) 

Increased snowmelt, 
transition of snowfall 
to rainfall 

“ “ “ “ 

Tien Shan (including 
glacier ) 

Annual runoff 
(increase for 
higher fraction 
of glacier area) 

Increased ice melt 1960–2014 23 stream 
gauges 

Past Chen et al. (2016) 

Toxkan, 
Kunmalik, 
Kaidu, 
Huangshuigou 
(Tien Shan) 

4,298–19,166 
km2 (including 
glaciers ) 

Winter-spring 
runoff 
(increased, 
earlier) 

Earlier snow and 
glacier melt 

1961–2008, 
depending on 
site 

4 stream 
gauges 

Past Shen et al. (2018) 

Kakshaal and, 
Tarim 

18,410 km2 
(4.4%) 

Summer runoff 
(increase) 

Increased ice melt, 
increased precipitation 

1957–2004 Model Past Duethmann et al. (2015) 

Sari-Djaz, Tarim 12,948 km2 
(20.9%) 

Summer runoff 
(increase) 

Increased ice melt “ “ “ “ 

Shigar 
(Karakoram) 

7,040 km2  
(30%) 

June and July 
runoff (increase 
and turn to 
decrease from 
2000 to 2010) 

Decreased snowmelt 1985–2010 Stream 
gauges, 
hydrograph 
separation 

Past Mukhopadhyay and Khan 
(2014) 
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“ “ August runoff 
(increase) 

Increased glacier melt “ “ “ “ 

Chhota Shigri 
(Western 
Himalaya) 

~35 km2  
(46.5%) 

Summer runoff 
 (+14-22%) 

Increased glacier melt 1955–1969 
to 1970–
1984, 1985–
1999, 2000–
2014 

RCM and 
mass-balance 
model 

Past Engelhardt et al. (2017) 

Sikeshu (Tien 
Shan) 

921 km2  
(37%) 

Annual runoff 
(increase)  

Increased glacier melt 1964–2004 1 stream 
gauge 

Past Wang et al. (2015) 

Upper Indus ~425,000 km2 
(5%) 

June and July 
runoff in lower 
elevations 
(decrease) 

Decreased snowmelt, 
decreased precipitation 

1971–2000 
to 2071–
2100 

4 GCM-
RCMs 

RCP4.5, RCP8.5 Lutz et al. (2016a) 

“ “ Winter runoff in 
lower elevation 
(increase) 

Increased 
precipitation, transition 
of snowfall to rainfall 

“ “ “ “ 

“ “ Spring peak 
(earlier) 

Earlier snow and 
glacier melt 

“ “ “ “ 

Chu (Tien Shan) 9,548 km2  
(2-7%) 

Annual runoff  
(-27.7% to -
6.6%) 

Decreased glacier melt 1966–1995 
to 2016–
2045, 2066–
2095 

5 GCMs RCP2.6, RCP4.5, 
RCP8.5 

Ma et al. (2015) 

“ “ Spring peak 
(decrease, 1 
month earlier) 

Decreased glacier 
melt, earlier snowmelt 

“ “ “ “ 

Upper basin of 
Indus, 
Brahmaputra, 
Ganges, 
Salween, 
Mekong 

(0.2–5.4%) Spring peak 
(decrease, 
earlier) 

Earlier snowmelt, 
transition of snowfall 
to rainfall 

1998–2007 
to 2041–
2050 

4 GCMs RCP4.5, RCP8.5 Lutz et al. (2014) 

Naryn (Tien 
Shan) 

58,205 km2  
(2%) 

Annual runoff 
(decrease) 

Decreased 
precipitation, 
decreased snowmelt 

1966–1995 
to 2016–
2045, 2066–
2095  

5 GCMs RCP2.6, RCP4.5, 
RCP8.5 

Gan et al. (2015) 

“ “ Winter runoff  
(-2.2 to +19.8%) 

Decreased 
precipitation, 
decreased snowmelt 

“ “ “ “ 

“ “ Spring peak  
(1 month earlier) 

Earlier snowmelt “ “ “ “ 
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Chon Kemin 
(Kyrgyz-Kazakh 
region) 

1,037 km2  
(11%) 

Summer runoff  
(-15 to -4%, -66 
to -9%) 

Decreased ice melt 1955–1999 
to 2000–
2049, 2050–
2099 

4 GCMs RCP2.6, RCP8.5 Sorg et al. (2014a) 

“ “ Spring runoff  
(+7 to +23%, 
+18 to +62%) 

Increased winter 
precipitation, increased 
snowmelt 

“ “ “ “ 

Beida River, 
upper Heihe 
(China) 

565–6,706 km2 
(total 318.2 km2) 

Annual runoff 
(increase) 

Increased glacier melt 1957–2013 3 stream 
gauges 

Past Wang et al. (2017b) 

Lhasa, upper 
Brahmaputra 

32,800 km2 (2% 
in 1970, 1.3–
11.5% for 
selected sub-
basins) 

Early summer 
runoff  
(decrease) 

Decreased snowmelt, 
increased 
evapotranspiration 

1971–2000 
to 2011–
2040 and 
2051–2080 

single GCM-
RCM 

SRES A1B, A2, B2 Prasch et al. (2013) 

Koshi (Nepal) 3,712 km2 (13%) Summer runoff 
(decrease) 

Decreased snow melt 2000–2010 
to 2040–
2050, 2086–
2096 

5 GCM-
RCMs 

SRES A1B Nepal (2016) 

Upper Langtang 
(Himalaya) 

(including 
glaciers) 

Peak runoff 
(increase) 

Transition of snowfall 
to rainfall 

2001–2010 
to 2041–
2050, 2051–
2060, 2060–
2100 

12 GCMs RCP4.5, RCP8.5 Ragettli et al. (2016) 

Langtang 
(Himalaya) 

360 km2  
(46%) 

Annual runoff 
(increase) 

Increased glacier melt 1961–1990 
to 2021–
2050, 2071–
2100 

RCP4.5, 
RCP8.5 

8 GCM Immerzeel et al. (2013) 

Baltoro 1,415 km2  
(46%) 

Annual runoff 
(increase) 

Increased glacier 
glacier melt 

 “ “ “ 

Chhota Shigri 
(Western 
Himalaya) 

~35 km2  
(46.5%) 

Spring-summer 
runoff  
(increase) 

Earlier snow and 
glacier melt 

1951–2099 
to 2070–
2099 

GCM-RCM RCP4.5, RCP8.5 Engelhardt et al. (2017) 

“ “ Summer runoff 
(decrease) 

Decreased glacier melt “ “ “ “ 

Hunza, upper 
Indus (Western 
Himalaya) 

13,567 km2 
(including 
glaciers) 

Spring runoff 
(increase, earlier 
in 2 GCMs, 
decrease in 1 
GCM) 

Early snow melt 1980–2010 
to 2030–
2059, 2070–
2099 

3 GCMs RCP2.6, RCP8.5 Garee et al. (2017) 
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“ “ Summer runoff 
(decrease in 2 
GCMs, slight 
increase in 1 
GCM) 

Decreased glacier melt “ “ “ “ 

New Zealand and SE Australia 
Upper Waitaki 
(New Zealand) 

9,490 km2 
(including 
glaciers) 

Late winter-
spring runoff 
(increase) 

Transition of snowfall 
to rainfall 

1980–1999 
to 2030–
2049, 2030–
2049, 2080–
2099 

Downscaled 
12 GCMs 

SRES A1B Caruso et al. (2017) 

“ “ Summer runoff 
(decrease) 

Decreased snowmelt, 
decreased precipitation 

“ “ “ “ 

Other regions (affected by snow cover but lacking glaciers) 
Eastern Scotland 749 km2  

(0%) 
Winter runoff 
(increase) 

Transition of snowfall 
to rainfall, 
precipitation increase 

1960–1991 
to 2010–
2039, 2030–
2059, 2070–
2099 

11 RCMs SRES A1F1, A1B, 
B1 

Capell et al. (2014) 

Shubuto, 
Hokkaido 
(Japan) 

367.1 km2  
(0%) 

Spring peak  
(~14 days 
earlier) 

Earlier snowmelt 2046–2065 5 GCMs SRES A1B Bhatti et al. (2016) 
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SM2.7 Details of Studies on Peak Water 
 
 
Table SM2.10: Overview of studies providing estimates of the timing of peak water for the individual glaciers or glacier-fed river basins plotted in Figure 2.6. Peak water is the 
approximate year derived from observations or modelling (past) and modelling (future) when on average annual runoff reaches a maximum due to glacier shrinkage. Years are 
approximated from the information presented in each study, and in some cases represent an average of results from different scenarios (see remarks). Local refers to estimates for 
individual glaciers (no matter glacier area) and river basins with multiple glaciers but total glacier cover less than 150 km2. All other estimates are referred to as regional. Glacier 
area refers to reported area typically referring to the beginning of the study period. Glacier cover refers to the glacier area in percent of the river basin’s area.   

Glacier/basin name Domain type Peak water 
(year) 

Glacier area 
(km2) 

Glacier cover  
(%) 

Reference Remarks; scenario (if reported) 

Alaska 
Copper River basin regional ~2070 ~13,000 ~21 Valentin et al. (2018) RCP4.5 
Wolverine local ~2050 17 67 Van Tiel et al. (2018) No clear peak; RCP4.5 
Wolverine local ~2035 17 67 No clear peak; RCP8.5 
Western Canada 
Hood local ~2015 ~9 100 Frans et al. (2016) Runoff from glacier area 

Bridge local ~2015 73 53 Moyer et al. (2016) Qualitative statement: At / close to peak 
water 

Mica basin regional ~2000 1,080 52 Jost et al. (2012) Already past peak water; year not reported 
Bridge local ~2000 73 53 Stahl et al. (2008) Already past peak water; year not reported 
Hoh local 1988 18 100 Frans et al. (2018) Runoff from glacier area; RCP4.5 
Stehekin local 1985 19 100 
Cascade local 1984 12 100 
Hood local 1995 5 100 
Thunder local 2040 32 100 
Nisqually local 2053 18 100 
Several basins in Western 
Canada regional ~2000 150  Fleming and Dahlke (2014) “Peak Water already over” (qualitative 

statement); runoff data analysis 

Western Canada, coastal 
Alaska regional ~2035 26,700 100 

Clarke et al. (2015) Runoff from glacier area; Peak water varying 
between ~2023 and 2055; RCP2.6 

Western Canada, coastal 
Alaska regional ~2042 26,700 100 

Runoff from glacier area; Peak water varying 
between ~2024 and 2065; RCP8.5 

Iceland 

Southern Vatnajökull, 
Langjökull, Hofsjökull local/ regional ~2055 ~5000 100 

Björnsson and Pálsson (2008)  

Central Europe (European Alps) 
Gries local 2020 5 49 Farinotti et al. (2012) A1B 
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Silvretta local 2015 5 5 
Rhone local 2042 18 46 
Gorner local 2035 51 63 
Aletsch local 2050 117 59 
Trift local 2045 17 43 
Zinal local 2047 11 65 Huss et al. (2008) A1B 
Moming local 2039 6 63 
Weisshorn local 2035 3 39 
Morteratsch local 2020 16 15 Huss et al. (2010) A1B 
Forno local 2042 7 34 
Albigna local 2020 6 30 
Plaine Morte local 2055 8 100 Reynard et al. (2014) A1B 
Findel local 2035 16 74 Uhlmann et al. (2013)  

Findel local ~2050 16 74 Huss et al. (2014) A1B (Peak water 2035–2065 depending on 
climate model 

Swiss Alps 
local (>100 
glaciers) 

1997 <0.05 100 Huss and Fischer (2016)  
Swiss Alps 2000 0.05–0.125 100 
Swiss Alps 2004 0.125–0.5 100 
High Mountain Asia 
Chon Kemin basin regional ~2045 112 11 Sorg et al. (2014a) RCP2.6 
Chon Kemin basin regional ~2025 112 11 RCP8.5 
Largest rivers of China regional ~2070 ~30,000  Su et al. (2016) Peak water unclear from study; RCP2.6 
Largest rivers of China regional ~2070 ~30,000  Peak water unclear from study; RCP8.5 

Hailuogou local ~2050 45 36 Zhang et al. (2015) No clear peak; declining glacier runoff after 
2050; RCP4.5 

Hailuogou local ~2070 45 36 RCP8.5 
Kakshaal basin regional ~2018 740 4 Duethmann et al. (2016) Runoff from glacier area; aggregate of 

different emission scenarios; 
RCP2.6/RCP8.5 Sari-Djaz basin regional ~2033 2,580 20 

Naryn basin regional ~2020 1,160 2 Gan et al. (2015) RCP2.6 
Naryn basin regional ~2030 1,160 2 RCP4.5 
Naryn basin regional ~2050 1,160 2 RCP8.5 
Urumqi local 2020 2 52 Gao et al. (2018) RCP4.5 
Yangbajing basin regional ~2025 312 11 Prasch et al. (2013) Peak water between 2011 and 2040; A1B 
Headwaters of Brahmaputra, 
Ganges, Indus regional ~2050 ~30,000  Lutz et al. (2014) RCP4.5 

All High-Mountain Asia 
glaciers  regional ~2030 ~90,000 100 Kraaijenbrink et al. (2017) 

 
RCP4.5 
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All High-Mountain Asia 
glaciers  regional ~2050 ~90,000 100 RCP8.5 

Chhota Shigri local 2040 16 46 Engelhardt et al. (2017) No clear peak; RCP4.5 
Chhota Shigri local 2020 16 46 No clear peak; RCP8.5 
Hypothetical local 2055 50 1 Rees and Collins (2006) Runoff from glacier area 
Hypothetical local 2064 50 1 
Langtang local 2045 120 100 Immerzeel et al. (2013) RCP4.5 
Baltoro local 2048 520 100 RCP8.5 
Langtang local 2044 120 100 RCP4.5 
Baltoro local 2065 520 100 RCP8.5 
Langtang local ~2055 120 34 Ragettli et al. (2016) RCP4.5 
Langtang local ~2070 120 34 RCP8.5 
Low Latitudes (Andes) 

Rio Santa basin regional ~2005 200 2 Carey et al. (2014) “Peak water already over” (qualitative 
statement) 

Zongo local 2010 3 21 Frans et al. (2015)  

Cordillera Blanca regional ~1995 480  Polk et al. (2017) “Peak water already over” (qualitative 
statement) 

Sub-basins of Rio Santa  ~1990 200 2 Baraer et al. (2012) Analysis of observations 
Scandinavia 
Nigardsbreen local ~2080 45 70 Van Tiel et al. (2018) No clear peak; RCP4.5 
Nigardsbreen local ~2080 45 70 No clear peak; RCP8.5 
Southern Andes 
Juncal local 2030 34 14 Ragettli et al. (2016) RCP4.5 
Juncal local 2020 34 14 RCP8.5 
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SM2.8 Details of Studies on Observed Impacts Attributed to Cryosphere Changes 
 
 
Table SM2.11: Overview of studies documenting observed impacts on ecosystems, other natural systems and human systems over the past several decades that can at least partly be 
attributed to changes in the cryosphere, per high mountain region (as defined in Figure 2.1). Other additional climatic or non-climatic drivers are not listed. Confidence levels refer to 
confidence in attributing the impact to cryosphere changes (H for high, M for medium). Only studies where the confidence in attribution to cryosphere change is at least medium are 
listed. Also listed whether or not the impact is positive (pos), neg (neg) or mixed for the impacted system. Figure 2.8 is based on the data provided in this table. 

Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Alaska 

Alaska Landslides Increase in frequency of large rock 
avalanches  Permafrost degradation M neg Coe et al. (2017) 

Alaska 
Terrestrial 
ecosystems 
(tundra) 

Population performance of a large 
mammal (dall sheep) Spring snow cover M mixed van de Kerk et al. 

(2018) 

Alaska 

Terrestrial 
ecosystems 
(tundra; 
forest) 

Decline in abundance & offspring 
recruitment of a large mammal 
(mountain goat) 

Harsh winter conditions (extreme 
weather events); delayed spring onset / 
end of snow season 

M neg Rattenbury et al. 
(2018) 

Alaska Culture, 
Tourism 

Route change for Iditarod dog-sled 
race 

Insufficient snow cover, lack of 
river/lake ice. H neg Hagenstad et al. (2018) 

Western Canada and USA 

British Columbia  Hydropower Change in runoff timing Reduction in peak winter snow 
accumulation, glacier decline. 

H (snow)  
M (glacier) mixed Jost et al. (2012); Jost 

and Weber (2013) 
Sacramento River 
basin, California Hydropower Change in runoff timing Reduced snow pack due to more 

precipitation as rain. H neg Reclamation (2014) 

San Joaquin River 
basin, California Hydropower Change in runoff timing Reduced snow pack due to more 

precipitation as rain. M neg Reclamation (2014) 

Upper Colorado River, 
USA Hydropower Change in runoff timing Earlier snowmelt runoff H neg Kopytkovskiy et al. 

(2015) 

Cascades  Agriculture Irrigation Reduction in dry season stream flow due 
to glacier retreat M neg Frans et al. (2016) 

Rocky 
Mountains/Cascades  Agriculture Irrigation Reduction in summer stream flow 

because of reduced snowpack M neg McNeeley (2017) 

British Columbia Landslides Increase in landslide frequency Glacier retreat and loss M neg Cloutier et al. (2017) 

Entire Western USA Floods Decrease in frequency of rain-on-
snow flood event at lower elevation 

Decrease in duration and depth of snow 
cover M pos McCabe et al. (2007) 

Entire Western USA Floods Increase in frequency of rain-on-
snow flood event at higher elevation 

Increase in frequency of rainfall at high 
elevation in winter. M neg “ 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Canada 

Terrestrial 
ecosystems 
(tundra; 
forest) 

Population dynamics of a large 
mammal (wolverine) 

Winter snowpack decline, negatively 
correlated with temperature anomalies H mixed Brodie and Post (2010) 

Colorado Rocky 
Mountains 

Terrestrial 
ecosystems 
(tundra) 

Changes in vegetation distribution 
(shrub and tundra expansion) 

Spring snow cover (snow water 
equivalent) M pos Bueno de Mesquita et 

al. (2018) 

Mid-elevation 
Northern Rocky 
Mountains 

Terrestrial 
ecosystems 
(forest) 

Fire extent, fire season severity, and 
fire season duration increase Earlier spring snow-melt  M neg Westerling (2016) 

Colorado Rocky 
Mountains 

Terrestrial 
ecosystems 
(tundra) 

Changing upper and lower 
boundaries of alpine tundra, and 
within plant community shifts 
 

Snow changes M mixed Suding et al. (2015) 

Cascade Mountains 
Terrestrial 
ecosystems 
(tundra) 

Change in abundance of a small 
mammal (pika) at different 
elevations 

Record low snowpack (snow drought) H mixed Johnston et al. (2019) 

Colorado Rocky 
Mountains 

Terrestrial 
ecosystems 
(subalpine 
meadows) 

Decrease in peak season net 
ecosystem production 

Earlier snowmelt, longer early season 
drought M neg Sloat et al. (2015) 

Northern Rocky 
Mountains, Montana 

Terrestrial 
ecosystems 
(forest) 

Reduced survival of a small 
mammal (snowshoe hare) due to 
camouflage mismatch 

Snow cover duration M neg Zimova et al. (2018) 

Montana Freshwater 
ecosystems Loss of endemic invertebrates Decreased glacier runoff due to glacier 

decline M neg Giersch et al. (2017) 
Muhlfeld et al. (2011) 

Rocky Mountains Freshwater 
ecosystems 

Cutthroat trout and bull trout range 
reduced 

Decreased glacier runoff due to glacier 
decline M neg Young et al. (2018) 

W. USA and W. 
Canada Tourism Reduced operating capabilities of 

ski resorts Less snow H neg Steiger et al. (2017); 
Hagenstad et al. (2018) 

Cascades, USA Tourism 
Reduced ice-climbing opportunities 
and reduced attractions for summer 
trekking 

Glacier retreat  M neg Orlove et al. (2019) 

Iceland 
Sandá í Þistilfirð, 
Iceland Hydropower Change in timing of input  Change in seasonality of snowmelt M neg Einarsson and Jónsson 

(2010) 
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Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Austari-Jökulsá, 
Iceland Hydropower Change in timing of input Change in seasonality of snowmelt and 

glacier decline M neg Einarsson and Jónsson 
(2010) 

Northern Iceland Landslides Large debris slide Deep thawing of ground ice  H neg Sæmundsson et al. 
(2018) 

Iceland Freshwater 
ecosystems 

Change in species interactions and 
loss of taxa Decreased runoff due to glacier decline M neg Milner et al. (2017) 

Jokulsarlon Tourism Glacier-based tourism Positive effect - picturesque glacial 
lagoon formed by glacier retreat H pos Þórhallsdóttir and 

Ólafsson (2017) 
Central Europe 

European Alps Water quality Increased heavy metal 
concentrations in lakes 

Release of solutes from thawing 
permafrost M neg Thies et al. (2007) 

European Alps Water quality Increased heavy metal 
concentrations in lakes 

Release of solutes from thawing 
permafrost M neg Ilyashuk et al. (2018) 

European Alps Water quality Increased heavy metal 
concentrations in streams 

Release of solutes from thawing 
permafrost M neg Thies et al. (2013) 

Carpathians, Eastern 
Europe Hydropower Reduced water inflow in input due 

to change in runoff timing 

Reduction of perennial snowpacks and 
earlier snowmelt - reduced input and 
change in seasonality of input 

M neg Alberton et al. (2017) 

Löntsch, Switzerland Hydropower Increase in runoff (short-term) Slight glacier decline M pos 
Hänggi et al. (2011); 
Hänggi and 
Weingartner (2011) 

Löntsch, Switzerland Hydropower Change in runoff and timing 
Snow cover - Slightly more 
precipitation/snow, slightly less snow 
cover, slight increase in snow melt 

M mixed “ 

Oberhasli, Switzerland Hydropower change in timing of runoff 
Glaciers - significant reduction, decrease 
of glacier melt with slightly earlier 
maximum 

M neg Weingartner et al. 
(2013) 

Göschener alp 
reservoir, Switzerland Hydropower change in timing of input Snow cover - minor change of 

seasonality  M - “ 

Gougra, Switzerland Hydropower increase in input Glaciers - significant reduction, increase 
in runoff M pos “ 

Gougra, Switzerland Hydropower change in timing of input Snow cover - change in timing of runoff M neg “ 

Prättigau, Switzerland Hydropower slight increase in runoff Glaciers - slight decline M pos 
Hänggi et al. (2011); 
Hänggi and 
Weingartner (2011) 
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Impact Cryosphere Change Attribution 
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Positive/Ne
gative/Mix
ed 

Reference 

Prättigau, Switzerland Hydropower change in runoff and timing 
Slightly more precipitation/snow, 
slightly less snow cover, slight increase 
in snow melt and winter discharge 

H mixed “ 

Switzerland Hydropower Increased water inflow  Glacier retreat  H pos Schaefli et al. (2019) 

Italian Alps Hydropower Decreased water supply for run-of-
river hydropower 

Glacier retreat has reduced summer 
runoff. M neg Orlove et al. (2019) 

French and Italian 
Alps Landslides Increase in rock avalanche 

frequency 
Glacier retreat and permafrost 
degradation M neg 

Ravanel and Deline 
(2011); Fischer et al. 
(2012); Ravanel et al. 
(2017) 

Swiss Alps Landslides Increase in frequency of large 
debris flows Permafrost degradation M neg Stoffel and Graf 

(2015) 
European Alps Landslides Rock glacier destabilisation Permafrost thaw H neg Roer et al. (2008) 

European Alps Landslides Increasing debris flows and small 
rock fall Permafrost thaw H neg Kummert et al. (2017) 

European Alps Landslides Rock glacier collapse Permafrost thaw H neg Bodin et al. (2016) 

European Alps Landslides Increasing rockfall during heat 
waves Permafrost thaw H neg Ravanel et al. (2017) 

European Alps Landslides Slope instability beneath 
infrastructure Permafrost thaw H neg Ravanel et al. (2013) 

European Alps Landslides Increasing rockfall Permafrost thaw H neg Ravanel et al. (2010) 

European Alps Landslides Increasing rockfall during recent 
decades Permafrost thaw M neg Ravanel and Deline 

(2011) 

Swiss Alps Landslides 
Increase in debris transport into 
steep slopes and destabilisation of 
rock glaciers 

Permafrost degradation M neg Kääb et al. (2007) 

European Alps Snow 
avalanche 

More avalanches involving wet 
snow Changes in snow cover characteristics M neg Pielmeier et al. (2013) 

Naaim et al. (2016) 

European Alps Snow 
avalanche 

Decrease in total number of 
avalanches at lower elevation Changes in snow cover characteristics M pos Eckert et al. (2013); 

Lavigne et al. (2015) 

Tatras mountains Snow 
avalanche 

Decline in mass and intensity of 
large avalanches Changes in snow cover characteristics M pos Gadek et al. (2017) 

European Alps Floods 
Decrease in rain-on snow flood 
event at lower elevation and in 
spring 

Change in duration and depth of snow 
cover and change in precipitation type 
(rain vs. snow) 

M pos 
Freudiger et al. (2014); 
Moran-Tejéda et al. 
(2016) 
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ed 
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European Alps Floods 
Increase in rain-on snow flood 
event at higher elevation and in 
winter 

Change in duration and depth of snow 
cover and change in precipitation type 
(rain vs. snow) 

M neg “ 

Poland (Białowieża 
Forest) 

Terrestrial 
ecosystems 

increased predation pressure in a 
mammal (weasel) due to 
phenological camouflage mismatch 

decreasing number of snow-cover days M neg Atmeh et al. (2018) 

Pyrenees Terrestrial 
ecosystems 

availability duration of high quality 
food for a bird (ptarmigan) Earlier snow-melt M pos García-González et al. 

(2016) 

Swiss Alps 
Terrestrial 
ecosystems 
(tundra) 

Alpine grassland species colonize 
the snowbeds 
 

Shorter snow-cover duration H mixed Matteodo et al. (2016) 

Italian Alps 
Terrestrial 
ecosystems 
(tundra) 

Slow soil and plant community 
development  Glacier retreat H mixed D'Amico et al. (2017) 

French Pyrenees Freshwater 
ecosystems 

Change in species interactions and 
loss of taxa Decreased runoff due to glacier decline M neg Khamis et al. (2015) 

French Pyrenees Freshwater 
ecosystems 

Increased local diversity; decreased 
regional diversity Decreased runoff due to glacier decline H pos/neg Khamis et al. (2016) 

French Pyrenees Freshwater 
ecosystems Reduction in genetic diversity Decreased runoff due to glacier decline M neg Finn et al. (2013) 

Swiss Alps Freshwater 
ecosystems Upward shift of invertebrate taxa Decreased runoff due to glacier decline H neg Finn et al. (2010) 

Italian Alps Freshwater 
ecosystems Loss of endemic invertebrates Decreased runoff due to glacier decline H neg Finn et al. (2013) 

Western Balkans Freshwater 
ecosystems Loss of native trout Decreased runoff due to glacier decline M neg Papadaki et al. (2016) 

Austrian Alps Freshwater 
ecosystems Increased diatom biodiversity Decreased runoff due to glacier decline M pos Fell et al. (2018) 

Austrian Alps Freshwater 
ecosystems Increased microbial biodiversity Decreased runoff due to glacier decline M pos Finn et al. (2009) 

Italian Alps Freshwater 
ecosystems Range reduction in trout Decreased runoff due to glacier decline M neg Vigano et al. (2016) 

European Alps Infrastructure Structure instability Permafrost thaw M neg Phillips and Margreth 
(2008) 

European Alps and 
Pyrenees Tourism Reduction in ski lift revenues and 

operating capabilities of ski resorts Reduction of snow cover duration H neg Steiger et al. (2017) 
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European Alps Tourism Changes in the safety of 
mountaineering routes 

Glacier decline, permafrost thaw 
(impact on ground instability) H neg 

Ritter et al. (2012); 
Duvillard et al. (2015); 
Ravanel et al. (2017); 
Mourey et al. (2019) 

Italian Alps Culture 
Aesthetic quality; Local residents 
find the dark peaks in summer to be 
unattractive 

Glacier retreat H neg Brugger et al. (2013) 

Italian Alps Culture 
Local residents feel that the identity 
of their village is weakening as the 
peaks have less ice and snow 

Reduced ice and snow cover H neg Jurt et al. (2015) 

Scandinavia/Nordic 

Northern Norway Hydropower More water for hydropower Thinning of glacier, changed routing of 
glacier-dammed lake H pos Engeset et al. (2005) 

Northern Norway Landslides Increase in debris transport into 
steep slopes Increase in rock glacier speed M neg Eriksen et al. (2018) 

Norway 

Terrestrial 
ecosystems 
(tundra; 
forest) 

abundance reduction of a small 
mammal (mountain hare) due to 
molting mismatch and predation 

snow cover duration M neg Pedersen et al. (2017) 

Norway 
Terrestrial 
ecosystems 
(tundra) 

invertebrate, plant and fungal 
community composition change 
during succession 

glacier retreat H pos Matthews and Vater 
(2015) 

Finland Tourism Reduction in ski lift revenues Reduced snow cover duration M neg Falk and Vieru (2017) 
Caucasus and Middle East 

Central Caucasus Snow 
avalanche Increased risk of large avalanches Glacier decline, change in snow 

conditions M neg 
Aleynikov et al. (2011) 
Volodicheva et al. 
(2014) 

Central Caucasus Floods Increased risk of outburst floods Glacier decline, permafrost thaw 
(impact on ground instability) M neg 

Petrakov et al. (2012) 
Chernomorets et al. 
(2018) 

Western Caucasus Tourism Ski tourism Reduction of snow cover duration M neg Sokratov et al. (2014) 
North Asia 

Russia (Altai 
mountains) 

Terrestrial 
ecosystems 
(tundra) 

Plant and fungal community 
composition change during 
succession 

Glacier retreat H mixed Cazzolla Gatti et al. 
(2018) 

Southern Andes 
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Central Chile Water 
resources Reduced water supply reserves Reduction and melt/collapse of rocky 

glaciers Low/M neg Navarro et al. (2018) 

Patagonia Floods 
Increase in size and number of 
glacier lakes; risk of outburst floods 
(e.g. at new locations) 

Glacier decline H neg 
Navarro et al. (2018); 
Wilson et al. (2018) 
Colavitto et al. (2012) 

Central Chile Floods Peak floods (no specific affected 
sectors mentioned) 

Snow and glacier melt, shifts in peak 
flow (currently increasing), affecting 
water security in dry months 

M neg Pizarro et al. (2013) 

Chilean Patagonia Freshwater 
ecosystem 

Spawn rates for certain fish species 
negatively affected (some of great 
commercial value for the region) 

Changes in water temperature and 
salinity due to changes ice and snow 
melt  

Low/M neg Landaeta et al. (2012) 

Low Latitudes 
Cordillera Blanca, 
Peruvian Andes 

Water 
resources Drinking water supply in rural areas Reduced glacier contribution to 

groundwater which maintains springs H neg Baraer et al. (2012)  

Peruvian Andes Agriculture Negative impact on crops, pastures 
and livestock Reduced runoff due to glacier retreat M neg Mark et al. (2010); 

Bury et al. (2011) 

Central Andes 
(Bolivia, Peru) 

Terrestrial 
ecosystems 
(tundra) 

Constrained plant primary 
succession Glacier retreat M neg (Zimmer et al., 2018) 

Northern Andes 
(Ecuador) 

Terrestrial 
ecosystems 
(tundra) 

upward shifts of vegetation zones 
and maximum elevation of species Glacier retreat H pos Morueta-Holme et al. 

(2015) 

Ecuador Freshwater 
ecosystems Decrease in regional biodiversity Reduced runoff due to glacier decline  M neg Milner et al. (2017) 

Ecuador Freshwater 
ecosystems Loss of regional diversity Reduced runoff due to glacier decline H neg Cauvy-Fraunié et al. 

(2016) 

Ecuador Freshwater 
ecosystems 

Downstream shift of macro-
invertebrates Reduced runoff due to glacier decline M pos Jacobsen et al. (2014) 

Tropical Andes Tourism Closure of a ski resort. Glacier disappearance, reduced snow 
cover H neg Kaenzig et al. (2016) 

Peruvian Andes Culture 

Spiritual value: concern among 
local residents who seek to restore 
relations with the local mountain 
deity. 

Glacier retreat and lesser snowmelt on a 
major mountain have reduced flow in a 
river 

H neg Stensrud (2016) 
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Ecuadorian Andes Culture 

Loss of Indigenous knowledge, 
especially among youth and 
children, in a setting where such 
knowledge is closely linked to the 
physical presence of the glacier 

Glacier decline and disappearance M  neg Rhoades et al. (2008) 

Peruvian Andes Culture 

Spiritual value: the site of a major 
pilgrimage was altered, making it 
more difficult for pilgrims to access 
the site, and creating distress and 
concern for them 

Glacier retreat H neg Allison (2015) 

Peruvian Andes Migration 

Emigration and increased wage 
labour migration: Glacier runoff 
used to irrigate pasture, so herders 
increased their temporary migration 
for wage labour opportunities; the 
greater propensity of younger adults 
to migrate alters the demographic 
composition of the herding 
community, with a larger proportion 
of elderly and female than 
previously. 

Reduced runoff due to glacier retreat 
and lesser snowmelt runoff   M neg Alata et al. (2018) 

Bolivian Andes Migration 
Increased emigration and declines 
in the productivity of irrigated 
agriculture 

Reduced runoff due to glacier retreat M neg Brandt et al. (2016) 

High Mountain Asia 

Nepal   Water 
resources 

Drinking water supply in rural areas 
reduced Glacier retreat and reduced snow cover M neg McDowell et al. 

(2013) 

Several regions Hydropower 
More/less water for hydropower 
depending on timing for different 
regions. 

Increased/ decreased runoff due to 
glacier decline and change in snowpack H mixed Lutz et al. (2016b) 

Gilgit-Baltistan, 
Pakistan Agriculture 

Reduced water availability for 
irrigation of crops on a major 
mountain 

Reduced runoff due to glacier retreat 
and less snowmelt  H neg Nüsser and Schmidt 

(2017) 

Nepal Agriculture 
Reduction in quality of pasture, 
which reduces the capacity of the 
area to support livestock 

Reduced snow cover duration M neg Shaoliang et al. (2012) 

Nepal Agriculture Decreased agricultural production More erratic snowfall  M neg Gentle and Maraseni 
(2012) 
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Nepal Agriculture Less favourable potato planting 
conditions Seasonally delayed snowfall M neg Sujakhu et al. (2016) 

Nepal Agriculture Reduced soil moisture, which 
reduces crop yield Reduced snow cover M neg Prasain (2018) 

Pakistan Agriculture Irrigation Reduced runoff due to glacier retreat M neg Nüsser and Schmidt 
(2017) 

Nepal Agriculture 
Reduced yields due drying of soils 
in winter and reduced moisture 
input in spring 

Reduced snow cover  M neg  Smadja et al. (2015) 

Himalaya Snow 
avalanche 

Increase in occurrence of 
avalanches 

Change in snow conditions (more wet-
snow conditions) M neg Ballesteros-Cánovas et 

al. (2018) 

Himalaya Floods Increase in size and number of 
glacier lakes Glacier retreat H mixed Frey et al. (2010); 

(Gardelle et al., 2011) 

Himalaya Floods Risk of outburst floods (e.g. at new 
locations) 

Glacier retreat led to increase in number 
and size of glacier lakes H neg 

Carrivick and Tweed 
(2016); Harrison et al. 
(2018); Veh et al. 
(2019) 

Himalaya Floods 
Increased exposure of (growing) 
tourism/pilgrims to glacier lake 
outburst floods 

Glacier retreat and lake formation H neg Uniyal (2013) 

Himalaya Floods Increase in exposure of hydropower 
plants to glacier lake outburst floods Glacier retreat and lake formation M neg Schwanghart et al. 

(2016) 
China (Tibetan 
plateau, Hailuogou 
glacier) 

Terrestrial 
ecosystems 
(forest) 

fungal community composition 
change during succession Glacier retreat H pos Tian et al. (2017) 

Quinghai-Tibetan 
Plateau 

Terrestrial 
ecosystems 
(tundra) 

Plant species’ upslope and 
northward range shift; range 
expansion 

Permafrost reduction H pos You et al. (2018) 

Himalayas (Ladakh) 
Terrestrial 
ecosystems 
(tundra) 

Upslope range shift above the limit 
of continuous plant distribution; 
decrease in plant cover 

Extreme snowfall year H mixed Dolezal et al. (2016) 

Tibetan Plateau 
Terrestrial 
ecosystems 
(tundra) 

Reduction of plant productivity 
(above ground net primary 
productivity); plant species 
diversity loss 

Permafrost thaw 
 M neg Yang et al. (2018) 

Bhutan 
Terrestrial 
ecosystems 
(tundra) 

Plant establishment as snowline 
shifts upward; greater plant 
productivity 

Ascent of snowline M mixed Wangchuk and 
Wangdi (2018) 
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Northern China, 
Northwest China, 
Tibetan Plateau 

Terrestrial 
ecosystems 
(forest) 

Greater tree growth in regions with 
more snow; no effect of snow 
where snow accumulation is low 

Snow accumulation H mixed Wu et al. (2018) 

Tibetan Plateau 
Terrestrial 
ecosystems 
(tundra) 

greenness change for alpine 
meadow and alpine steppe across 
much of the Plateau 

Permafrost presence or absence; soil 
moisture H mixed Wang et al. (2016) 

Himalaya and Tibetan 
Plateau Tourism Changes in access routes to Baishui 

Glacier No. 1 Glacier retreat M neg Wang et al. (2010) 

Bhutan Tourism 
High elevation trekking: trails 
damaged and trekking routes 
limited 

Increased runoff due to increased 
snowmelt and glacier melt M neg Hoy et al. (2016) 

Tibet Culture 

Spiritual value: a number of sacred 
mountains are altered, causing 
distress for the local population, 
who view this change as the product 
of their own spiritual and moral 
failings 

Glacier retreat M neg Salick et al. (2012) 

Tibetan Plateau Culture Aesthetic value of glaciers reduced Glacier surfaces have become dirtier M neg Wang et al. (2017a) 

Uttarakhand, India Culture 

Spiritual value - rising concern for 
local population who view the 
changes in sacred mountains as the 
product of their own religious and 
moral failings 

Glacier retreat M neg Drew (2012) 

Nepal Culture 
Identity and aesthetic values 
(threatened as beauty of mountains 
is reduced) 

Glacier retreat and reduction in snow 
cover  M neg Konchar et al. (2015) 

Nepal Culture 
Causing people to experience 
concern about divine beings and 
proper rituals 

Reduced snow cover  M neg Becken et al. (2013) 

Nepal Migration 
Increased emigration due to 
declining irrigation water and 
agricultural yields 

Reduced runoff due to less snow cover M neg Prasain (2018) 

New Zealand 

New Zealand Landslides Rock avalanches from lower 
permafrost limit Thaw/degradation of permafrost M neg Allen et al. (2011) 

New Zealand Freshwater 
ecosystems Loss of cold tolerant taxa Reduced runoff due to glacier decline M neg Cadbury et al. (2010) 
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Other regions 

Japan (Taisetsu 
Mountains, Hokkaido) 

Terrestrial 
ecosystems 
(tundra) 

Changes in vegetation structure 
(shrubs & forbs) 

Accelerated snow melt and drier soil 
conditions M mixed Amagai et al. (2018) 

Japan (Taisetsu 
Mountains, Hokkaido) 

Terrestrial 
ecosystems 
(forest) 

Plant (bamboo) encroachment into 
alpine zones 

Changes in water balance associated 
with snowmelt M pos Winkler et al. (2016) 

New England, North 
East USA Tourism Closure of ski resorts Reduced snow fall and snow cover H neg 

Beaudin and Huang 
(2014); Hamilton et al. 
(2003) 
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SM2.9 Details of Studies on Adaptations in Response to Cryosphere Changes 
 
 
Table SM2.12: Documented individual adaptation actions, per country (grouped by regions as defined in Figure 2.1), for sectors addressed in this chapter, i.e. Agriculture, 
Biodiversity, Water, Energy, Natural Hazards (Hazards), Tourism & recreation (Tourism), Settlements & habitability (Habitability), Intrinsic & cultural values (Cultural). ‘Other’ is 
a merged category for other sectors and ‘Undefined’ refers to adaptation where no clear classification to a specific sector could be allocated. The adaptations are listed across their 
scale of relevance and/or implementation (Local, Regional, Global), as well as classification of type of adaptation as either ‘formal policy’, ‘autonomous’ or ‘undefined’. Key 
climatic drivers are listed that have links to (or changes in) cryosphere changes are described, which include: Temperature change ‘Temperature’; Precipitation change in terms of 
amount and timing (‘Precip. (amount, timing)’); Precipitation change in terms of changes in state (e.g. snow to rain) (‘Precip. (phase)’); Glacier change where non-hydrological 
impacts were associated (‘Glacier (non-hydro)’); Glacial hydrology change (‘Glacier (hydro)’); Snow cover change where non-hydrological impacts were associated (‘Snow (non-
hydro)’); Snow hydrology change (‘Snow (hydro)’); Extreme events where hydrological elements were associated (‘Extremes (hydro)’); Extreme events that were not associated 
with a hydrological impacts (‘Extremes (non-hydro)’); ‘Permafrost thaw’; and ecosystem changes in terms of flora and/or fauna (‘Ecosystem’). Entries for each regions are sorted in 
alphabetical order of the references. 

Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Alaska       

USA Undefined Multi-stakeholder adaptation planning exercise Regional Undefined Snow (non-hydro), Ecosystem Knapp et al. (2014) 
Caucasus and Middle East 

Russia Hazards Instillation of GLOF early warning system Regional Formal Policy Glacier (hydro), Extremes 
(hydro) Petrakov et al. (2012) 

Central Europe 

Switzerland 

Water 
Efforts of ACQWA projects to address 
vulnerability associated with hydrological 
changes 

Regional 

Formal Policy Temperature, Precip. (amount, 
timing), Glacier (hydro) Beniston et al. (2011) 

Water, Hazards 
Flooding/hazards planning - Third Rhone 
Correction Local, Regional 
Flooding/hazards planning - MINERVE 

Switzerland, 
Italy, Chile, 
Kyrgyzstan 

Agriculture, 
Energy, Water Impact assessment for adaptation planning Global Undefined 

Temperature, Precip. (amount, 
timing, phase state), Glacier 
(hydro), Extremes (hydro, non-
hydro), Permafrost thaw 

Beniston and Stoffel 
(2014) 

Spain Tourism 

Artificial snow production 

Regional Autonomous Temperature, Precip. (amount, 
timing), Snow (non-hydro) 

Campos Rodrigues et al. 
(2018) 

Nocturnal skiing 

Protection and conservation of snowpack 

Diversification of snow-based activities 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Expansion of skiable area 

Accessing economic assistance (gov & insurance) 

Turning ski resorts into multi-recreation facility 

France Tourism, Hazards Installation of ladders Local Autonomous Temperature, Glacier (non-
hydro, hydro), Permafrost thaw Duvillard et al. (2015) 

Austria Tourism 
Cover ski runs with textile to reduce ablation 

Local Autonomous Snow (non-hydro) Fischer et al. (2011) 
Grooming ski slopes 

Switzerland 
Tourism Cover snow with sawdust to preserve for skiing Regional Autonomous Temperature, Precip. (amount, 

timing), Snow (non-hydro) Grünewald et al. (2018) 
Italy 

Switzerland 

Tourism Installing a hanging bridge across the deep gorge 
to allow mountain access Local 

Autonomous 

Glacier (hydro), Snow (hydro), 
Extremes (hydro), Permafrost 
thaw 

Haeberli et al. (2016) 
Hazards Installation of early warning system Undefined 

Undefined Project to support adaptation planning - NELAK Regional Formal Policy 

Water 
Lake level lowering 

Undefined Undefined 
Flood retention 

Switzerland Water 

Policy incentives for ‘‘resilience- based’’ water 
infrastructure projects 

Regional 

Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Hill (2013) Shared water utility service to spread risks among 
stakeholders Undefined Policy for reducing water use in periods of 
drought 

Switzerland 
Tourism 

Artificial snow production 
Undefined Autonomous 

Temperature, Glacier (non-
hydro, hydro), Snow (non-
hydro), Permafrost thaw, 
Ecosystem 

Hill et al. (2010) Consortium for tourism planning and 
diversification 

Undefined Project to support adaptation planning - CIPRA Regional Formal Policy 
Switzerland, 
France Energy, Water Glacier-fed rivers and climate change project - 

GLAC-HYDROECO-NET Undefined Formal Policy Glacier (hydro), Ecosystem Khamis et al. (2014) 

 Tourism Establishment of Chamonix Department of Trail 
Maintenance Local Formal Policy Temperature, Glacier (non-

hydro, hydro), Permafrost thaw 
Mourey and Ravanel 
(2017) 
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France Tourism, Hazards 

Construction of bridge to access to refuge on 
Mont Blanc 
Route modifications, opening trail connecting 
other refuges Autonomous 
Installation of ladders 

Austria, 
Germany, 
Switzerland 

Undefined Assessment of adaptation knowledge and needs Global Formal Policy Glacier (hydro), Snow (hydro), 
Extremes (hydro) Muccione et al. (2016) 

Austria 

Tourism 

Switching to other tourism activities 

Undefined 
Undefined Glacier (non-hydro), Snow (non-

hydro) Orlove (2009b) 

Austria, 
Switzerland Resorts covering glaciers 

Italy Redistributing available snow 

Switzerland Hazards Creating hazard maps and restricting construction Formal Policy Glacier (hydro), Snow (non-
hydro), Extremes (hydro) 

Spain Tourism Modelling how ski area change and tourism 
impacts in support of planning process Undefined Formal Policy Temperature, Snow (non-hydro) Pons-Pons et al. (2012) 

Spain 
Tourism Artificial snow production 

Undefined 
Autonomous 

Snow (non-hydro) Pons et al. (2014) 
Undefined Project to support adaptation planning - ESPON-

CLIMATE Formal Policy 

Austria Tourism Evaluation of impacts of climate change on alpine 
trails to support planning Regional Formal Policy Glacier (hydro), Permafrost thaw Ritter et al. (2012) 

Austria Tourism Artificial snow production Regional Autonomous Temperature, Snow (non-hydro) Steiger and Mayer 
(2008) 

High Mountain Asia 

India 
Agriculture 

Development of state action plan on climate 
change Regional 

Formal Policy Precip. (amount, timing), Glacier 
(hydro), Extremes (hydro) 

Azhoni and Goyal 
(2018) 

Hazard risk and vulnerability assessment to 
support planning 

Agriculture, Water Spring water rejuvenation project Local 

India 

Habitability Building stone embankments to avoid flooding 

Local Undefined 

Temperature, Precip. (amount, 
timing), Extremes (hydro) Bhadwal et al. (2013) Other Increase the range of crops covered under 

insurance 

Undefined Improving access to better technology in 
agriculture 

Temperature, Precip. (amount, 
timing) 



FINAL DRAFT Chapter 2 Supplementary Material IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute SM2-53 Total pages: 87 

Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Agriculture 
Capacity building for farmers for water efficient 
farm practice Temperature, Precip. (amount, 

timing), Extremes (hydro) Limiting cultivation of summer rice 

Agriculture, Water 
Field bunding to control erosion 

Temperature, Precip. (amount, 
timing) 

Afforestation 

Water 

Promoting water efficient irrigation 
Construction of water harvesting and storage 
structure 
Increase public awareness of water conservation 

Temperature, Precip. (amount, 
timing), Extremes (hydro) 

Knowledge sharing exercises 
Water conservation structure like dams, surface 
water bodies, field bunding 
Water harvesting structures 

Tajikistan 

Agriculture, 
Energy, Culture, 
Habitability, Water, 
Other 

Stakeholder workshop providing information for 
adaptation planning Undefined Formal Policy Temperature, Precip. (amount, 

timing), Glacier (non-hydro) Bizikova et al. (2015) 

Nepal Undefined 

National Adaptation Programme of Action Nepal 

Regional 

Formal Policy 

Snow (non-hydro), Extremes 
(hydro) Byers et al. (2014) 

Local Adaptation Plan of Action 

Research and monitoring of glacial lakes 

Undefined 

Early warning systems 

Disaster management systems 

Weather monitoring and forecasting 

Snow and ice management training 

Alternative house construction strategies 

Public awareness building 

Firefighting training and equipment 
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Other Insurance coverage and clothing for porters 

Agriculture Nurseries and afforestation 

Tajikistan 

Undefined 

Labour migration 

Local 

Autonomous Glacier (hydro), Ecosystem 

Christmann and Aw-
Hassan (2015) 

Appointed villager to regularly check all glaciers 
Opening a training center for adaptation in 
mountain villages 
Planting trees 

Initiate a watershed development committee 

Building water reservoir 

Agriculture 

Crop and livestock diversification 
Supporting education of local person in 
agriculture and engineering to increase adaptation 
capacity in community 

Uzbekistan 

Undefined Participatory discussion of adaptation strategies 
for rangeland 

Formal Policy Temperature, Precip. (amount, 
timing), Glacier (hydro) Agriculture 

Establish pastoral user groups 
Establish fenced seed isles for yearly natural 
seeding 
Seasonal grazing management 

India Water Artificial glacier construction Local Autonomous Temperature, Glacier (hydro) Clouse (2014) 

India Water 
Reservoirs built and snow fences installed to 
capture/store snow in winter for use as irrigation 
in summer 

Local Autonomous Snow (hydro) Banerji and Basu (2010) 

India 
Undefined 

Moving to new location to escape perennial water 
scarcity 

Local Autonomous 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Clouse (2016) 
Reduce overall hectare of cropland in production 

Shrink livestock holding to fit available pasturage 

Habitability Snow barrier bands 
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Habitability, Water Building new irrigation canals and rerouting 
water Formal Policy 

India 

Culture Use of reservoirs to store water 

Regional 
Autonomous 

Temperature, Glacier (hydro) 
Clouse et al. (2017) 

Water Evaluation of artificial ice reservoirs 

Agriculture Installation of improved water mills 

Agriculture, Water Building ice stupa to store water Local Glacier (hydro), Snow (hydro) 

India Agriculture  Government watershed improvement programs Regional Formal Policy Glacier (hydro), Snow (hydro) Dame and Nüsser 
(2011) 

India Undefined Spread coal onto glaciers to ensure regeneration Local Autonomous Temperature, Precip. (amount, 
timing), Glacier (hydro) Gagné (2016) 

India, 
Nepal, 
Pakistan 

Undefined Collaborative adaptation research initiative - 
CARIAA Regional Formal Policy Glacier (hydro), Snow (hydro) Cochrane et al. (2017) 

Nepal Water Multiple livelihood options to buffer against 
seasonal losses in one sector Local Autonomous Precip. (amount, timing), 

Extremes (hydro, non-hydro) Becken et al. (2013) 

Nepal 

Agriculture Switching crop types 

Local 

Autonomous 

Precip. (amount, timing), Glacier 
(hydro), Extremes (non-hydro) Dewan (2015) 

Undefined 

Early warning systems and community-based 
flood management 
Training for flood preparedness and responses 
Using traditional remedies to rehabilitate victims 
of diseases 
Borrowing from neighbours 

Vulnerable Group Feeding program 

Formal Policy 

Framework and strategy for disaster risk 
management 
National strategy for disaster risk management 

Flood risk reduction program 

Water 
Building tube wells for drinking water 

Raising houses on stilts 
Undefined Undefined 

Hazards Funds to support social resilience 
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China Undefined 
Policies to address the impact of permafrost 
degradation Undefined 

Formal Policy Permafrost thaw Fang et al. (2011) 
Special fund for climate change adaptation Regional 

China Undefined Project to support adaptation planning - RECAST Regional Formal Policy Precip. (amount, timing), Glacier 
(hydro) Fricke et al. (2009) 

China Habitability Relocation of settlement Local Autonomous Extremes (hydro) Diemberger et al. (2015) 

China Tourism 

Assessment to support sustainable glacier tourism 

Regional 

Formal Policy 
Temperature, Glacier (non-
hydro) Wang et al. (2010) Tourism diversification 

 
Restricting tourism access 

China Agriculture 

Shifting to different seasonal pasture 

Local Autonomous Temperature, Precip. (amount, 
timing), Snow (non-hydro) Fu et al. (2012) 

Sharing pasture within community 

Cultivating fodder to feed in winter 

Build small livestock sheds 

Selling new products 

Pasture management activities 

China 

Agriculture, Water Water saving irrigation measures 

Regional 

Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro) Gao et al. (2014) Agriculture Rotational grazing 

Undefined 
Undefined Fencing grassland and grass planting 

Nepal Hazards GLOF early warning system 

Local 

Formal Policy 
Glacier (hydro), Extremes 
(hydro) Kattelmann (2003) 

Nepal Agriculture 

Creating community forest user groups 

Temperature, Precip. (amount, 
timing), Extremes (hydro), 
Ecosystem 

Gentle and Maraseni 
(2012) 

Reliance on traditional institutional arrangements 

Autonomous 

Storage of grains 

Purchasing irrigated land 

Switch to new agriculture technology/crop types 
Institutional support from Community Forest 
User Groups 
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Agriculture, 
Culture, Water Transhumant pastoralism as adaptation strategy 

Undefined 

Money lending 

Cash saving 

Take loans in times of food scarcity 

Reduce food intake 

Migration/selling labor 

Kyrgyzstan Agriculture, 
Energy, Water Impact assessment for adaptation planning Global Undefined 

Temperature, Precip. (amount, 
timing, phase state), Glacier 
(hydro), Extremes (hydro, non-
hydro), Permafrost thaw 

Beniston and Stoffel 
(2014) 

Kyrgyzstan Agriculture Introduction of new crops with lower water 
requirements Local Autonomous Temperature, Glacier (hydro), 

Snow (hydro) Hill et al. (2017) 

Kyrgyzstan, 
Uzbekistan Water Establishment of centre for transboundary water 

governance Regional Formal Policy Glacier (hydro) Hoelzle et al. (2017) 

India 

Agriculture 

Growing crops at higher altitudes 

Local Autonomous Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro), Ecosystem 

Ingty (2017) 

Regulate agriculture and grazing rights to allow 
ecosystem recovery 
Storage and crop fodder 

Agriculture, 
Culture Reliance on traditional knowledge 

Tourism 

Diversify to tourism 

Migration 

State action plan on climate change Regional Formal Policy 

India Habitability, Water Evaluating efficacy of artificial glaciers Local Formal Policy Glacier (hydro) Nüsser et al. (2018) 

India 

Hazards DRR demonstration in schools 
Local 

Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro) 

Kaul and Thornton 
(2014) Agriculture Populating potato and peas Undefined 

Agriculture, Other Insurance schemes for crops Undefined Formal Policy 
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India 

Water Participatory project to underpin adaptation 
planning 

Local Formal Policy Precip. (amount, timing), Glacier 
(hydro), Snow (hydro) Kelkar et al. (2008) 

Agriculture 
Plant less water-intensive crops 

Irrigate fields timeshare 

Undefined 

Sell land and livestock 

Find other jobs 

Take loans 

Nepal 

Agriculture 
Crop diversification 

Local Autonomous 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro), Extremes (hydro) 

Konchar et al. (2015) 
Construction of greenhouses 

Agriculture, 
Tourism 

Diversify to tourism, agropastoralism, 
agroforestry 

Undefined New roofing material 

Nepal Agriculture changing crops and agricultural practices using 
Indigenous and local knowledge Local Autonomous Temperature, Snow (non-hydro), 

Snow (hydro) Manandhar et al. (2011) 

Nepal Tourism Assessment of ecotourism as adaptation measure 
for conservation area Regional Undefined Precip. (amount, timing, phase 

state), Extremes (non-hydro) Adler et al. (2013) 

Nepal Habitability Local relocation of settlement after decreased 
water supply Local Autonomous Snow (hydro) Barnett et al. (2005) 

Nepal 
Agriculture Crop diversification 

Local Autonomous Temperature, Precip. (amount, 
timing), Snow (non-hydro) 

Onta and Resurreccion 
(2011) Undefined Cross-border trade and day-labour trips 

Nepal Water Lake lowering Regional Formal Policy Extremes (hydro) Orlove (2009b) 

Nepal Undefined 
Project to support adaptation planning - Climate 
Witness Project Regional Formal Policy Glacier (hydro), Snow (non-

hydro), Extremes (hydro) Rai and Gurung (2005) 
Establishing a Designated National Authority 

Nepal Undefined 
Lake lowering 

Undefined Formal Policy Glacier (hydro), Extremes 
(hydro) 

Somos-Valenzuela et al. 
(2015) Modelling impact of GLOF to support planning 

Nepal Water 
Limiting water consumption to drinking and 
cooking requirements Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro) 

McDowell et al. (2013) 
Roof water collection system 
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Hire assistants to help with water retrieval 
activities 

Undefined Collecting fuelwood for heating 

Nepal, India Hazards, Water Bilateral Committee on Flood Forecasting Regional Formal Policy Glacier (hydro), Snow (hydro), 
Extremes (hydro) Lebel et al. (2010) 

India Agriculture 

Crop diversification 

Local Autonomous 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Meena et al. (2019) Change timing of agricultural activities 

Agropastoralism to diversify livelihood 

India Agriculture 

Changing agricultural patterns 

Local Autonomous Precip. (amount, timing), Glacier 
(hydro), Extremes (hydro) Maikhuri et al. (2017) 

Switching to other types of animal husbandry 

Adopt horticulture 
Establish forest councils and village forest 
committee 
Migration 

 Undefined Take loans and insurance 

Bhutan 

Hazards Instillation of GLOF early warning system 

Regional Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro), Extremes (hydro) 

Meenawat and Sovacool 
(2011) Undefined 

Lowering lake water levels 
Community awareness and capacity building 
activities 
GLOF Risk Reduction Projects 

Bhutan, 
Nepal Undefined Assessment of adaptation knowledge and needs Global Formal Policy Glacier (hydro), Snow (hydro), 

Extremes (hydro) Muccione et al. (2016) 

India Water 

India National Action Plan on Climate Change 
Undefined 

Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro) 

Moors et al. (2011) National Water Policy 

Project to support adaptation planning - Highnoon Regional 

India Agriculture 
Crop diversification 

Local Autonomous 
Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Ecosystem 

Negi et al. (2017) 
Crop diversification 
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Agropastoralism to diversify livelihood 

Convert irrigated land into rainfed 

Switching away from livestock rearing 

Use of moisture conserving cropping techniques 

Undefined Migration Extremes (hydro) 

Pakistan Habitability Relocation after hazard event Local Autonomous Extremes (hydro, non-hydro) Kreutzmann (2012) 

Pakistan Water Construction of water channels for irrigation and 
domestic water supply Local Autonomous Glacier (hydro) Nüsser and Schmidt 

(2017) 
Pakistan Undefined Migration Local Autonomous Glacier (hydro), Snow (hydro) Parveen et al. (2015) 

Pakistan Undefined 
Household renovations 

Local Autonomous 
Precip. (amount, timing), Glacier 
(hydro), Extremes (hydro, non-
hydro) 

Shah et al. (2017) 
Precautionary savings 

Pakistan Water 
Irrigation scheme/program 

Local Autonomous Temperature, Precip. (amount, 
timing), Glacier (hydro) Spies (2016) Poverty alleviation and physical infrastructure 

development program 
Kyrgyzstan, 
Tajikistan, 
Uzbekistan, 
Kazakhstan 

Undefined Identification of steps for overcoming adaptation 
challenges - ACQWA project Regional Formal Policy Temperature, Glacier (hydro), 

Snow (hydro) Sorg et al. (2014b) 

Kyrgyzstan, 
Tajikistan 

Water  

Water user associations 

Regional Formal Policy 

Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Stucker et al. (2012) 

Water allocation strategy 

Water rationing 

Water sharing 

Integrate IWRM principles into institutions 

Local 

Undefined 

Clean and repair canals 
Autonomous 

Agriculture Expand orchards 
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Do not plant a second crop 

Crop diversification 

Hazards Early warning system 
Formal Policy 

Undefined Integrated Water Resource Management project Undefined 

Kazakhstan 

Agriculture, 
Biodiversity, 
Energy, Hazards, 
Water 

Development of sectoral adaptation plans 

Regional 

Formal Policy 

Glacier (hydro), Snow (hydro), 
Extremes (hydro) Xenarios et al. (2018) 

Agriculture, 
Habitability, Water Introduction of water-saving technologies 

Agriculture 

Decrease livestock pressure on pasture 

Realization of pasture management plans 

Establishment of the Public Seed Funds 

Tajikistan 

Water Development of water user associations 

Local 

Agriculture, 
Biodiversity, Water 

Environmental land management and rural 
livelihoods project 

Agriculture, 
Hazards, Water 

Capacity strengthening and livelihood 
diversification project 

Habitability Infrastructure improvements 

Autonomous 
Hazards 

Developing evacuation maps 

Constructing shelters for hazard protection 
Training of volunteers for the search and rescue 
activities 

Kazakhstan, 
Kyrgyzstan, 
Tajikistan 

Agriculture, 
Biodiversity, Water Initiation of Ecosystem-based Adaptation (EbA) 

Regional 
Formal Policy Agriculture, 

Hazards, Water Knowledge sharing arrangements 

Agriculture, Water Documentation, dissemination, and preservation 
of local knowledge relevant to adaptation Local 

Low Latitudes (Andes) 
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Bolivia Undefined Migration Local Autonomous Glacier (hydro)  Brandt et al. (2016) 

Bolivia Water Construction of reservoirs for water storage Regional Formal Policy Temperature, Precip (amount, 
timing), Glacier (hydro) Buytaert et al. (2017) 

Bolivia Undefined Migration Local Autonomous Temperature, Glacier (hydro), 
Snow (hydro), Extremes (hydro) Kaenzig (2015) 

Bolivia Tourism Rebranding the loss of glaciers as an opportunity 
for "last chance tourism" Regional Autonomous Temperature, Precip. (amount, 

timing), Snow (hydro) Kaenzig et al. (2016) 

Bolivia 

Agriculture 

Switching to cash crops 

Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro), Extremes (hydro), 
Permafrost thaw, Ecosystem 

McDowell and Hess 
(2012) 

Night irrigation 

Delay planting until irrigation is available 

Undefined 

Migrating to nearby towns to work 

Sharing work between community members 
Participatory vulnerability assessment to inform 
adaptation 

Bolivia Undefined Migration Local Autonomous Glacier (hydro)  Yager (2015) 

Bolivia Water Project to support adaptation planning - PPCR 

Undefined Formal Policy 
Temperature, Ecosystem 

Huggel et al. (2015) 

Bolivia, 
Colombia, 
Ecuador, 
Peru 

Agriculture, 
Biodiversity, Water Project to support adaptation planning - PRAA 

Colombia 

Agriculture, 
Habitability, Water Project to support adaptation planning - INAP 

Biodiversity, Water Project to support adaptation planning - Macizo 
Colombiano 

Peru 
Agriculture, 
Hazards, Water 

Project to support adaptation planning - Proyecto 
Glaciares; PACC 

Temperature, Extremes (hydro) Hazards, Water Project to support adaptation planning - IMACC 

Ecuador Agriculture, 
Hazards, Other Climate Change Action Plan Undefined Formal Policy Temperature, Precip (amount, 

timing), Extremes (hydro) 
Anguelovski et al. 
(2014) 

Ecuador Water Construction of infrastructure to transfer water 
between basins Regional Formal Policy Temperature, Precip (amount, 

timing), Glacier (hydro) 
Buytaert and De Bièvre 
(2012) 
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Peru, Chile Water Establishment of adaptation plan Regional Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Mills-Novoa et al. 
(2017) 

Colombia, 
Peru Undefined Assessment of adaptation knowledge and needs Global Formal Policy Glacier (hydro), Snow (hydro), 

Extremes (hydro) Muccione et al. (2016) 

Peru Undefined Migration Local Autonomous Glacier (hydro)  Alata et al. (2018) 

Peru Water National Water Authority Local Formal Policy Temperature, Glacier (hydro) Bury et al. (2013) 

Peru 

Undefined GLOF assessment 

Regional Formal Policy 

Temperature, Extremes (hydro) 

Carey et al. (2012) 

Habitability, Water GLOF prevention program through monitoring 
and engineering projects 

Water 

Initiation of GLOFF assessment program 

Installation of floodgates to control water level Glacier (hydro), Extremes 
(hydro) National System of Hydrological Resource 

Management 
Peru Water Project to support adaptation planning - CGIAR  Regional Formal Policy Glacier (hydro) Condom et al. (2012) 

Peru 

Agriculture, 
Biodiversity, 
Culture, Tourism, 
Water 

 Local Formal Policy Temperature, Precip. (amount, 
timing), Glacier (hydro) Doughty (2016) 

Peru Agriculture Crop diversification Local Autonomous Temperature, Precip. (amount, 
timing), Glacier (hydro) Doughty (2016) 

Peru Water, Hazards Potential for multi-purpose projects to address 
GLOFs and water availability Regional Undefined Glacier (hydro), Extremes 

(hydro) Drenkhan et al. (2019) 

Peru Undefined Project to support adaptation planning - CONAM 
+ IGP Regional Formal Policy Glacier (hydro) Lagos (2007) 

Peru 

Undefined Project to support adaptation planning - Adapts 
project  

Regional 

Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Lasage et al. (2015) 

Agriculture, 
Biodiversity Protection of upstream forests 

Water Surface storage dams 

Agriculture 
Low-cost gravity drip irrigation system 

Local 
Changing the frequency of irrigation 
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Crop diversification 

Water Water harvesting using roof-water systems 

Peru 

Undefined 

Establish an integrated regional database on 
natural resources, climate, and vulnerability. 

Regional Undefined 
Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro) 

Lee et al. (2014) 

Align the national and regional institutional and 
legal frameworks to deal with the expected effects 
of climate change 
Integrated management of reforestation, soil 
conservation, terrace management, monitoring 
systems, and capacity building 
National Climate Change Strategy 

Water 
Construction of small structures for water storage 
and distribution and improved management of 
irrigated areas 

Hazards Integrating existing early warning systems to 
enhance emergency management 

Agriculture 

Conserving native crop varieties 

Pest management practices 
Improved pastures and fodder conservation 
practices 

Peru Agriculture Reducing planting activities Local Autonomous Temperature, Precip. (amount, 
timing), Glacier (hydro) 

Lennox and Gowdy 
(2014) 

Peru Agriculture 
Crop diversification 

Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro) Lennox (2015) 

Moving to livestock based economy to sell milk 
rather than planting crops Precip. (phase state) 

Peru Agriculture 
Livestock, land, and labour diversification 

Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro), Permafrost 
thaw 

Lopez-i-Gelats et al. 
(2015) Economic diversification 

Peru Agriculture, Energy Project to support adaptation planning - 
PROCLIM Regional Formal Policy Precip. (amount, timing), 

Extremes (hydro) Orlove (2009a) 
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Peru Agriculture Line irrigation canals with cement and install 
plastic pipes Local Autonomous Glacier (hydro), Snow (hydro) Orlove et al. (2019) 

Peru Undefined Glacier change assessment in support of 
adaptation planning Undefined Formal Policy Temperature, Precip. (amount, 

timing), Glacier (hydro) Peduzzi et al. (2010) 

Peru 
Agriculture 

Changing agricultural calendar 

Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(non-hydro), Extremes (hydro), 
Ecosystem 

Postigo (2014) 

Increasing pesticide use 

Crop diversification 

Cultivating in furrows 

Burning shrubs, grass, manure to generate heat 

Increasing livestock mobility 

Water Water boards regulating water 

Peru Agriculture 
Pasture rotation 

Local 
Autonomous Temperature, Precip. (amount, 

timing), Glacier (hydro), Snow 
(hydro), Ecosystem 

Postigo et al. (2008) 
Creating irrigation channel Formal Policy 

Peru Water Hillside infiltration systems in grasslands Regional Formal Policy Temperature, Precip. (amount, 
timing), Glacier (hydro) Somers et al. (2018) 

Peru Water 

Election of water allocator Local Autonomous 
Glacier (hydro), Extremes 
(hydro) Stensrud (2016) Making micro dams Undefined 

Formal Policy 
Installing water pipes Regional 

Peru Water Migration to towns for work Local Autonomous Glacier (hydro), Extremes 
(hydro) Wrathall et al. (2014) 

Peru 

Agriculture 

Livelihood diversification 

Local Autonomous Precip. (amount, timing), Glacier 
(hydro), Extremes (hydro) 

Young and Lipton 
(2006) 

Getting grazing rights to other areas 

Agricultural and crop diversification 

Water Timed allocation of water-flow to individuals 

Undefined Seeking foreign funding, skills, attention for help 

Other Migration 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Biodiversity Conservation corridor Formal Policy 

New Zealand 

New 
Zealand Tourism 

Constructing cantilevered bridge to the glacier 
Regional Autonomous Temperature, Precip. (amount, 

timing), Glacier (non-hydro) 
Espiner and Becken 
(2014) Using boats to ferry tourists after glacial lake 

appeared 

New 
Zealand Tourism 

Artificial snow production 

Regional Autonomous Snow (non-hydro) Hopkins and Maclean 
(2014) 

Transitioning to year-round tourism 

Forming conglomerate business ventures 

Developing new ski slopes 
New 
Zealand Tourism Assessment of stakeholder perceptions for 

adaptation planning Regional Formal Policy Glacier (non-hydro), Snow (non-
hydro) Stewart et al. (2016) 

Scandinavia 

Norway Tourism 

Changing activities at ski area 

Regional Autonomous Temperature, Precip. (amount, 
timing), Snow (non-hydro) Demiroglu et al. (2018) 

Changing time of use of ski area 

Changing ski areas within Norway 

Artificial snow production 

Salting glacier surface 

Norway Tourism Diversifying locations of tourism activity  Undefined Autonomous Glacier (non-hydro) Furunes and Mykletun 
(2012) 

Norway Energy Water resource and energy directorate Undefined Formal Policy Glacier (hydro) Orlove (2009a) 

Southern Andes 

Chile Undefined Participatory project to identify adaptive options Regional Formal Policy Precip. (amount, timing), Snow 
(hydro) Aldunce et al. (2016) 

Chile Habitability Local relocation of settlements after GLOF event 
in 1977 Local Formal Policy Extremes (hydro) Anacona et al. (2015) 

Chile Agriculture, 
Energy, Water Impact assessment for adaptation planning Global Undefined Temperature, Precip. (amount, 

timing, phase state), Glacier 
Beniston and Stoffel 
(2014) 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

(hydro), Extremes (hydro, non-
hydro), Permafrost thaw 

Chile 

Agriculture Provide financing and subsidies to farmers 

Regional Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(non-hydro), Snow (hydro) 

Clarvis et al. (2014) 
Water 

Declaration of drought zones 

Water data system improvement 

Water transfer using trucks 

Dam construction 

Traditional water distribution strategies  
Local Autonomous 

Crop diversification 

Chile Water 

Water allocation policy 

Regional 
Formal Policy Temperature, Glacier (hydro), 

Snow (hydro) Hill (2013) 

Infrastructure to support irrigation security 

Policies for drought periods 

Policy to improve irrigation efficiency 
Policy for better water resources management 
under increasing scarcity  
Water allocation policy Autonomous 

Chile 

Undefined 
Reinforcing doors and roofs 

Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Young et al. (2010) 

Couples don't marry to receive subsidy to increase 
portable water 

Agriculture 

Migration to areas with more vegetation 
Companies using more efficient irrigation 
systems Undefined Autonomous 

Public funds made available to improve irrigation 
efficiency Regional Formal Policy 

Water 

Companies securing water rights Undefined 
Autonomous 

Creating water storage ponds 
Local Subsidies made available for single mother for 

water payments Formal Policy 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Reducing intake of water canals 

Regional 

Autonomous 

Reduce water use and seize water rights 

Formal Policy 
Policy to extend water access 
Constructing water canals and pool structures 

Hazards Municipal Emergency Committee provides alerts 
for harsh seasons 

Peru, Chile Water Adaptation plan for water management Regional Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Mills-Novoa et al. 
(2017) 

Argentina, 
Chile, 
Bolivia 

Undefined 

Baseline assessment to support adaptation - 
SSHRC 

Regional Formal Policy Temperature, Glacier (hydro), 
Snow (hydro), Extremes (hydro) Montana et al. (2016) Baseline assessment to support adaptation - IAI 

Baseline assessment to support adaptation - 
CLACSO-CROP 

Argentina Habitability, Water, 
Other 

Glacier protection law Argentina 
Regional Formal Policy Glacier (non-hydro, hydro) Anacona et al. (2018) 

Chile Glacier protection law Chile 

Western Canada and USA 

Canada Tourism Artificial snow production Local Undefined Snow (hydro) Da Silva et al. (2019) 

Canada Hazards, 
Habitability Creation of adaptation strategy Local Formal Policy 

Temperature, Precip. (amount, 
timing), Extremes (hydro), 
Ecosystem 

Picketts (2013) 

Canada Hazards, 
Habitability 

Creation of steering committee for adaptation 
planning Local Formal Policy Temperature, Precip. (amount, 

timing), Extremes (hydro) Picketts et al. (2016) 

Canada 
Tourism 

Artificial snow production 
Undefined Undefined Glacier (non-hydro), Snow (non-

hydro) Orlove (2009a) 
USA Creation of the Sustainable Slopes program 

USA Undefined Establishment of adaptation partnerships Global Formal Policy Temperature, Precip. (amount, 
timing), Snow (hydro) Halofsky et al. (2018) 

USA Tourism 
Artificial snow production 

Local 
Undefined 

Snow (hydro) Hagenstad et al. (2018) Diversification of tourism to other seasons/non-
snow reliant Autonomous 

USA Undefined Infrastructure to support fish and ranchers Regional Formal Policy McNeeley (2017) 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Establishment of Tribal Climate Resilience 
Program Local Temperature, Glacier (hydro), 

Snow (hydro) Establishment of Climate Science Centers and 
Landscape Conservation Cooperative 

USA Undefined Assessment of adaptation knowledge and needs Global Formal Policy Glacier (hydro), Snow (hydro), 
Extremes (hydro) Muccione et al. (2016) 

USA Tourism Develop alternative tourism (local heritage, 
wildlife viewing) Local Autonomous Glacier (non-hydro), Snow (non-

hydro) Orlove et al. (2019) 

USA Habitability Vulnerability analysis and adaptations strategy Local Formal Policy 
Temperature, Precip. (amount, 
timing), Snow (hydro), Extremes 
(hydro) 

Strauch et al. (2015) 

Iceland 

Iceland Tourism, Hazards Participatory planning to shift to safer glacier 
hiking routes Local Autonomous Glacier (non-hydro) Welling et al. (2019) 
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Executive Summary 
 
This chapter assesses the state of physical, biological and social knowledge concerning the Arctic and 
Antarctic ocean and cryosphere, how they are affected by climate change, and how they will evolve in 
future. Concurrently, it assesses the local, regional and global consequences and impacts of individual and 
interacting polar system changes, and it assesses response options to reduce risk and build resilience in the 
polar regions. Key findings are: 
 
The polar regions are losing ice, and their oceans are changing rapidly. The consequences of this polar 
transition extend to the whole planet, and are affecting people in multiple ways 
 
Arctic surface air temperature has likely1 increased by more than double the global average over the 
last two decades, with feedbacks from loss of sea ice and snow cover contributing to the amplified 
warming. For each of the five years since AR5 (2014-2018), Arctic annual surface air temperature exceeded 
that of any year since 1900. During the winters (January-March) of 2016 and 2018, surface temperatures in 
the central Arctic were 6°C above the 1981-2010 average, contributing to unprecedented regional sea ice 
absence. These trends and extremes provide medium evidence2 with high agreement of the contemporary 
coupled atmosphere-cryosphere system moving well outside the 20th century envelope. {Box 3.1; 3.2.1.1} 
 
The Arctic and Southern Oceans are continuing to remove carbon dioxide from the atmosphere and to 
acidify (high confidence). There is medium confidence that the amount of CO2 drawn into the Southern 
Ocean from the atmosphere has experienced significant decadal variations since the 1980s. Rates of 
calcification (by which marine organisms form hard skeletons and shells) declined in the Southern Ocean by 
3.9 ± 1.3% between 1998 and 2014. In the Arctic Ocean, the area corrosive to organisms that form shells and 
skeletons using the mineral aragonite expanded between the 1990s and 2010, with instances of extreme 
aragonite undersaturation. {3.2.1.2.4} 
 
Both polar oceans have continued to warm in recent years, with the Southern Ocean being 
disproportionately and increasingly important in global ocean heat increase (high confidence). Over 
large sectors of the seasonally ice-free Arctic, summer upper mixed layer temperatures increased at around 
0.5°C per decade during 1982-2017, primarily associated with increased absorbed solar radiation 
accompanying sea ice loss, and the inflow of ocean heat from lower latitude increased since the 2000s (high 
confidence). During 1970-2017, the Southern Ocean south of 30°S accounted for 35-43% of the global ocean 
heat gain in the upper 2000 m (high confidence), despite occupying ~25% of the global ocean area. In recent 
years (2005-2017), the Southern Ocean was responsible for an increased proportion of the global ocean heat 
increase (45-62%) (high confidence). {3.2.1.2.1} 
 
Climate-induced changes in seasonal sea ice extent and thickness and ocean stratification are altering 
marine primary production (high confidence), with impacts on ecosystems (medium confidence). 
Changes in the timing, duration and intensity of primary production have occurred in both polar oceans, with 
marked regional or local variability (high confidence). In the Antarctic, such changes have been associated 
with locally-rapid environmental change, including retreating glaciers and sea ice change (medium 
confidence). In the Arctic, changes in primary production have affected regional species composition, spatial 
distribution, and abundance of many marine species, impacting ecosystem structure (medium confidence). 
{3.2.1; 3.2.3, 3.2.4}  
 
                                                   
1 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: 
Virtually certain 99–100% probability, Very likely 90–100%, Likely 66–100%, About as likely as not 33–66%, 
Unlikely 0–33%, Very unlikely 0–10%, and Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–
100%, More likely than not >50–100%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed 
likelihood is typeset in italics, e.g., very likely (see Section 1.9.2 and Figure 1.4 for more details). This Report also uses 
the term ‘likely range’ to indicate that the assessed likelihood of an outcome lies within the 17-83% probability range. 
2 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; 
and for the degree of agreement: low, medium, or high. A level of confidence is expressed using five qualifiers: very 
low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and 
agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of 
agreement are correlated with increasing confidence (see Section 1.9.2 and Figure 1.4 for more details). 
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In both polar regions, climate-induced changes in ocean and sea ice, together with human introduction 
of non-native species, have expanded the range of temperate species and contracted the range of polar 
fish and-ice associated species (high confidence). Commercially- and ecologically-important fish stocks 
like Atlantic cod, haddock and mackerel have expanded their spatial distributions northwards many 100 km, 
and increased their abundance. In some Arctic areas, such expansions have affected the whole fish 
community, leading to higher competition and predation on smaller-sized fish species, while some 
commercial fisheries have benefited. There has been a southward shift in the distribution of Antarctic krill in 
the South Atlantic, the main area for the krill fishery (medium confidence). These changes are altering 
biodiversity in polar marine ecosystems (medium confidence) {3.2.3; Box 3.4}. 
 
It is very likely that Arctic sea ice extent continues to decline in all months of the year; the strongest 
reductions in September (-12.8 ± 2.3% per decade; 1979-2018) are likely unprecedented in at least 
1000 years. It is virtually certain that Arctic sea ice has thinned, concurrent with a shift to younger ice: since 
1979, the areal proportion of thick ice at least 5 years old has declined by approximately 90%. It is very 
likely that approximately half the observed sea ice loss is attributable to increased atmospheric greenhouse 
gas concentrations. Changes in Arctic sea ice have potential to influence midlatitude weather on timescales 
of weeks to months (medium confidence). {3.2.1.1; Box 3.2} 
 
It is very likely that Antarctic sea ice cover exhibits no significant trend over the period of satellite 
observations (1979 to 2018). While the drivers of historical decadal variability are known with medium 
confidence, there is currently limited evidence and low agreement concerning causes of the strong recent 
decrease (2016-2018), and low confidence in the ability of current-generation climate models to reproduce 
and explain the observations. {3.2.1.1} 
 
Shipping activity during the Arctic summer increased over the past two decades in regions for which 
there is information, concurrent with reductions in sea ice extent (high confidence). Transit times across 
the Northern Sea Route have shortened due to lighter ice conditions, and while long-term, pan-Arctic 
datasets are incomplete, the distance travelled by ships in Arctic Canada nearly tripled during 1990-2015 
(high confidence). Greater levels of Arctic ship-based transportation and tourism have socio-economic and 
political implications for global trade, northern nations, and economies linked to traditional shipping 
corridors; they will also exacerbate region-specific risks for marine ecosystems and coastal communities if 
further action to develop and adequately implement regulations does not keep pace with increased shipping 
(high confidence). {3.2.1.1; 3.2.4.2; 3.2.4.3; 3.4.3.3.2; 3.5.2.7} 
 
Permafrost temperatures have increased to record high levels (very high confidence), but there is 
medium evidence and low agreement that this warming is currently causing northern permafrost 
regions to release additional methane and carbon dioxide. During 2007-2016, continuous-zone 
permafrost temperatures in the Arctic and Antarctic increased by 0.39 ± 0.15°C and 0.37 ± 0.10°C 
respectively. Arctic and boreal permafrost region soils contain 1440-1600 Gt organic carbon (medium 
confidence). Changes in permafrost influence global climate through emissions of carbon dioxide and 
methane released from the microbial breakdown of organic carbon, or the release of trapped methane. {3.4.1; 
3.4.3} 
 
Climate-related changes to Arctic hydrology, wildfire and abrupt thaw are occurring (high 
confidence), with impacts on vegetation and water and food security. Snow and lake ice cover has 
declined, with June snow extent decreasing 13.4 ± 5.4% per decade (1967-2018) (high confidence). Runoff 
into the Arctic Ocean increased for Eurasian and North American rivers by 3.3 ± 1.6% and 2.0 ± 1.8% 
respectively (1976-2018; medium confidence). Area burned and frequency of fires (including extreme fires) 
are unprecedented over the last 10,000 years (high confidence). There has been an overall greening of the 
tundra biome, but also browning in some regions of tundra and boreal forest, and also changes in the 
abundance and distribution of animals including reindeer and salmon (high confidence). Together, these 
impact access to (and food availability within) herding, hunting, fishing, forage and gathering areas, 
affecting the livelihood, health and cultural identity of residents including Indigenous peoples (high 
confidence). {3.4.1; 3.4.3; 3.5.2} 

Limited knowledge, financial resources, human capital and organisational capacity are constraining 
adaptation in many human sectors in the Arctic (high confidence). Harvesters of renewable resources are 
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adjusting timing of activities to changes in seasonality and less safe ice travel conditions. Municipalities and 
industry are addressing infrastructure failures associated with flooding and thawing permafrost, and coastal 
communities and cooperating agencies are in some cases planning for relocation (high confidence). In spite 
of these adaptations, many groups are making decisions without adequate knowledge to forecast near- and 
long-term conditions, and without the funding, skills and institutional support to engage fully in planning 
processes (high confidence). {3.5.2, 3.5.4, Cross-Chapter Box 9} 
 
It is extremely likely that the rapid ice loss from the Greenland and Antarctic ice sheets during the 
early 21st century has increased into the near present-day, adding to the ice sheet contribution to 
global sea level rise. From Greenland, the 2012-2016 ice losses (-247 ± 15 Gt yr-1) were similar to those 
from 2002-2011 (-263 ± 21 Gt yr-1) and extremely likely greater than from 1992-2001 (-8 ± 82 Gt yr-1). 
Summer melting of the Greenland Ice Sheet has increased since the 1990s (very high confidence) to a level 
unprecedented over at least the last 350 years, and two-to-fivefold the pre-industrial level (medium 
confidence). From Antarctica, the 2012-2016 losses (-199 ± 26 Gt yr-1) were extremely likely greater than 
those from 2002-2011 (-82 ± 27 Gt yr-1) and likely greater than from 1992-2001 (-51 ± 73 Gt yr-1). Antarctic 
ice loss is dominated by acceleration, retreat and rapid thinning of major West Antarctic Ice Sheet outlet 
glaciers (very high confidence), driven by melting of ice shelves by warm ocean waters (high confidence). 
The combined sea level rise contribution from both ice sheets for 2012-2016 was 1.2 ± 0.1 mm yr-1, a 29% 
increase on the 2002-2011 contribution and a ~700% increase on the 1992-2001 period. {3.3.1} 
 
Mass loss from Arctic glaciers (-212 ± 29 Gt yr-1) during 2006-2015 contributed to sea level rise at a 
similar rate (0.6 ± 0.1 mm yr-1) to the Greenland Ice Sheet (high confidence). 
Over the same period in Antarctic and subantarctic regions, glaciers separate from the ice sheets changed 
mass by -11 ± 108 Gt yr-1 (low confidence). {2.2.3, 3.3.2} 
 
There is limited evidence and high agreement that recent Antarctic Ice Sheet mass losses could be 
irreversible over decades to millennia. Rapid mass loss due to glacier flow acceleration in the Amundsen 
Sea Embayment of West Antarctica and in Wilkes Land, East Antarctica, may indicate the beginning of 
Marine Ice Sheet Instability, but observational data are not yet sufficient to determine whether these changes 
mark the beginning of irreversible retreat. {3.3.1; Cross-Chapter Box 8 in Chapter 3; 4.2.3.1.2} 
 
The polar regions will be profoundly different in future compared with today, and the degree and nature 
of that difference will depend strongly on the rate and magnitude of global climatic change3. This will 
challenge adaptation responses regionally and worldwide. 
 
It is very likely that projected Arctic warming will result in continued loss of sea ice and snow on land, 
and reductions in the mass of glaciers. Important differences in the trajectories of loss emerge from 
2050 onwards, depending on mitigation measures taken (high confidence). For stabilised global warming 
of 1.5°C, an approximately 1% chance of a given September being sea ice free at the end of century is 
projected; for stabilised warming at a 2°C increase, this rises to 10-35% (high confidence). The potential for 
reduced (further 5-10%) but stabilised Arctic autumn and spring snow extent by mid-century for RCP2.6 
contrasts with continued loss under RCP8.5 (a further 15-25% reduction to end of century) (high 
confidence). Projected mass reductions for polar glaciers between 2015 and 2100 range from 16 ± 7% for 
RCP2.6 to 33 ± 11% for RCP8.5 (medium confidence). {3.2.2; 3.3.2; 3.4.2, Cross-Chapter Box 6 in Chapter 
2} 
 
Both polar oceans will be increasingly affected by CO2 uptake, causing conditions corrosive for 
calcium carbonate shell-producing organisms (high confidence), with associated impacts on marine 
organisms and ecosystems (medium confidence). It is very likely that both the Southern Ocean and the 
Arctic Ocean will experience year-round conditions of surface water undersaturation for mineral forms of 
calcium carbonate by 2100 under RCP8.5; under RCP2.6 the extent of undersaturated waters are reduced 
markedly. Imperfect representation of local processes and sea-ice interaction in global climate models limit 
the ability to project the response of specific polar areas and the precise timing of undersaturation at seasonal 
scales. Differences in sensitivity and the scope for adaptation to projected levels of ocean acidification exist 
across a broad range of marine species groups. {3.2.1; 3.2.2.3; 3.2.3} 

                                                   
3 Projections for ice sheets and glaciers in the polar regions are summarized in Chapters 4 and 2, respectively. 
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Future climate-induced changes in the polar oceans, sea ice, snow and permafrost will drive habitat 
and biome shifts, with associated changes in the ranges and abundance of ecologically-important 
species (medium confidence). Projected shifts will include further habitat contraction and changes in 
abundance for polar species, including marine mammals, birds, fish, and Antarctic krill (medium 
confidence). Projected range expansion of subarctic marine species will increase pressure for high-Arctic 
species (medium confidence), with regionally-variable impacts. Continued loss of Arctic multi-year sea ice 
will affect ice-related and pelagic primary production (high confidence), with impacts for whole ice-
associated, seafloor and open ocean ecosystems. On Arctic land, projections indicate a loss of globally-
unique biodiversity as some high-Arctic species will be outcompeted by more temperate species and very 
limited refugia exist (medium confidence). Woody shrubs and trees are projected to expand, covering 24-
52% of the current tundra region by 2050. {3.2.2.1; 3.2.3; 3.2.3.1; Box 3.4; 3.4.2; 3.4.3} 
 
The projected effects of climate-induced stressors on polar marine ecosystems present risks for 
commercial and subsistence fisheries with implications for regional economies, cultures and the global 
supply of fish, shellfish, and Antarctic krill (high confidence). Future impacts for linked human 
systems depend on the level of mitigation and especially the responsiveness of precautionary 
management approaches (medium confidence). Polar regions support several of the world’s largest 
commercial fisheries. Specific impacts on the stocks and economic value in both regions will depend on 
future climate change and on the strategies employed to manage the effects on stocks and ecosystems 
(medium confidence). Under high emission scenarios current management strategies of some high-value 
stocks may not sustain current catch levels in the future (low confidence); this exemplifies the limits to the 
ability of existing natural resource management frameworks to address ecosystem change. Adaptive 
management that combines annual measures and within-season provisions informed by assessments of future 
ecosystem trends reduces the risks of negative climate change impacts on polar fisheries (medium 
confidence). {3.2.4; 3.5.2; 3.5.4} 
 
Widespread disappearance of Arctic near-surface permafrost is projected to occur this century as a 
result of warming (high confidence), with important consequences for global climate. By 2100, near-
surface permafrost area will decrease by 2-66% for RCP2.6 and 30–99% for RCP8.5. This could release 10s 
to 100s of Gt C as carbon dioxide and methane to the atmosphere for RCP8.5, with the potential to accelerate 
climate change (medium confidence). Methane will contribute a small proportion of these additional carbon 
emissions, on the order of 0.01-0.06 Gt CH4 yr-1, but could contribute 40-70% of the total permafrost-
affected radiative forcing because of its higher warming potential. There is medium evidence but with low 
agreement whether the level and timing of increased plant growth and replenishment of soil will compensate 
these permafrost carbon losses. {3.4.2; 3.4.3} 
 
Projected permafrost thaw and decrease in snow will affect Arctic hydrology and wildfire, with 
impacts on vegetation and human infrastructure (medium confidence). About 20% of Arctic land 
permafrost is vulnerable to abrupt permafrost thaw and ground subsidence, which is expected to increase 
small lake area by over 50% by 2100 for RCP8.5 (medium confidence). Even as the overall regional water 
cycle intensifies, including increased precipitation, evapotranspiration, and river discharge to the Arctic 
Ocean, decreases in snow and permafrost may lead to soil drying (medium confidence). Fire is projected to 
increase for the rest of this century across most tundra and boreal regions, while interactions between climate 
and shifting vegetation will influence future fire intensity and frequency (medium confidence). By 2050, 70% 
of Arctic infrastructure is located in regions at risk from permafrost thaw and subsidence; adaptation 
measures taken in advance could reduce costs arising from thaw and other climate-change related impacts 
such as increased flooding, precipitation, and freeze-thaw events by half (medium confidence). {3.4.1; 3.4.2; 
3.4.3; 3.5.2}. 
 
Response options exist that can ameliorate the impacts of polar change, build resilience and allow time 
for effective mitigation measures. Institutional barriers presently limit their efficacy. 
 
Responding to climate change in polar regions will be more effective if attention to reducing 
immediate risks (short-term adaptation) is concurrent with long-term planning that builds resilience 
to address expected and unexpected impacts (high confidence). Emphasis on short-term adaptation to 
specific problems will ultimately not succeed in reducing the risks and vulnerabilities to society given the 
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scale, complexity and uncertainty of climate change. Moving toward a dual focus of short- and long-term 
adaptation involves knowledge co-production, linking knowledge with decision-making and implementing 
ecosystem-based stewardship, which involves the transformation of many existing institutions (high 
confidence). {3.5.4} 
 
Innovative tools and practices in polar resource management and planning show strong potential in 
improving society’s capacity to respond to climate change (high confidence). Networks of protected 
areas, participatory scenario analysis, decision-support systems, community-based ecological monitoring that 
draws on local and indigenous knowledge, and self-assessments of community resilience contribute to 
strategic plans for sustaining biodiversity and limit risk to human livelihoods and wellbeing. Such practices 
are most effective when linked closely to the policy process. Experimenting, assessing, and continually 
refining practices while strengthening the links with decision making has the potential to ready society for 
the expected and unexpected impacts of climate change (high confidence). {3.5.1, 3.5.2, 3.5.4} 
 
Institutional arrangements that provide for strong multiscale linkages with Arctic local communities 
can benefit from including indigenous knowledge and local knowledge in the formulation of 
adaptation strategies (high confidence). The tightly-coupled relationship of northern local communities 
and their environment provide an opportunity to better understand climate change and its effects, support 
adaptation and limit unintended consequences. Enabling conditions for the involvement of local 
communities in climate adaptation planning include investments in human capital, engagement processes for 
knowledge co-production, and systems of adaptive governance. {3.5.3} 
 
The capacity of governance systems in polar regions to respond to climate change has strengthened 
recently, but the development of these systems is not sufficiently rapid or robust to address the 
challenges and risks to societies posed by projected changes (high confidence). Human responses to 
climate change in the polar regions occur in a fragmented governance landscape. Climate change, new polar 
interests from outside the regions, and an increasingly-active role played by informal organisations are 
compelling stronger coordination and integration between different levels and sectors of governance. The 
governance landscape is currently not sufficiently equipped to address cascading risks and uncertainty in an 
integrated and precautionary way within existing legal and policy frameworks (high confidence). {3.5.3, 
3.5.4} 
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3.1 Introduction: Polar Regions, People and the Planet 
 
This chapter provides an integrated assessment of climate change across the physical, biological and human 
dimensions of the polar regions, based on emerging understanding that assessing these dimensions in 
isolation is not sufficient or forward-looking. This offers the opportunity, for the first time in a global report, 
to trace cause and consequence of climate change from polar ocean and cryosphere systems to biological and 
social impacts, and relate them to responses to reduce risks and enhance adaptation options and resilience. 
To achieve this, the chapter draws on the body of literature and assessments pertaining to climate-induced 
dynamics and functioning of the polar regions published since the IPCC’s Fifth Assessment Report (AR5), 
which has expanded considerably motivated in large part by growing appreciation of the importance of these 
regions to planetary systems and to the lives and livelihoods of people across the globe. 
 
As integral parts of the Earth System, the polar regions interact with the rest of the world through shared 
ocean, atmosphere, ecological and social systems; notably, they are key components of the global climate 
system. This chapter therefore takes a systems approach that emphasises the interactions of cryosphere and 
ocean changes and their diverse consequences and impacts to assess key issues of climatic change for the 
polar regions, the planet and its people (Figure 3.1). 
 
The spatial footprints of the polar regions (Figure 3.2) include a vast share of the world’s ocean and 
cryosphere: they encompass surface areas equalling 20% of the global ocean and more than 90% of the 
world’s continuous and discontinuous permafrost area, 69% of the world’s glacier area including both of the 
world’s ice sheets, almost all of the world’s sea ice, and land areas with the most persistent winter snow 
cover. 
 
Important differences in the physical setting of the two polar regions—the Arctic an ocean surrounded by 
land, the Antarctic a continent surrounded by an ocean—structure the nature and magnitude of interactions 
of cryosphere and ocean systems and their global linkages. The different physical settings have also led to 
the evolution of unique marine and terrestrial biology in each polar region and shape effects, impacts and 
adaptation of polar ecosystems. 
 
It is important to recognise the existence of multiple and diverse perspectives of the polar regions, many of 
them overlapping. These multiple perspectives encompass the polar regions as a source of resources, a key 
part of the global climate system, a place for preserving intact ecosystems, a place for international 
cooperation and, importantly, a homeland. While many of these perspectives are equally relevant for both 
polar regions, only the Arctic has a population for whom the region is a permanent home: approximately four 
million people reside there, of whom 10% are indigenous. By contrast, the Antarctic population changes 
seasonally between approximately 1100 and 4400, based predominantly at research stations. When assessing 
knowledge relating to climate change in the context of adaptation options, limits and enhancing resilience 
(Cross-Chapter Box 2 in Chapter 1), such differences are important as they are linked to diverse human 
values, social processes, and use of resources. 
 
Consideration of all peer-reviewed scientific knowledge is a hallmark of the IPCC assessment process. 
Indigenous knowledge and local knowledge are different and unique sources of knowledge that are 
increasingly recognised to contribute to observing, understanding, and responding to climate-induced 
changes (Cross-Chapter Box 4 in Chapter 1). Considering indigenous knowledge and local knowledge 
facilitates cooperation in the development, identification, and decision-making processes for responding to 
climate change in communities across the Arctic, and better understanding of the challenges facing 
Indigenous peoples. This chapter incorporates published indigenous knowledge and local knowledge for 
assessing climate change impacts and responses. 
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Figure 3.1: Schematic of some of the key features and mechanisms assessed in this Chapter, and by which the 
cryosphere and ocean in the polar regions influence climate, ecological and social systems in the regions and across the 
globe. Specific elements are labelled, and section numbers given for where detailed assessment information can be 
found.  
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Figure 3.2: The Arctic (top) and Antarctic (bottom) polar regions. Various place names referred to in the text are 
marked. Dashed lines denote approximate boundaries for the polar regions; as their spatial footprint varies in relation to 
particular cryosphere and ocean elements or scientific disciplines, this chapter adopts a purposefully flexible approach 
to their delineation. The southern polar region encompasses the flow of the Antarctic Circumpolar Current at least as far 
north as the Subantarctic Front and fully encompasses the Convention for the Conservation of Antarctic Marine Living 
Resources Statistical Areas (CCAMLR, 2017c), the Antarctic continent and Antarctic and subantarctic islands, whilst 
the marine Arctic includes the areas of the Arctic Large Marine Ecosystems (PAME, 2013). The terrestrial Arctic 
comprises the areas of the northern continuous and discontinuous permafrost zone, the Arctic biome inclusive of glacial 
ice, and the parts of the boreal biome that are characterised by cryosphere elements, such as permafrost and persistent 
winter season snow cover. 
 
 



FINAL DRAFT Chapter 3 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 3-11 Total pages:173 

[START BOX 3.1 HERE] 
 
Box 3.1: Polar Region Climate Trends 
 
Over the last two decades, it is likely that Arctic surface air temperature has increased at more than double 
the global average (Notz and Stroeve, 2016; Richter-Menge et al., 2017). Attribution studies show the 
important role of anthropogenic increases in greenhouse gases in driving observed Arctic surface 
temperature increases (Fyfe et al., 2013; Najafi et al., 2015), so there is high confidence in projections of 
further Arctic warming (Overland et al., 2018a). Mechanisms for Arctic amplification are still debated, but 
include: reduced summer albedo due to sea ice and snow cover loss, the increase of total water vapour 
content in the Arctic atmosphere, changes in total cloudiness in summer, additional heat generated by newly 
formed sea ice across more extensive open water areas in the autumn, northward transport of heat and 
moisture and the lower rate of heat loss to space from the Arctic relative to the sub-tropics (Serreze and 
Barry, 2011; Pithan and Mauritsen, 2014; Goosse et al., 2018; Stuecker et al., 2018) (SM3.1.1). 
 
A number of recent events in the Arctic indicate new extremes in the Arctic climate system. Annual Arctic 
surface temperature for each of the past five years since AR5 (2014-2018; relative to a 1980-2010 base line) 
exceeded that of any year since 1900 (Overland et al., 2018b). Winter (January-March) near-surface 
temperature anomalies of +6°C (relative to 1981-2010) were recorded in the central Arctic during both 2016 
and 2018, nearly double the previous record anomalies (Overland and Wang, 2018a). These events were 
caused by a split of the tropospheric polar vortex into two cells, which facilitated the intrusion of subarctic 
storms (Overland and Wang, 2016). The resulting advection of warm air and moisture from the Pacific and 
Atlantic Oceans into the central Arctic increased downward longwave radiation, delayed sea ice freeze-up, 
and contributed to an unprecedented absence of sea ice. Delayed freeze-up of sea ice in subarctic seas 
(Chukchi, Barents and Kara) acts as a positive feedback allowing warmer temperatures to progress further 
toward the North Pole (Kim et al., 2017). In addition to dramatic Arctic summer sea ice loss over the past 15 
years, all Arctic winter sea ice maxima of the last 4 years were at record low levels relative to 1979-2014 
(Overland, 2018). Multi-year, large magnitude extreme positive Arctic temperatures and sea ice minimums 
(Section 3.2.1.1) since AR5 provide high agreement and medium evidence of contemporary conditions well 
outside the envelope of previous experience (1900-2017) (AMAP, 2017d; Walsh et al., 2017). 
 
In contrast to the Arctic, the Antarctic continent has seen less uniform temperature changes over the past 30-
50 years, with warming over parts of West Antarctica and no significant overall change over East Antarctica 
(Nicolas and Bromwich, 2014; Jones et al., 2016; Turner et al., 2016), though there is low confidence in 
these changes given the sparse in situ records and large interannual to interdecadal variability. This weaker 
amplified warming compared to the Arctic is due to deep ocean mixing and ocean heat uptake over the 
Southern Ocean (Collins et al., 2013). The Southern Annular Mode (SAM), Pacific South American mode 
(by which tropical Pacific convective heating signals are transmitted to high southern latitudes) and zonal-
wave 3 are the dominant large-scale atmospheric circulation drivers of Antarctic surface climate and sea-ice 
changes (SM3.1.3). Over recent decades the SAM has exhibited a positive trend during austral summer, 
indicating a strengthening of the surface westerly winds around Antarctica. This extended positive phase of 
the SAM is unprecedented in at least 600 years, according to paleoclimate reconstructions (Abram et al., 
2014; Dätwyler et al., 2017) and is associated with cooler conditions over the continent. 
 
Consistent with AR5, it is likely that Antarctic ozone depletion has been the dominant driver of the positive 
trend in the SAM during austral summer from the late 1970s to the late 1990s (Schneider et al., 2015; Waugh 
et al., 2015; Karpechko et al., 2018), the period during which ozone depletion was increasing. There is high 
confidence through a growing body of literature that variability of tropical sea surface temperatures can 
influence Antarctic temperature changes (Li et al., 2014; Turner et al., 2016; Clem et al., 2017; Smith and 
Polvani, 2017) and the Southern Hemisphere mid-latitude circulation (Li et al., 2015a; Raphael et al., 2016; 
Turney et al., 2017; Evtushevsky et al., 2018; Yuan et al., 2018). New research suggests a stronger role of 
tropical sea surface temperatures in driving changes in the SAM since 2000 (Schneider et al., 2015; Clem et 
al., 2017). 
 
[END BOX 3.1 HERE] 
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3.2 Sea Ice and Polar Oceans: Changes, Consequences and Impacts 
 
3.2.1 Observed Changes in Sea Ice and Ocean 
 
3.2.1.1 Sea Ice 
 
Sea ice reflects a high proportion of incoming solar radiation back to space, provides thermal insulation 
between the ocean and atmosphere, influences thermohaline circulation, and provides habitat for ice-
associated species. Sea ice characteristics differ between the Arctic and Antarctic. Expansion of winter sea 
ice in the Arctic is limited by land, and ice circulates within the central Arctic basin, some of which survives 
the summer melt season to form multi-year ice. Arctic sea ice variability and impacts on communities 
includes indigenous knowledge and local knowledge from across the circumpolar Arctic (Cross-Chapter Box 
3 in Chapter 1). The Antarctic continent is surrounded by sea ice which interacts with adjacent ice shelves; 
winter season expansion is limited by the influence of the Antarctic Circumpolar Current. 
 
3.2.1.1.1 Extent and concentration  
The pan-Arctic loss of sea ice cover is a prominent indicator of climate change. It is very likely that sea ice 
extent (the total area of the Arctic with at least 15% sea ice concentration) has declined since 1979 in each 
month of the year (Barber et al., 2017; Comiso et al., 2017b; Stroeve and Notz, 2018) (Figure 3.3). Changes 
are largest in summer and smallest in winter, with the strongest trends in September (1979-2018; summer 
month with the lowest sea ice cover) of –83,000 km2 yr–1 (-12.8% per decade +/- 2.3% relative to 1981-2010 
mean), and –41,000 km2 yr–1 (–2.7% per decade +/-0.5% relative to 1981-2010 mean) for March (1979-
2019; winter month with the greatest sea ice cover) (Onarheim et al., 2018). Regionally, summer ice loss is 
dominated by reductions in the East Siberian Sea (explains 22% of the September trend), and large declines 
in the Beaufort, Chukchi, Laptev and Kara seas (Onarheim et al., 2018). Winter ice loss is dominated by 
reductions within the Barents Sea, responsible for 27% of the pan-Arctic March sea ice trends (Onarheim 
and Årthun, 2017). Summer Arctic sea ice loss since 1979 is unprecedented in 150 years based on historical 
reconstructions (Walsh et al., 2017) and more than 1,000 years based on paleoclimate evidence (Polyak et 
al., 2010; Kinnard et al., 2011; Halfar et al., 2013) (medium confidence). 
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Figure 3.3: Maps of linear trends (in ℃ per decade) of Arctic (a, c) and Antarctic (e, g) sea surface temperature (SST) 
for 1982−2017 in March (a, e) and September (c, g). (b, d, f, h) same as (a, c, e, g), but for the linear trends of sea ice 
concentration (in % per decade). Stippled regions indicate the trends that are statistically insignificant. Dashed circles 
indicate the Arctic/Antarctic Circle. Beneath each map of linear trend shows the time series of SST (area-averaged 
north of 40°N/south of 40°S) or sea ice extent in the northern/southern hemisphere. Black, green, blue, orange, and red 
curves indicate observations, CMIP5 historical simulation, RCP2.6, RCP4.5, and RCP8.5 projections respectively; 
shading indicates +/- standard deviation of multi-models. SST trend was calculated from Hadley Centre Sea Ice and Sea 
Surface Temperature data set (Version 1, HadISST1; Rayner, 2003). Sea ice concentration trend was calculated from 
the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3 
(https://nsidc.org/data/g02202). The time series of observed SST are averages of HadISST1 and NOAA Optimum 
Interpolation Sea Surface Temperature dataset (version 2; Reynolds et al., 2002). The time series of observed sea ice 
extent are the averages of HadISST, the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice 
Concentration, and the Global sea ice concentration reprocessing dataset from EUMETSAT 
(http://osisaf.met.no/p/ice/ice_conc_reprocessed.html). 
 
 
Approximately half of the observed Arctic summer sea ice loss is driven by increased concentrations of 
atmospheric greenhouse gases, with the remainder attributed to internal climate variability (Kay et al., 2011; 
Notz and Marotzke, 2012) (medium confidence). The sea ice albedo feedback (increased air temperature 
reduces sea ice cover, allowing more energy to be absorbed at the surface, fostering more melt) is a key 
driver of sea ice loss (Perovich and Polashenski, 2012; Stroeve et al., 2012b; Serreze et al., 2016) and is 
exacerbated by the transition from perennial to seasonal sea ice (Haine and Martin, 2017; see Section 
3.2.1.1.2). Other drivers include increased warm, moist air intrusions into the Arctic during both winter (Box 
3.1) and spring (Boisvert et al., 2016; Cullather et al., 2016; Kapsch et al., 2016; Mortin et al., 2016; Graham 
et al., 2017; Hegyi and Taylor, 2018), radiative feedbacks associated with cloudiness and humidity (Kapsch 
et al., 2013; Pithan and Mauritsen, 2014; Hegyi and Deng, 2016; Morrison et al., 2018), and increased 
exchanges of sensible and latent heat flux from the ocean to the atmosphere (Serreze et al., 2012; Taylor et 
al., 2018). A lack of complete process understanding limits a more definitive differentiation between 
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anthropogenic versus internal drivers of summer Arctic sea ice loss (Serreze et al., 2016; Ding et al., 2017; 
Meehl et al., 2018). The unabated reduction in Arctic summer sea ice since AR5 means contributions to 
additional global radiative forcing (Flanner et al., 2011) have continued, with estimates of up to an additional 
6.4 ± 0.9 W/m2 of solar energy input to the Arctic Ocean region since 1979 (Pistone et al., 2014). 
 
Although Arctic ice freeze-up is occurring later (Section 3.2.1.1.3), rapid thermodynamic ice growth occurs 
over thin ice areas after air temperatures drop below freezing in autumn. Later freeze-up also delays snowfall 
accumulation on sea ice, leading to a thinner and less insulating snowpack (Section 3.2.1.1.6) (Sturm and 
Massom, 2016). These two negative feedbacks help to mitigate sudden and irreversible loss of Arctic sea ice 
(Armour et al., 2011). 
 
Total Antarctic sea ice cover exhibits no significant trend over the period of satellite observations (Figure 
3.3; 1979 to 2018) (high confidence) (Ludescher et al., 2018). A significant positive trend in mean annual ice 
cover between 1979 and 2015 (Comiso et al., 2017a) has not persisted, due to three consecutive years of 
below-average ice cover (2016-2018) driven by atmospheric and oceanic forcing (Turner et al., 2017b; 
Kusahara et al., 2018; Meehl et al., 2019; Wang et al., 2019). The overall Antarctic sea ice extent trend is 
composed of near-compensating regional changes, with rapid ice loss in the Amundsen and Bellingshausen 
seas counteracted by rapid ice gain in the Weddell and Ross seas (Holland, 2014) (Figure 3.3). These 
regional trends are strongly seasonal in character (Holland, 2014); only the western Ross Sea has a trend that 
is statistically significant in all seasons, relative to the variance during the period of satellite observations. 
 
Multiple factors contribute to the regionally variable nature of Antarctic sea ice extent trends (Matear et al., 
2015; Hobbs et al., 2016b). Sea ice trends are closely related to meridional wind trends (high confidence) 
(Holland and Kwok, 2012; Haumann et al., 2014): poleward wind trends in the Bellingshausen Sea push sea 
ice closer to the coast (Holland and Kwok, 2012) and advect warm air to the sea ice zone (Kusahara et al., 
2017), and the reverse is true over much of the Ross Sea. These meridional wind trends are linked to Pacific 
variability (Coggins and McDonald, 2015; Meehl et al., 2016; Purich et al., 2016b). Ozone depletion may 
also affect meridional winds (Fogt and Zbacnik, 2014; England et al., 2016), but there is low confidence that 
this explains observed sea ice trends (Landrum et al., 2017). 
 
Coupled climate models indicate that anthropogenic warming at the surface is delayed by the Southern 
Ocean circulation, which transports heat downwards into the deep ocean (Armour et al., 2016). This 
overturning circulation (Cross-Chapter Box 7 in Chapter 3), along with differing cloud and lapse rate 
feedbacks (Goosse et al., 2018), may explain the weak response of Antarctic sea ice cover to increased 
atmospheric greenhouse gas concentrations compared to the Arctic (medium confidence). Because Antarctic 
sea ice extent has remained below climatological values since 2016, there is still potential for longer-term 
changes to emerge in the Antarctic (Meehl et al., 2019), similar to the Arctic. 
 
Historical surface observations (Murphy et al., 2014), reconstructions (Abram et al., 2013b), ship records (de 
la Mare, 2009; Edinburgh and Day, 2016), early satellite images (Gallaher et al., 2014), and model 
simulations (Gagné et al., 2015) indicate a decrease in overall Antarctic sea ice cover since the early 1960s 
which is too modest to be separated from natural variability (Hobbs et al., 2016a) (high confidence). 
 
3.2.1.1.2 Age and thickness 
The proportion of Arctic sea ice at least 5 years old declined from 30% to 2% between 1979 and 2018; over 
the same period first-year sea ice proportionally increased from approximately 40% to 60–70% (Stroeve and 
Notz, 2018) (very likely) (Sections 3.2.1.1.3 and 3.2.1.1.4). It is virtually certain that Arctic sea ice has 
thinned through volume reductions in satellite altimeter retrievals (Laxon et al., 2013; Kwok, 2018), ocean–
sea ice reanalyses (Chevallier et al., 2017) and in situ measurements (Renner et al., 2014; Haas et al., 2017). 
Data from multiple satellite altimeter missions show declines in Arctic Basin ice thickness from 2000 to 
2012 of –0.58 ± 0.07 m per decade (Lindsay and Schweiger, 2015). Integration of data from submarines, 
moorings, and earlier satellite radar altimeter missions shows ice thickness declined across the central Arctic 
by 65%, from 3.59 to 1.25 m between 1975 and 2012 (Lindsay and Schweiger, 2015). There is emerging 
evidence that this sea ice volume loss may be unprecedented over the past century (Schweiger et al., 2019). 
New estimates of ice thickness are available for the marginal seas (up to a maximum thickness of ~1 metre) 
from low-frequency satellite passive microwave measurements (Kaleschke et al., 2016; Ricker et al., 2017) 
but data are only available since 2010. The shift to thinner seasonal sea ice contributes to further ice extent 
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reductions through enhanced summer season melt via increased energy absorption (Nicolaus et al., 2012), 
and it is vulnerable to fragmentation from the passage of intense Arctic cyclones in summer and increased 
ocean swell conditions (Zhang et al., 2013; Thomson and Rogers, 2014). 
 
Surface observations of Antarctic sea ice thickness are extremely sparse (Worby et al., 2008). There are no 
consistent long-term observations from which trends in ice volume may be derived. Calibrated model 
simulations suggest that ice thickness trends closely follow those of ice concentration (Massonnet et al., 
2013; Holland et al., 2014) (medium confidence). Satellite altimeter datasets of Antarctic sea ice thickness 
are emerging (Paul et al., 2018) but definitive trends are not yet available. 
 
3.2.1.1.3 Seasonality 
There is high confidence that the Arctic sea ice melt season has extended by 3 days per decade since 1979 
due earlier melt onset, and 7 days per decade due to later freeze-up (Stroeve and Notz, 2018). This longer 
melt season is consistent with the observed loss of sea ice extent and thickness (Sections 3.2.1.1.1; 3.2.1.1.2). 
While the melt onset trends are smaller, they play a large role in the earlier development of open water 
(Stroeve et al., 2012b; Serreze et al., 2016) and melt pond development (Perovich and Polashenski, 2012) 
which enhance the sea ice-albedo feedback (Stroeve et al., 2014b; Liu et al., 2015a). Observed reductions in 
the duration of seasonal sea ice cover are reflected in community-based observations of decreased length of 
time in which activities can safely take place on sea ice (Laidler et al., 2010; Eisner et al., 2013; Fall et al., 
2013; Ignatowski and Rosales, 2013). 
 
Changes in the duration of Antarctic sea ice cover over 1979-2011 largely followed the spatial pattern of sea 
ice extent trends with reduced ice cover duration in the Amundsen/Bellingshausen Sea region in summer and 
autumn owing to earlier retreat and later advance, and increases in the Ross Sea due to later ice retreat and 
earlier advance (Stammerjohn et al., 2012). 
 
3.2.1.1.4 Motion 
Winds associated with the climatological Arctic sea level pressure pattern drive the Beaufort Gyre (Dewey et 
al., 2018; Meneghello et al., 2018) and the Transpolar Drift Stream (Vihma et al., 2012), which retains sea 
ice within the central Arctic Basin, and exports sea ice out of the Fram Strait, respectively. There is high 
confidence that sea ice drift speeds have increased since 1979, both within the Arctic Basin and through 
Fram Strait (Rampal et al., 2009; Krumpen et al., 2019), attributed to thinner ice (Spreen et al., 2011) and 
changes in wind forcing (Olason and Notz, 2014). Fram Strait sea ice area export estimates range between 
600,000 to 1 million km2 of ice annually, which represents approximately 10% of the ice within the Arctic 
Basin (medium confidence) (Kwok et al., 2013; Krumpen et al., 2016; Smedsrud et al., 2017; Zamani et al., 
2019). Sea ice volume flux estimates through Fram Strait are now available from satellite altimeter datasets 
(Ricker et al., 2018), but they cover too short a time period for robust trend analysis. Observations of 
extreme Arctic sea ice deformation is attributed to the combination of decreased ice thickness and increased 
ice motion (Itkin et al., 2017). 
 
Satellite estimates of sea ice drift velocity show significant trends in Antarctic ice drift (Holland and Kwok, 
2012). Increased northward drift in the Ross Sea and decreased northward drift in the Bellingshausen and 
Weddell seas agree with the respective ice extent gains and losses in these regions, but there is only medium 
confidence in these trends due to a small number of ice drift data products derived from temporally 
inconsistent satellite records (Haumann et al., 2016). 
 
3.2.1.1.5 Landfast ice 
Immobile sea ice anchored to land or ice shelves is referred to as ‘landfast’. The few long term surface 
(auger hole) records of Arctic landfast sea ice thickness all exhibit thinning trends in springtime maximum 
sea ice thickness since the mid-1960s (high confidence): declines of 11 cm per decade in the Barents Sea 
(Gerland et al., 2008), 3.3 cm per decade along the Siberian Coast (Polyakov et al., 2010), and 3.5 cm per 
decade in the Canadian Arctic Archipelago (Howell et al., 2016). Over a shorter 1976 to 2007 period, winter 
season landfast sea ice extent from measurements across the Arctic significantly decreased at a rate of 7% 
per decade, with the largest decreases in the regions of Svalbard (24% per decade) and the northern coast of 
the Canadian Arctic Archipelago (20% per decade) (Yu et al., 2013). Svalbard and the Chukchi Sea regions 
are experiencing the largest declines in landfast sea ice duration (~1 week per decade) since the 1970s (Yu et 
al., 2013; Mahoney et al., 2014). While most Arctic landfast sea ice melts completely each summer, 
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perennial landfast ice (also termed an ‘ice-plug’) occurs in Nansen Sound and the Sverdrup Channel in the 
Canadian Arctic Archipelago. These ice-plugs were in place continuously from the start of observations in 
the early 1960s, until they disappeared during the anomalously warm summer of 1998, and they have rarely 
re-formed since 2005 (Pope et al., 2017). The loss of this perennial sea ice is associated with reduced 
landfast ice duration in the northern Canadian Arctic Archipelago (Galley et al., 2012; Yu et al., 2013) and 
increased inflow of multi-year ice from the Arctic Ocean into the northern Canadian Arctic Archipelago 
(Howell et al., 2013). 
 
Arctic landfast ice is important to northern residents as a platform for travel, hunting, and access to offshore 
regions (Sections 3.4.3.3, 3.5.2.2). Reports of thinning, less stable, and less predictable landfast ice have 
been documented by residents of coastal communities in Alaska (Eisner et al., 2013; Fall et al., 2013; 
Huntington et al., 2017), the Canadian Arctic (Laidler et al., 2010), and Chukotka (Inuit Circumpolar 
Council, 2014). The impact of changing prevailing wind forcing on local ice conditions has been specifically 
noted (Rosales and Chapman, 2015) including impacts on the landfast ice edge and polynyas (Box 3.3) 
(Gearheard et al., 2013). Long term records of Antarctic landfast ice are limited in space and time 
(Stammerjohn and Maksym, 2016), with a high degree of regional variability in trends (Fraser et al., 2011) 
(low confidence). 
 
3.2.1.1.6 Snow on ice 
Snow accumulation on sea ice inhibits sea ice melt through a high albedo, but the insulating properties limit 
sea ice growth (Sturm and Massom, 2016) and inhibits photosynthetic light (important for in- and under-ice 
biota) from reaching the bottom of the ice (Mundy et al., 2007). If snow on first-year ice is sufficiently thick, 
it can depress the ice below the sea level surface, which forms snow-ice due to surface flooding. This process 
is widespread in the Antarctic (Maksym and Markus, 2008) and the Atlantic sector of the Arctic 
(Merkouriadi et al., 2017), and may become more common across the Arctic (with implications for sea ice 
ecosystems) as the ice regime shifts to thinner seasonal ice (Olsen et al., 2017; Granskog et al., 2018) 
(medium confidence). 
 
Despite the importance of snow on sea ice (Webster et al., 2018), surface or satellite-derived observations of 
snowfall over sea ice, and snow depth on sea ice are lacking (Webster et al., 2014). The primary source of 
snow depth on Arctic sea ice are based on observations collected decades ago (Warren et al., 1999) the utility 
of which are impacted by the rapid loss of multiyear ice across the central Arctic (Stroeve and Notz, 2018), 
and large interannual variability in snow depth on sea ice (Webster et al., 2014). Airborne radar retrievals of 
snow depth on sea ice provide more recent estimates, but spatial and temporal sampling is highly 
discontinuous (Kurtz and Farrell, 2011). Multi-source time series provide evidence of declining snow depth 
on Arctic sea ice (Webster et al., 2014) consistent with estimates of higher fractions of liquid precipitation 
since 2000 (Boisvert et al., 2018) but there is low confidence because surface measurements for validation 
are extremely limited and suggest a high degree of regional variability (Haas et al., 2017; Rösel et al., 2018).  
 
Although there are regional estimates of snow depth on Antarctic sea ice from satellite (Kern and Ozsoy-
Çiçek, 2016), airborne remote sensing (Kwok and Maksym, 2014), field measurements (Massom et al., 
2001) and ship-based observations (Worby et al., 2008), data are not sufficient in time nor space to assess 
changes in snow accumulation on Antarctic sea ice. 
 
 
[START BOX 3.2 HERE] 
 
Box 3.2: Potential for the Polar Cryosphere to Influence Mid-latitude Weather 
 
Since AR5, understanding how observed changes in the Arctic can influence mid-latitude weather has 
emerged as a societally important topic because hundreds of millions of people can potentially be impacted 
(Jung et al., 2015). The early to middle part of the Holocene coincided with substantial decreases in net 
precipitation that may be due to weakening jet stream winds related to Arctic temperatures (Routson et al., 
2019). There is only low to medium confidence in the current nature of Arctic/mid-latitude weather linkages 
because conclusions of recent analyses are inconsistent (National Research Council, 2014; Barnes and 
Polvani, 2015; Francis, 2017). The atmosphere interacts with the ocean and cryosphere through radiation, 
heat, precipitation and wind, but a full understanding of complex inter-connected physical processes is 
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lacking Arctic forcing on the atmosphere from loss of sea ice and terrestrial snow is increasing, but the 
potential for Arctic/mid-latitude weather linkages varies for different jet stream patterns (Grotjahn et al., 
2016; Messori et al., 2016; Overland and Wang, 2018a). Connectivity is reduced by the influence of chaotic 
internal natural variability and other tropical and oceanic forcing. Part of the scientific disagreement is due to 
irregular connections in the Arctic to mid-latitude linkage pathways, both within and between years 
(Overland and Wang, 2018b).	
 
Considerable literature exists on the potential for sea ice loss in the Barents and Kara Seas to drive cold 
episodes in eastern Asia (Kim et al., 2014; Kretschmer et al., 2016), while sea ice anomalies in the Chukchi 
Sea and areas west of Greenland are associated with cold events in eastern North America (Kug et al., 2015; 
Ballinger et al., 2018; Overland and Wang, 2018a). Such connections, however, are only episodic (Cohen et 
al., 2018). While there is evidence of an increase in the frequency of weak polar vortex events (Screen et al., 
2018), studies do not show increases in the number of mid-latitude cold events in observations or model 
projections (Ayarzaguena and Screen, 2016; Trenary et al., 2016). Potential Arctic/mid-latitude interactions 
have a more regional tropospheric pathway in November-December (Honda et al., 2009; Chen et al., 2016a; 
McKenna et al., 2018), whereas January-March has a more hemispheric stratospheric pathway involving 
migration of the polar vortex off of its usual centred location on the North Pole (Cohen et al., 2012; 
Nakamura et al., 2016; Zhang et al., 2018b). Overall, changes in the stratospheric polar vortex and Northern 
Annual Mode are not separable from natural variability, and so cannot be attributed to greenhouse gas forced 
sea ice loss (Screen et al., 2018). 
 
Only a few studies have focused on the potential impact of Antarctic sea-ice changes on the mid-latitude 
circulation (Kidston et al., 2011; Raphael et al., 2011; Bader et al., 2013; Smith et al., 2017b; England et al., 
2018); these find that any impacts on the jet stream are strongly dependent on the season and model 
examined. England et al. (2018) suggest that the response of the jet stream to future Antarctic sea ice loss 
may in fact be less seasonal than the response to Arctic sea ice loss. 
 
[END BOX 3.2 HERE] 
 
 
3.2.1.2 Ocean Properties 
 
The Polar Oceans are amongst the most rapidly-changing oceans of the world, with consequences for global-
scale storage and cycling of heat, carbon and other climatically- and ecologically-important properties 
(SM3.2.1; Figure SM3.2).  
 
3.2.1.2.1 Temperature 
Ocean temperatures and associated heat fluxes have a primary influence on sea ice (e.g., Carmack et al., 
2015; Steele and Dickinson, 2016). WGI AR5 (their Section 3.2.2) reported that Canada Basin surface 
waters warmed from 1993 to 2007, and observations over 1950–2010 show the Arctic Ocean water of 
Atlantic origin (i.e., the Atlantic Water Layer) warming starting in the 1970s. Warming trends have 
continued: August trends for 1982–2017 reveal summer mixed layer temperatures increasing at about 0.5°C 
per decade over large sectors of the Arctic basin that are ice-free in summer (Timmermans et al., 2017) 
(Figure 3.3). This is primarily the result of increased absorption of solar radiation accompanying sea-ice loss 
(Perovich, 2016). Between 1979 and 2011, the decrease in Arctic Ocean albedo corresponded to more solar 
energy input to the ocean (virtually certain) of approximately 6.4 ± 0.9 Wm-2 (Pistone et al., 2014), likely 
reducing the growth of sea ice by up to 25% in both Eurasian and Canadian basins (Timmermans, 2015; 
Ivanov et al., 2016) (Section 3.2.1.1). 
 
While Atlantic Water Layer temperatures appear to show less variability since 2008, total heat content in this 
layer continues to increase (Polyakov et al., 2017). Recent changes have been dubbed the ‘Atlantification’ of 
the Northern Barents Sea and Eurasian Basin (Arthun et al., 2012; Lind et al., 2018), characterized by 
weaker stratification and enhanced Atlantic Water Layer heat fluxes further northeast (medium confidence). 
Polyakov et al. (2017) estimate 2-4 times larger heat fluxes in 2014-2015 compared with 2007-2008. In the 
Canadian Basin, the maximum temperature of the Pacific Water Layer increased by ~0.5°C between 2009 
and 2013 (Timmermans et al., 2014), with a doubling in integrated heat content over 1987-2017 
(Timmermans et al., 2018). Over 2001-2014, heat transport associated with Bering Strait inflow increased by 
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60%, from around 10 TW in 2001 to 16 TW in 2014, due to increases in both volume flux and temperature 
(Woodgate et al., 2015; Woodgate, 2017) (low confidence). 

 
The Southern Ocean is important for the transfer of heat from the atmosphere to the global ocean, including 
heat from anthropogenic warming (Frölicher et al., 2015; Shi et al., 2018). The Southern Ocean accounted 
for ~75% of the global ocean uptake of excess heat during 1870-1995 (Figure SM3.2; Frölicher et al., 2015), 
of which ~43% resided in the Southern Ocean with the remainder redistributed to lower latitudes. Over 
1970-2017, observations show that the upper 2000m of the ocean south of 30°S was responsible for 35-43% 
of the increase in global ocean heat content (Table 3.1). Both models and observations show that, relative to 
its size (Table SM3.1), the Southern Ocean is disproportionately important in the increase in global upper 
ocean heat content (high confidence). Multi-decadal warming of the Southern Ocean has been attributed to 
anthropogenic factors, especially the role of greenhouse gases but also ozone depletion (Armour et al., 2016; 
Shi et al., 2018; Swart et al., 2018; Irving et al., 2019) (medium confidence). 
 
 
Table 3.1.: Ocean heat content trend (0-2000m depth) during 2005-2017 and 1970-2017 for the global ocean and 
Southern Ocean. Ordinary Least Square (OLS) method is used; units are 1021 J yr-1. Uncertainties denote the 90% 
confidence interval accounting for the reduction in the degrees of freedom implied by temporal correlations of 
residuals, as per Section 5.2. Values in curved brackets are percentages of heat gain by the Southern Ocean relative to 
the global ocean. Data sources are as per Table SM3.1. The mean proportion and its 5%-95% confidence interval (1.65 
times standard deviation of individual estimates) are in the last column. 

OHC 
Trend  
(1021 J yr-1) 

Ishii V7.2 IAP EN4-GR10 IPRC Scripps JAMSTEC Mean 
[5%, 95%] 

        
Global 
2005-17 

10.06±1.28 8.45±1.04 10.57±1.17 9.96±1.57 8.38±1.31 9.06±0.67 
 

 

South of 
30∘S 
2005-17 

5.20±1.03 
(52%) 

4.55±1.00 
(54%) 

5.38±1.30 
(51%) 

6.24±1.80 
(63%) 

4.22±0.70 
(50%) 

4.44±0.63 
(49%) 

53% 
[45%, 62%] 

        
Global 
1970-2017 

6.73±0.55 7.02±1.96 5.28±1.01     

South of 
30∘S 
1970-2017 

2.42±0.26 
(36%) 

2.78±0.29 
(40%) 

2.18±0.36 
(41%) 

   39% 
[35%, 43%] 

 
 
Surface warming during 1982-2016 was strongest along the northern flank of the Antarctic Circumpolar 
Current (ACC), contrasting with cooling further south (Figure 3.3). Interior warming was strongest in the 
upper 2000 m, peaking around 40-50°S (Armour et al., 2016) (SM3.2.1; Figures SM3.2 and SM3.3). There 
is high confidence that this pattern of change is driven by upper-ocean overturning circulation and mixing 
(Cross-Chapter Box 7 in Chapter 3), whereby heat uptake at the surface by newly-upwelled waters is 
transmitted to the ocean interior in intermediate depth layers (Armour et al., 2016). Whilst temperature 
trends in the ACC itself are driven predominantly by air-sea flux changes (Swart et al., 2018), the warming 
on its northern side appears strongly influenced by wind-forced changes in the thickness and depth of the 
mode water layer (Desbruyeres et al., 2017; Gao et al., 2018) (medium confidence). Below the surface south 
of the ACC, warming extends close to Antarctica, intruding onto the continental shelf in the Amundsen-
Bellingshausen Sea where temperature increases of 0.1-0.3°C per decade have been observed over 1983-
2012 (Schmidtko et al., 2014) (Section 3.3.1.5). This latter warming may be driven by changes in wind 
forcing (Spence et al., 2014), and exhibits significant decadal variability (Jenkins et al., 2018). 
 
After around 2005, improved upper ocean heat content estimates became available via Argo profiling floats 
(Section 1.8.1; Section 5.2). For 2005-2017, multiple datasets show that the heat gained by the Southern 
Ocean south of 30°S was 45-62% of the global ocean heat gain (Table 3.1) (equivalent figures for other 
indicative Southern Ocean extents are in Table SM3.2). This accords with Roemmich et al. (2015), who 
found that during 2006-2013 the ocean south of 20°S accounted for 67-98% of total heat gain in the upper 
2000 m of the global ocean. (The smaller proportion for 2005-2017 c.f. 2006-2013 is due to comparatively 
greater warming in the earlier part of the common period). The recent Southern Ocean heat gain is thus 
larger than its long-term trend over either the preceding several decades (1970-2004, 30-51%, Table SM3.3) 
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or the full period 1970-2017 (35-43%; Table 3.1 and above). There is high confidence that the Southern 
Ocean has increased its role in global ocean heat content in recent years compared with the past several 
decades. Attribution of this increased role is currently lacking. 
 
The ocean below 2000 m globally stores ~19% of the excess anthropogenic heat in the Earth system, with a 
large fraction (6% of global total heat excess) located in the deep Southern Ocean south of 30°S (Frölicher et 
al., 2015; Talley et al., 2016) (medium confidence). The WGI AR5-quantified warming of these waters was 
recently updated (Desbruyeres et al., 2017) to an equivalent heat uptake of 0.07 ± 0.06 W m−2 below 2000 m 
since the beginning of the century, resulting in an extra 34 ± 14 TW south of 30°S from 1980–2012 (Purkey 
and Johnson, 2013). Antarctic Bottom Water volume is decreasing (Purkey and Johnson, 2012), resulting in 
a deepening of density surfaces and driving much of the warming on depth surfaces below 2000 m 
(Desbruyeres et al., 2017). This reduction in bottom water volume is suggestive of a decrease in its 
production (Purkey and Johnson, 2013). In the Indian and Pacific basins close to Antarctica, bottom water is 
freshening (Purkey and Johnson, 2013; Menezes et al., 2017) consistent with the uptake of enhanced 
Antarctic ice-shelf and glacial melt (Purkey and Johnson, 2013). 
 
3.2.1.2.2 Salinity 
Salinity is the dominant determinant of polar ocean density, and exerts major controls on stratification, 
circulation and mixing. Salinity changes are induced by freshwater runoff to the ocean (rivers and land ice), 
net precipitation, sea ice, and advection of mid-latitude waters, with the potential to impact water mass 
formation and circulation (e.g., Thornalley et al., 2018; see also Section 6.7.1). 
 
Updating WGI AR5 (their Section 3.3.3.3), recent Arctic-wide estimates yield a freshwater increase (relative 
to salinity of 34.8 on the Practical Salinity Scale, used throughout this chapter) of 600 ± 300 km3 yr–1 over 
1992-2012, with about two-thirds concomitant with decreasing salinity, and the remainder with a thickening 
of the freshwater layer (medium confidence) (Rabe et al., 2014; Haine et al., 2015; Carmack et al., 2016). 
The Beaufort Gyre region has increased its freshwater by ~40% (6,600 km3) over 2003-2017; this, and the 
Gyre’s strengthening, have been attributed to dominance of clockwise wind patterns over the Canadian Basin 
over 1997-2016 and freshwater accumulation from sea ice melt (Krishfield et al., 2014; Proshutinsky et al., 
2015). Freshwater decreases in the East Siberian, Laptev, Chukchi and Kara seas are estimated to be ~180 
km3 over 2003-2014 (Armitage et al., 2016). During the 2000s, freshwater content in the upper 100 m of the 
northern Barents Sea declined by about 32%, from a mean of ~2.5 m (relative to a salinity of 35) in 1970-
1999, to 1.7 m in 2010-2016 (Lind et al., 2018). An increasing trend of 30 ± 20 km3yr–1 in freshwater flux 
through Bering Strait, primarily due to increased volume flux, was measured from 1991-2015, with record 
maximum freshwater influx in 2014 of around 3,500 km3 in that year (Woodgate, 2017). Freshwater fluxes 
from rivers are also increasing (Section 3.4.1.2.2), and there have been observed increases in discharge of 
glacial ice from Greenland (Section 3.3.1.3). 
 
Observed Southern Ocean freshening trends are consistent with WGI AR5; subsequent studies have 
increased confidence in their magnitude and sign, and also attributed them to anthropogenic influences 
(Swart et al., 2018). Changes over 1950–2010 show persistent surface water freshening over the whole 
Southern Ocean, with subducted mode/intermediate waters carrying trends of 0.0002–0.0008 yr–1 to below 
1500 m (Skliris et al., 2014), whilst de Lavergne et al. (2014) observe a circumpolar freshening south of the 
ACC of 0.0011 ± 0.0004 yr–1 in the upper 100 m since the 1960s (medium confidence). This intensifies over 
the Antarctic continental shelves (except along the Western Antarctic Peninsula), where freshening of up to 
0.01 yr–1 is observed (Schmidtko et al., 2014). Freshening may be driven by increases in precipitation, but 
while models (Pauling et al., 2016) and observations suggest an increase may have occurred over the last 60 
years, uncertainty is presently too high to quantify its net impact (Skliris et al., 2014). Recently, there has 
been increased recognition of the importance of sea ice in driving Southern Ocean salinity changes, with 
Haumann et al. (2016) demonstrating that wind-driven sea ice export has increased by 20 ± 10% from 1982–
2008, and that this may have driven freshening of 0.002 ± 0.001 yr–1 in the surface and intermediate waters. 
Separately, the central role of sea ice in driving water mass transformations in the Southern Ocean has been 
highlighted (Abernathey et al., 2016; Pellichero et al., 2018; Swart et al., 2018), hence such changes have the 
potential to affect overturning circulation (Cross-Chapter Box 7 in Chapter 3). Freshwater input to the ocean 
from the Antarctic Ice Sheet also has the potential to affect the properties and circulation of Southern Ocean 
water masses; see Section 3.3.3. 
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3.2.1.2.3 Stratification 
See Supplementary Material (SM3.2.2). 
 
3.2.1.2.4 Carbon and ocean acidification 
Various elements of marine biogeochemistry and geochemistry in the polar regions are of global importance. 
Here we focus on aspects relevant to carbon and ocean acidification; others (e.g. changes in dissolved 
oxygen) are assessed in Section 5.2.2. 
 
About a quarter of carbon dioxide (CO2) released by human activities is taken up by the ocean (WGI AR5). 
This dissolves in surface water to form carbonic acid, which, upon dissociation, causes a decrease in pH 
(acidification) and carbonate ion (CO3

2–) concentration. This can affect organisms that form shells and 
skeletons using calcium carbonate (CaCO3, aragonite and calcite as dominant mineral forms). Since AR5, 
new observations have demonstrated the spatial and temporal variability of ocean acidification and 
controlling mechanisms of carbon systems in different regions (Bellerby et al., 2018).  
 
Robbins et al. (2013) showed aragonite undersaturation for about 20% of surface waters in the Canada and 
Makarov Basins, where substantial sea ice melt occurred. Qi et al. (2017) reported that aragonite 
undersaturation has expanded northward by at least 5° of latitude, and deepened by ~100 m between the 
1990s and 2010 primarily due to increased Pacific Winter Water transport. In the East Siberian Arctic Shelf, 
extreme aragonite undersaturation was driven by the degradation of terrestrial organic matter and runoff of 
Arctic river water with elevated CO2 concentrations, reflecting pH changes in excess of those projected in 
this region for 2100 (Semiletov et al., 2016) (high confidence); this was also observed along the continental 
margin and traced in the deep Makarov and Canada Basins (Anderson et al., 2017a). The variable buffering 
capacities of rivers flowing through watersheds with different bedrock geology also influenced the state of 
ocean acidification in coastal regions (Tank et al., 2012; Azetsu-Scott et al., 2014). 
 
The dissolved inorganic carbon (DIC) concentration increased in subsurface waters (150-1400m) in the 
central Arctic between 1991 and 2011 (Ericson et al., 2014). The rate of increase was 0.6–0.9 µmol kg–1 yr–1 

in the Arctic Atlantic Water and 0.4–0.6 µmol kg–1 yr–1 in the upper Polar Deep Water due to anthropogenic 
CO2, while no trend was observed in nutrient concentrations. In waters below 2000 m, no significant trend 
was observed for DIC and nutrient concentrations. Observation-based estimates (MacGilchrist et al., 2014) 
revealed a net summertime pan-Arctic export of 231 ± 49 TgC yr–1 of DIC across the Arctic Ocean gateways 
to the North Atlantic; at least 166 ± 60 TgC yr–1 of this was sequestered from the atmosphere (medium 
confidence). 
 
Studies covering seasonal-to-decadal variability in the Arctic are limited, with most conducted in ice-free or 
low-ice periods during summer-autumn. However, it has been demonstrated that biological processes, 
respiration and photosynthesis, control the CaCO3 saturation states in Chukchi Sea bottom water 
(Yamamoto-Kawai et al., 2016). Sea ice formation and melt influence the dynamics of ikaite (CaCO3 
precipitation trapped in sea-ice during brine rejection), and therefore local carbonate chemistry (Rysgaard et 
al., 2013; Bates et al., 2014; Geilfus et al., 2016; Fransson et al., 2017). Although the increase of pH and 
saturation states by biological uptake of CO2 in surface water is well documented (Azetsu-Scott et al., 2014; 
Yamamoto-Kawai et al., 2016) (high confidence), it has been shown that long photoperiods in Arctic 
summers sustain high pH in kelp forests, slowing ocean acidification (Krause-Jensen et al., 2016). 
 
Since AR5, there are new constraints on the seasonal-to-decadal variability in the Southern Ocean CO2 flux 
(McNeil and Matear, 2013; Landschützer et al., 2014; Landschützer et al., 2015; Gregor et al., 2017; Ritter et 
al., 2017; Keppler and Landschutzer, 2019) (Figure SM3.4), with mean annual flux anomalies varying from 
0.3± 0.1 Pg C yr–1 in 2001-2002 to -0.4 Pg C yr–1 in 2012 (Landschützer et al., 2015); this can affect the 
magnitude of the global CO2 sink (Section 5.2.2). A weakening CO2 sink during the 1990s (Le Quéré et al., 
2007) reversed in the 2000s as part of a decadal cycle (Landschützer et al., 2015; Munro et al., 2015; 
Williams et al., 2017) (SM3.2.3; Figure SM3.4), with a weakening again since 2011 (Keppler and 
Landschutzer, 2019). While the weakening sink during the 1990s was explained as a response to changes in 
the circumpolar winds over the Southern Ocean enhancing the outgassing of natural CO2, the subsequent 
changes appear due to a combination of changes in regional winds, temperature, and circulation 
(Landschützer et al., 2015; Gregor et al., 2017; Keppler and Landschutzer, 2019). Data scarcity, especially in 
winter, remains a challenge (Gruber et al., 2017; Ritter et al., 2017; Fay et al., 2018); recent data from pH-
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enabled floats highlighted the potential role for winter outgassing south of the Polar Front (Williams et al., 
2017; Gray et al., 2018). Overall, there is medium confidence that the Southern Ocean CO2 sink has 
experienced significant decadal variations since the 1980s.  
 
Southern Ocean carbon storage is affected by changes in overturning circulation (Cross-Chapter Box 7 in 
Chapter 3), with the storage of anthropogenic and natural carbon being both variable and out of phase on 
decadal timescales (DeVries et al., 2017; Tanhua et al., 2017) (Table SM3.4). Mode and intermediate waters 
are strongly involved in changing storage, also showing high sensitivity to shifts in winds (Swart et al., 2014; 
Swart et al., 2015a; Tanhua et al., 2017; Gruber et al., 2019). Zonal basin differences in the uptake and 
storage of anthropogenic carbon are not well resolved and there is weak agreement between reanalysis 
products and CMIP5 models (Swart et al., 2014). The presence of subduction hotspots suggest that basin-
wide studies may be underestimating the importance of mode water subduction as a principal storage 
mechanism (Langlais et al., 2017).  
 
Strengthening impacts of Southern Ocean acidification are illustrated by the 3.9 ± 1.3% decrease in derived 
calcification rates (1998–2014) (Freeman and Lovenduski, 2015). These have strong regional character, with 
decreases in the Indian and Pacific sectors (7.5–11.6%) and increases in the Atlantic (14.3 ± 5.1%). There 
have also been changes in the seasonality of pCO2 linked to decreasing buffer capacity (McNeil and Sasse, 
2016) (SM3.2.4) or adjustments to primary production (Conrad and Lovenduski, 2015); seasonal changes are 
discussed further in Section 5.2.2. 
 
3.2.1.3 Ocean Circulation 
 
The major elements of Southern Ocean circulation are assessed in Cross-Chapter Box 7 in Chapter 3; Arctic 
Ocean circulation is considered here. Arctic processes, such as discharge of freshwater from the Greenland 
Ice Sheet, have the potential to impact on the formation of the headwaters of the Atlantic Meridional 
Overturning Circulation (Section 6.7.1), and can impact on the structure and function of the marine 
ecosystem with implications for commercially-harvested species (Sections 3.2.3, 3.2.4). 
 
Satellite data indicate a general strengthening of the surface geostrophic currents in the Arctic basin 
(Armitage et al., 2017). Between 2003 and 2014, the strength of some currents in the Beaufort Gyre 
approximately doubled (Armitage et al., 2017). Over 2001-2014, annual Bering Strait volume transport from 
the Pacific to the Arctic Ocean increased from 0.7x106 m3s–1 to 1.2x106 m3s–1 (Woodgate et al., 2015). 
Mesoscale eddies are characterized by horizontal scales of ~10 km in the Arctic, and are important 
components of the ocean system. Increased wind power input to the Arctic Ocean system can in principle be 
compensated by the production of eddy kinetic energy; analysis of observations in the Beaufort Gyre region 
suggest this is about as likely as not (Meneghello et al., 2017). Data of sufficiently high resolution is limited 
in the boundary regions of the Arctic Ocean, precluding estimates of eddy variability on a basin-wide scale. 
In the central basin regions, a statistically-significant higher concentration of eddies was sampled in the 
Canadian Basin compared to the Eurasian Basin between 2003 and 2014; further, a medium correspondence 
was found between eddy activity in the Beaufort Gyre region and intensified gyre flow (Zhao et al., 2014; 
Zhao et al., 2016). 
 
In contrast to the Southern Ocean (Cross-Chapter Box 7 in Chapter 3), there is comparatively little 
knowledge on changing Arctic frontal positions and current cores since AR5. An exception is that the 
Beaufort Gyre expanded to the northwest between 2003 and 2014, contemporaneous with changes in its 
freshwater accumulation and alterations in wind forcing, resulting in increased proximity to the Chukchi 
Plateau and Mendeleev Ridge (Armitage et al., 2017; Regan et al., 2019) (Section 3.2.1.2.2). 
 
 
[START CROSS-CHAPTER BOX 7 HERE] 
 
Cross-Chapter Box 7: Southern Ocean Circulation: Drivers, Changes and Implications 
 
Authors: Michael P. Meredith (UK), Robert Hallberg (US), Alessandro Tagliabue (UK), Andrew Meijers 
(UK/Australia), Jamie Oliver (UK), Andrew Hogg (Australia) 
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Horizontal circulation and movement of fronts 
 
The Southern Ocean is disproportionately important in global climate and ecological systems, being the 
major connection linking the Atlantic, Pacific and Indian Oceans in the global circulation. The horizontal 
circulation in the circumpolar Southern Ocean is comprised of an eastward-flowing mean current 
concentrated in a series of sinuous, braided jets exhibiting strong meandering variability and shedding small-
scale transient eddies (Figure CB7.1). The mean flow circumnavigates Antarctica as the world’s largest 
ocean current, the Antarctic Circumpolar Current (ACC), transporting approximately 173.3 ± 10.7 ×106 m3 s–

1 (Donohue et al., 2016) of water eastward in a geostrophic balance set up by the contrasting properties of 
waters around Antarctica and those inside the subtropical gyres to the north of ACC. This contrast is 
maintained by a combination of strong westerly winds and ocean heat loss south of the ACC.  
 
Trends in the atmospheric forcing of the Southern Ocean are dominated by a strengthening of westerly winds 
in recent decades (Swart et al., 2015a), but there is no evidence that this enhanced wind stress has 
significantly altered the ACC transport. While the annual mean value of transport is stable in the 
instrumental period (Chidichimo et al., 2014; Koenig et al., 2014; Donohue et al., 2016) it is difficult to 
resolve changes in barotropic transport; overall there is medium confidence that ACC transport is only 
weakly sensitive to changes in winds. This is consistent with longer-term analyses that find only minimal 
changes in ACC transport since the last glaciation (McCave et al., 2013). Theoretical predictions and high-
resolution ocean modelling suggest that the weak sensitivity of the ACC to changes in wind stress is a 
consequence of eddy saturation (Munday et al., 2013), whereby the time-mean state of the ocean remains 
close to a marginal condition for eddy instability and hence additional energy input from stronger winds 
cascades rapidly into the smaller-scale eddy field. Satellite measurements of eddy kinetic energy over the last 
two decades are consistent with this, showing a statistically-significant upward trend in eddy energy in the 
Pacific and Indian Ocean sectors of the Southern Ocean (Hogg et al., 2015) (medium confidence). This is 
supported by eddy-resolving models, which also show a marked regional variability (Patara et al., 2016), and 
there is evidence that local hotspots in eddy energy, especially downstream of major topographic features 
including the Drake Passage, Kerguelen Plateau, Campbell Plateau and the East Pacific Rise, may dominate 
the regional fields (Thompson and Naveira Garabato, 2014).  
 
WGI AR5 assessed that there was medium confidence that the mean position of the ACC had moved 
southwards in response to a contraction of the Southern Ocean circumpolar winds. Such movements can in 
principle have profound effects on marine ecosystems via, e.g., changing habitat ranges for different species 
(e.g., Cristofari et al., 2018; Meijers et al., 2019) (Section 3.2.3.2). Since AR5, however, substantial contrary 
evidence has emerged. While winds have strengthened over the Southern Ocean, reanalysis products show 
no significant shift in the annual mean latitude of zonal wind jets between 1979-2009 (Swart et al., 2015a). 
Similarly, a variety of methods applied to satellite data have found no long-term trend and no statistically 
significant correlation of ACC position with winds (Gille, 2014; Chapman, 2017; Chambers, 2018). The 
discrepancy between these studies and those assessed in WGI AR5 appears to be caused by issues associated 
with using a fixed sea surface height contour as a proxy for frontal position in the presence of strongly 
eddying fields (Chapman, 2014) and large-scale increases in sea surface height consistent with mean global 
trends in sea level rise (Gille, 2014). The increase in sea surface height is ascribed largely to warming-driven 
steric expansion in the upper ocean, but the mechanism driving such warming is still uncertain (Gille, 2014). 
These recent findings do not preclude more local changes in frontal position, but it is now assessed as 
unlikely that there has been a statistically significant net southward movement of the mean ACC position 
over the past 20 years. 
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Figure CB7.1: Schematic of some of the major Southern Ocean changes assessed in this Box and in Chapters 3 and 5. 
Assessed changes are marked as positive (+), neutral (=), negative (-), or dominated by variability (~). The number of 
symbols used indicates confidence, from low (1) through medium (2) to high (3). Section numbers indicate the links to 
further information outside this box.  
 
 
Overturning circulation and water mass formation 
 
The Southern Ocean is the key region globally for the upwelling of interior ocean waters to the surface, 
enabling waters that were last ventilated in the pre-industrial era to interact with the industrial-era 
atmosphere and the cryosphere. New water masses are produced that sink back into the ocean interior. Such 
export of both extremely cold and dense Antarctic Bottom Water and the lighter mode and intermediate 
waters (Figure CB7.1) represents important pathways for surface properties to be sequestered from the 
atmosphere for decades to millennia. This upwelling and sinking constitutes a two-limbed overturning 
circulation, by which much of the global deep ocean is renewed.  
 
The Southern Ocean overturning circulation plays a strong role in mediating climate change via the transfer 
of heat and carbon (including that of anthropogenic origin) with the atmosphere (Sections 3.2.1.2; 5.2.2.2); it 
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also has an impact on sea ice extent and concentration, with implications for climate via albedo (Section 
3.2.1.1). It acts to oxygenate the ocean interior and sequesters nutrients that ultimately end up supporting a 
significant fraction of primary production in the rest of the world ocean (Section 5.2.2.2). The upwelling 
waters in the overturning bring heat to the Antarctic shelf seas, with consequences for ice shelves, marine-
terminating glaciers and the stability of the Antarctic Ice Sheet (Section 3.3.1). The lower limb of this 
overturning circulation supplies Antarctic Bottom Water that forms the abyssal layer of much of the world 
ocean (Section 3.2.1.2; 5.2.2.2). 
 
It is challenging to measure the Southern Ocean overturning directly, and misinterpretation of Waugh et al. 
(2013) led to AR5 erroneously reporting the upper cell to have slowed (AR5 WGI, Section 3.6.4). However, 
additional indirect estimates since AR5 provide support for the increase in the upper ocean overturning 
proposed by Waugh et al. (2013). Waugh (2014) and Ting and Holzer (2017) suggest that over the 1990s-
2000s water mass ages changed in a manner consistent with an increase in upwelling and overturning. 
However, inverse analyses suggest that such overturning experiences significant inter-decadal variability in 
response to wind forcing, with reductions in 2000-2010 relative to 1990-2000 (DeVries et al., 2017). This 
variability, combined with the indirect nature of observational estimates, means that there is low confidence 
in assessments of long-term changes in upper cell overturning. 
 
Available evidence indicates that the volume of Antarctic Bottom Water in the global ocean has decreased 
(Purkey and Johnson, 2013; Desbruyeres et al., 2017) (medium confidence), thinning at a rate of 8.1 m yr−1 
since the 1950s (Azaneu et al., 2013); recently-updated analyses confirm this trend to present day (Figure 
5.4). This suggests that the production and export of this water mass has probably slowed, though direct 
observational evidence is difficult to obtain. The large-scale impacts of Antarctic Bottom Water changes 
include a potential modulation to the strength of the Atlantic Meridional Overturning Circulation (e.g., 
Patara and Böning, 2014; see also Section 5.2.2.2.1). 
 
Projections 
 
Projections of future trends in the Southern Ocean are dominated by the potential for a continued 
strengthening of the westerly winds (Bracegirdle et al., 2013), as well as a combination of warming and 
increased freshwater input from both increased net precipitation and changes in sea ice export (Downes and 
Hogg, 2013). Dynamical considerations and numerical simulations indicate that, if further increases in the 
westerly winds are sustained, then it is very likely that the eddy field will continue to grow in intensity 
(Morrison and McC. Hogg, 2013; Munday et al., 2013), with potential consequences for the upper-ocean 
overturning circulation and transport of tracers (Abernathey and Ferreira, 2015) (including heat, carbon, 
oxygen and nutrients), and likely that the mean position and strength of the ACC will remain only weakly 
sensitive to winds. 
 
The considerable CMIP5 inter-model variations in Southern Ocean time-mean circulation projections 
reported in WGI AR5 (Meijers et al., 2012; Downes and Hogg, 2013) remain largely unchanged. Some of 
the differences in projected changes have been found to be correlated with biases in the various models’ 
ability to simulate the historical state of the Southern Ocean, such as mixed layer depth (Sallée et al., 2013a) 
and westerly wind jet latitude (Bracegirdle et al., 2013). This suggests that bias reduction against observed 
historical metrics (Russell et al., 2018) in future generations of coupled models (e.g., CMIP6) should lead to 
improved confidence in aspects of projected Southern Ocean changes. CMIP5 models suggest that the 
subduction of mode and intermediate water will increase (Sallée et al., 2013b), which will affect oxygen and 
nutrient transports, and the overall transport of the Southern Ocean upper overturning cell will increase by up 
to 20% (Downes and Hogg, 2013), but model performance is limited by the inability to explicitly resolve 
eddy processes (Gent, 2016; Downes et al., 2018). The formation and export of Antarctic Bottom Water is 
predicted to continue decreasing (Heuzé et al., 2015) due to warming and freshening of surface source waters 
near the continent. These are, however, some of the most poorly-represented processes in global models. 
Further uncertainty derives from increased meltwater from the Antarctic Ice Sheet not being considered in 
the CMIP5 climate models, despite its potential for significant impact on Southern Ocean dynamics and the 
global climate, and its potential for positive feedbacks (Bronselaer et al., 2018). Due to these uncertainties, 
low confidence is therefore ascribed to the CMIP5-based model projections of future Southern Ocean 
circulation and water masses. 
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[END CROSS-CHAPTER BOX 7 HERE] 
 
 
3.2.2 Projected Changes in Sea Ice and Ocean 
 
3.2.2.1 Sea Ice 
 
The multi-model ensemble of historical simulations from CMIP5 models identify declines in total Arctic sea 
ice extent and thickness (Sections 3.2.1.1.1; 3.2.1.1.2; Figure 3.3) which agree with observations (Massonnet 
et al., 2012; Stroeve et al., 2012a; Stroeve et al., 2014a; Stroeve and Notz, 2015). There is a range in the 
ability of individual models to simulate observed sea ice thickness spatial patterns and sea ice drift rates 
(Jahn et al., 2012; Stroeve et al., 2014a; Tandon et al., 2018). Reductions in Arctic sea ice extent scale 
linearly with both global temperatures and cumulative CO2 emissions in simulations and observations (Notz 
and Stroeve, 2016), although aerosols influenced historical sea ice trends (Gagné et al., 2017). The 
uncertainty in sea ice sensitivity (ice extent loss per unit of warming) is quite large (Niederdrenk and Notz, 
2018) and the model sensitivity is too low in most CMIP5 models (Rosenblum and Eisenman, 2017). 
Emerging evidence suggests, however, that internal variability, including links between the Arctic and lower 
latitude, strongly influences the ability of models to simulate observed reductions in Arctic sea ice extent 
(Swart et al., 2015b; Ding et al., 2018). 
 
CMIP5 models project continued declines in Arctic sea ice through the end of the century (Figure 3.3) (Notz 
and Stroeve, 2016) (high confidence). There is a large spread in the timing of when the Arctic may become 
ice free in the summer, and for how long during the season (Massonnet et al., 2012; Stroeve et al., 2012a; 
Overland and Wang, 2013) as a result of natural climate variability (Notz, 2015; Swart et al., 2015b; Screen 
and Deser, 2019), scenario uncertainty (Stroeve et al., 2012a; Liu et al., 2013), and model uncertainties 
related to sea ice dynamics (Rampal et al., 2011; Tandon et al., 2018) and thermodynamics (Massonnet et al., 
2018). Internal climate variability results in an uncertainty of approximately 20 years in the timing of 
seasonally ice-free conditions (Notz, 2015; Jahn, 2018), but the clear link between summer sea ice extent and 
cumulative CO2 emissions provide a basis for when consistent ice-free conditions may be expected. For 
stabilized global warming of 1.5°C, sea ice in September is likely to be present at end of century with an 
approximately 1% chance of individual ice-free years (Notz and Stroeve, 2016; Sanderson et al., 2017; Jahn, 
2018; Sigmond et al., 2018); after 10 years of stabilized warming at a 2°C increase, more frequent 
occurrence of an ice-free summer Arctic is expected (around 10-35%) (Mahlstein and Knutti, 2012; Jahn et 
al., 2016; Notz and Stroeve, 2016). Model simulations show that a temporary temperature overshoot of a 
warming target has no lasting impact on ice cover (Armour et al., 2011; Ridley et al., 2012; Li et al., 2013). 
 
CMIP5 models show a wide range of mean states and trends in Antarctic sea ice (Turner et al., 2013; Shu et 
al., 2015). The ensemble mean across multiple models show a decrease in total Antarctic sea ice extent 
during the satellite era, in contrast to the lack of any observed trend (Figure 3.3; Section 3.2.1.1.1). 
Interannual sea ice variability in the models is larger than observations (Zunz et al., 2013), which may mask 
disparity between models and observations. Internal variability (Polvani and Smith, 2013; Zunz et al., 2013), 
and model sensitivity to warming (Rosenblum and Eisenman, 2017) are also important sources of 
uncertainty. During the historical period, regional trends of Antarctic sea ice are not captured by the models, 
particularly the decrease in the Bellingshausen Sea and the expansion in the Ross Sea (Hobbs et al., 2015). 
There is a very wide spread of model responses in the Weddell Sea (Hobbs et al., 2015; Ivanova et al., 2016), 
a region with complex ocean-sea ice interactions that many models do not replicate (de Lavergne et al., 
2014). 
 
There is low confidence in projections of Antarctic sea ice because there are multiple anthropogenic forcings 
(ozone and greenhouse gases) and complicated processes involving the ocean, atmosphere, and adjacent ice 
sheet (Section 3.2.1.1.). Model deficiencies are related to stratification (Sallée et al., 2013a), freshening by 
ice shelf melt water (Bintanja et al., 2015), atmospheric processes including clouds (Schneider and Reusch, 
2015; Hyder et al., 2018), and wind and ocean-driven processes (Purich et al., 2016a; Purich et al., 2016b; 
Schroeter et al., 2017; Purich et al., 2018; Zhang et al., 2018a). Uncertainty in sea ice projections reduces 
confidence in projections of Antarctic Ice Sheet surface mass balance because sea ice affects Antarctic 
temperature and precipitation trends (Bracegirdle et al., 2015), and impacts projected changes in the 
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Southern Hemisphere westerly jet (Bracegirdle et al., 2018; England et al., 2018) with implications for the 
Southern Ocean overturning circulation (Cross-Chapter Box 7 in Chapter 3). 
 
 
[START BOX 3.3 HERE] 
 
Box 3.3: Polynyas 
 
Arctic Coastal Polynyas 
 
Arctic polynyas (areas of open water surrounded by sea ice) are important because they ventilate the Arctic 
Ocean. The polynyas induce bottom reaching convection on shallow shelves (Damm et al., 2018) because 
the warm and exposed ocean surface creates very high heat fluxes and new sea ice formation during winter, 
releasing brine and creating dense water (Barber et al., 2012). On the shallow Siberian shelves, the ocean 
surface waters are dominated by river runoff which is rich with sediments (Damm et al., 2018), which end up 
both in the dense bottom water and in new sea ice (Bauch et al., 2012; Janout et al., 2015). This process 
maintains the Arctic Ocean halocline (Bauch et al., 2011), which insulates the sea-ice cover from the heat of 
the underlying Atlantic-derived waters. 
 
Polynyas are projected to change in different ways depending on regional ice conditions and ice-formation 
processes. Further reductions in sea ice are projected for Arctic shelf seas which have already lost ice in 
recent decades (Barnhart et al., 2015; Onarheim et al., 2018) so polynyas will cease to exist where seasonal 
sea ice disappears or evolve to become part of the marginal sea ice zone due to changes in ice dynamics (i.e., 
the North Water polynya and the Circumpolar Flaw Lead); new or enlarged polynyas could result in regions 
where thinner ice becomes more effectively advected offshore, or where marine terminating glaciers increase 
land ice fluxes to the marine system (medium confidence). The reduced survival rate of sea-ice in the 
Transpolar Drift interrupts the transport of sediment-laden ice produced from Siberian shelf polynyas 
(Krumpen et al., 2019), with consequences for the associated biogeochemical matter and gas fluxes (Damm 
et al., 2018) (medium confidence). 
 
Projected changes to polynyas are important because the spring phytoplankton bloom starts early as the 
ocean is often well-ventilated and nutrient rich, so the entire biological range from phytoplankton to seabirds 
to marine mammals thrive in polynya waters (high confidence) (Stirling, 1997; Arrigo and van Dijken, 2004; 
Karnovsky et al., 2009). Secondary production and upper food web processes are typically adapted to the 
early availability of energy to the system with arrival of higher trophic species (Asselin et al., 2011). Because 
of the abundance of marine food resources including seals, whales, and fish in and around polynyas, Arctic 
peoples have hunted regularly in these areas for thousands of years (Barber and Massom, 2007). Recent 
implementation of Inuit-led marine management areas acknowledge the Inuit knowledge of polynyas, and 
recognize the potential for development of fisheries and other resources in polynya systems, provided these 
activities minimize harm on the environment and wildlife. The Inuit Circumpolar Council’s Pikialasorsuaq 
Commission is an example of a proposal to develop an Inuit management area in the North Water Polynya 
(Cross-Chapter Box 3 in Chapter 1). 
 
Antarctic Coastal Polynyas 
 
The Antarctic continent is surrounded by coastal polynyas, which form from the combined effects of winds 
and landfast ice in the lee of coastal features that protrude into the westward coastal current (Nihashi and 
Ohshima, 2015; Tamura et al., 2016). Intense ice growth within these polynyas contributes to the production 
of Antarctic Bottom Water, the densest and most voluminous water mass in the global ocean (Jacobs, 2004; 
Nicholls et al., 2008; Orsi and Wiederwohl, 2009; Ohshima et al., 2013). Sea ice production is greatest in 
Ross and Weddell sea polynyas and around East Antarctica (Drucker et al., 2011; Nihashi and Ohshima, 
2015; Tamura et al., 2016) (high confidence). 
 
Antarctic coastal polynyas are biological hot-spots that support high rates of primary production (Ainley et 
al., 2015; Arrigo et al., 2015) due to a combination of both high light (Park et al., 2017) and high nutrient 
levels, especially iron (Gerringa et al., 2015). Basal ice shelf melt is the primary supplier of iron to coastal 
polynyas (Arrigo and van Dijken, 2015) although sea ice melt and intrusions of Circumpolar Deep Water are 
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significant in the Ross Sea (McGillicuddy et al., 2015; Hatta et al., 2017). As ice shelves retreat, the 
polynyas created in their wake also increase local primary production: the new polynyas created after the 
collapse of the Larsen A and B ice shelves are as productive as other Antarctic shelf regions, likely 
increasing organic matter export and altering marine ecosystem evolution (Cape et al., 2013). The recent 
calving of Mertz Glacier Tongue in East Antarctica has altered sea ice and ocean stratification (Fogwill et 
al., 2016) such that polynyas there are now twice as productive (Shadwick et al., 2017).  
 
The productivity associated with these polynyas is a critical food source for some of the most abundant top 
predators in Antarctic waters, including penguins, albatross, and seals (Raymond et al., 2014; Malpress et al., 
2017) (Section 3.2.3.2.4). However, only a fraction of the carbon fixed by phytoplankton in coastal polynyas 
is consumed by upper trophic levels. The rest sinks to the seafloor where it is re-mineralized or sequestered 
(Shadwick et al., 2017), or is advected off the shelf (Lee et al., 2017b). Given the high amount of residual 
macronutrients in polynya surface waters, there is evidence that future changes in ice shelf melt rates could 
increase water column productivity (Gerringa et al., 2015; Rickard and Behrens, 2016; Kaufman et al., 
2017), influencing Antarctic coastal ecosystems and increasing the ability of continental shelf waters to 
sequester atmospheric carbon dioxide (Arrigo and van Dijken, 2015). 
 
The Weddell Polynya 
 
The Weddell Polynya is a large area of open water within the winter ice pack of the Weddell Sea close to the 
Maud Rise seamount (at approximately 65ºS, 3ºE), and has importance on a global scale for deep water 
ventilation. The polynya opens intermittently, and remained open from 1974 to 1976, with an area of 0.2–0.3 
million km2 (Carsey, 1980). A similar polynya appeared in spring 2017, with a smaller area in 2016, but did 
not occur in 2018 (Campbell et al., 2019; Jena et al., 2019). Based on these recent events, there is medium 
confidence in the drivers of Weddell Polynya formation - it forms over deep water and appears connected to 
sea ice divergence created by ocean eddies (Holland, 2001) or strong winds (Campbell et al., 2019; Francis 
et al., 2019; Wilson et al., 2019). Around Maud Rise, the ocean is weakly stratified, and winter sea ice 
formation causes brine release and the related deepening mixed layer brings warmer deep waters towards the 
surface. This causes heat loss to the atmosphere above 200 W m-² (Campbell et al., 2019). These polynya 
formation processes cause deep ocean convection that releases heat from the deep ocean to the atmosphere 
(Smedsrud, 2005), and may contribute to the uptake of anthropogenic carbon (Bernardello et al., 2014). 
 
In some CMIP5 models, phases of Weddell polynya activity appear for decades or centuries at a time, and 
then cease for a similar period (Reintges et al., 2017). The observational era is not sufficiently long to rule 
out this behaviour. Models indicate that under anthropogenic climate change, surface freshening caused by 
increased precipitation reduces the occurrence of the Weddell polynya (de Lavergne et al., 2014). There are 
systematic biases in modelled ocean stratification resulting in low confidence in future Weddell Polynya 
projections (Reintges et al., 2017). 
 
[END BOX 3.3 HERE] 
 
 
3.2.2.2 Physical Oceanography 
 
Consistent with the projected sea ice decline, there is high confidence that the Arctic Ocean will warm 
significantly towards the end of this century at the surface and in the deeper layers. Most CMIP5 models 
capture the seasonal changes in surface heat and freshwater fluxes for the present day climate, and show that 
the excess summer solar heating is used to melt sea ice, in a positive ice-albedo feedback (Ding et al., 2016). 
Using RCP8.5, Vavrus et al. (2012) found that the Atlantic layer is projected to warm by 2.5°C at around 
400 m depth at the end of the century, but only by 0.5°C in the surface mixed layer. Consistent results for 
lower Atlantic Water layer warming were found by Koenigk and Brodeau (2014) for RCP2.5 (+0.5°C), 
RCP4.5 (+1.0°C) and RCP8.5 (+2.0°C). 
 
Poleward ocean heat transport contributes to Arctic Ocean warming (medium confidence). Comparing 20 
CMIP5 simulations for RCP8.5, Nummelin et al. (2017) found a 2–6°C range in Arctic amplification of 
surface air temperature north of 70°N, consistent with increased ocean heat transport. Comparing 26 
different CMIP5 simulations for RCP4.5, Burgard and Notz (2017) found that ocean heat transport changes 
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explain the Arctic Ocean multi-model mean warming, but that differences between models are compensated 
by changes in surface fluxes. Increased ocean heat transport into the Barents Sea beyond 2020 appears as a 
probable mechanism with continued warming (Koenigk and Brodeau, 2014; Årthun et al., 2019). Based on 4 
CMIP5 models, the Barents Sea is projected to become ice-free during winter beyond 2050 under RCP8.5 
(Onarheim and Årthun, 2017), to which the main response is an increased ocean-to-atmosphere heat flux and 
related surface warming (Smedsrud et al., 2013). The ocean heat transport increases in all Arctic gateways, 
but is dominated by the Barents Sea, and when winter sea ice disappears here the heat loss cannot increase 
further and the excess ocean heat continues into the Arctic Basin (Koenigk and Brodeau, 2014).  
 
The surface mixed layer of the Arctic Ocean is expected to freshen in future because an intensified 
hydrological cycle will increase river runoff (Haine et al., 2015) (medium confidence). The related increase 
in stratification has the potential to contribute to the warming of the deep Atlantic Water layer, as upward 
vertical mixing will be reduced (Nummelin et al., 2016). There are, however, biases in salinity of ~1 across 
the Arctic Basin for the present-day climate (Ilicak et al., 2016) in forced global ice-ocean models with 
configurations comparable to CMIP5, suggesting limited predictive skill for the Arctic freshwater cycle. 
 
CMIP5 projections (Figure 3.3) indicate that observed Southern Ocean warming trends will continue under 
RCP4.5 and RCP8.5 scenarios, leading to 1–3°C warming by 2100 mostly in the upper ocean (Sallée et al., 
2013a). Projections demonstrate a similar distribution of heat storage to historical observations, notably 
focused in deep pools north of the Subantarctic Front (e.g., Armour et al., 2016). Antarctic Bottom Water 
becomes coherently warmer by up to 0.3°C by 2100 across the model ensemble under RCP8.5 (Heuzé et al., 
2015). The upper ocean also becomes considerably fresher (salinity decrease of approximately 0.1) (Sallée et 
al., 2013b) with an overall increase in stratification and a shallowing of mixed layers (Sallée et al., 2013a). 
Although the sign of model changes appear mostly robust, there is low confidence in magnitude due to the 
large inter-model spread in projections and significant warm biases in historical water mass properties 
(Sallée et al., 2013a) and sea surface temperature, which may be up to 3°C too high in the historical runs 
(Wang et al., 2014). Projections of changes in Southern Ocean circulation are discussed in Cross-Chapter 
Box 7 in Chapter 3. 
 
3.2.2.3 Carbon and Ocean Acidification 
 
The Arctic and Southern Ocean have a systemic vulnerability to aragonite undersaturation (Orr et al., 2005). 
For the RCP8.5 scenario, the entire Arctic and Southern Ocean surface waters will very likely be typified by 
year-around conditions corrosive for aragonite minerals for 2090-2100 (Figure 3.4) (Hauri et al., 2015; Sasse 
et al., 2015), whilst under RCP2.6 the extent of undersaturated waters are reduced markedly. At a 
basin/circumpolar scale, there is high confidence in these projections due to our robust understanding of the 
driving mechanisms. However, there is medium confidence for the response of specific locations, due to the 
need for improved resolution of the local circulation, interactions with sea ice, and other processes that 
modulate the rate of acidification. 
 
Under RCP8.5, melting ice causes the greatest declining rate of pH and CaCO3 saturation state in the Central 
Arctic, Canadian Arctic Archipelago and Baffin Bay (Popova et al., 2014). In the Canada Basin, projections 
using RCP8.5 show reductions in mean surface pH from approximately 8.1 in 1986–2005 to 7.7 by 2066–
2085, and aragonite saturation from 1.52 to 0.74 during the same period (Steiner et al., 2014). A shoaling of 
the aragonite saturation horizon of approximately 1200 m, a large increase in area extent of undersaturated 
surface waters, and a pH change in the surface water of −0.19 are projected using the SRES A1B scenario 
(broadly comparable to RCP6.0) in the Nordic Sea from 2000 to 2065 (Skogen et al., 2014). Under the same 
scenario, aragonite undersaturation is projected to occur in the bottom waters over the entire Kara Sea shelf 
by 2040 and over most of the Barents and East Greenland shelves by 2070 due to the accumulation of 
anthropogenic CO2 (Wallhead et al., 2017). 
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Figure 3.4: The upper ocean (0-10m) at end of this century (2081-2100), characterised by undersaturated conditions for 
aragonite across 90% confidence intervals (dark red to light red) for the RCP8.5 (top) and RCP2.6 (bottom) scenarios in 
CMIP5. Saturation states are averaged and confidence intervals calculated at each geographic location across the 
CNRM-CM5, HadGEM2-ES, GFDL-ESM2G, GFDL-ESM2G, IPSL-CM5-LR, IPSL-CM5-MR, MPI-LR, MPI-MR 
and NCAR-CESM1 models 
 
 
Under RCP8.5, the rate of CO2 uptake by the Southern Ocean is projected to increase from the contemporary 
0.91 Pg C yr–1 to 2.38 (1.65–2.55) Pg C yr–1 by 2100, but the growth in uptake rate will slow and likely stop 
around 2070±10 corresponding to cumulative CO2 emissions of 1600 Gt C (Kessler and Tjiputra, 2016; 
Wang et al., 2016b). This halt in the increase in the uptake rate of CO2 is linked to the combined feedbacks 
from well-understood reductions in buffering capacity and warming, as well as the increased upwelling rate 
of carbon-rich Circumpolar Deep Water (Hauck and Volker, 2015) (Cross-Chapter Box 7 in Chapter 3). 
Although there is high agreement amongst models, contemporary biases in the fluxes of CO2 in CMIP5 
models in the Southern Ocean (Mongwe et al., 2018) suggest medium confidence levels for these projections. 
 
Alongside the mean state changes, Southern Ocean aragonite saturation is also affected by the seasonal cycle 
of carbonate as well as by the impact of reduced buffering capacity (SM3.2.4) on the seasonal cycle of CO2 

(Sasse et al., 2015; McNeil and Sasse, 2016). This leads to an amplification of the seasonal variability of 
pCO2 and the hydrogen ion concentration (Hauck and Volker, 2015; McNeil and Sasse, 2016; Landschützer 
et al., 2018) that accelerates the onset of hypercapnia (i.e., high pCO2 levels; pCO2 > 1000 μatm) to nearly 2 
decades (~2085) ahead of anthropogenic CO2 forcing (McNeil and Sasse, 2016). The seasonal cycles of pH 
and aragonite saturation will be attenuated (Kwiatkowski and Orr, 2018) (Section 5.2.2.3), however when 
the mean state changes are combined with the changes in seasonality, the onset of undersaturation is brought 
forward by 10-20 years (Table SM3.5). Model projections remain uncertain and affected by the resolution of 
local ocean physics, which leads to overall medium confidence in the timing of undersaturation and 
hypercapnia.  
 
 
3.2.3 Impacts on Marine Ecosystems 
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3.2.3.1 Arctic 
 
Climate change has, and is projected to continue to have, significant implications for Arctic marine 
ecosystems, with consequences at different trophic levels both in the pelagic, benthic, and sympagic (sea ice 
related) realms (Figure 3.5). Specifically, climate change is projected to alter the distribution and properties 
of Arctic marine habitats with associated implications for species composition, production and ecosystem 
structure and function (Frainer et al., 2017; Kaartvedt and Titelman, 2018; Moore et al., 2018). The rate and 
severity of ecosystem impacts will be spatially heterogeneous and dependent on future emission scenarios. 
 
In the few Arctic regions where data is sufficient to assess trends in biodiversity, the ecosystem level 
responses appear to be products of multiple interacting physical, chemical and biological processes 
(Frederiksen, 2017) (medium confidence). Climate change impacts on vertical fluxes and stratification 
(Sections 3.2.1.2.3, 3.2.2.2) will contribute to changes in bentho-pelagic-sympagic coupling. For instance, 
projected climate driven changes in ocean properties and hydrography (Section 3.2.2.2) and the abundance 
of pelagic grazers (Box 3.4) could alter the export of organic matter to the sea floor with associated impacts 
on the benthos in some Arctic shelf ecosystems (Moore and Stabeno, 2015; Stasko et al., 2018) (low 
confidence). Projected future reductions in summer sea ice (Section 3.2.1.1), increased stratification in 
summer, shifting currents and fronts and increased ocean temperatures (Section 3.2.2.2) and ocean 
acidification (Section 3.2.2.3) are all expected to impact the future production and distribution of several 
marine fish and invertebrates (high confidence).  
 
Ocean acidification (Section 3.2.2.3) will affect several key Arctic species (medium confidence). The effects 
of current and projected levels of acidification have been examined for a broad suite of species groups 
(bivalves, cephalopods, echinoderms, crustaceans, corals and fishes) and these studies reveal species-specific 
differences in sensitivity, as well as differences in the scope for, and energetic cost of, adaptation (Luckman 
et al., 2014; Howes et al., 2015; Falkenberg et al., 2018).  
 
3.2.3.1.1 Plankton and primary production 
There is evidence that the combination of loss of sea ice, freshening, and regional stratification (Sections 
3.2.1.1 and 3.2.1.2) has affected the timing, distribution and production of primary producers (Moore et al., 
2018) (high confidence). Satellite data show that the decline in ice cover has resulted in a >30% increase in 
annual net primary production (NPP) in ice–free Arctic waters since 1998 (Arrigo and van Dijken, 2011; 
Bélanger et al., 2013; Arrigo and van Dijken, 2015; Kahru et al., 2016), a phenomenon corroborated by both 
in situ data (Stanley et al., 2015) and modelling studies (Vancoppenolle et al., 2013; Jin et al., 2016). Ice loss 
has also resulted in earlier phytoplankton blooms (Kahru et al., 2011) with blooms being dominated by 
larger-celled phytoplankton (Fujiwara et al., 2016). The longer open water season in the Arctic has also 
increased the incidence of autumn blooms, a phenomenon rarely observed in Arctic waters previously 
(Ardyna et al., 2017). 
 
Thinner Arctic sea ice cover has led to the appearance of intense phytoplankton blooms that develop beneath 
first-year sea ice (medium confidence). Blooms of this size (1000s of km2) and intensity (peaks of 
approximately 30 mg Chla-m–3) were previously thought to be restricted to the marginal ice zone and the 
open ocean where ample light reaches the surface ocean for rapid phytoplankton growth (Arrigo et al., 
2012). Evidence shows that these blooms can thrive beneath sea ice in areas of reduced thickness, increased 
coverage of melt ponds (Arrigo et al., 2014; Zhang et al., 2015; Jin et al., 2016; Horvat et al., 2017), first-
year ridges at the snow-ice interface (Fernández-Méndez et al., 2018), and a large number of cracks (high 
lead fractions) in the ice (Assmy et al., 2017), although the latter has not changed significantly in the last 
three decades (Wang et al., 2016a). Local features including snow-free or thin snow, hummocks and ridges 
commonly found on multi-year ice also provide habitat for ice algae (Lange et al., 2017). 
 
The reduction in sea ice area and thickness in the Arctic Ocean appears to be indirectly impacting rates of 
NPP through increased exposure of the surface ocean to atmospheric forcing (medium confidence) and these 
indirect impacts will possibly increase in the future (low confidence). Greater wind stress has been shown to 
increase upwelling of nutrients at the shelf break both over ice-free waters (Williams and Carmack, 2015) 
and a partial ice cover (Schulze and Pickart, 2012), leading to more new production (Williams and Carmack, 
2015). At the same time, enhanced vertical stratification (Section 3.2.1.2.2, SM3.2.2) and decreased 
upwelling of nutrients into surface waters (Capotondi et al., 2012; Nummelin et al., 2016) may reduce Arctic 



FINAL DRAFT Chapter 3 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 3-31 Total pages:173 

NPP in the future, especially in the central basin (Ardyna et al., 2017). It could also impact phytoplankton 
community composition and size structure, with small-celled phytoplankton, which require less nutrients, 
becoming more dominant as nutrient concentrations in surface waters decline (Yun et al., 2015).  
 
In addition to its impact on phytoplankton bloom dynamics, the decline in the proportion of multiyear sea ice 
and proliferation of a thinner first year sea ice cover may favour growth of microalgae within the ice due to 
increased light availability (medium confidence). Recent studies suggest that the contribution of sea ice algae 
to total Arctic NPP is higher now than values measured previously (Song et al., 2016), accounting for nearly 
10% of total NPP (ice+water) and as much as 60% in places like the central Arctic (Fernández-Méndez et al., 
2015). 
 
Ongoing changes in NPP will impact the biogeochemistry and ecology of large parts of the Arctic Ocean 
(high confidence). In areas of enhanced nutrient availability and greater NPP, dominance by larger-celled 
microalgae increases vertical export efficiency from the surface downwards in both ice-covered (Boetius et 
al., 2013; Lalande et al., 2014; Mäkelä et al., 2017) and open-ocean (Le Moigne et al., 2015) areas. However, 
because exported biomass production may be increasing in some areas but declining in others, the net impact 
may be small (Randelhoff and Guthrie, 2016) (Sections 3.2.3.1.2, 5.3.6, SM3.2.6). Phytoplankton may have 
the capacity to compensate for ocean acidification under a range of temperatures and pH values (Hoppe et 
al., 2018). 
 
Increased water temperatures (Section 3.2.1) and shifts in the spatial pattern and timing of the ice algal and 
phytoplankton blooms, have impacted the phenology, magnitude and duration of zooplankton production 
with associated changes in the zooplankton community composition (medium confidence). Negative effects 
of reductions in ice algae on zooplankton may be partially offset by predicted increases in water column 
phytoplankton production in the Bering Sea (Wang et al., 2015). Changes in sea ice coverage and thickness 
may alter the phenology, abundance and distribution of zooplankton in the future. Projected changes will 
initially have the most pronounced impact on sympagic amphipods, but will subsequently affect food web 
functioning and carbon dynamics of the pelagic system (Kohlbach et al., 2016). 
 
At the more southern boundaries of the Arctic such as the southeastern Bering Sea, warm conditions have led 
to reduced production of large copepods and euphausiids (medium confidence) (Sigler et al., 2017; Kimmel 
et al., 2018). On more northern shelves, the increased open water period has led to increases in large 
copepods over a 60 year period within the Chukchi Sea (Ershova et al., 2015) and in recent years also the 
Beaufort Sea (Smoot and Hopcroft, 2017), while in the Central Basins zooplankton biomass in general has 
increased (Hunt et al., 2014; Rutzen and Hopcroft, 2018) (medium confidence). 
 
There are inconsistent findings concerning the future development of copepods in the Arctic. Coupled bio-
physical model results suggest that sea ice loss will increase primary production and that will primarily be 
consumed pelagically by zooplankton grazers such as Calanus hyperboreus; increasing their abundances in 
the central Arctic (Kvile et al., 2018). Feng et al. (2018) concluded that C. glacialis should continue to 
benefit from a warmer Arctic Ocean. On the other hand, in the transition zone between Arctic and Atlantic 
water masses, C. glacialis may face increasing competition from the more boreal C. finmarchicus 
(Dalpadado et al., 2016). Renaud et al. (2018) found the lipid content of Calanus spp. was related to size and 
not species. This suggests that climate driven shifts in dominant Calanus species may, because of overlap in 
size spectrum and contrary to earlier assumptions, not negatively impact their consumers in the Barents Sea. 
 
The effects of ocean acidification on Arctic zooplankton and pteropods (small pelagic molluscs) have been 
examined for only a few species and these studies reveal that the severity of effects is dependent on emission 
scenarios and the species sensitivity and adaptive capacity. The copepod Calanus glacialis exhibits stage-
specific sensitivities to ocean acidification with some stages being relatively insensitive to decreases in pH 
and other stages exhibiting substantial reductions in scope for growth (Bailey et al., 2016; Thor et al., 2018). 
Although there is strong evidence that pteropods are sensitive to the effects of ocean acidification (Manno et 
al., 2017) recent studies indicate they may exhibit some ability to adapt (Peck et al., 2016; Peck et al., 2018). 
However, the metabolic costs of adaptation may be constraining, especially during periods of low food 
availability (Lischka and Riebesell, 2016). 
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3.2.3.1.2 Benthic communities 
There is evidence that earlier spring sea ice retreat and later autumn sea ice formation (Section 3.2.1.1) are 
changing the phenology of primary production with cascading effects on Arctic benthic community 
biodiversity and production (Link et al., 2013) (medium confidence). In the Barents Sea, evidence suggests 
that factors directly related to climate change (sea-ice dynamics, ocean mixing, bottom-water temperature 
change, ocean acidification, river/glacier freshwater discharge; Sections 3.2.1.1, 3.2.1.2) are impacting the 
benthic species composition (Birchenough et al., 2015). Other human-influenced activities, such as 
commercial bottom trawling and the introduction of non-native species are also regarded as major drivers of 
observed and expected changes in benthic community structure (Johannesen et al., 2017), and may interact 
with climate impacts. 
 
Rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords in the Svalbard 
Archipelago during the period 1980 to 2010 have been documented and linked to gradually increasing 
seawater temperature and decreasing sea ice cover (Kortsch et al., 2012; Kortsch et al., 2015). Also, there are 
indications of declining benthic biomass in the northern Bering Sea (Grebmeier and Cooper, 2016) and 
southern Chukchi Sea (Grebmeier et al., 2015). It is unclear whether these rapid ecosystem changes will be 
tipping points for local ecosystems (Chapter 6, Table 6.1; Wassmann and Lenton, 2012). However, biomass 
of kelps have increased considerably in the intertidal to shallow subtidal in Arctic regions over the last 2 
decades, connected to reduced physical impact by ice-scouring and increased light availability as a 
consequence of warming and concomitant fast-ice retreat (Kortsch et al., 2012; Paar et al., 2016) (medium 
confidence) (See Section 5.3.3 and SM3.2.6 for further information on kelp). 
 
The growth, early survival and production of commercially-important crab stocks in the Bering Sea are 
influenced by time-varying exposure to multiple interacting drivers including bottom temperature, larval 
advection, predation, competition, and fishing (Burgos et al., 2013; Long et al., 2015; Ryer et al., 2016). In 
Newfoundland and Labrador waters and on the western Scotian Shelf, snow crab (Chionoecetes opilio) 
productivity has declined (Mullowney et al., 2014; Zisserson and Cook, 2017). Contrary to this, snow crabs 
have expanded their distribution in the Barents Sea and commercial harvesting increased (Hansen, 2016; 
Lorentzen et al., 2018) (high confidence).  
 
Bering sea crabs exhibit species-specific sensitivities to reduced pH (Long et al., 2016; Swiney et al., 2017; 
Long et al., 2019). However, current pH levels do not appear to have negatively impacted crab production in 
the Bering or Barents Seas (Mathis et al., 2015; Punt et al., 2015). 
 
3.2.3.1.3 Fish 
Since AR5, additional evidence shows climate induced physical and biogeochemical changes are impacting, 
and will continue to impact, the distribution and production of marine fish (medium confidence). Changes in 
the spatial distribution and production of Arctic fish are best documented for ecologically- and 
commercially-important stocks in the Bering and Barents Seas (Box 3.4; Figure 3.5), while data is severely 
limited in other Arctic shelf regions and the Central Arctic Ocean.  
 
Higher temperature and changes in the quality and distribution of prey is already affecting marine fish 
(Wassmann et al., 2015; Dalpadado et al., 2016; Hunt et al., 2016; Section 3.2.3.1) (high confidence for 
detection, medium confidence for attribution). In the northern Barents Sea, Atlantic sector, higher 
temperatures (Section 3.2.1.2) have expanded suitable feeding areas for boreal/subarctic species (Box 3.4) 
and has contributed to increased Atlantic cod (Gadus morhua) production (Kjesbu et al., 2014). In contrast, 
Arctic species like polar cod (Boreogadus saida) are expected to be affected negatively by a shortened ice-
covered season and reduced sea-ice extent through loss of spawning habitat and shelter, increased predatory 
pressure, reduced prey availability (Christiansen, 2017), and impaired growth and reproductive success 
(Nahrgang et al., 2014). These changes may cause structural changes in food webs, with large piscivorous 
and semipelagic boreal fish species replacing small-bodied Arctic benthivores (Box 3.4; Fossheim et al., 
2015; Frainer et al., 2017). 
 
Time series on responses of anadromous fish (including salmon) in the high Arctic are limited, although 
these stocks will also be exposed to a wide range of future stressors (Reist et al., 2016). There is some 
evidence that environmental variability influences the production of anadromous species such as Arctic char 
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(Salvelinus alpinus), brown trout (Salmo trutta), and Atlantic salmon (Salmo salar) through its influence on 
growth and winter survival (Jensen et al., 2017). 
 
 

 
Figure 3.5: Schematic of Arctic system in present day (Panel a) and projected changes by mid-century (Panel b). 
Coloured elements in Panel b correspond to projected changes. 
 
 
The scope for adaptation of marine fish to a changing ocean conditions is uncertain, but knowledge is 
informed by previous biogeographic studies (Chernova, 2011; Lynghammar et al., 2013). The present niche 
partitioning between subarctic and Arctic pelagic fish species is expected to become more diffuse with 
potential negative impacts on cold adapted species such as polar cod (Laurel et al., 2017; Logerwell et al., 
2017; Alabia et al., 2018) (low confidence). Winter ocean conditions in the high Arctic are projected to 
remain cold in most regions (Section 3.2.3.1), limiting the immigration of subarctic species that spawn in 
positive temperatures onto the high Arctic shelves (Landa et al., 2014). Projected increases in summer 
temperature may open gateways to subarctic pelagic foragers in summer, particularly in the inflow regions of 
the Kara and Chukchi Seas, and the shelf regions of east and west Greenland (Mueter et al., 2017; Joli et al., 
2018). For example, the pelagic capelin (Mallotus villosus) are capable of entering the central Arctic Ocean, 
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but may be restricted in winter by availability of suitable spawning areas and lack of antifreeze proteins (Hop 
and Gjøsæter, 2013; Christiansen, 2017).  
 
Regional climate scenarios, derived from downscaled global climate scenarios, have been used to drive 
environmentally-linked fish population models (Hermann et al., 2016; Holsman et al., 2016; Ianelli et al., 
2016; Hermann et al., 2019). Hermann et al. (2019) contrasted future production of copepods and 
euphausiids in the eastern Bering Sea under scenarios derived from projected downscaled high spatial and 
temporal resolution ocean habitats under RCP4.5 and 8.5. Consistent with AR5, these updated scenarios 
project future declines in the abundance of large copepods under RCP8.5, a result that has been show to 
negatively impact production of walleye pollock, Pacific cod (Gadus microcephalus) and arrowtooth 
flounder (Atheresthes stomias) (Sigler et al., 2017; Kimmel et al., 2018) (medium confidence). Hedger et al. 
(2013) predicts increases in Atlantic salmon abundance in northern Norway (river Alta around 70°N) with 
future warming (low confidence). Under end of century RCP8.5 projections, ocean acidification and higher 
ocean temperatures are expected to reduce production of Barents Sea cod (Stiasny et al., 2016; Koenigstein 
et al., 2018) (low confidence). 
 
3.2.3.1.4 Seabirds and marine mammals 
Environmental alterations caused by global warming are resulting in phenological, behavioural, 
physiological, and distributional changes in Arctic marine mammal and seabird populations (Gilg et al., 
2012; Laidre et al., 2015; Gall et al., 2017) (high confidence). These changes include altered ecological 
interactions as well as direct responses to habitat degradation induced especially via loss of sea ice. 
Population responses to warming have not all been linear, some have been particularly strong and abrupt due 
to environmental regime shifts, as seen in black-legged kittiwakes (Rissa tridactyla). A steep population 
decline in kittiwake colonies distributed throughout their breeding range coincided with an abrupt warming 
of sea-surface temperature in the 1990s, while their population dynamics did not seem to be affected during 
periods of more gradual warming (Descamps et al., 2017). 
 
Seabirds and marine mammals are mobile animals that respond to changes in the distribution of their 
preferred habitats and prey, by shifting their range, altering the timing or pathways for migration or prey 
shifting when this is feasible (Post et al., 2013; Hamilton et al., 2019) (very high confidence). However, 
some species display strong site fidelity that can be maladaptive in a changing climate and Arctic endemic 
marine mammals (all of which are ice-affiliated for breeding) in general have little scope to move northward 
in response to warming (Kovacs et al., 2012; Hamilton et al., 2015). Changes in the location or availability 
of polar fronts, polynyas, tidal glacier fronts or ice edges have impacted where Arctic sea birds and marine 
mammals concentrate because of the influence these physical features have on productivity; traditionally 
these areas have been key foraging sites for top predators in the Arctic (deHart and Picco, 2015; Hamilton et 
al., 2017; Hunt et al., 2018). 
 
In some species, shifts in distribution in response to changes in suitable habitat have been associated with 
increased mortality. Increased mortality rates of walrus (Odobenus rosmarus) calves have been observed 
during on-shore stampedes of unusually large herds, because Pacific walrus females are no longer able to 
haul out on ice over the shelf in summer due to the retraction of the southern ice edge into the deep Arctic 
Ocean (Kovacs et al., 2016). Shifts in the temporal and spatial distribution and availability of suitable areas 
of sea-ice for ice-breeding seals have occurred (Bajzak et al., 2011; Øigård et al., 2013) with increases in 
strandings and pup mortality in years with little ice (Johnston et al., 2012c; Soulen et al., 2013; Stenson and 
Hammill, 2014).  
 
Climate impacts that reduce the availability of prey resources can negatively impact marine mammals 
(Asselin et al., 2011; Øigård et al., 2014; Choy et al., 2017) (very high confidence). Sea ice changes have 
increased the foraging effort of ringed seals (Pusa hispida) in the marginal ice zone north of Svalbard 
(Hamilton et al., 2015), also causing diet shifts (Lowther et al., 2017). Ringed seals in Svalbard are using 
terrestrial haul-out sites during summer for the first time in observed history, following major declines in sea 
ice (Lydersen et al., 2017), an example of an adaptive behavioural response to extreme habitat changes. Sea 
ice related changes in the export of production to the benthos (Section 3.3.3.1) and associated changes in the 
benthic community (Section 3.4.1.1.2) may impact marine mammals dependent on benthic prey (e.g., 
walruses and gray whales, Eschrichtius robustus) (Brower et al., 2017; Udevitz et al., 2017; Szpak et al., 
2018).  
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Changes in the timing, distribution and thickness of sea ice and snow (Sections 3.2.1.1, 3.4.1.1) have been 
linked to phenological shifts, and changes in distribution, denning, foraging behaviour and survival rates of 
polar bears (Ursus maritimus) (Andersen et al., 2012; Hamilton et al., 2017; Escajeda et al., 2018) (high 
confidence). Less ice is also driving polar bears to travel over greater distances and swim more than 
previously both in offshore and in coastal areas, which can be particularly dangerous for young cubs (Durner 
et al., 2017; Pilfold et al., 2017; Lone et al., 2018). Cumulatively, changes in sea ice patterns are driving 
demographic changes in polar bears, including declines in some populations (Lunn et al., 2016; McCall et 
al., 2016), while others are stable or increasing (Voorhees et al., 2014; Aars et al., 2017). This is because 
protective management measures have been successful in allowing severely depleted populations to recover 
or because new food sources, such as carrion, are becoming available to polar bears in some regions (Galicia 
et al., 2016; Stapleton et al., 2016). Changes in the spatial distribution of polar bears and killer whales can 
have top-down effects on other marine mammal prey populations (Øigård et al., 2014; Breed et al., 2017; 
Smith et al., 2017a).  
 
Several studies from different parts of the Arctic show evidence that changing temperatures impact seabirds 
diets (Dorresteijn et al., 2012; Divoky et al., 2015; Vihtakari et al., 2018), reproductive success and body 
condition (Gaston et al., 2012; Provencher et al., 2012; Gaston and Elliott, 2014) (high confidence). Recent 
studies also show that changes in sea surface temperature and sea ice dynamics have impacts on the 
distribution and abundance of seabird prey with cascading impacts on seabird community composition (Gall 
et al., 2017), nutritional stress, and decreased reproductive output (Dorresteijn et al., 2012; Divoky et al.; 
Kokubun et al., 2018) and survival (Renner et al., 2016; Hunt et al., 2018). 
 
3.2.3.2 Southern Ocean 
 
Marine ecosystem dynamics in the Antarctic region are dominated by the ACC and its frontal systems 
(Cross-Chapter Box 7 in Chapter 3), subpolar gyres, polar seasonality, the annual advance and retreat of sea 
ice (Section 3.2.1.1), and the supply of limiting micronutrients for productivity (most commonly iron) 
(Section 5.2.2.5). Antarctic krill (Euphausia superba) play a central role in Southern Ocean foodwebs as 
grazers and as prey items for fish, squid, marine mammals and seabirds (Schmidt and Atkinson, 2016; 
Trathan and Hill, 2016) (SM3.2.6). This is due in part to the high abundance and circumpolar distribution of 
Antarctic krill, although the abundance and importance of this species varies between different regions of the 
Southern Ocean (Larsen et al., 2014; Siegel, 2016; McCormack et al., 2017). Recent work has characterised 
the nature of habitat change for Southern Ocean biota at regional and circumpolar scales (Constable et al., 
2014; Gutt et al., 2015; Constable et al., 2016; Hunt et al., 2016; Gutt et al., 2017), and the direct responses 
of biota to these changes (Constable et al., 2014) (summarised in Figure 3.6). These findings indicate that 
overlapping changes in key ocean and sea-ice habitat characteristics (temperature, sea-ice cover, iceberg 
scour, mixed layer depth, aragonite undersaturation; Sections 3.2.1, 3.2.2) will be important in determining 
future states of Southern Ocean ecosystems (Constable et al., 2014; Gutt et al., 2015) (medium confidence). 
However, there is a need to better characterize the nature and importance of indirect responses to physical 
change using models and observations. Important advances have also been made since AR5 in (i) identifying 
key variables to detect and attribute change in Southern Ocean ecosystems, as part of long-term circumpolar 
modelling designs (Constable et al., 2016), and (ii) refining methods for using sea-ice projections from 
global climate models in ecological studies and in ecosystem models for the Southern Ocean (Cavanagh et 
al., 2017). 
 
3.2.3.2.1 Plankton and pelagic primary production 
Changes in column-integrated phytoplankton biomass for the Southern Ocean are coupled with changes in 
the spatial extent of ice-free waters, suggesting little overall change in biomass per area at the circumpolar 
scale (Behrenfeld et al., 2016). Arrigo et al. (2008) also report no overall trend in remotely-sensed column-
integrated primary production south of 50°S from 1998 to 2006. At a regional scale, local-scale forcings 
(e.g., retreating glaciers, topographically-steered circulation and sea ice duration) and associated changes in 
stratification are key determinants of phytoplankton bloom dynamics at coastal stations on the West 
Antarctic Peninsula (Venables et al., 2013; Schofield et al., 2017; Kim et al., 2018; Schofield et al., 2018) 
(medium confidence). For example, a shallowing trend in mixed layer depth in the southern part of the 
Peninsula (as opposed to no trend in the north) associated with changes in sea-ice duration over a 24 year 
period (from 1993 to 2017) has been linked to enhanced phytoplankton productivity (Schofield et al., 2018). 
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The phenology of Southern Ocean phytoplankton blooms in this region may also be shifting to earlier in the 
growth season (Arrigo et al., 2017a). However, the effect of climate change on Southern Ocean pelagic 
primary production is difficult to determine given that the length of time series data is insufficient (less than 
30 years) to enable the climate change signature to be detected and attributed; and that, even when records 
are of sufficient length, data trends are often reported as being driven by climate change when they are due to 
a combination of climate change and variability. 
 
Recent studies on the ecological effects of acidification in coastal waters near the Antarctic continent 
indicate a detrimental effect of acidification on primary production and changes to the structure and function 
of microbial communities (Hancock et al., 2017; Deppeler et al., 2018; Westwood et al., 2018) (medium 
confidence). Trimborn et al. (2017) report that Southern Ocean diatoms are more sensitive to ocean 
acidification and changes in irradiance than the prymnesiophyte Phaeocystis antarctica, which may have 
implications for biogeochemical cycling because diatoms and prymnesiophytes are generally considered key 
drivers of these cycles. Both laboratory manipulations and in situ experiments indicate that sea-ice algae are 
tolerant to acidification (McMinn, 2017) (medium confidence). Model projections of trends in primary 
production in the Southern Ocean due to climate change from Leung et al. (2015) are summarized in Table 
3.2. 
 
 
Table 3.2: Model projections of trends due to climate-change driven alteration of phytoplankton properties under 
RCP8.5 from 2006–2100 across three zones of the Southern Ocean, from Leung et al. (2015). There is low 
confidence in predicted zonal changes in phytoplankton biomass due to low confidence regarding future changes in iron 
supply in the Southern Ocean (Hutchins and Boyd, 2016). Acidification was not reported as an important driver in this 
modelling experiment. 

Zonal 
Band 

Predicted 
change in 
phytoplankton 
biomass 

Drivers Mechanisms 

40°S–50°S  Higher mean underwater irradiance 
More iron supply 

Shallowing of the summertime mixed 
layer depth  
Change in iron supply mechanism 

50°S–65°S  Lower mean underwater irradiance Deeper summertime mixed layer depth  
Decreased summertime incident 
radiation (increased cloud fraction) 

S of 65°S  More iron supply  
Higher mean underwater irradiance 
Temperature 

Melting of sea–ice  
Warming ocean 

 
 
Previously reported declines in Antarctic krill abundance in the South Atlantic sector (Atkinson et al., 2004) 
cited in WGII AR5 (Larsen et al., 2014) may not represent a long-term, climate-driven, regional-scale 
decline (Fielding et al., 2014; Kinzey et al., 2015; Steinberg et al., 2015; Cox et al., 2018) (medium 
confidence) but could reflect a sudden, discontinuous change following an episodic period of anomalous 
peak abundance for this species (Loeb and Santora, 2015) (low confidence). Recent analyses have not 
detected trends in long-term krill abundance in the South Atlantic sector in acoustic surveys (Fielding et al., 
2014; Kinzey et al., 2015), net-based surveys (Steinberg et al., 2015) or re-analysis of historical data (Cox et 
al., 2018). Nevertheless, the spatial distribution and size composition of Antarctic krill may already have 
changed in association with change in the sea ice environment (Atkinson et al., 2019) (medium confidence) 
and may result in different regional trends in numerical krill abundance (Cox et al., 2018; Atkinson et al., 
2019) (medium confidence).  
 
The distribution of Antarctic krill is expected to change under future climate change because of changes in 
the location of the optimum conditions for growth and recruitment (Melbourne-Thomas et al., 2016; Piñones 
and Fedorov, 2016; Meyer et al., 2017; Murphy et al., 2017; Klein et al., 2018). The optimum conditions for 
krill are predicted to move southwards, with the decreases most apparent in the areas with the most rapid 
warming (Hill et al., 2013; Piñones and Fedorov, 2016) (Section 3.2.1.2.1) (medium confidence). The 
greatest projected reductions in krill due to the effects of warming and ocean acidification are predicted for 
the southwest Atlantic/Weddell Sea region (Kawaguchi et al., 2013; Piñones and Fedorov, 2016) (low 
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confidence), which is the area of highest current krill concentrations, contains important foraging grounds for 
krill predators, and is also the main area of operation of the krill fishery. Modelled effects of warming on 
krill growth in the Scotia Sea and northern Antarctic Peninsula region resulted in reductions in total krill 
biomass under both RCP2.6 and RCP8.5 (Klein et al., 2018). Projections from a food web model for the 
West Antarctic Peninsula under simple scenarios for change in open water and sea ice associated primary 
production from 2010 to 2050 (6, 15, and 41% increases in phytoplankton production with equivalent 
percentage decreases in ice algal production) indicate a decline in krill biomass with contemporaneous 
increases in the biomass of gelatinous salps (Suprenand and Ainsworth, 2017). 
 
Current understanding of climate change effects on Southern Ocean zooplankton is largely based on 
observations and predictions from the South Atlantic and the West Antarctic Peninsula. Comparison of the 
mesozooplankton community in the southwestern Atlantic sector between 1926 and 1938 and 1996–2013 
showed no evidence of change despite surface ocean warming (Tarling et al., 2017). These results suggest 
that predictions of distributional shifts based on temperature niches may not reflect the actual levels of 
thermal resilience of key taxa. Sub-decadal cycles of macrozooplankton community composition adjacent to 
the West Antarctic Peninsula are strongly linked to climate indices, with evidence of increasing abundance 
for some species over the period from 1993 to 2013 (Steinberg et al., 2015). Pteropods are vulnerable to the 
effects of acidification, and new evidence indicates that eggs released at high CO2 concentrations lack 
resilience to ocean acidification in the Scotia Sea region (Manno et al., 2016) (medium confidence). 
 
3.2.3.2.2 Benthic communities 
Carbon uptake and storage by Antarctic benthic communities is predicted to increase with sea ice losses, 
because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows 
(Barnes, 2017). Bentho-pelagic coupling and vertical energy flux will also influence Southern Ocean 
ecosystem responses to climate change (Jansen et al., 2017). Benthic communities in shallow water habitats 
mostly consist of dark-adapted invertebrates and rely on sea ice to create low-light marine environments. 
Increases in the amount of light reaching the shallow seabed under climate change may result in ecological 
regime shifts, in which invertebrate-dominated communities are replaced by macroalgal beds (Clark et al., 
2015; Clark et al., 2017) (low confidence) (Table 6.1). Griffiths et al. (2017a) modelled distribution changes 
for 963 benthic invertebrate species in the Southern Ocean under RCP8.5 for 2099. Their results suggest that 
79% of Antarctica’s endemic species will face a reduction in suitable temperature habitat (an average 12% 
reduction) over the current century. Predicted reductions in the number of species are most pronounced for 
the West Antarctic Peninsula and the Scotia Sea region (Griffiths et al., 2017a). 
 
3.2.3.2.3 Fish 
Many Antarctic fish have a narrow thermal tolerance as a result of physiological adaptations to cold water 
(Pörtner et al., 2014; Mintenbeck, 2017), which makes them vulnerable to the effects of increasing 
temperatures (Mueller et al., 2012; Beers and Jayasundara, 2015). Increasing water temperatures may 
displace icefish (family Channichthyidae) in marginal habitats (e.g. shallow regions around subantarctic 
islands) as they lack haemoglobin and are unable to adjust blood parameters to an increasing oxygen demand 
(Mintenbeck et al., 2012) (low confidence). Future warming may also reduce the planktonic duration and 
increase egg and larval mortality for fish species, which is predicted to affect dispersal patterns, with 
implications for population connectivity and the ability of fish species to adapt to ongoing environmental 
change (Young et al., 2018). The Antarctic silverfish (Pleuragramma antarctica) is an important prey 
species in some regions of the Southern Ocean, and has an ice-dependent life cycle (Mintenbeck et al., 2012; 
Vacchi et al., 2012). Documented declines in the abundance of this species in some parts of the West 
Antarctic Peninsula may have consequences for associated food webs (Parker et al., 2015; Mintenbeck and 
Torres, 2017) (low confidence). 
 
Myctophids and toothfish are important fish groups from both a food web (myctophids) and fishery 
(toothfish) perspective. Species distribution models for Electrona antarctica, a dominant myctophid species 
in the Southern Ocean, project habitat loss for this species under RCP4.5 (6.2 ± 6.0% loss) and RCP8.5 (13.1 
± 10.2% loss) by 2090, associated with increased sea surface temperature (Freer et al., 2018). There have 
been no observed effects of climate change on the two species of toothfish that are found in the Southern 
Ocean: Patagonian and Antarctic toothfish (Dissostichus eleginoides and D. mawsoni), but recruitment is 
inversely correlated with sea surface temperature for Patagonian toothfish at South Georgia (Belchier and 
Collins, 2008). Given differences in temperature tolerances for Patagonian toothfish (with a wide 
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temperature tolerance) and Antarctic toothfish (limited by a low tolerance for water temperatures above 
2°C), the latter may be faced with reduced habitat and potential competition with southward-moving 
Patagonian toothfish under climate change (Mintenbeck, 2017) (very low confidence). 
 
3.2.3.2.4 Seabirds and marine mammals 
Since AR5, there has been an increasing body of evidence of climate-induced changes in populations of 
some Antarctic higher predators such as seabirds and marine mammals. These changes vary between 
different regions of the Southern Ocean and reflect differences in key drivers (Bost et al., 2009; Gutt et al., 
2015; Constable et al., 2016; Hunt et al., 2016; Gutt et al., 2017), particularly sea-ice extent and food 
availability (high confidence) across regions (Sections 3.2.1.1.1, 5.2.3.1, 5.2.3.2, 5.2.4). The predictability of 
foraging grounds and ice cover are associated with variations in climate (Dugger et al., 2014; Abrahms et al., 
2017; Youngflesh et al., 2017) (Section 3.2.1.1) and are the main drivers of observed population changes of 
Southern Ocean higher predators (high confidence) (Descamps et al., 2015; Jenouvrier et al., 2015; Sydeman 
et al., 2015; Abadi et al., 2017; Bjorndal et al., 2017; Fluhr et al., 2017; Hinke et al., 2017a; Hinke et al., 
2017b; Pardo et al., 2017). The suitability of breeding habitats and the location of environmental features 
that facilitate the aggregation of prey are also influenced by climate change, and in turn influence the 
distribution in space and time of marine mammals and birds (Bost et al., 2015; Kavanaugh et al., 2015; 
Hindell et al., 2016; Santora et al., 2017) (medium confidence). Finally, biological parameters (reproductive 
success, mortality, fecundity, body condition), life history traits, morphological, physiological and 
behavioural characteristics of top predators in the Southern Ocean, as well as their patterns of activity 
(migration, distribution, foraging, reproduction) are also changing as a result of climate change (Braithwaite 
et al., 2015a; Whitehead et al., 2015; Seyboth et al., 2016; Hinke et al., 2017b) (high confidence). 
 
Trends of populations of Antarctic penguins affected by climate change include both increases for gentoo 
penguins, (Pygoscelis papua) (Lynch et al., 2013; Dunn et al., 2016; Hinke et al., 2017a), and decreases for 
Adélie (P. adeliae), chinstrap (P. antarctica), king (Aptenodytes patagonicus) and emperor (A. forsteri) 
penguins (Trivelpiece et al., 2011; LaRue et al., 2013; Jenouvrier et al., 2014; Bost et al., 2015; Southwell et 
al., 2015; Younger et al., 2015; Cimino et al., 2016) (high confidence). Yet population shifts in Adélie 
penguins (Youngflesh et al., 2017) may have resulted from strong interannual environmental variability in 
good and bad years for prey and breeding habitat rather than climate change (low confidence). New evidence 
suggests that present Emperor penguin population estimates should be evaluated with caution based on the 
existence of breeding colonies yet to be discovered/confirmed (Ancel et al., 2017) as well as studies that 
draw conclusions based on trend estimates from single colonies (Kooyman and Ponganis, 2017). 
 
Evidence for climate change impacts on Antarctic flying birds indicates that contraction of sea ice 
(seasonally and in specific regions), increases in sea surface temperatures, extreme events (snow storms) and 
wind regime shifts can reduce breeding success and population growth rates in some species: southern 
fulmars (Fulmarus glacialoides), Antarctic petrels (Thalassoica antarctica) and black-browed albatrosses 
(Thalassarche melanophris) (Descamps et al., 2015; Jenouvrier et al., 2015; Pardo et al., 2017) (low 
confidence). Poleward population shifts with increased intensity and frequency of westerly winds affect 
functional traits, demographic rates, foraging range, rates of travel and flight speeds of flying birds 
(Weimerskirch et al., 2012; Jenouvrier et al., 2018) but also increase overlap with fisheries activities thus 
increasing the risk of bycatch and the need for mitigation measures (Krüger et al., 2018) (medium 
confidence). 
 
Changes in local and regional-scale oceanographic features (Section 3.2.1.2) together with bathymetry 
control prey aggregation and distribution, and affect the ecological responses and biological traits of higher 
predators (particularly marine mammals) in the Southern Ocean (Lyver et al., 2014; Bost et al., 2015; 
Jenouvrier et al., 2015; Whitehead et al., 2015; Cimino et al., 2016; Hinke et al., 2017a; Pardo et al., 2017) 
(medium confidence) and likely explain most of the observed population shifts (Kavanaugh et al., 2015; 
Hindell et al., 2016; Gurarie et al., 2017; Santora et al., 2017). Decadal climate cycles affect access to 
mesopelagic prey by southern elephant seals (Mirounga leonina) in the Indian Sector of the Southern Ocean 
and breeding females are excluded from highly productive continental shelf waters in years of increased sea-
ice extent and duration (Hindell et al., 2016) (medium confidence). To date there is no unified global estimate 
of the abundance of Antarctic pack ice seal species (Ross seals (Ommatophoca rossi), crabeater seals 
(Lobodon carcinophaga), leopard seals (Hydrurga leptonyx) and Weddell seals (Leptonychotes weddellii)) as 
a reference point for understanding climate change impacts on these species (Southwell et al., 2012; Bester et 
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al., 2017), although some regional population estimates for pack ice seals are available (Gurarie et al., 2017) 
and references therein). Analysis of long-term data suggests a genetic component to adaptation to climate 
change (low confidence) in Antarctic fur seals (Arctocephalus gazella, Forcada and Hoffman (2014)) and 
pigmy blue whales (Balaenoptera musculus brevicauda, Attard et al. (2015)). 
 
Population trends of migratory baleen whales have been associated with krill abundance in the Atlantic and 
Pacific sectors of the Southern Ocean which is reflected in increased reproductive success, body condition 
and energy allocation (milk availability and transfer) to calves (Braithwaite et al., 2015a; Braithwaite et al., 
2015b; Seyboth et al., 2016) (high confidence). There have been predictions of negative future impacts of 
climate change on krill and all whale species, although the magnitude of impacts differs among populations 
(Tulloch et al., 2019) as for other higher predators (Section 5.2.3). Pacific blue (Tulloch et al., 2019) 
(Balaenoptera musculus), fin (B. physalus) and southern right whales (Eubalaena australis) are the most at 
risk but humpback whales (Megaptera novaeangliae) are also at risk, as consequence of reduced prey and 
increasing interspecific competition. Importantly, climate-related risks for whale populations are a product of 
environmental conditions and connectivity between whale foraging grounds (Southern Ocean) and breeding 
grounds (lower latitudes) (Section 5.2.3.1). 
 
3.2.3.2.5 Pelagic foodwebs and ecosystem structure 
This section assesses the impacts of ocean and sea ice changes on pelagic foodwebs and ecosystem structure. 
The ecological impacts of loss of ice shelves and retreat of coastal glaciers around Antarctica are assessed in 
Section 3.3.3.4. Recent syntheses of Southern Ocean ecosystem structure and function recognise the 
importance of at least two dominant energy pathways in pelagic foodwebs – a short trophic pathway 
transferring primary production to top predators via krill, and at least one other pathway that moves energy 
from smaller phytoplankton to top predators via copepods and small mesopelagic fishes – and indicate that 
the relative importance of these pathways will change under climate change (Murphy et al., 2013; Constable 
et al., 2016; Constable et al., 2017; McCormack et al., 2017) (medium confidence). Using an ecosystem 
model, Klein et al. (2018) found that the effects of warming on krill growth off the Antarctic Peninsula and 
in the Scotia Sea translated to increased risks of declines in krill predator populations, particularly penguins, 
under both RCP2.6 and RCP8.5. The relative importance of different energy pathways in Southern Ocean 
foodwebs has important implications for resource management, in particular the management of krill and 
toothfish fisheries by the Commission for the Conservation of Antarctic Marine Living Resources 
(CCAMLR) (Constable et al., 2016; Constable et al., 2017) (Sections 3.2.4.1.2, 3.5.3.2.2).  
 
In summary, advances in knowledge regarding the impacts of climate change on Antarctic marine 
ecosystems since AR5 are consistent with the impacts described in Larsen et al. (2014) (also summarized in 
Figure 3.6). These advances include further descriptions of local-scale, climate-related influences (sea ice 
and stratification) on primary productivity, particularly in the West Antarctic Peninsula region (Section 
3.2.3.2.1) (medium confidence). At the circumpolar scale, primary production is projected to increase in 
regions south of 65°S over the period from now to 2100 under RCP8.5 (Leung et al., 2015) (low confidence). 
However, ocean acidification may have a detrimental effect on coastal phytoplankton communities around 
the Antarctic continent (Section 3.2.3.2.1) (medium confidence). Increased information is also available 
regarding climate-driven changes in Antarctic krill populations in the south Atlantic, including the observed 
southward shift in the spatial distribution of krill in this region (Atkinson et al., 2019) (medium confidence) 
but evidence of a long-term trend in overall abundance in the region is equivocal (Section 3.2.3.2.1). Further 
habitat contraction for Antarctic krill is predicted in the future (medium confidence) (references detailed in 
Section 3.2.3.2.1). Under high emissions scenarios the majority of Antarctic seafloor species are projected to 
be negatively impacted by the end of the century (Griffiths et al., 2017a) (low confidence). Observed changes 
in the geography of ice-associated habitats (sea ice, ice shelves and polynyas) have both positive and 
negative effects on sea birds and marine mammals, and will interact with ice-dependent changes in Antarctic 
krill populations to compound the impacts on krill-dependent predators (Klein et al., 2018) (Sections 
3.2.3.2.1, 3.2.3.2.4) (medium confidence). 
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Figure 3.6: Schematic summary of key drivers that are causing or are projected to cause direct effects on Southern 
Ocean marine ecosystems. Effects presented here are described in the main text (Sections 3.2.3.2, 3.3.3.4), with 
associated confidence levels and citations. Projected changes (indicated by an asterisk) are for high emissions scenarios. 
The cross-sectional view of the Southern Ocean ecosystem shows the association of key functional groups (marine 
mammals, birds, fish, zooplankton, phytoplankton and benthic assemblages) with Southern Ocean habitats. The 
configuration of the Southern Ocean foodweb is described in SM3.2.6. 
 
 
3.2.4 Impacts on Social-Ecological Systems 
 
3.2.4.1 Fisheries 
 
3.2.4.1.1 Arctic 
Arctic fisheries are important economically and societally. Large commercial fisheries exist off the coasts of 
Greenland and in the Barents and Bering Seas (Holsman et al., 2018; Peck and Pinnegar, 2018). First-
wholesale value for commercial harvest of all species in 2017 in the Eastern Bering Sea was $2.68 billion 
and for the Barents Sea around US$1 billion to Norwegian fishers alone. The target species for these 
commercial fisheries include gadoids, flatfish, herring, red fish (Sebastes sp.), salmonids, and capelin. 
Fisheries in other Arctic regions are relatively small-scale, locally operated, and target a limited number of 
species (Reist, 2018). Still, these fisheries are of considerable cultural, economic, and subsistence importance 
to local communities (Section 3.5.2.1). 
 
Climate change will affect the spatial distribution and productivity of some commercially-important marine 
fish and shellfish under most RCPs (Section 3.2.3.1) with associated impacts on the distribution and 
economic viability of commercial fisheries (high confidence). Past performance suggests that high latitude 
fisheries have been resilient to changing environmental and market drivers. For example, the Norwegian cod 
fishery has exported dried cod over an unbroken period of more than a thousand years (Barrett et al., 2011), 
reflecting the resilience of the northern Norwegian cod fisheries to historic climate variability (Eide, 2017). 
Also, model projections indicate that expansions in suitable habitat for subarctic species and increased 
production of planktonic prey due to increasing temperatures and ice retreat, will continue to support 
commercially important fisheries (Lam et al., 2016; Eide, 2017; Haug et al., 2017; Peck and Pinnegar, 2018) 
(Section 3.2.3.1.3, Box 3.4) (medium confidence). 
 
However, recent studies in the Bering Sea suggest that future fish production will also depend on how 
climate change and ocean acidification will alter the quality, quantity and availability of suitable prey; the 
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thermal stress and metabolic demands of resident fish; and species interactions (Section 3.2.3.1.3), 
suggesting that the future of commercial fisheries in Arctic regions is uncertain (Holsman et al., 2018). It is 
also uncertain whether future autumn and winter ocean conditions will be conducive to the establishment of 
resident overwintering spawning populations that are large enough to support sustainable commercial fishing 
operations at higher latitude Arctic shelf regions (Section 3.2.3.1) (medium confidence). 
 
Projecting the impacts of climate change on marine fisheries is inextricably intertwined with response 
scenarios regarding risk tolerance in future management of marine resources, advancements in fish capture 
technology, and markets drivers (e.g., local and global demand, emerging product lines, competition, 
processing efficiencies and energy costs) (Groeneveld et al., 2018). Seasonal and interannual variability in 
ocean conditions influences product quality, and costs of fish capture (Haynie and Pfeiffer, 2012) (Table 
3.4). Further, past experience suggests that barriers to diversification may limit the portfolio of viable target 
fisheries available to small-scale fisheries (Ward et al., 2017) (low confidence). 
 
3.2.4.1.2 Southern Ocean 
This section examines climate change impacts on Southern Ocean fisheries for Antarctic krill and finfish. 
Management of these fisheries by CCAMLR and responses to climate change are discussed in Section 
3.5.2.1. The main Antarctic fisheries are for Antarctic krill, and for Antarctic and Patagonian toothfish; in 
2016 the reported catches for these species were approximately 260 thousand tons for krill (CCAMLR, 
2017b) and 11 thousand tons for Antarctic and Patagonian toothfish combined (CCAMLR, 2017a). The 
mean annual wholesale value of the Antarctic krill fishery was US$69.5 million per year for the period from 
2011-2015, and US$206.7 million per year for toothfish fisheries (combined) over the same period 
(CCAMLR, 2016b). The fishery for Antarctic krill in the southern Atlantic sector and the northern West 
Antarctic Peninsula (together the current area of focus for the fishery) has become increasingly concentrated 
in space over recent decades, which has raised concern regarding localised impacts on krill predators (Hinke 
et al., 2017a). The krill fishery has also changed its peak season of operation. In the early years of the 
fishery, most krill were taken in summer and autumn, with lowest catches being taken in spring. In recent 
years the lowest catches have occurred over summer, catches have peaked in late autumn, and very little 
fishing activity has occurred in spring (Nicol and Foster, 2016). Some of these temporal and spatial shifts in 
the fishery over time have been attributed to reductions in winter sea-ice extent in the region (Kawaguchi et 
al., 2009) (low confidence). Recent increases in the use of krill catch to produce krill oil (as a human health 
supplement) has also led to vessels concentrating on fishing in autumn and winter when krill are richest in 
lipids (Nicol and Foster, 2016). Available evidence regarding future changes to Antarctic krill populations 
(Section 3.2.3.2.1) indicates that the impacts of climate change will be most pronounced in the areas that are 
currently most important for the Antarctic krill fishery: the Scotia Sea and the northern tip of the Antarctic 
Peninsula. Major future changes in the krill fishery itself are expected to be driven by global issues external 
to the Southern Ocean, including conservation decision making and socio-economic drivers. 
 
There is limited understanding of the consequences of climate change for Southern Ocean finfish fisheries. 
Lack of recovery of mackerel icefish (Champsocephalus gunnari) after cessation of fishing in 1995 has been 
related to anomalous water temperatures (~2°C increase related to a strong El Niño) in the subantarctic 
Indian Ocean and to availability of krill prey in the Atlantic region (Mintenbeck, 2017) (low confidence). 
Differences in temperature tolerance of Patagonian and Antarctic toothfish described in Section 3.2.3.2.3 
may have implications for future fisheries of these two species. 
 
3.2.4.2 Tourism 
 
Reductions in sea ice have facilitated an increase in marine and cruise tourism opportunities across the Arctic 
related to an increase in accessibility (Dawson et al., 2014; Johnston et al., 2017) (high confidence). While 
not exclusively ‘polar’, Alaska attracts the highest number of cruise passengers annually at just over one 
million; Svalbard attracts 40,000–50,000; Greenland 20,000–30,000; and Arctic Canada 3,500–5,000 
(Johnston et al., 2017). Compared to a decade ago, there are more cruises on offer, ships travel further in a 
single season, larger vessels with more passenger berths are in operation, more purpose-built polar cruise 
vessels are being constructed, and private pleasure craft are appearing in the Arctic more frequently 
(Lasserre and Têtu, 2015; Johnston et al., 2017; Dawson et al., 2018). In Antarctica, almost 37,000 
(predominantly shipborne) tourists visited in 2016/17, with 51,707 during 2017/18; there were 6,700 tourists 
in 1992/93 (the first year of record) (ATCM, 2018). Due to accessibility and convenience, these tourism 
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operations are mostly based around the few ice-free areas of Antarctica, concentrated on the Antarctic 
Peninsula (Pertierra et al., 2017). 
 
Canada’s Northwest Passage (southern route), which only saw occasional cruise ship transits in the early 
2000s is now reliably accessible during the summer cruising season, and as a result has experienced a 
doubling and quadrupling of cruise and pleasure craft activity over the past decade (Johnston et al., 2017; 
Dawson et al., 2018). There is high confidence that demand for Arctic cruise tourism will continue to grow 
over the coming decade (Johnston et al., 2017). The anticipated implications of future climate change have 
become a driver for polar tourism. A niche market known as ‘last chance tourism’ has emerged whereby 
tourists explicitly seek to experience vanishing landscapes or seascapes, and natural and social heritage in the 
Arctic and Antarctic, before they disappear (Lemelin et al., 2010; Lamers et al., 2013). 
 
Increases in polar cruise tourism pose risks and opportunities related to development, education, safety 
(including search and rescue), security within communities, and environmental sustainability (Johnston et al., 
2012a; Johnston et al., 2012b; Stewart et al., 2013; Dawson et al., 2014; Lasserre and Têtu, 2015; Stewart et 
al., 2015). In the Arctic, there are also risks and opportunities related to employment, health and well-being, 
and the commodification of culture (Stewart et al., 2013; Stewart et al., 2015). There is high confidence that 
biodiversity supported by ice-free areas, particularly those on the Antarctic Peninsula, are vulnerable to the 
introduction of terrestrial alien species via tourists and scientists (Chown et al., 2012; Huiskes et al., 2014; 
Hughes et al., 2015; Duffy et al., 2017; Lee et al., 2017a) (Box 3.3) as well as to the direct impacts of 
humans (Pertierra et al., 2017). The tourism sector relies on a set of regulations that apply to all types of 
maritime shipping, yet cruise ships intentionally travel off regular shipping corridors and serve a very 
different purpose than other vessel types, so there is a need for region-specific governance regimes, 
specialized infrastructure, and focused policy attention (Dawson et al., 2014; Pashkevich et al., 2015; 
Pizzolato et al., 2016; Johnston et al., 2017). Private pleasure craft remain almost completely unregulated, 
and will pose unique risks in the future (Johnston et al., 2017). 
 
3.2.4.3 Transportation 
 
The Arctic is reliant on marine transportation for the import of food, fuel, and other goods. At the same time, 
the global appetite for maritime trade and commerce through the Arctic (including community re-supply, 
mining and resource development, tourism, fisheries, cargo, research, and military and icebreaking, etc.) is 
increasing as the region becomes more accessible because of reduced sea ice cover. There are four potential 
Arctic international trade routes: the Northwest Passage, the Northern Sea Route, the Arctic Bridge and the 
Transpolar Sea Route. All of these routes offer significant trade benefits because they provide substantial 
distance savings compared to traditional routes via the Suez or Panama Canals. 
 
There is high confidence that shipping activity during the Arctic summer increased over the past two decades 
in regions for which there is information, concurrent with reductions in Arctic sea ice extent and the shift to 
predominantly seasonal ice cover (Pizzolato et al., 2014; Eguíluz et al., 2016; Pizzolato et al., 2016). Long 
term datasets over the pan-Arctic are incomplete, but the distance travelled by ships in Arctic Canada nearly 
tripled between 1990 and 2015 (from ~365,000 km to ~920,000 km) (Dawson et al., 2018). Other non-
environmental factors which influence Arctic shipping are natural resource development, regional trade, 
geopolitics, commodity prices, global economic and social trends, national priorities, tourism demand, ship 
building technologies, and insurance costs (Lasserre and Pelletier, 2011; Têtu et al., 2015; Johnston et al., 
2017). Current impacts associated with the observed increase in Arctic shipping include a higher rate of 
reported accidents per km travelled compared to southern waters (CCA, 2016), increases in vessel noise 
propagation (Halliday et al., 2017) and air pollution (Marelle et al., 2016). Disruptions to cultural and 
subsistence hunting activities from increased shipping (Huntington et al., 2015; Olsen et al., 2019) 
compound climate-related impacts to people (Sections 3.4.3.3.2, 3.4.3.3.3).  
 
It is projected that shipping activity will continue to rise across the Arctic as northern routes become 
increasingly accessible (Stephenson et al., 2011; Stephenson et al., 2013; Barnhart et al., 2015; Melia et al., 
2016), although mitigating economic and operational factors remain uncertain and could influence future 
traffic volume (Zhang et al., 2016). The Northern Sea Route is expected to be more viable than other routes 
because of infrastructure already in place (Milaković et al., 2018); favourable summer ice conditions in 
recent years have reduced transit times (Aksenov et al., 2017). In comparison, the Northwest Passage and 



FINAL DRAFT Chapter 3 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 3-43 Total pages:173 

Arctic Bridge presently have limited port and marine transportation infrastructure, incomplete soundings and 
hydrographic charting, challenging sea ice conditions, and limited search and rescue capacity; these 
compound the risks from shipping activity (Stephenson et al., 2013; Johnston et al., 2017; Andrews et al., 
2018).  
 
Future shipping impacts will be regionally diverse considering the unique geographies, sea ice dynamics, 
infrastructure and service availability, and regulatory regimes that exist across different Arctic nations. 
Considerations include socio-economic and political implications related to safety (marine and local 
accidents), security (trafficking, terrorism, local issues), and environmental and cultural sustainability 
(invasive species, release of biocides, chemicals and other waste, marine mammal strikes, fuel spills, air and 
underwater noise pollution, impacts to subsistence hunting) (Arctic Council, 2015a; Halliday et al., 2017; 
Hauser et al., 2018). Black carbon emissions from shipping activity within the Arctic are projected to 
increase (Arctic Council, 2017) and are more easily deposited at the surface in the region compared with 
emissions from lower latitudes (Sand et al., 2013). Commercial shipping mainly uses heavy fuel oil, with 
associated emissions of sulphur, nitrogen, metals, hydrocarbons, organic compounds, black carbon and fly 
ash to the atmosphere during combustion (Turner et al., 2017a). Mitigation approaches include banning 
heavy fuel oil as already implemented in Antarctica and the waters around Svalbard, and the use of new 
technology like scrubbers. 
 
The predominant shipborne activities in Antarctica are fishing, logistic support to land-based stations, and 
marine research vessels operating for both non-governmental and governmental sectors. Uncertainty in 
future Antarctic sea ice conditions (Section 3.2.2.1) pose challenges to considering potential impacts on 
these activities (Chown, 2017). 
 
 
3.3 Polar Ice Sheets and Glaciers: Changes, Consequences and Impacts 
 
3.3.1 Ice Sheet Changes 
 
Changes in ice sheet mass have been derived repeatedly over the satellite era using complementary methods 
based on time series of satellite altimetry to measure volume change, ice-flux measurements combined with 
modelled surface mass balance to calculate mass inputs and outputs, and satellite gravimetry to measure 
regional mass change. Ice sheet changes over earlier periods have also been reconstructed from firn/ice-core 
and geological evidence (SM3.3.1). 
 
3.3.1.1 Antarctic Ice Sheet Mass Change 
 
It is virtually certain that the Antarctic Peninsula (AP) and West Antarctic Ice Sheet (WAIS) combined have 
cumulatively lost mass since widespread measurements began in 1992, and that the rate of loss has increased 
since around the year 2006 and continued post-AR5 (Martín-Español et al., 2016; Zwally et al., 2017; 
Bamber et al., 2018; Gardner et al., 2018; The IMBIE Team, 2018; Rignot et al., 2019), extending and 
reinforcing previous findings (IPCC, 2013) (Figure 3.7, Table 3.3, SM3.3.1.1). From medium evidence, there 
is high agreement in the sign and medium agreement in the magnitude of both WAIS and AP mass change 
between the complementary satellite methods (Mémin et al., 2015; The IMBIE Team, 2018). 
 
 
Table 3.3: Mass balance (Gt yr-1) of the West Antarctic Ice Sheet (WAIS), Antarctic Peninsula (AP), East Antarctic Ice 
Sheet (EAIS), the combined Antarctic Ice Sheets (AIS) and the Greenland Ice Sheet (GIS) and the total sea level 
contribution (mm yr-1).  

Ice sheet 1992–
1996 

1997–
2001 

2002-
2006 

2007–
2011 

2012–
2016 

WAIS and AP (Bamber et al., 2018) -55 ±30 -53 ±30 −77 ±17 −197 ±11 −172 ±27 
WAIS and AP (The IMBIE Team, 2018) -60 ±32 -44 ±31 -85 ±31 -183 ±32 -192 ±31 
WAIS only (The IMBIE Team, 2018) -53 ±29 -41 ±28 -65 ±27 -148 ±27 -159 ±26 
EAIS (Bamber et al., 2018) 28 ±76 −50 ±76 52 ±37 80 ±17 −19 ±20 
EAIS (The IMBIE Team, 2018) 11±58 8 ±56 12 ±43 23 ±38 -28 ±30 
GIS (Bamber et al., 2018) 31± 83 −47 ± 81 −206 ±28 −320 ±10 −247 ±15 



FINAL DRAFT Chapter 3 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 3-44 Total pages:173 

 1992-2006 2007-2016 
WAIS and AP (Bamber et al., 2018; The 
IMBIE Team, 2018) 

-56 ±20 -185 ±17 

 1992-2016 
EAIS (Bamber et al., 2018) +18 ±52 
EAIS (The IMBIE Team, 2018) +15 ±41 
 1992-2001 2002-

2011 
2006-
2015 

2012-
2016 

AIS (Bamber et al., 2018; The IMBIE 
Team, 2018) 

-51 ±73 -82 ±27 -155 ±19 -199 ±26 

GIS (Bamber et al., 2018) -8 ±82 -263 ±21 -278 ±11 -247 ±15 
Total sea level contribution (mm yr-1) 0.16 ± 0.3 0.96 ±0.1 1.20 ±0.1 1.24 ±0.1 

 
 
WAIS mass loss and recent increases in loss were concentrated in the Amundsen Sea Embayment (ASE) 
(high confidence) with increases particularly in the late 2000s (Mouginot et al., 2014), accounting for most 
of the –112 ± 10 Gt yr–1 WAIS loss from 2003–2013 (Martín-Español et al., 2016). The ice-sheet margins of 
nearby Getz Ice Shelf also lost mass rapidly (–67 ± 27 Gt yr–1, 2008–2015) (Gardner et al., 2018). This 
region also experienced losses during previous warm periods (Cross-Chapter Box 8 in Chapter 3). 
 
On the AP, the Bellingshausen Sea ice sheet margin shifted from close to mass balance in the 2000s to rapid 
loss from 2009 (-56 ±8 Gt yr-1 from 2010-2014) (high confidence) (Helm et al., 2014; McMillan et al., 
2014b; Wouters et al., 2015; Hogg et al., 2017). This shift accompanied ongoing mass loss (high confidence) 
from the smaller north-eastern AP glaciers that fed the former Prince Gustav, Larsen A and B ice shelves, 
though now at a lower rate than immediately following shelf collapse in 1995 and 2002 (Seehaus et al., 
2015; Wuite et al., 2015; Rott et al., 2018). Of 860 marine-terminating AP glaciers, 90% retreated from their 
1940s positions (Cook et al., 2014), established in the early to mid-Holocene (Ó Cofaigh et al., 2014) 
(medium confidence). Early 21st century combined AP glacier (Fieber et al., 2018) and ice sheet loss was 
around –30 Gt yr–1 (Table 3.3). 
 
The East Antarctic Ice Sheet (EAIS, covering 85% of the AIS) has remained close to balance, with large 
interannual variability and no clear mass trend over the satellite record (medium confidence) (Table 3.3, 
Figure 3.7, SM3.3.1.2), and relatively large observation uncertainties (SM3.3.1) (Velicogna et al., 2014; 
Martin-Español et al., 2017; Bamber et al., 2018). Surface mass balance (SMB) trends are particularly 
ambiguous, leading to disagreement between one altimetry and one flux-based estimate of +136 ±43 Gt a-1 

(spanning 1992-2008) (Zwally et al., 2017), and -41 ±8 Gt a-1 (1979-2017) (Rignot et al., 2019), respectively. 
Both differ from the multi-method averages reported here (Table 3.3). 
 
EAIS mass gains on the Siple Coast and Dronning Maud Land (e.g., +63 ± 6 Gt yr–1 from 2003–2013 
(Velicogna et al., 2014)) contrast with Wilkes Land losses e.g., from –17 ± 4 Gt yr–1 from the Totten Glacier 
area, 2003–2013 (Velicogna et al., 2014) that drain a large area of deeply-grounded EAIS with potential for 
multi-metre sea level contributions (Zwally et al., 2017; Rignot et al., 2019). Limited palaeo ice sheet 
evidence suggests that this area has previously lost substantial mass in previous interglacials (medium 
confidence) (Aitken et al., 2016; Wilson et al., 2018). 
 
Overall, 2012-2016 AIS mass losses were extremely likely greater than those from 2002-2011 and likely 
greater than from 1992-2001, and it is extremely likely that the negative 2012-2016 AIS mass balance was 
dominated by losses from WAIS (Table 3.3). 
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Figure 3.7: (a) Cumulative Ice Sheet mass change, 1992 to 2016, (after Bamber et al., 2018; The IMBIE Team, 2018). 
(b) Greenland Ice Sheet mass change components from surface mass balance (orange) and dynamic thinning (blue) 
from 2000-2016, (after Van den Broeke et al., 2016; King et al., 2018). Uncertainties are 1 standard deviation. 
 
 
3.3.1.2  Components of Antarctic Ice Sheet Mass Change 
 
AIS mass changes are dominated by changes in snowfall and glacier flow. The WAIS and AP loss trends in 
recent decades are dominated by glacier flow acceleration (also known as dynamic thinning) (very high 
confidence) (Figure SM3.8). Dynamic thinning losses were –112 ± 12 Gt yr–1 for 2003–2013, largely from 
the ASE (Figure SM3.8) (Martín-Español et al., 2016), which contributed –102 ± 10 Gt yr–1 from 2003–2011 
(Sutterley et al., 2014). Total ASE ice discharge increased by 77% since the 1970s (Mouginot et al., 2014), 
primarily from acceleration of Pine Island Glacier that began around 1945, Smith, Pope and Kohler glaciers 
around 1980, and Thwaites Glacier around 2000 (Mouginot et al., 2014; Konrad et al., 2017; Smith et al., 
2017c). Dynamic thinning in the ASE and western AP accounted for 88% of the -36 ± 15 Gt yr–1 increase in 
AIS mass loss from 2008 to 2015 (Gardner et al., 2018). Glacier acceleration of up to 25% also affected the 
Getz Ice Shelf margin from 2007-2014 (Chuter et al., 2017). 
 
Reduction or loss of ice-shelf buttressing has dominated AIS dynamic thinning (high confidence). Ice 
shelves buttress 90% of AIS outflow (Depoorter et al., 2013; Rignot et al., 2014; Fürst et al., 2016; Reese et 
al., 2018), and ice-shelf thinning increased in WAIS by 70% in the decade to 2012, averaged 8% thickness 
loss from 1994–2012 in the ASE (Paolo et al., 2015), and explains the post-2009 onset of rapid dynamic 
thinning on the southern-AP Bellingshausen Sea coast (Wouters et al., 2015; Hogg et al., 2017; Martin-
Español et al., 2017) (Figure SM3.8). Grounding-line retreat, an indicator of thinning, has been observed 
with high confidence (Rignot et al., 2014; Christie et al., 2016; Hogg et al., 2017; Konrad et al., 2018; 
Roberts et al., 2018). From 2010-2016, 22%, 3% and 10% of grounding lines in WAIS, EAIS and the AP 
respectively retreated at rates faster than 25 m yr−1 (the average pace since the Last Glacial Maximum; 
Konrad et al., 2018), with highest rates along the Amundsen and Bellingshausen Sea coasts, and around 
Totten Glacier, Wilkes Land, EAIS (Konrad et al., 2018), where dynamic thinning has occurred at least since 
1979 (Roberts et al., 2018; Rignot et al., 2019). Ice-shelf collapse has driven dynamic thinning in the 
northern AP over recent decades (high confidence) (Seehaus et al., 2015; Wuite et al., 2015; Friedl et al., 
2018; Rott et al., 2018). 
 
ASE ice-shelf basal melting, grounding-line retreat and dynamic thinning have varied with ocean forcing 
(medium confidence) (Dutrieux et al., 2014; Paolo et al., 2015; Christianson et al., 2016; Jenkins et al., 2018) 
but this variability is superimposed on sustained mass losses compatible with the onset of marine ice sheet 
instability for several major glaciers (medium confidence) (Favier et al., 2014; Joughin et al., 2014; 
Mouginot et al., 2014; Rignot et al., 2014; Christianson et al., 2016). Whether unstable WAIS retreat has 
begun or is imminent remains a critical uncertainty (Cross-Chapter Box 8 in Chapter 3). 
 
Mass gains due to increased snowfall have somewhat offset dynamic-thinning losses (high confidence). On 
the AP, snowfall began to increase in the 1930s, accelerated in the 1990s (Thomas et al., 2015; Goodwin et 
al., 2016), and now offsets sea-level rise by 6.2 ± 1.7 mm per century (Medley and Thomas, 2018). EAIS 
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and WAIS snowfall increases offset 20th century sea-level rise by 7.7 ± 4.0 mm and 2.8 ± 1.7 mm 
respectively (Medley and Thomas, 2018) (medium confidence). AIS snowfall increased by +4 ± 1 then +14 ± 
1 Gt per decade over the 19th and 20th centuries, of which EAIS contributed 10% (Thomas et al., 2017b). 
Longer records suggest either an AIS snowfall decrease over the last 1000 years (Thomas et al., 2017a) or a 
statistically negligible change over the last 800 years (low confidence) (Frezzotti et al., 2013). 
 
Mass balance contributions from ice-sheet basal melting were not described in AR5 (IPCC, 2013) and the 
sensitivity of the AIS subglacial hydrological system to climate change is poorly understood. Around half of 
the AIS bed melts (Siegert et al., 2017), producing ~65 Gt yr–1 of water (Pattyn, 2010) (low confidence), 
some of which refreezes (Bell, 2008) and some accumulates in subglacial lakes with a total volume of tens of 
thousands of cubic kilometres (Popov and Masolov, 2007; Lipenkov et al., 2016; Siegert, 2017). This system 
contributes fresh water and nutrients to the ocean (Section 3.3.3.3) (Fricker et al., 2007; Siegert et al., 2007; 
Carter and Fricker, 2012; Horgan et al., 2013; Le Brocq, 2013; Flament et al., 2014; Siegert et al., 2016), and 
lubricates glacier sliding (e.g., Dow et al., 2018b). Changes in the ice sheet thickness can redistribute 
subglacial water, affecting drainage pathways and ice flow (Fricker et al., 2016), but hydrological 
observations are very scarce. 
 
3.3.1.3 Greenland Ice Sheet Mass Change 
 
The Greenland Ice Sheet (GIS) experienced a marked shift to strongly negative mass balance between the 
early 1990s and mid–2000s (very high confidence) (Shepherd et al., 2012; Schrama et al., 2014; Velicogna et 
al., 2014; Van den Broeke et al., 2016; Bamber et al., 2018; King et al., 2018; Sandberg Sørensen et al., 
2018; WCRP, 2018). It is extremely likely that the 2002-2011 and 2012-2016 ice losses were greater than in 
the 1992-2001 period (Bamber et al., 2018) (Table 3.3, Figure 3.7, SM3.3.1.3). GIS mass balance is 
characterised by large interannual variability (e.g., van den Broeke et al., 2017) but from 2005-2016 GIS was 
the largest terrestrial contributor to global sea level rise (WCRP, 2018).  
 
A geodetic reconstruction of past ice sheet elevations indicates a GIS mass change of –75.1 ± 29.4 Gt yr–1 
from 1900 to 1983, –73.8 ± 40.5 Gt yr–1 from 1983 to 2003, and –186.4 ± 18.9 Gt yr–1 from 2003 to 2010, 
with the losses consistently concentrated along the northwest and southeast coasts, and more locally in the 
southwest and on the large west-coast Jakobshavn Glacier, though intensifying and spreading to the 
remainder of the coastal ice sheet in the latest period (Kjeldsen et al., 2015). Palaeo evidence also suggests 
that the GIS has contributed substantially to sea level rise during past warm intervals (Cross-Chapter Box 8 
in Chapter 3). 
 
3.3.1.4 Components of Greenland Ice Sheet Mass Change 
 
Ongoing GIS mass loss over recent years has resulted from a combined increase in dynamic thinning and a 
decrease in SMB. Of these, reduced SMB due to an increase in surface melting and runoff recently came to 
dominate (high confidence) (Andersen et al., 2015; Fettweis et al., 2017; van den Broeke et al., 2017; King et 
al., 2018), accounting for 42% of losses for 2000–2005, 64% for 2005–2009 and 68% for 2009–2012 
(Enderlin et al., 2014) (Figure 3.7).  
 
The GIS was close to balance in the early years of the 1990s (Hanna et al., 2013; Khan et al., 2015), the 
interior above 2000 m altitude gained mass from 1961–1990 (Colgan et al., 2015) and both coastal and ice-
sheet sites experienced an increasing precipitation trend from 1890 to 2012 and 1890 to 2000 respectively 
(Mernild et al., 2015), but since the early 1990s multiple observations and modelling studies show strong 
warming and an increase in runoff (very high confidence). High-altitude GIS sites NEEM and Summit 
warmed by, respectively, 2.7 ± 0.33°C over the past 30 years (Orsi et al., 2017) and by 2.7 ± 0.3°C from 
1982–2011 (McGrath et al., 2013), while satellite thermometry showed statistically significant widespread 
surface warming over northern GIS from 2000-2012 (Hall et al., 2013). The post–1990s period experienced 
the warmest GIS near-surface summer air temperatures of 1840–2010 (+1.1°C) (statistically highly 
significant) (Box, 2013), and ice core analysis found the 2000-2010 decade to be the warmest for around 
2000 years (Vinther et al., 2009; Masson-Delmotte et al., 2012), and possibly around 7000 years (Lecavalier 
et al., 2017). This significant summer warming since the early 1990s increased GIS melt-event duration 
(Mernild et al., 2017) and intensity to levels exceptional over at least 350 years (Trusel et al., 2018), and melt 
frequency to levels unprecedented for at least 470 years (Graeter et al., 2018). GIS melt intensity for 1994-
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2013 was two-to-fivefold the pre-industrial intensity (medium confidence) (Trusel et al., 2018). In response, 
GIS meltwater production and runoff increased (Hanna et al., 2012; Box, 2013; Fettweis et al., 2013; 
Tedstone et al., 2015; Van den Broeke et al., 2016; Fettweis et al., 2017), resulting in 1994-2013 runoff 
being 33% higher the 20th century mean and 50% higher than the 18th century (Trusel et al., 2018), and 80% 
higher in a western-GIS marginal river catchment in 2003-2014 relative to 1976-2002 (Ahlstrom et al., 
2017). 
 
Only around half of the 1960-2014 surface melt ran off, most of the rest being retained in firn and snow 
(Steger et al., 2017), particularly in recently-observed firn aquifers in south and west Greenland (Humphrey 
et al., 2012; Forster et al., 2013; Kuipers Munneke et al., 2014; Poinar et al., 2017) that cover up to 5% of 
GIS (Miège et al., 2016; Steger et al., 2017) and stored around one fifth of the meltwater increase since the 
late 1990s (Noël et al., 2017) (medium confidence). While potential aquifer storage is equivalent to about a 
quarter of annual GIS melt production (Koenig et al., 2014; Van den Broeke et al., 2016) and aquifers have 
spread to higher altitudes (Steger et al., 2017), their potential to buffer runoff has been reduced by firn 
densification (Polashenski et al., 2014), diversion of water to the bed via crevasses (Poinar et al., 2017), and 
the formation of ice layers that prevent drainage and promote surface ponding on the firn (Charalampidis et 
al., 2016) (high confidence). Such ponding lowers the firn albedo, promoting further melting (high 
confidence) (e.g., Charalampidis et al., 2015), but the extent of bare ice is a fivefold stronger control on melt 
(Ryan et al., 2019). Bare ice produced ~78% of runoff from 1960-2014, and its extent is expected to increase 
non-linearly as snow cover retreats to higher, flatter areas of ice sheet (Steger et al., 2017). This extent is not 
well reproduced in climate models, however, with biases of -6% to +13% (Ryan et al., 2019). 
 
The remaining ~40% of non-SMB GIS mass loss from 1991 to 2015 has resulted from increased ice 
discharge due to dynamic thinning (high confidence) (Enderlin et al., 2014; Van den Broeke et al., 2016; 
King et al., 2018) (Figure 3.7). From 2000 to 2016, dynamic thinning of 89% of GIS outlet glaciers 
accounted for –682 ± 31 Gt mass change, of which 92% came from the northwest and southeast GIS (King et 
al., 2018). Half came from only four glaciers (Jakobshavn Isbræ, Kangerdlugssuaq, Koge Bugt, and Ikertivaq 
South) (Enderlin et al., 2014). Glacier thinning has decreased glacier discharge, however, reducing the 
dynamic contribution to GIS mass loss (e.g., from 58% from 2000 to 2005 to 32% between 2009 and 2012; 
Enderlin et al., 2014). Furthermore, there is now high confidence that for most of the GIS, increased surface 
melt has not led to sustained increases in glacier flux on annual timescales because subglacial drainage 
networks have evolved to drain away the additional water inputs (e.g., Sole et al., 2013; Tedstone et al., 
2015; Stevens et al., 2016; Nienow et al., 2017; King et al., 2018). 
 
3.3.1.5 Drivers of ice sheet mass change 
 
3.3.1.5.1 Ocean drivers 
The reduction of ice-shelf buttressing that has dominated AIS mass loss (Section 3.3.1.2) has been driven 
primarily by increases in sub-ice-shelf melting (Khazendar et al., 2013; Pollard et al., 2015; Cook et al., 
2016; Rintoul et al., 2016; Walker and Gardner, 2017; Adusumilli et al., 2018; Dow et al., 2018a; Minchew 
et al., 2018) (high confidence). Shoaling of relatively warm Circumpolar Deep Water has controlled recent 
variability in melting in the Amundsen and Bellingshausen seas, Wilkes Land (Roberts et al., 2018) and the 
AP (medium confidence) (Jacobs et al., 2011; Pritchard et al., 2012; Depoorter et al., 2013; Rignot et al., 
2013; Dutrieux et al., 2014; Paolo et al., 2015; Wouters et al., 2015; Christianson et al., 2016; Cook et al., 
2016; Jenkins et al., 2018; Roberts et al., 2018). Changes in winds have driven this shoaling by affecting 
continental-shelf-edge undercurrents (Walker et al., 2013; Dutrieux et al., 2014; Kimura et al., 2017) and 
overturning in coastal polynyas (St-Laurent et al., 2015; Webber et al., 2017) (medium confidence). Winds 
over the Amundsen Sea are highly variable, however, with complex interactions between the Southern 
Annular Mode (SAM), El Niño/Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation, and the 
Amundsen Sea Low (Uotila et al., 2013; Li et al., 2014; Turner et al., 2016) (SM3.1.3).  
 
Through their effects on Antarctic coastal ocean circulation, ENSO or other tropical-ocean variability may 
have triggered changes to Pine Island Glacier in the 1940s (Smith et al., 2017c) and again in the 1970s and 
1990s (Jenkins et al., 2018), and recent ENSO variability is correlated with recent changes in ice-shelf 
thickness (Paolo et al., 2018) (medium confidence). Such coupling between wind variability, ocean 
upwelling, ice-shelf melt, buttressing and glacier flow rate has also been observed in EAIS, at Totten 
Glacier, Wilkes Land (Greene et al., 2017). 
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Around Greenland, an anomalous inflow of subtropical water driven by wind changes, multi-decadal natural 
ocean variability (Andresen et al., 2012), and a long-term increase in the North Atlantic’s upper ocean heat 
content since the 1950s (Cheng et al., 2017), all contributed to a warming of the subpolar North Atlantic 
(Häkkinen et al., 2013) (medium confidence). Water temperatures near the grounding zone of GIS outlet 
glaciers are critically important to their calving rate (O'Leary and Christoffersen, 2013) (medium 
confidence), and warm waters have been observed interacting with major GIS outlet glaciers (high 
confidence) (e.g., Holland et al., 2008; Straneo et al., 2017).  
 
The processes behind warm-water incursions in coastal Greenland that force glacier retreat remain unclear, 
however (Straneo et al., 2013; Xu et al., 2013b; Bendtsen et al., 2015; Murray et al., 2015; Cowton et al., 
2016; Miles et al., 2016), and there is low confidence in understanding coastal GIS glacier response to ocean 
forcing because submarine melt rates, calving rates (Rignot et al., 2010; Todd and Christoffersen, 2014; 
Benn et al., 2017), bed and fjord geometry, and the roles of ice melange and subglacial discharge (Enderlin 
et al., 2013; Gladish et al., 2015; Slater et al., 2015; Morlighem et al., 2016; Rathmann et al., 2017) are 
poorly understood, and extrapolation from a small sample of glaciers is impractical (Moon et al., 2012; Carr 
et al., 2013; Straneo et al., 2016; Cowton et al., 2018).  
 
3.3.1.5.2 Atmospheric drivers 
Snow accumulation and surface melt in Antarctica are influenced by the Southern Hemisphere extratropical 
circulation (SM3.1.3), which has intensified and shifted poleward in austral summer from 1950-2012 
(Arblaster et al., 2014; Swart et al., 2015a) (medium confidence). The austral summer SAM has been in its 
most positive extended state for the past 600 years (Abram et al., 2014; Dätwyler et al., 2017), and from 
1979-2013 has contributed to intensified atmospheric circulation, increasing and decreasing snowfall in the 
western and eastern AP respectively (Marshall et al., 2017) (medium confidence). WAIS accumulation trends 
(Section 3.3.1.2) resulted from a deepening of the Amundsen Sea Low over recent decades (Raphael et al., 
2016) (high confidence).  
 
During the 1990s, WAIS experienced record surface warmth relative to the past 200 years, though similar 
conditions occurred for 1% of the preceding 2000 years (Steig et al., 2013), and WAIS surface melting 
remains limited. In contrast, AP surface melting has intensified since the mid-20th century and the last three 
decades were unprecedented over 1000 years (Abram et al., 2013a). The northeast AP began warming 600 
years ago and past-century rates were unusual over 2000 years (Mulvaney et al., 2012b; Stenni et al., 2017). 
Increased föhn winds due to the more positive SAM (Cape et al., 2015) caused increased surface melting on 
the Larsen ice shelves (Grosvenor et al., 2014; Luckman et al., 2014; Elvidge et al., 2015) and after 11,000 
years intact, the 2002 melt-driven collapse of the Larsen B ice shelf followed strong warming between the 
mid–1950s and the late 1990s (Domack et al., 2005) (medium confidence).  
 
In Greenland, associations between atmospheric pressure indices such as the North Atlantic Oscillation 
(NAO) and temperature, insolation and snowfall indicate with high confidence that, as in Antarctica, 
variability of large-scale atmospheric circulation is an important driver of SMB changes (Fettweis et al., 
2013; Tedesco et al., 2013; Ding et al., 2014; Tedesco et al., 2016b; Ding et al., 2017; Hofer et al., 2017). A 
post-1990s decrease in summer NAO reflects increased anticyclonic weather (e.g., Tedesco et al., 2013; 
Hanna et al., 2015) that advected warm air over the GIS, explaining ~70% of summer surface warming from 
2003-2013 (Fettweis et al., 2013; Tedesco et al., 2013; Mioduszewski et al., 2016), and reduced the cloud 
cover, increasing shortwave insolation (Tedesco et al., 2013) that, combined with albedo feedbacks (Box et 
al., 2012; Charalampidis et al., 2015; Tedesco et al., 2016a; Stibal et al., 2017; Ryan et al., 2018) (high 
confidence), explains most of the post-1990s melt increase (Hofer et al., 2017). These drivers culminated in 
July 2012 in exceptional warmth and surface melt up to the ice sheet summit (Nghiem et al., 2012; Tedesco 
et al., 2013; Hanna et al., 2014; Hanna et al., 2016; McLeod and Mote, 2016).  
 
3.3.1.6 Natural and Anthropogenic Forcing 
 
There is medium agreement but limited evidence of anthropogenic forcing of AIS mass balance through both 
SMB and glacier dynamics (low confidence). Partitioning between natural and human drivers of atmospheric 
and ocean circulation changes remains very uncertain. Partitioning is challenging because, along with the 
effects of greenhouse gas increases and stratospheric ozone depletion (Waugh et al., 2015; England et al., 
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2016; Li et al., 2016a), atmospheric and ocean variability in the areas of greatest AIS mass change are 
affected by a complex chain of processes (e.g., Fyke et al., 2018; Zhang et al., 2018a) that exhibit 
considerable natural variability and have multiple interacting links to sea surface conditions in the Pacific 
(Schneider et al., 2015; England et al., 2016; Raphael et al., 2016; Clem et al., 2017; Steig et al., 2017; Paolo 
et al., 2018) and Atlantic (Li et al., 2014), with additional local feedbacks (e.g., Stammerjohn et al., 2012; 
Goosse and Zunz, 2014). Recent AP warming and consequent ice-shelf collapses have evidence of a link to 
anthropogenic ozone and greenhouse-gas forcing via the SAM (e.g., Marshall, 2004; Shindell, 2004; 
Arblaster and Meehl, 2006; Marshall et al., 2006; Abram et al., 2014) and to anthropogenic Atlantic sea-
surface warming via the Atlantic Multidecadal Oscillation (e.g., Li et al., 2014). This warming was highly 
unusual over the last 1000 years but not unprecedented, and along with subsequent cooling is within the 
bounds of the large natural decadal-scale climate variability in this region (Mulvaney et al., 2012a; Turner et 
al., 2016). More broadly over the AP and coastal WAIS where dynamic mass losses are concentrated, natural 
variability in atmospheric and ocean forcing appear to dominate observed mass balance (medium confidence) 
(Smith and Polvani, 2017; Jenkins et al., 2018). 
 
Evidence exists for an anthropogenic role in the atmospheric circulation (NAO) changes that have driven 
GIS mass loss (Section 3.3.1.5.2) (medium confidence), although this awaits formal attribution testing (e.g., 
Easterling et al., 2016). Arctic amplification of anthropogenic warming (e.g., Serreze et al., 2009) affects 
atmospheric circulation (Francis and Vavrus, 2015; Mann et al., 2017) and has reduced sea-ice extent 
(Section 3.2.1.1.1), feeding back to exacerbate both warming and NAO changes (Screen and Simmonds, 
2010) that impact GIS mass balance. Negative-NAO wind patterns increased GIS melt observed in a 40-year 
runoff signal (Ahlstrom et al., 2017), and an increase in melting beginning in the mid-1800s closely followed 
the onset of industrial-era Arctic warming and emerged beyond the range of natural variability in the last few 
decades (Graeter et al., 2018; Trusel et al., 2018) (Section 3.3.1.4). 
 
3.3.1.7 Ice sheet projections 
 
Section 4.2 assesses the sea level impacts from observed and projected changes in ice sheets. 
 
3.3.2 Polar Glacier Changes 
 
3.3.2.1 Observations, Components of Change, and Drivers 
 
Chapter 3 assesses changes in polar glaciers in the Canadian and Russian Arctic, Svalbard, Greenland and 
Antarctica, independent of the Greenland and Antarctic ice sheets (Figure 3.8). Glaciers in all other regions 
including Alaska, Scandinavia and Iceland are assessed in Chapter 2.  
 
Changes in the mass of Arctic glaciers for the ‘present day’ (2006 to 2015) are assessed using a combination 
of satellite observations and direct measurements (Figure 3.8; Appendix 2.A, Table 1). During this period,  
glacier mass loss was largest in the periphery of Greenland (-47 ± 16 Gt yr–1), followed by Arctic Canada 
North (-39 ± 8 Gt yr–1), Arctic Canada South (-33 ± 9 Gt yr–1), the Russian Arctic (-15 ± 12 Gt yr–1) and 
Svalbard and Jan Mayen (-9 ± 5 Gt yr–1). When combined with the Arctic regions covered in Chapter 2 
(Alaska, the Yukon territory of Canada, Iceland and Scandinavia), Arctic glaciers as a whole lost mass at a 
rate of -213 ± 29 Gt yr–1, a sea level contribution of 0.59 ± 0.08 mm yr–1 (high confidence). Overall during 
this period, Arctic glaciers caused a similar amount of sea level rise to the Greenland Ice Sheet (Section 
3.3.1.3), but their rate of mass loss per unit area was larger (Bolch et al., 2013).  
 
There is limited evidence (high agreement) that the current rate of glacier mass loss is larger than at any time 
during the past 4000 years (Fisher et al., 2012; Zdanowicz et al., 2012). Further back in time during the 
early- to mid- Holocene, pre-historic glacial deposits, ice core records, and numerical modelling evidence 
shows that many Arctic glaciers were at various stages similar to or smaller than present (Gilbert et al., 2017; 
Zekollari et al., 2017), experienced greater melt rates (Lecavalier et al., 2017), or may have disappeared 
altogether (Solomina et al., 2015) (medium confidence). This evidence, however, does not provide a 
complete assessment of the rates and magnitudes of past glacier mass loss. 
 
Atmospheric circulation changes (Box et al., 2018) have led to pan-Arctic variability in glacier mass balance 
(high confidence), including different rates of retreat between eastern and western glaciers in Greenland’s 
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periphery (Bjørk et al., 2018), and a high rate of surface melt in the Canadian Arctic (Gardner et al., 2013; 
Van Wychen et al., 2016; Millan et al., 2017) through persistently high summer air temperatures (Bezeau et 
al., 2014; McLeod and Mote, 2016). Atmospheric circulation anomalies from 2007-2012 associated with 
glacier mass loss are also linked to enhanced Greenland ice sheet melt (Section 3.3.1.4) and Arctic sea ice 
loss (Section 3.2.1.1), and exceed by a factor of two the interannual variability in daily mean pressure (sea 
level and 500 hPa) of the Arctic region over the 1871-2014 period (Belleflamme et al., 2015) (Section 
3.3.1.6). 
 
Increased surface melt on Arctic glaciers has led to a positive feedback from lowered surface albedo, causing 
further melt (Box et al., 2012), and in Svalbard, mean glacier albedo has reduced between 1979 and 2015 
(Möller and Möller, 2017). Across the Arctic, increased surface melt and subsequent ice-layer formation via 
refreezing within snow and firn also reduces the ability of glaciers to store meltwater, increasing runoff 
(Zdanowicz et al., 2012; Gascon et al., 2013a; Gascon et al., 2013b; Noël et al., 2017; Noël et al., 2018). 
 
Between the 1990s and 2017, tidewater glaciers have exhibited regional patterns in glacier dynamics; 
glaciers in Arctic Canada have largely decelerated, while glaciers in Svalbard and the Russian Arctic have 
accelerated (Van Wychen et al., 2016; Strozzi et al., 2017). Annual retreat rates of tidewater glaciers in 
Svalbard and the Russian Arctic for 2000–2010, have increased by a factor 2 and 2.5 respectively, between 
1992 and 2000 (Carr et al., 2017). Acceleration due to surging (an internal dynamic instability) of a few key 
glaciers has dominated dynamic ice discharge on time-scales of years to decades (Van Wychen et al., 2014; 
Dunse et al., 2015).  
 
The recent acceleration and surge behaviour of polythermal glaciers in Svalbard and the Russian Arctic is 
caused by destabilization of the marine termini due to increased surface melt, and changes in basal 
temperature, lubrication and weakening of subglacial sediments (Dunse et al., 2015; Sevestre et al., 2018; 
Willis et al., 2018) or terminus thinning and response to warmer ocean temperatures (McMillan et al., 2014a) 
(low confidence). Iceberg calving rates in Svalbard are linked to ocean temperatures which control rates of 
submarine melt (Luckman et al., 2015; Vallot et al., 2018) (medium confidence). Rapid disintegration of ice 
shelves in the Canadian and Russian Arctic continues and has led to acceleration and thinning in tributary-
glacier basins (high confidence) (Willis et al., 2015; Copland and Mueller, 2017). 
 
Little information is available on Holocene and historic changes in glaciers in Antarctica (separate from the 
ice sheet), and on sub-Antarctic islands (Hodgson et al., 2014). Mass changes of glaciers in these regions 
between 2006 and 2015 (–90±860 Gt yr–1) have low confidence as they are based on a single data 
compilation with large uncertainties in the Antarctic region (Zemp et al., 2019) (Figure 3.8). Limited 
evidence with high agreement from individual glaciers suggests that regional variability in glacier mass 
changes may be linked to changes in the large-scale Southern Hemisphere atmospheric circulation (Section 
3.3.1.5.2). On islands adjacent to the Antarctic Peninsula, glaciers experienced retreat and mass loss during 
the mid to late 20th Century, but since around 2009 there has been a reduction in mass loss rate or a return to 
slightly positive balance (Navarro et al., 2017; Oliva et al., 2017). Reduced mass loss has been linked to 
increased winter snow accumulation and decreased summer melt at these locations, associated with recent 
deepening of the circumpolar pressure trough (Oliva et al., 2017). Conversely, on the sub-Antarctic 
Kerguelen Islands, increased glacier mass loss (Verfaillie et al., 2015) may be due to reduced snow 
accumulation rather than increased air temperature as a result of southward migration of storm tracks (Favier 
et al., 2016).  
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Figure 3.8: Glacier mass budgets for the six polar regions assessed in Chapter 3. Glacier mass budgets for all other 
regions (including Iceland, Scandinavia and Alaska) are shown in Chapter 2, Figure 2.4. Regional time series of annual 
mass change are based on glaciological and geodetic balances (Zemp et al., 2019). Superimposed are multi-year 
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averages by Wouters et al. (2019) and Gardner et al. (2013) from the Gravity Recovery and Climate Experiment 
(GRACE). Estimates by Gardner et al. (2013) were used in AR5. Additional regional estimates in some regions are 
listed in Appendix 2.1, Table 1. Annual and time-averaged mass-budget estimates include the errors reported in each 
study. Glacier outlines and areas are based on RGI Consortium (2017). 
 
 
3.3.2.2 Projections 
 
Projections of all glaciers, including those in polar regions, are covered in Cross-Chapter Box 6 in Chapter 2. 
 
3.3.3 Consequences and Impacts 
 
3.3.3.1 Sea Level 
 
Chapter 4 assesses the sea level impacts from observed and projected changes in ice sheets (Section 3.3.1) 
and polar glaciers (Section 3.3.2), including uncertainties related to marine ice sheets (Cross-Chapter Box 8 
in Chapter 3). 
 
3.3.3.2 Physical Oceanography 
 
The major large-scale impacts of freshwater release from Greenland on ocean circulation relate to the 
potential modulation/inhibition of the formation of water masses that represent the headwaters of the Atlantic 
Meridional Overturning Circulation. The timescales and likelihood of such effects are assessed separately in 
Chapter 6 (Section 6.7). Freshwater release also affects local circulation within fjords through two principle 
mechanisms; subglacial release from tidewater glaciers enhances buoyancy driven circulation, whereas 
runoff from land-terminating glaciers contributes to surface layer freshening and estuarine circulation 
(Straneo and Cenedese, 2015). There is limited evidence that freshening occurred between 2003-2015 in 
North East Greenland fjords and coastal waters (Sejr et al., 2017). 
 
For Antarctica, freshwater input to the ocean from the ice sheet is divided approximately equally between 
melting of calved icebergs and of ice shelves in situ (Depoorter et al., 2013; Rignot et al., 2014). There is 
high confidence that the input of ice shelf meltwater has increased in the Amundsen and Bellingshausen Seas 
since the 1990s, but low confidence in trends in other sectors (Paolo et al., 2015).  
 
Freshwater injected from the AIS affect water mass circulation and transformation, though sea ice dominates 
upper ocean properties away from the Antarctic ice shelves (Abernathey et al., 2016; Haumann et al., 2016). 
Over the ice-shelf regions, where dense waters sink and flood the global ocean abyss, the role of glacial 
freshwater input is clearer. From 1980–2012, the salinity of Antarctic Bottom Water reduced by an amount 
equivalent to 73 ± 26 Gt y–1 of freshwater added, around half the estimated increase in freshwater input by 
Antarctic glacial discharge up to that time (Purkey and Johnson, 2013). In some places, notably the Indian-
Australian sector, Antarctic Bottom Water freshening may be accelerating (Menezes et al., 2017). There is 
medium confidence in an overall freshening trend and low confidence that this is accelerating, given the 
sparsity of information and significant interannual variability in Antarctic Bottom Water properties at other 
export locations (Meijers et al., 2016). 
 
For the Southern Ocean, there is limited evidence for stratification changes in the post-AR5 period, and low 
confidence in how stratification changes are affecting sea ice and basal ice shelf melt. An increase in 
stratification caused by release of freshwater from the AIS was invoked as a mechanism to suppress vertical 
heat flux and permit an increase in sea ice extent (Bintanja et al., 2013; Bronselaer et al., 2018; Purich et al., 
2018), though some studies conclude that glacial freshwater input is insufficient to cause a significant sea ice 
expansion (Swart and Fyfe, 2013; Pauling et al., 2017) (Section 3.2.1.1). In contrast, where warm water 
intrusions drive melting within ice shelf cavities, a significant entrained heat flux to the surface can exist and 
increase stratification and potentially reduce sea ice extent (Jourdain et al., 2017; Merino et al., 2018). It has 
been argued that freshening from glacial melt can enhance basal melting of ice shelves by reducing dense 
water production and modulating oceanic heat flow into ice-shelf cavities (Silvano et al., 2018). 
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3.3.3.3 Biogeochemistry 

Both polar ice sheets have the potential to release dissolved and sediment-bound nutrients and organic 
carbon directly to the surface ocean via subglacial and surface meltwater, icebergs, melting of the base of ice 
shelves (Shadwick et al., 2013; Wadham et al., 2013; Hood et al., 2015; Herraiz-Borreguero et al., 2016; 
Raiswell et al., 2016; Yager et al., 2016; Hodson et al., 2017), in addition to indirectly stimulating nutrient 
input via upwelling associated with subglacial meltwater plumes (Meire et al., 2016b; Cape et al., 2018; 
Hopwood et al., 2018; Kanna et al., 2018) (Figure 3.9). These nutrient additions stimulate primary 
production in the surrounding ocean waters in some regions (medium confidence) (Gerringa et al., 2012; 
Death et al., 2014; Duprat et al., 2016; Arrigo et al., 2017b). There is also some evidence to support melting 
ice sheets as source of contaminants (AMAP, 2015). 

In Greenland, direct measurements suggest that meltwater is a significant source of bioavailable silica and 
iron (Bhatia et al., 2013; Hawkings et al., 2014; Meire et al., 2016a; Hawkings et al., 2017) but may be less 
important for the supply of bioavailable forms of dissolved nitrogen or phosphorous (Hawkings et al., 2016; 
Wadham et al., 2016), which often limit the integrated primary production during summer in fjords (Meire et 
al., 2016a; Hopwood et al., 2018). The offshore export of iron, however, has been linked to primary 
productivity in surface ocean waters in the Labrador Sea (Arrigo et al., 2017b) (limited evidence, high 
agreement).	

Subglacial meltwater plumes from tidewater glaciers have emerged recently as an important indirect source 
of nutrients to fjords, by entraining nutrient-replete seawater (Meire et al., 2016b; Meire et al., 2017; Cape et 
al., 2018; Hopwood et al., 2018; Kanna et al., 2018) (medium evidence, high agreement). There is medium 
evidence with high agreement that these upwelled nutrient fluxes enhance primary production in fjords over 
a distance of up to 100 km along the trajectory of the outflowing plume (Juul-Pedersen et al., 2015; Cape et 
al., 2018; Kanna et al., 2018). 
 
In Antarctica, there is medium evidence with high agreement that enhanced input of iron from ice shelves, 
glacial meltwater and icebergs stimulates primary production in polynyas, coastal regions and the wider 
Southern Ocean (Gerringa et al., 2012; Shadwick et al., 2013; Herraiz-Borreguero et al., 2016). Satellite 
observations and modelling also indicate variable potential for icebergs to fertilise the Southern Ocean 
beyond the coastal zone (Death et al., 2014; Duprat et al., 2016; Wu and Hou, 2017). 
 
Dissolved nutrient fluxes from ice sheets may be increasing during high melt years (Hawkings et al., 2015). 
The dominant sediment-bound fraction, however, may not increase with rising melt (Hawkings et al., 2015). 
Thus, there is low confidence overall in the magnitude of the response of direct nutrient fluxes from ice 
sheets to enhanced melting.  
 
Future predictions of nutrient cycling proximal to ice sheets is made more challenging by the landward 
progression of marine-terminating glaciers and the collapse of ice shelves (Cook et al., 2016). This has the 
potential to drive major shifts in nutrient supply to coastal waters (Figure 3.9). The erosion of newly-exposed 
glacial sediments in front of retreating land-terminating glaciers (Monien et al., 2017) and changes in the 
diffuse nutrient fluxes from newly exposed glacial sediments on the seafloor (Wehrmann et al., 2014) may 
amplify nutrient supply, whilst other nutrient sources may be cut off (e.g., icebergs, upwelling of marine 
water; Meire et al., 2017) (low confidence). 
 
There is medium evidence with high agreement that long-term tidewater glacier retreat into shallower water 
or onto land, a plausible scenario for about 55% of the 243 distinct outlet glaciers in Greenland (Morlighem 
et al., 2017), will reduce or diminish upwelling a source of nutrients, thereby reducing summer productivity 
in Greenland fjord ecosystems (Meire et al., 2017; Hopwood et al., 2018). 
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Figure 3.9. Potential shifts in nutrient fluxes with landward retreat of marine-terminating glaciers (a) at different stages 
(b and c). 
 
3.3.3.4 Ecosystems 
 
For Greenland and Svalbard, there is limited evidence with high agreement that the retreat of marine-
terminating glaciers will alter food supply to higher trophic levels of marine food webs (Meire et al., 2017; 
Milner et al., 2017). The consequences of changes in glacial systems on marine ecosystems are often 
mediated via the fjordic environments that fringe the edge of the ice sheets, for example changing physical-
chemical conditions have affected the benthic ecosystems of Arctic fjords (Bourgeois et al., 2016). The 
amplification of nutrient fluxes caused by enhanced upwelling at calving fronts (Meire et al., 2017), 
combined with high carbon/nutrient burial and recycling rates (Wehrmann et al., 2013; Smith et al., 2015), 
plays an important role in sustaining high productivity of the Arctic fjord ecosystems of Greenland and 
Svalbard (Lydersen et al., 2014). Glacier retreat, causing glaciers to shift from being marine-terminating to 
land-terminating, can reduce the productivity in coastal areas off Greenland with potentially large ecological 
implications, also negatively affecting production of commercially-harvested fish (Meire et al., 2017). There 
is also evidence that marine-terminating glaciers are important feeding areas for marine mammals and 
seabirds at Greenland (Laidre et al., 2016) and Svalbard (Lydersen et al., 2014). 
 
For Antarctica, there is high agreement based on medium evidence that ice-shelf retreat or collapse is leading 
to new marine habitats and to biological colonization (Gutt et al., 2011; Fillinger et al., 2013; Trathan et al., 
2013; Hauquier et al., 2016; Ingels et al., 2018). The loss of ice shelves and retreat of coastal glaciers around 
the AP in the last 50 years has exposed at least 2.4 × 104 km2 of new open water. These newly-revealed 
habitats have allowed new phytoplankton blooms to be produced resulting in new marine zooplankton and 
seabed communities (Gutt et al., 2011; Fillinger et al., 2013; Trathan et al., 2013; Hauquier et al., 2016) 
(Section 3.2.3.2.1), and have resulted in enhanced carbon uptake by coastal marine ecosystems (medium 
confidence), although quantitative estimates of biological carbon uptake are highly variable (Trathan et al., 
2013; Barnes et al., 2018). Newly-available habitat on coastlines may also provide breeding or haulout sites 
for land-based predators such as penguins and seals (Trathan et al., 2013) (low confidence). Fjords that have 
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been studied in the subpolar western AP are hotspots of abundance and biodiversity of benthic macro-
organisms (Grange and Smith, 2013) and there is evidence that glacier retreat in these environments can 
impact the structure and function of benthic communities (Moon et al., 2015; Sahade et al., 2015) (low 
confidence). 
 
 
[START CROSS-CHAPTER BOX 8 HERE] 
 
Cross-Chapter Box 8: Future Sea Level Changes and Marine Ice Sheet Instability 
 
Authors: Rob De Conto (USA), Alexey Ekaykin (Russian Federation), Andrew Mackintosh (Australia), 
Roderik van de Wal (Netherlands), Jeremy Bassis (USA) 
 
Over the last century, glaciers were the main contributors to increasing ocean water mass (Section 4.2.1.2). 
However, most terrestrial frozen water is stored in Antarctic and Greenland ice sheets, and future changes in 
their dynamics and mass balance will cause sea level rise over the 21st century and beyond (Section 4.2.3). 
 
About a third of Antarctic Ice Sheet (AIS) is ‘marine ice sheet’, i.e. rests on bedrock below sea level (Figure 
4.5), with most of the ice-sheet margin terminating directly in the ocean. These features make the overlying 
ice sheet vulnerable to dynamical instabilities with the potential to cause rapid ice loss - so-called Marine Ice 
Sheet and Marine Ice Cliff instabilities, as discussed below. 
 
In many places around the AIS margin, the seaward-flowing ice forms floating ice shelves (Figure CB8.1). 
Ice shelves in contact with bathymetric features on the sea floor or confined within embayments provide 
back stress (buttressing) that impedes the seaward flow of the upstream ice and thereby stabilizes the ice 
sheet. The ice shelves are thus a key factor controlling AIS dynamics. Almost all Antarctic ice shelves 
provide substantial buttressing (Fürst et al., 2016) but some are currently thinning at an increasing rate 
(Khazendar et al., 2016). Today, thinning and retreat of ice shelves is associated primarily with ocean-driven 
basal melt that, in turn, promotes iceberg calving (Section 3.3.1.2). 
 
Accumulation and percolation of surface melt and rain water also impact ice shelves by lowering albedo, 
deepening surface crevasses, and causing flexural stresses that can lead to hydrofracturing and ice shelf 
collapse (Macayeal and Sergienko, 2013). In some cases supraglacial (i.e., flowing on the glacier surface) 
rivers might diminish destabilizing impact of surface melt by removing meltwater before it ponds on the ice-
shelf surface (Bell et al., 2017). In summary, both ocean forcing and surface melt affect ice shelf mechanical 
stability (high confidence), but the precise importance of the different mechanisms remains poorly 
understood and observed. 
 
The future dynamic response of the AIS to warming will largely be determined by changes in ice shelves, 
because their thinning or collapse will reduce their buttressing capacity, leading to an acceleration of the 
grounded ice and to thinning of the ice margin. In turn, this thinning can initiate grounding line retreat 
(Konrad et al., 2018). If the grounding line is located on bedrock sloping downwards toward the ice sheet 
interior (retrograde slope), initial retreat can trigger a positive feedback, due to non-linear response of the 
seaward ice flow to the grounding line thickness change. As a result, progressively more ice will flow into 
the ocean (Figure CB8.1a). This self-sustaining process is known as Marine Ice Sheet Instability (MISI). The 
onset and persistence of MISI is dependent on several factors in addition to overall bed slope, including the 
details of the bed geometry and conditions, ice-shelf pinning points, lateral shear from the walls, self-
gravitation effects on local sea level and isostatic adjustment. Hence, long-term retreat on every retrograde-
sloped bed is not necessarily unstoppable (Gomez et al., 2015). 
 



FINAL DRAFT Chapter 3 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 3-56 Total pages:173 

 
Figure CB8.1: Schematic representation of Marine Ice Sheet Instability (MISI, a) and Marine Ice Cliff Instability 
(MICI, b) from Pattyn (2018). (a) thinning of the buttressing ice shelf leads to acceleration of the ice sheet flow and 
thinning of the marine-terminated ice margin. Because bedrock under the ice sheet is sloping towards ice sheet interior, 
thinning of the ice causes retreat of the grounding line followed by an increase of the seaward ice flux, further thinning 
of the ice margin, and further retreat of the grounding line. (b) disintegration of the ice shelf due to bottom melting 
and/or hydro-fracturing produces an ice cliff. If the cliff is tall enough (at least ~800 m of total ice thickness, or about 
100 m of ice above the water line), the stresses at the cliff face exceed the strength of the ice, and the cliff fails 
structurally in repeated calving events. Note that MISI requires a retrograde bed slope, while MICI can be realized on a 
flat or seaward-inclined bed. Like MISI, the persistence of MICI depends on the lack of ice-shelf buttressing, which can 
stop or slow brittle ice failure at the grounding line by providing supportive backstress. 
 
 
The MISI process might be particularly important in West Antarctica, where most of the ice sheet is 
grounded on bedrock below sea level (Figure 4.5). Since AR5, there is growing observational and modelling 
evidence that accelerated retreat may be underway in several major Amundsen Sea outlets, including 
Thwaites, Pine Island, Smith, and Kohler glaciers (e.g., Rignot et al., 2014) supporting the MISI hypothesis, 
although observed grounding-line retreat on retrograde slope is not definitive proof that MISI is underway. 
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It has been shown recently (Barletta et al., 2018) that the Amundsen Sea Embayment experiences 
unexpectedly fast bedrock uplift (up to 41 mm yr-1, due to mantle viscosity much lower than the global 
average) as an adjustment to reduced ice mass loading, which could help stabilize grounding line retreat.  
 
One of the largest outlets of the East Antarctic Ice Sheet, Totten glacier, has also been retreating and thinning 
in recent decades (Li et al., 2015b). Totten’s current behaviour suggests that East Antarctica could become a 
substantial contributor to future sea level rise, as it has been in the previous warm periods (Aitken et al., 
2016). It is not clear, however, if the changes observed recently are a linear response to increased ocean 
forcing (Section 3.3.1.2), or an indication that MISI has commenced (Roberts et al., 2018). 
 
The disappearance of ice shelves may allow the formation of ice cliffs, which may be inherently unstable if 
they are tall enough (subaerial cliff height between 100 and 285 m) to generate stresses that exceed the 
strength of the ice (Parizek et al., 2019). This ice cliff failure can lead to ice sheet retreat via a process called 
marine ice cliff instability (MICI; Figure CB8.1b), that has been hypothesized to cause partial collapse of the 
West Antarctic Ice Sheet within a few centuries (Pollard et al., 2015; DeConto and Pollard, 2016). 
 
Limited evidence is available to confirm the importance of MICI. In Antarctica, marine-terminating ice 
margins with the grounding lines thick enough to produce unstable ice cliffs are currently buttressed by ice 
shelves, with a possible exception of Crane glacier on the Antarctic Peninsula (Section 4.2.3.1.2).  
Overall, there is low agreement on the exact MICI mechanism and limited evidence of its occurrence in the 
present or the past. Thus the potential of MICI to impact the future sea level remains very uncertain 
(Edwards et al., 2019). 
 
Limited evidence from geological records and ice sheet modelling suggests that parts of AIS experienced 
rapid (i.e., on centennial time-scale) retreat likely due to ice sheet instability processes between 20,000 and 
9,000 years ago (Golledge et al., 2014; Weber et al., 2014; Small et al., 2019). Both the West (including Pine 
Island glacier) and the East Antarctic Ice Sheet also experienced rapid thinning and grounding line retreat 
during the early to mid-Holocene (Jones et al., 2015b; Wise et al., 2017). In the Ross Sea, grounding lines 
may have retreated several hundred kilometers inland and then re-advanced to their present-day positions 
due to bedrock uplift after ice mass removal (Kingslake et al., 2018), thus supporting the stabilizing role of 
glacial isostatic adjustment on ice sheets (Barletta et al., 2018). These past rapid changes have likely been 
driven by the incursion of Circumpolar Deep Water onto the Antarctic continental shelf (Section 3.3.1.5.1) 
(Golledge et al., 2014; Hillenbrand et al., 2017) and MISI (Jones et al., 2015b). Limited evidence of past 
MICI in Antarctica is provided by deep iceberg plough marks on the sea-floor (Wise et al., 2017). 
 
The ability of models to simulate the processes controlling MISI has improved since AR5 (Pattyn, 2018), but 
significant discrepancies in projections remain (Section 4.2.3.2) due to poor understanding of mechanisms 
and lack of observational data on bed topography, isostatic rebound rates, etc. to constrain the models. 
Inclusion of MICI in one ice sheet model has improved its ability to match (albeit uncertain) geological sea 
level targets in the Pliocene (Pollard et al., 2015) and Last Interglacial (DeConto and Pollard, 2016), 
although the MICI solution may not be unique (Aitken et al., 2016) (Section 4.2.3.1.2). 
 
The Greenland Ice Sheet has limited direct access to the ocean through relatively narrow subglacial troughs 
(Morlighem et al., 2017), and most of the bedrock at the ice-sheet margin is above sea level (Figure 4.5). 
However, since AR5 it has been argued that several Greenland outlet glaciers (Petermann, Kangerdlugssuaq, 
Jakobshavn Isbræ, Helheim, Zachariæ Isstrøm) and North-East Greenland Ice Stream may contribute more 
than expected to future sea level rise (Mouginot et al., 2015). It has also been shown that Greenland was 
nearly ice free for extensive episodic periods during the Pleistocene, suggesting a sensitivity to deglaciation 
under climates similar to or slightly warmer than present (Schaefer et al., 2016). 
 
A MICI-style behaviour is seen today in Greenland at the termini of Jakobshavn and Helheim glaciers 
(Parizek et al., 2019), but calving of these narrow outlets is controlled by a combination of ductile and brittle 
processes, which might not be representative examples of much wider Antarctic outlet glaciers, like 
Thwaites.  
 
Overall, this assessment finds that unstable retreat and thinning of some Antarctic glaciers, and to a lesser 
extent Greenland outlet glaciers, may be underway. However, the timescale and future rate of these 
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processes is not well known, casting deep uncertainty on projections of the sea level contributions from the 
Antarctic ice sheet (Cross-Chapter Box 5 in Chapter 1, Section 4.2.3.1).  
 
[END CROSS-CHAPTER BOX 8 HERE] 
 
 
3.4 Arctic Snow, Freshwater Ice and Permafrost: Changes, Consequences and Impacts 
 
3.4.1 Observations 
 
3.4.1.1 Seasonal Snow Cover 
 
Terrestrial snow cover is a defining characteristic of the Arctic land surface for up to 9 months each year, 
with changes influencing the surface energy budget, ground thermal regime, and freshwater budget. Snow 
cover also interacts with vegetation, influences biogeochemical activity, and affects habitats and species, 
with consequences for ecosystem services. Arctic land areas are almost always completely snow covered in 
winter, so the transition seasons of autumn and spring are key when characterizing variability and change. 
 
3.4.1.1.1 Extent and duration 
Dramatic reductions in Arctic (land areas north of 60°N) spring snow cover extent have occurred since 
satellite charting began in 1967 (Estilow et al., 2015). Declines in May and June of –3.5% (± 1.9%) and –
13.4% respectively per decade (± 5.4%) between 1981 and 2018 (relative to the 1981–2010 mean) were 
determined from multiple datasets based on the methodology of (Mudryk et al., 2017) (Figure 3.10) (high 
confidence). The loss of spring snow extent is reflected in shorter snow cover duration estimated from 
surface observations (Bulygina et al., 2011; Brown et al., 2017), satellite data (Wang et al., 2013; Estilow et 
al., 2015; Anttila et al., 2018), and model-based analyses (Liston and Hiemstra, 2011) (high confidence). 
These trends range between –0.7 and –3.9 days per decade depending on region and time period, but all 
spring snow cover duration trends from all datasets are negative (Brown et al., 2017). These same multi-
source datasets also identify reductions in autumn snow extent and duration (-0.6 to -1.4 days per decade; 
summarized in Brown et al., 2017) (high confidence). There is low confidence in positive October and 
November snow cover extent trends apparent in a single dataset (Hernández-Henríquez et al., 2015) because 
they are not replicated in other surface, satellite, and model datasets (Brown and Derksen, 2013; Mudryk et 
al., 2017). 
 
3.4.1.1.2 Depth and water equivalent 
Weather station observations across the Russian Arctic identify negative trends in the maximum snow depth 
between 1966 and 2014 (Bulygina et al., 2011; Osokin and Sosnovsky, 2014). There is medium confidence in 
this trend because the pointwise nature of these measurements does not capture prevailing conditions across 
the landscape. Seasonal maximum snow depth trends over the North American Arctic are mixed and largely 
statistically insignificant (Vincent et al., 2015; Brown et al., 2017). The timing of maximum snow depth has 
shifted earlier by 2.7 days per decade for the North American Arctic (Brown et al., 2017); comparable 
analysis is not available for Eurasia. Gridded products from remote sensing and land surface models identify 
negative trends in snow water equivalent between 1981 and 2016 for both the Eurasian and North American 
sectors of the Arctic (Brown et al., 2017). While the snow water equivalent anomaly time series show 
reasonable consistency between products when averaged at the continental scale, considerable inter-dataset 
variability in the spatial patterns of change (Liston and Hiemstra, 2011; Park et al., 2012; Brown et al., 2017) 
mean there is only medium confidence in these trends. 
 
3.4.1.1.3 Drivers 
Despite uncertainties due to sparse observations (Cowtan and Way, 2014), surface temperature has increased 
across Arctic land areas in recent decades (Hawkins and Sutton, 2012; Fyfe et al., 2013), driving reductions 
in Arctic snow extent and duration (high confidence). Changes in Arctic snow extent can be directly related 
to extratropical temperature increases (Brutel-Vuilmet et al., 2013; Thackeray et al., 2016; Mudryk et al., 
2017). Based on multiple historical datasets, there is a consistent temperature sensitivity for Arctic snow 
extent, with approximately 800,000 km2 of snow cover lost per °C warming in spring (Brown and Derksen, 
2013; Brown et al., 2017), and 700,000 to 800,000 km2 lost in autumn (Derksen and Brown, 2012; Brown 
and Derksen, 2013) (high confidence). 
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There is high confidence that darkening of snow through the deposition of black carbon and other light 
absorbing particles enhances snow melt (Bullard et al., 2016; Skiles et al., 2018; Boy et al., 2019). The 
global direct radiative forcing for black carbon in seasonal snow and over sea ice is estimated to be 0.04 W 
m–2, but the effective forcing can be up to threefold greater at regional scales due to the enhanced albedo 
feedback triggered by the initial darkening (Bond et al., 2013). Lawrence et al. (2011) estimate the present-
day radiative effect of black carbon and dust in land-based snow to be 0.083 W m–2, only marginally greater 
than the simulated 1850 effect (0.075 W m–2) due to offsetting effects from increased black carbon emissions 
and reductions in dust darkening (medium confidence). Kylling et al. (2018) estimate a surface radiative 
effect of 0.292 W m–2 caused by dust deposition (largely transported from Asia) to Arctic snow, 
approximately half of the black carbon central scenario estimate of Flanner et al. (2007). The forcing from 
brown carbon deposited in snow (associated with both combustion and secondary organic carbon) is 
estimated to be 0.09−0.25 W m–2, with the range due to assumptions of particle absorptivity (Lin et al., 2014) 
(low confidence). 
 
Precipitation remains a sparse and highly uncertain measurement over Arctic land areas: in situ datasets 
remain uncertain (Yang, 2014) and are largely regional (Kononova, 2012; Vincent et al., 2015). Atmospheric 
reanalyses show increases in Arctic precipitation in recent decades (Lique et al., 2016; Vihma et al., 2016), 
but there remains low confidence in reanalysis-based closure of the Arctic freshwater budget due to a wide 
spread between available reanalysis derived precipitation estimates (Lindsay et al., 2014). Despite improved 
process understanding, estimates of sublimation loss during blowing snow events remain a key uncertainty in 
the mass budget of the Arctic snowpack (Sturm and Stuefer, 2013). 
 
3.4.1.2 Permafrost 
 
3.4.1.2.1 Temperature 
Record high temperatures at ~10–20 m depth in the permafrost (near or below the depths affected by intra-
annual fluctuation in temperature) have been documented at many long-term monitoring sites in the Northern 
Hemisphere circumpolar permafrost region (AMAP, 2017d) (Figure 3.10) (very high confidence). At some 
locations, the temperature is 2–3°C higher than 30 years ago. During the decade between 2007 and 2016, the 
rate of increase in permafrost temperatures was 0.39 ± 0.15°C for colder continuous zone permafrost 
monitoring sites and 0.20 ± 0.10°C for warmer discontinuous zone permafrost (Biskaborn et al., 2019). 
Relatively smaller increases in permafrost temperature in warmer sites indicate that permafrost is thawing 
with heat absorbed by the ice-to-water phase change, and as a result, the active layer may be increasing in 
thickness. In contrast to temperature, there is only medium confidence that active layer thickness across the 
region has increased. This confidence level is because decadal trends vary across regions and sites 
(Shiklomanov et al., 2012) and because mechanical probing of the active layer can underestimate the 
degradation of permafrost in some cases because the surface subsides when ground ice melts and drains 
(Romanovsky et al., 2016; AMAP, 2017d; Streletskiy et al., 2017). Permafrost in the Southern Hemisphere 
polar region occurs in ice-free exposed areas (Bockheim et al., 2013), 0.18% of the total land area of 
Antarctica (Burton-Johnson et al., 2016). This area is three orders of magnitude smaller than the 13–18x106 
km2 area underlain by permafrost in the Northern Hemisphere terrestrial permafrost region (Gruber, 2012). 
Antarctic permafrost temperatures are generally colder (Noetzli et al., 2017) and increased 0.37 ± 0.10°C 
between 2007 and 2016 (Biskaborn et al., 2019). 
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Figure 3.10: Schematic of important land surface components influenced by the Arctic terrestrial cryosphere (centre): 
permafrost (1); ground ice (2); river discharge (3); abrupt thaw (4); surface water (5); fire (6); tundra (7); shrubs (8); 
boreal forest (9); lake ice (10); seasonal snow (11). Left column: time series of snow cover extent anomalies in June 
(relative 1981–2010 climatology) from 5 products based on the approach of Mudryk et al. (2017); permafrost 
temperature change normalized to a baseline period (Romanovsky et al., 2017) and runoff from northern flowing 
watersheds normalized to a baseline period (1981–2010) (Holmes et al., 2018). Right column: CMIP5 multi-model 
average for different Representative Concentration Pathway scenarios for June snow cover extent (based on Thackeray 
et al., 2016), area of near-surface permafrost, and runoff to the Arctic Ocean (based on McGuire et al., 2018). 
 
 
3.4.1.2.2 Ground ice 
Permafrost thaw and loss of ground ice causes the land surface to subside and collapse into the volume 
previously occupied by ice, resulting in disturbance to overlying ecosystems and human infrastructure 
(Kanevskiy et al., 2013; Raynolds et al., 2014). Excess ice in permafrost is typical, varying for example from 
40% of total volume in some sands up to 80–90% of total volume in fine-grained soil/sediments (Kanevskiy 
et al., 2013). Ice-rich permafrost areas where impacts of thaw could be greatest include the Yedoma deposits 
in Siberia, Alaska, and the Yukon in Canada, with ice divided between massive wedges interspersed with 
frozen soil/sediment containing pore ice and smaller ice features (Schirrmeister et al., 2011; Strauss et al., 
2017). Other areas including for example Northwestern Canada, the Canadian Archipelago, the Yamal and 
Gydan peninsulas of West Siberia, and smaller portions of Eastern Siberia and Alaska contain buried glacial 
ice bodies of significant thickness and extent (Lantuit and Pollard, 2008; Leibman et al., 2011; Kokelj et al., 
2017; Coulombe et al., 2019). The location and volume of ground ice integrated across the northern 
permafrost region (5.63-36.55x103 km3, equivalent to 2-10 cm sea level rise) is known with medium 
confidence and with no recent updates at the circumpolar scale (Zhang et al., 2008).  
 
3.4.1.2.3 Carbon 
The permafrost region represents a large, climate-sensitive reservoir of organic carbon with the potential for 
some of this pool to be rapidly decayed and transferred to the atmosphere as CO2 and methane as permafrost 
thaws in a warming climate, thus accelerating the pace of climate change (Schuur et al., 2015). The current 
best mean estimate of total (surface plus deep) organic soil carbon (terrestrial) in the northern circumpolar 
permafrost region (17.8x106 km2 area) is 1460 to 1600 petagrams (medium confidence) (Pg; 1 Pg = 1 billion 
metric tons) (Schuur et al., 2018a). All permafrost-region soils estimated to 3 m in depth (surface) contain 
1035 ± 150 Pg C (Tarnocai et al., 2009; Hugelius et al., 2014) (high confidence). Of the carbon in the 
surface, 800–1000 Pg C is perennially frozen, with the remainder contained in seasonally-thawed soils. The 
northern circumpolar permafrost region occupies only 15% of the total global soil area, but the 1035 Pg C 
adds another 50% to the rest of the 3 m soil carbon inventory (2050 Pg C for all global biomes excluding 
tundra and boreal; Jobbágy and Jackson, 2000; Schuur et al., 2015). 
 
Substantial permafrost carbon exists below 3 m depth (medium confidence). Deep carbon (>3m) has been 
best quantified for the Yedoma region of Siberia and Alaska, characterized by wind- and water-moved 



FINAL DRAFT Chapter 3 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 3-61 Total pages:173 

permafrost sediments tens of meters thick. The Yedoma region covers a 1.4x106 km2 area that remained ice-
free during the last Ice Age (Strauss et al., 2013) and accounts for 327 to 466 Pg C in deep sediment 
accumulations below 3 m (Strauss et al., 2017). 
 
The current inventory has also highlighted additional carbon pools that are likely to be present but are so 
poorly quantified (low confidence) that they cannot yet be added into the number reported above. There are 
deep terrestrial soil/sediment deposits outside of the Yedoma region that may contain about 400 Pg C 
(Schuur et al., 2015). An additional pool is organic carbon remaining in permafrost but that is now 
submerged on shallow Arctic sea shelves that were formerly exposed as terrestrial ecosystems during the 
Last Glacial Maximum ~20,000 years ago (Walter et al., 2007). This permafrost is degrading slowly due to 
seawater intrusion, and it is not clear what amounts of permafrost and organic carbon still remain in the 
sediment versus what has already been converted to greenhouse gases. A recent synthesis of permafrost 
extent for the Beaufort Sea shelf showed that most remaining subsea permafrost in that region exists near 
shore with much reduced area (high confidence) as compared to original subsea permafrost maps that 
outlined the entire 3x106 km2 shelf area (<120 m below sea level depth) that was formerly exposed as land 
(Ruppel et al., 2016). These observations are supported by similar studies in the Siberian Arctic Seas 
(Portnov et al., 2013), and by modelling that suggests that subsea permafrost would be thawed many meters 
below the seabed under current submerged conditions (Anisimov et al., 2012; AMAP, 2017d; Angelopoulos 
et al., 2019). 
 
3.4.1.2.4 Drivers 
Changes in temperature and precipitation act as gradual ‘press’ (i.e., continuous) disturbances that directly 
affect permafrost by modifying the ground thermal regime, as discussed in Section 3.4.1.2.1. Climate change 
can also modify the occurrence and magnitude of abrupt physical disturbances such as fire, and soil 
subsidence and erosion resulting from ice-rich permafrost thaw (thermokarst). These ‘pulse’ (i.e., discrete) 
disturbances (Smith et al., 2009) often are part of the ongoing disturbance and successional cycle in Arctic 
and boreal ecosystems (Grosse et al., 2011), but changing rates of occurrence alter the landscape distribution 
of successional ecosystem states, with permafrost characteristics defined by the ecosystem and climate state 
(Kanevskiy et al., 2013).  
 
Pulse disturbances often rapidly remove the insulating soil organic layer, leading to permafrost degradation 
(Gibson et al., 2018). Of all pulse disturbance types, wildfire affects the most high-latitude land area 
annually at the continental scale. There is high confidence that area burned, fire frequency, and extreme fire 
years are higher now than the first half of the last century, or even the last 10,000 years (Kasischke and 
Turetsky, 2006; Flannigan et al., 2009; Kelly et al., 2013; Hanes et al., 2019). Recent climate warming has 
been linked to increased wildfire activity in the boreal forest regions in Alaska and western Canada where 
this has been studied (Gillett, 2004; Veraverbeke et al., 2017). Based on satellite imagery, an estimated 
80,000 km2 of boreal area was burned globally per year from 1997 to 2011 (van der Werf et al., 2010; Giglio 
et al., 2013). Extreme fire years in northwest Canada during 2014 and Alaska during 2015 doubled the long-
term (1997–2011) average area burned annually in this region (Canadian Forest Service, 2017), surpassing 
Eurasia to contribute 60% of the global boreal area burned (van der Werf et al., 2010; Randerson et al., 2012; 
Giglio et al., 2013). These extreme North American fire years were balanced by lower-than-average area 
burned in Eurasian forests, resulting in a 5% overall increase in global boreal area burned. The annual area 
burned in Arctic tundra is generally small compared to the forested boreal biome. In Alaska – the only region 
where estimates of burned area exist for both boreal forest and tundra vegetation types – tundra burning 
averaged approximately 270 km2 per year during the last half century (French et al., 2015), accounting for 
7% of the average annual area burned throughout the state (Pastick et al., 2017). There is high confidence 
that changes in the fire regime are degrading permafrost faster than had occurred over the historic 
successional cycle (Turetsky et al., 2011; Rupp et al., 2016; Pastick et al., 2017), and that the effect of this 
driver of permafrost change is under-represented in the permafrost temperature observation network. 
 
Abrupt permafrost thaw occurs when changing environmental and ecological conditions interact with 
geomorphological processes. Melting ground ice causes the ground surface to subside. Pooling or flowing 
water causes localized permafrost thaw and sometimes mass erosion. Together, these localized feedbacks 
can thaw through meters of permafrost within a short time, much more rapidly than would be caused by 
increasing air temperature alone. This process is a pulse disturbance to permafrost that can occur in response 
to climate, such as an extreme precipitation event (Balser et al., 2014; Kokelj et al., 2015), or coupled with 
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other disturbances such as wildfire that affects the ground thermal regime (Jones et al., 2015a). There is 
medium confidence in the importance of abrupt thaw for driving change in permafrost at the circumpolar 
scale because it occurs at point locations rather than continuously across the landscape, but the risk for 
widespread change from this mechanism remains high because of the rapidity of change in these locations 
(Kokelj et al., 2017; Nitze et al., 2018). New research at the global scale has revealed that 3.6x106 km2, about 
20% of the northern permafrost region, appears to be vulnerable to abrupt thaw (Olefeldt et al., 2016). 
 
3.4.1.3 Freshwater Systems 
 
There is increasing awareness of the influence of a changing climate on freshwater systems across the Arctic, 
and associated impacts on hydrological, biogeophysical, and ecological processes (Prowse et al., 2015; 
Walvoord and Kurylyk, 2016), and northern populations (Takakura, 2018) (Section 3.4.3.3.1). Assessing 
these impacts requires consideration of complex inter-connected processes, many of which are incompletely 
observed. The increasing imprint of human development, such as flow regulation on major northerly flowing 
rivers adds complexity to the determination of climate-driven changes. 
 
3.4.1.3.1 Freshwater ice 
Long-term in situ river ice records indicate that the duration of ice cover in Russian Arctic rivers decreased 
by 7 to 20 days between 1955 and 2012 (Shiklomanov and Lammers, 2014) (high confidence). This is 
consistent with historical reductions in Arctic river ice cover derived from models (Park et al., 2015) and 
regional analysis of satellite data (Cooley and Pavelsky, 2016). 
 
Analysis of satellite imagery between 2000 and 2013 identified a significant trend of earlier spring ice break-
up across all regions of the Arctic (Šmejkalová et al., 2016); independent satellite data showed 
approximately 80% of Arctic lakes experienced declines in ice cover duration during 2002–2015, due to both 
a later freeze-up and earlier break-up (Du et al., 2017) (high confidence). There are indications that lake ice 
across Alaska has thinned in recent decades (Alexeev et al., 2016), but ice thickness trends are not available 
at the pan-Arctic scale. Analysis of satellite data over northern Alaska show that approximately one-third of 
bedfast lakes (the entire water volume freezes by the end of winter) experienced a regime change to floating 
ice over the 1992–2011 period (Surdu et al., 2014; Arp et al., 2015). This can result in degradation of 
underlying permafrost (Arp et al., 2016; Bartsch et al., 2017). Lakes of the central and eastern Canadian 
High Arctic are transitioning from a perennial to seasonal ice regime (Surdu et al., 2016). 
 
3.4.1.3.2 Runoff and surface water 
A general trend of increasing discharge has been observed for large Siberian (Troy et al., 2012; Walvoord 
and Kurylyk, 2016) and Canadian (Ge et al., 2013; Déry et al., 2016) rivers that drain to the Arctic Ocean 
(medium confidence). Between 1976 and 2015, trends are 3.3 ± 1.6% for Eurasian rivers and 2.0 ± 1.8% for 
North American rivers (Holmes et al., 2018) (Figure 3.10). Extreme regional runoff events have also been 
identified (Stuefer et al., 2017). An observed increase in baseflow in the North American (Walvoord and 
Striegl, 2007; St. Jacques and Sauchyn, 2009) and Eurasian Arctic (Smith et al., 2007; Duan et al., 2017) 
over the last several decades is attributable to permafrost thaw and concomitant enhancement in groundwater 
discharge. The timing of spring season peak flow is generally earlier (Ge et al., 2013; Holmes et al., 2015). 
There is consistent evidence of decreasing summer season discharge for the Yenisei, Lena, and Ob 
watersheds in Siberia (Ye et al., 2003; Yang et al., 2004a; Yang et al., 2004b) and the majority of northern 
Canadian rivers (Déry et al., 2016). Long-term records indicate water temperature increases (Webb et al., 
2008; Yang and Peterson, 2017); attribution to rising air temperatures is complicated by the influence of 
reservoir regulation over Siberian regions (Liu et al., 2005; Lammers et al., 2007). Increases in discharge and 
water temperature in the spring season represent notable freshwater and heat fluxes to the Arctic Ocean 
(Yang et al., 2014). 
 
A large proportion of low-lying Arctic land areas are covered by lakes because permafrost limits surface 
water drainage and supports ponding even across areas with high moisture deficits (Grosse et al., 2013). 
While thaw in continuous permafrost is linked to intensified thermokarst activity and subsequent ponding 
(resulting in lake/wetland expansion), observations of change in surface water coverage across the Arctic are 
regionally variable (Nitze et al., 2017; Ulrich et al., 2017; Pastick et al., 2018). In landscapes with degrading 
ice-wedge polygons, subsidence can reduce inundation, increase runoff, and decrease surface water 
(Liljedahl et al., 2016; Perreault et al., 2017). In discontinuous permafrost, thaw opens up pathways of 
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subsurface flow, improving the connection among inland water systems which supports the drainage of lakes 
and overall reduction in surface water cover (Jepsen et al., 2013). Enhanced subsurface connectivity from 
thaw in discontinuous permafrost serves tempers short-term lake fluctuations (Rey et al., 2019). 
 
3.4.1.3.3 Drivers 
There is high confidence that environmental drivers of Arctic surface water change are diverse and depend 
on local and regional factors such as permafrost properties and geomorphology (Nitze et al., 2018). 
Thermokarst lake expansion has been observed in the continuous permafrost of northern Siberia (Smith et 
al., 2005; Polishchuk et al., 2015) and Alaska (Jones et al., 2011); surface water area reduction has been 
observed in discontinuous permafrost of central and southern Siberia (Smith et al., 2005; Sharonov, 2012), 
western Canada (Labrecque et al., 2009; Carroll et al., 2011; Lantz and Turner, 2015) and interior Alaska 
(Chen et al., 2012; Rover et al., 2012). Increased evaporation from warmer/longer summers, decreased 
recharge due to reductions in snow melt volume, and dynamic processes such as ice-jam flooding (Chen et 
al., 2012; Bouchard et al., 2013; Jepsen et al., 2015) are important considerations for understanding observed 
surface water area change across the Arctic. 
 
Satellite and model-derived estimates of evapotranspiration show increases across the Arctic (Rawlins et al., 
2010; Liu et al., 2014; Liu et al., 2015b; Fujiwara et al., 2016; Suzuki et al., 2018) (medium confidence). 
Increases in the seasonal active layer thickness impact temporary water storage and thus runoff regimes in 
drainage basins. Formation of taliks underneath lakes and rivers may result in reconnection of surface with 
sub-permafrost ground water aquifers with varying hydrological consequences depending on local geological 
and hydraulic settings (Wellman et al., 2013). 
 
3.4.2 Projections 
 
3.4.2.1 Seasonal Snow 
 
Historical simulations from CMIP5 models tend to underestimate observed reductions in spring snow cover 
extent due to uncertainty in the parameterization of snow processes (Essery, 2013; Thackeray et al., 2014), 
challenges in simulating snow-albedo feedback (Qu and Hall, 2014; Fletcher et al., 2015; Li et al., 2016b), 
unrealistic temperature sensitivity (Brutel-Vuilmet et al., 2013; Mudryk et al., 2017), and biases in 
climatological spring snow cover (Thackeray et al., 2016). The role of precipitation biases is not well 
understood (Thackeray et al., 2016). 
 
Reductions in Arctic snow cover duration are projected by the CMIP5 multi-model ensemble due to later 
snow onset in the autumn and earlier snow melt in spring (Brown et al., 2017) driven by increased surface 
temperature over essentially all Arctic land areas (Hartmann et al., 2013). There is high confidence that 
projected snow cover declines are proportional to the amount of future warming in each model realization 
(Thackeray et al., 2016; Mudryk et al., 2017). Projections to mid-century are primarily dependent on natural 
variability and model dependent uncertainties rather than the choice of forcing scenario (Hodson et al., 
2013). By end of century, however, differences between scenarios emerge. Under RCP4.5, Arctic snow 
cover duration stabilizes at 5–10% reduction (compared to a 1986–2005 reference period); under RCP8.5, 
snow cover duration declines reach –15 to –25% (Brown et al., 2017) (Figure 3.10) (high confidence). 
 
Positive Arctic snow water equivalent changes emerge across the eastern Eurasian Arctic by mid-century for 
both RCP4.5 and 8.5 (Brown et al., 2017) (medium confidence). Projected snow water equivalent increases 
across the North American Arctic are only modest, emerge later in the century, and only under RCP8.5 
(Brown et al., 2017). These projected increases are due to enhanced snowfall (Krasting et al., 2013) from a 
more moisture-rich Arctic atmosphere coupled with winter season temperatures that remain sufficiently low 
for precipitation to fall as snow. There is low confidence in changes to snow properties such as density and 
stratigraphy (relevant for understanding the impacts of changes to Arctic snow on ecosystems) which are not 
resolved directly by climate model simulations, but require detailed snow physics models. 
 
3.4.2.2 Permafrost 
 
Circumpolar- or global-scale models represent permafrost degradation in response to warming scenarios as 
increases in thaw depth only. The CMIP5 models project with high confidence that thaw depth will increase 
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and areal extent of near-surface permafrost will decrease substantially (Koven et al., 2013; Slater and 
Lawrence, 2013) (Figure 3.10). However, there is only medium confidence in the magnitude of these changes 
due to at least a five-fold range of estimated present day near-surface permafrost area (<5 – >25x106 km2) by 
these models. This was caused by wide range of model sensitivity in permafrost area to air temperature 
change, resulting in a large range of projected near-surface permafrost loss by 2100: 2-66% for RCP2.6, 15–
87% under RCP4.5 and 30–99% under RCP8.5. A more recent analysis of near-surface permafrost trends 
from a subset of models that self-identified as structurally representing the permafrost region had a 
significantly smaller range of estimated present day near-surface permafrost area (13.1–19.3x106 km2; mean 
± SD, 14.1 ± 3.5 x 106 km2) (McGuire et al., 2018). This subset of models also showed large reductions of 
near-surface permafrost area, averaging a 90% loss (12.7 ± 5.1x106 km2) of permafrost area by 2300 for 
RCP8.5 and 29% loss (4.1 ± 0.6x106 km2) for RCP4.5, with much of that long-term loss already occurring by 
2100. 
 
Pulse disturbances are not included in the permafrost projections described above, and there is high 
confidence that fire and abrupt thaw will accelerate change in permafrost relative to climate effects alone, if 
the rates of these disturbances increase. The observed trend of increasing fire is projected to continue for the 
rest of the century across most of the tundra and boreal region for many climate scenarios, with the boreal 
region projected to have the greatest increase in total area burned (Balshi et al., 2009; Kloster et al., 2012; 
Wotton et al., 2017). Due to vegetation-climate interactions, there is only medium confidence in projections 
of future area burned. As fire activity increases, flammable vegetation, such as the black spruce forest that 
dominates boreal Alaska, is projected to decline as it is replaced by low-flammability deciduous forest 
(Johnstone et al., 2011; Pastick et al., 2017). In other regions such as western Canada, by contrast, black 
spruce could be replaced by the even more flammable jack pine, creating regional-scale feedbacks that 
increase the spread of fire on the landscape (Héon et al., 2014). A regional process-model study of Alaska 
projected annual median area burned during the 21st century to be 1.3-1.7 times higher compared to the 
historical average compared to the historical average (Pastick et al., 2017). Fire also appears to be expanding 
as a novel disturbance into tundra and forest-tundra boundary regions previously protected by a cool, moist 
climate (Jones et al., 2009; Hu et al., 2010; Hu et al., 2015) (medium confidence). Annual tundra area burned 
in Alaska is projected to double under RCP 6.0 from a historic rate of 270 km2 per year to 500-610 km2 per 
year over the 21st century (Hu et al., 2015). A statistical approach projected a fourfold increase in the 30-yr 
probability of fire occurrence in the forest-tundra boundary by 2100 (Young et al., 2017). In contrast to fire, 
there has not yet been a comprehensive circumpolar projection of how abrupt thaw rates may change in the 
future, but one component of abrupt thaw, change in abrupt thaw lake area, has been projected to increase to 
increase by 53% under RCP8.5 (Walter Anthony et al., 2018) above the 1.4 x 106 km2 of small lakes and 
ponds that currently exist in the permafrost region (Muster et al., 2017). As a result, there is low confidence 
in the ability to assess the magnitude by which abrupt thaw across the entire landscape will affect regional 
permafrost, even though this mechanism for rapid change appears critically important for projecting future 
change (Kokelj et al., 2017).  
 
3.4.2.3 Freshwater Systems 
 
Climate model simulations project a warmer and wetter Arctic (Krasting et al., 2013), with increased specific 
humidity due to enhanced evaporation (Laîné et al., 2014), and moisture flux convergence increases into the 
Arctic (Skific and Francis, 2013). Increased cold-season precipitation is projected across the Arctic by 
CMIP5 models (Lique et al., 2016) due to increased moisture flux convergence from outside the Arctic 
(Zhang et al., 2012) and enhanced moisture availability from reduced sea ice cover (Bintanja and Selten, 
2014) (high confidence). Increases in precipitation extremes are also projected over northern watersheds 
(Kharin et al., 2013; Sillmann et al., 2013), while rain on snow events are expected to increase (Hansen et al., 
2014). A net increased ratio of precipitation minus evaporation is projected, resulting in increased freshwater 
flux from the land surface to the Arctic Ocean, projected to be 30% above current values by 2100 under 
RCP4.5 (Haine et al., 2015) (Figure 3.10). This is consistent with CMIP5 model projections of increased 
discharge from Arctic watersheds (van Vliet et al., 2013; Gelfan et al., 2016; MacDonald et al., 2018). The 
water temperature of this increased discharge is projected to be approximately 1°C warmer than current 
conditions, increasing the heat flux to Arctic Ocean (van Vliet et al., 2013). 
 
Lake ice phenology is sensitive to projected changes in surface temperature (Sharma et al., 2019). Lake ice 
models project an earlier spring break-up of between 10–25 days by mid-century (compared with 1961–
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1990), and up to a 15-day delay in the freeze-up for lakes in the North American Arctic, with more extreme 
reductions for coastal regions (Brown and Duguay, 2011; Dibike et al., 2011; Prowse et al., 2011) (medium 
confidence). Mean maximum ice thickness is projected to decrease by 10–50 cm over the same period 
(Brown and Duguay, 2011). High-latitude warming is projected to drive earlier river ice break-up in spring 
due to both decreasing ice strength, and earlier onset of peak discharge (Cooley and Pavelsky, 2016). 
Complex interplay between hydrology and hydraulics in controlling spring flooding and ice jam events 
complicate projections of these events (Prowse et al., 2010; Prowse et al., 2011). 
 
3.4.3 Consequences and Impacts 
 
3.4.3.1 Global Climate Feedbacks 
 
3.4.3.1.1 Carbon cycle 
Climate warming is expected to change the storage of carbon in vegetation and soils in northern regions, and 
net carbon transferred to the atmosphere as CO2 and methane acts as a feedback to accelerate global climate 
change. There is high confidence that the northern region acted as a net carbon sink as carbon accumulated in 
terrestrial ecosystems over the Holocene (Loisel et al., 2014; Lindgren et al., 2018). There is increasing, but 
divergent evidence, that changing climate in the modern period has shifted these ecosystems into net carbon 
sources (low confidence). Syntheses of ecosystem CO2 fluxes have alternately showed tundra ecosystems as 
carbon sinks or neutral averaged across the circumpolar region for the 1990s and 2000s (McGuire et al., 
2012), or carbon sources over the same time period (Belshe et al., 2013). Both syntheses agree that the 
summer growing season is a period of net carbon uptake into terrestrial ecosystems (high confidence), and 
this uptake appears to be increasing as a function of vegetation density/biomass (Ueyama et al., 2013). The 
discrepancy between these syntheses may be a result of CO2 release rates during the non-summer season that 
are now thought to be higher than previously estimated (high confidence) (Webb et al., 2016) or the 
separation of upland and wetland ecosystem types, which was done in one synthesis but not the other. 
Moisture status is a primary control over ecosystem carbon sink/source strength with wetlands more often 
than not still acting as annual net carbon sinks even while methane is emitted (Lund et al., 2010). Recent 
aircraft measurements of atmospheric CO2 concentrations over Alaska showed that tundra regions of Alaska 
were a consistent net CO2 source to the atmosphere, whereas boreal forest regions were either neutral or net 
CO2 sinks for the period 2012 to 2014 (Commane et al., 2017). That study region as a whole was estimated 
to be a net carbon source of 25 ± 14 Tg CO2-C per year averaged over the land area of both biomes for the 
entire study period. For comparison to projected global emissions, this would be equivalent to a net source of 
0.3 Pg CO2-C per year assuming the Alaska study region (1.6 x 106 km2) could be scaled to the entire 
northern circumpolar permafrost region soil area (17.8 x 106 km2). 
 
The permafrost soil carbon pool is climate sensitive and an order of magnitude larger than carbon stored in 
plant biomass (Schuur et al., 2018b) (very high confidence). Initial estimates were converging on a range of 
cumulative emissions from soils to the atmosphere by 2100, but recent studies have actually widened that 
range somewhat (Figure 3.11) (medium confidence). Expert assessment and laboratory soil incubation 
studies suggest that substantial quantities of C (tens to hundreds Pg C) could potentially be transferred from 
the permafrost carbon pool into the atmosphere under RCP8.5 (Schuur et al., 2013; Schädel et al., 2014). 
Global dynamical models supported these findings, showing potential carbon release from the permafrost 
zone ranging from 37 to 174 Pg C by 2100 under high emission climate warming trajectories, with an 
average across models of 92 ± 17 Pg C (mean ± SE) (Zhuang et al., 2006; Koven et al., 2011; Schaefer et al., 
2011; MacDougall et al., 2012; Burke et al., 2013; Schaphoff et al., 2013; Schneider von Deimling et al., 
2015). This range is generally consistent with several newer data-driven modelling approaches that estimated 
that soil carbon releases by 2100 (for RCP8.5) will be 57 Pg C (Koven et al., 2015) and 87 Pg C (Schneider 
von Deimling et al., 2015), as well as an updated estimate of 102 Pg C from one of the previous models 
(MacDougall and Knutti, 2016). However, the latest model runs performed with either structural 
enhancements to better represent permafrost carbon dynamics (Burke et al., 2017a), or common 
environmental input data (McGuire et al., 2016) show similar soil carbon losses, but also indicate the 
potential for stimulated plant growth (nutrients, temperature/growing season length, CO2 fertilization) to 
offset some (Kleinen and Brovkin, 2018) or all of these losses, at least during this century, by sequestering 
new carbon into plant biomass and increasing carbon inputs into the surface soil (McGuire et al., 2018). 
These future carbon emission levels would be a significant fraction of those projected from fossil fuels with 
implications for allowable carbon budgets that are consistent with limiting global warming, but will also 
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depend on how vegetation responds (high confidence). Furthermore, there is high confidence that climate 
scenarios that involve mitigation (e.g. RCP4.5) will help to dampen the response of carbon emissions from 
the Arctic and boreal regions. 
 
Northern ecosystems contribute significantly to the global methane budget, but there is low confidence about 
the degree to which additional methane from northern lakes, ponds, wetland ecosystems, and the shallow 
Arctic Ocean shelves is currently contributing to increasing atmospheric concentrations. Analyses of 
atmospheric concentrations in Alaska concluded that local ecosystems surrounding the observation site have 
not changed in the exchange of methane from the 1980s until the present, which suggests that either the local 
wetland ecosystems are responding similarly to other northern wetland ecosystems, or that increasing 
atmospheric methane concentrations in northern observation sites is derived from methane coming from 
midlatitudes (Sweeney et al., 2016). However, this contrasts with indirect integrated estimates of methane 
emissions from observations of expanding permafrost thaw lakes that suggest a release of an additional 1.6–5 
Tg CH4 yr–1 over the last 60 years (Walter Anthony et al., 2014). At the same time, there is high confidence 
that methane fluxes at the ecosystem to regional scale have been under-observed, in part due to the low 
solubility of methane in water leading to ebullution (bubbling) flux to the atmosphere that is heterogeneous 
in time and space. Some new quantifications include: cold-season methane emissions that can be >50% of 
the annual budget of terrestrial ecosystems (Zona et al., 2016); geological methane seeps that may be climate 
sensitive if permafrost currently serves as a cap preventing atmospheric release (Walter Anthony et al., 2012; 
Ruppel and Kessler, 2016; Kohnert et al., 2017); estimates of shallow Arctic Ocean shelf methane emissions 
where the range of estimates based on methane concentrations in air and water has widened with more 
observations and now ranges from 3 Tg CH4 yr–1 (Thornton et al., 2016) to 17 Tg CH4 yr–1 (Shakhova et al., 
2013). Observations such as these underlie the fact that source estimates for methane made from atmospheric 
observations are typically lower than methane source estimates made from upscaling of ground observations 
(e.g., Berchet et al., 2016), and this problem has not improved, even at the global scale, over several decades 
of research (Saunois et al., 2016; Crill and Thornton, 2017).  
 
In many of the dynamical model projections previously discussed, methane release is not explicitly 
represented because fluxes are small even though higher global warming potential of methane makes these 
emissions relatively more important than on a mass basis alone. Global models that do include methane 
show that emissions may already (from 2000–2012) be increasing at a rate of 1.2 Tg CH4 yr–1 in the northern 
region as a direct response to temperature (Riley et al., 2011; Gao et al., 2013; Poulter et al., 2017). A model 
intercomparison study forecast northern methane emissions to increase from 18 Tg CH4 yr–1 to 42 Tg CH4 
yr–1 under RCP8.5 by 2100 largely as a result of an increase in wetland extent (Zhang et al., 2017). However, 
projected methane emissions are sensitive to changes in surface hydrology (Lawrence et al., 2015) and a 
suite of models that were thought to perform well in high-latitude ecosystems showed a general soil drying 
trend even as the overall water cycle intensified (McGuire et al., 2018). Furthermore, most models described 
above do not include many of the abrupt thaw processes that can result in lake expansion, wetland formation, 
and massive erosion and exposure to decomposition of previously frozen carbon-rich permafrost, leading to 
medium confidence in future model projections of methane. Recent studies that addressed some of these 
landscape controls over future emissions projected increases in methane above the current levels on the order 
10-60 Tg CH4 yr-1 under RCP8.5 by 2100 (Schuur et al., 2013; Koven et al., 2015; Lawrence et al., 2015; 
Schneider von Deimling et al., 2015; Walter Anthony et al., 2018). These additional methane fluxes are 
projected to cause 40-70% of total permafrost-affected radiative forcing in this century even though methane 
emissions are much less than CO2 by mass (Schneider von Deimling et al., 2015; Walter Anthony et al., 
2018). As with total carbon emissions, there is high confidence that mitigation of anthropogenic methane 
sources could help to dampen the impact of increased methane emissions from the Arctic and boreal regions 
(Christensen et al., 2019). 
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Figure 3.11: Estimates of cumulative net soil carbon pool change for the northern circumpolar permafrost region by 
2100 following medium and high emission scenarios (e.g. RCP4.5 and RCP8.5 or equivalent). Cumulative carbon 
amounts are shown in Gigatons C (1 Gt C=1 billion metric tons), with source (negative values) indicating net carbon 
movement from soil to the atmosphere and sink (positive values) indicating the reverse. Some data-constrained models 
differentiated CO2 and CH4; bars show total carbon by weight, paired bar with * indicate CO2-equivalent, which takes 
into account the global warming potential of CH4. Ensemble mean bars refer to the model average for the Permafrost 
Carbon Model Intercomparison Project [5 models]. Bars that do not start at zero are in part informed by expert 
assessment and are shown as 95%CI ranges; all other bars represent model mean estimates. Data are from 1(Schuur et 
al., 2013); 2(Schaefer et al., 2014) [8 models]; 3(Schuur et al., 2015); 4(Koven et al., 2015; Schneider von Deimling et 
al., 2015; Walter Anthony et al., 2018); 5(MacDougall and Knutti, 2016; Burke et al., 2017a; Kleinen and Brovkin, 
2018); 6(McGuire et al., 2018) 
 
 
3.4.3.1.2 Energy budget 
Warming-induced reductions in the duration and extent of Arctic spring snow cover (Section 3.4.1.1) lower 
albedo because snow-free land reflects much less solar radiation than snow. The corresponding increase in 
net radiation absorption at the surface provides a positive feedback to global temperatures (Flanner et al., 
2011; Qu and Hall, 2014; Thackeray and Fletcher, 2016) (high confidence). Estimates of increases in global 
net solar energy flux due to snow cover loss range from 0.10 W m–2 to 0.22 W m–2 (± 50%; medium 
confidence) depending on dataset and time period (Flanner et al., 2011; Chen et al., 2015; Singh et al., 2015; 
Chen et al., 2016b). Sources of uncertainty include the range in observed spring snow cover extent trends 
(Hori et al., 2017) and the influence of clouds on shortwave feedbacks (Sedlar, 2018; Sledd and L’Ecuyer, 
2019). Terrestrial snow changes also affect the longwave energy budget via altered surface emissivity 
(Huang et al., 2018). Climate model simulations show that changes in snow cover dominate land surface 
related positive feedbacks to atmospheric heating (Euskirchen et al., 2016), but regional variations in surface 
albedo are also influenced by vegetation (Loranty et al., 2014). There is evidence for positive sensitivity of 
surface temperatures to increased northern hemisphere boreal and tundra leaf area index, which contributes a 
positive feedback to warming (Forzieri et al., 2017).  
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3.4.3.2 Ecosystems and their Services 
 
3.4.3.2.1 Vegetation 
Changes in tundra vegetation can have important ecosystem effects, in particular on hydrology, carbon and 
nutrient cycling, and surface energy balance, which together impact permafrost (e.g., Myers-Smith and Hik, 
2013; Frost and Epstein, 2014; Nauta et al., 2014). Aside from physical impacts, changing vegetation 
influences the diversity and abundance of herbivores (e.g., Fauchald et al., 2017b; Horstkotte et al., 2017) in 
the Arctic. The overall trend for tundra vegetation across the 36–year satellite period (1982–2017) shows 
increasing above ground biomass (=greening) throughout a majority of the circumpolar Arctic (high 
confidence) (Xu et al., 2013a; Ju and Masek, 2016; Bhatt et al., 2017). Increasing greenness has been in 
some cases linked with shifts in plant species dominance away from graminoids (grasses and sedges) 
towards shrubs (high confidence) (Myers-Smith et al., 2015). Within the overall trend of greening, some 
tundra show declines in vegetation biomass (browning) (Bhatt et al., 2017). 
 
The spatial variation in greening and browning trends in tundra are also not consistent over time (decadal 
scale) and can vary across landform/ecosystem types (Lara et al., 2018), suggesting interactions between the 
changing environment and the biological components of the system that control these trends. There is high 
confidence that increases in summer, spring, and winter temperatures lead to tundra greening, as well as 
increases in growing season length (e.g., Vickers et al., 2016; Myers-Smith and Hik, 2018) that are in part 
linked to reductions in Arctic Ocean sea-ice cover (Bhatt et al., 2017; Macias-Fauria et al., 2017). Other 
factors that stimulate tundra greening include increases in snow water equivalent and soil moisture 
(Westergaard-Nielsen et al., 2017), increases in active layer thickness (via nutrient availability or changes in 
moisture), changes in herbivore activity, and to a lesser degree, human use of the land (e.g., Salmon et al., 
2016; Horstkotte et al., 2017; Martin et al., 2017; Yu et al., 2017). Research on tundra browning is more 
limited but suggests causal mechanisms that include: changes in winter climate—specifically reductions in 
snow cover due to winter warming events that expose tundra to subsequent freezing and desiccation—insect 
and pathogen outbreaks, increased herbivore grazing, and ground ice melting and subsidence that increases 
surface water (Phoenix and Bjerke, 2016; Bjerke et al., 2017) (medium confidence). 
 
Projections of tundra vegetation distribution across the Arctic by 2050 in response to changing 
environmental conditions suggest that the areal extent of most tundra types will decrease by at least 50% 
(Pearson et al., 2013). Woody shrubs and trees are projected to expand to cover 24-52% of the current tundra 
region by 2050, or 12-33% if tree dispersal is restricted. Adding to this, the expansion of fire into tundra that 
has not experienced large-scale disturbance for centuries causes large reductions in soil carbon stocks (Mack 
et al., 2011), shifts in vegetation composition and productivity (Bret-Harte et al., 2013), and can lead to 
widespread permafrost degradation (Jones et al., 2015a) at faster rates than would occur by changing 
environmental conditions alone. In tundra regions, graminoid (grasses and sedges) tundra is projected to be 
replaced by more-flammable shrub tundra in future climate scenarios, and tree migration into tundra could 
further increase fuel loading (Pastick et al., 2017). 
 
Similar to tundra, boreal forest vegetation shows trends of both greening and browning over multiple years 
in different regions across the satellite record (Beck and Goetz, 2011; Ju and Masek, 2016) (high 
confidence). Here, patterns of changing vegetation are a result of direct responses to changes in climate 
(temperature, precipitation, seasonality) and other driving factors for vegetation (nutrients, disturbance) 
similar to what has been reported in tundra. While boreal forest may expand at the northern edge (Pearson et 
al., 2013), climate projections suggest that it could diminish at the southern edge and be replaced by lower 
biomass woodland/shrublands (Koven, 2013; Gauthier et al., 2015). Furthermore, changes in fire disturbance 
are leading to shifts in landscape distribution of early and late successional ecosystem types, which is also a 
major factor in satellite trends. Fires that burn deeply into the organic soil layer can alter permafrost stability, 
hydrology, and vegetation. Loss of the soil organic layer exposes mineral soil seedbeds (Johnstone et al., 
2009), leading to recruitment of deciduous tree and shrub species that do not establish on organic soil 
(Johnstone et al., 2010). This recruitment has been shown to shift post-fire vegetation to alternate 
successional trajectories (Johnstone et al., 2010). Model projections suggest that Alaskan boreal forest soon 
may cross a point where recent increases in fire activity have made deciduous stands as abundant as spruce 
stands on the landscape (Mann et al., 2012). This projected trend of increasing deciduous forest at the 
expense of evergreen forest is mirrored in Russian and Chinese boreal forests as well (Shakhova et al., 2013; 
Shuman et al., 2015; Wu et al., 2017). 



FINAL DRAFT Chapter 3 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 3-69 Total pages:173 

 
3.4.3.2.2 Wildlife 
Reindeer and caribou (Rangifer tarandus), through their numbers and ecological role as a large-bodied 
herbivore, are a key driver of Arctic ecology. The seasonal migrations that characterize Rangifer link the 
coastal tundra to the continental boreal forests for some herds, while others live year-round on the tundra. 
Population estimates and trends exist for most herds, and indicate that pan-arctic migratory tundra Rangifer 
have declined from about 5 million in the 1990s to about 2 million in 2017 (Gunn, 2016; Fauchald et al., 
2017a) (high confidence). Numbers have recently increased for two Alaska herds and the Porcupine caribou 
herd straddling Yukon and Alaska is at a historic high. 
 
There is low confidence in understanding the complex drivers of observed Rangifer changes. Hunting and 
predation (the latter exacerbated by modification of the landscape for exploration and resource extraction; 
Dabros et al., 2018) increase in importance as populations decline. Climate strongly influences productivity: 
extremes in heat, drought, winter icing, and snow depth reduce Rangifer survival (Mallory and Boyce, 2017). 
Changes in the timing of sea ice formation have direct effects on risks during Rangifer migration via inter-
island movement and connection to the mainland (Poole et al., 2010). Summer warming is changing the 
composition of tundra plant communities, modifying the relationship between climate, forage, and Rangifer 
(Albon et al., 2017), which also impacts other Arctic species such as musk ox (Ovibos moschatus) (Schmidt 
et al., 2015). As polar trophic systems are highly connected (Schmidt et al., 2017), changes will propagate 
through the ecosystem with effects on other herbivores such as geese and voles, as well as predators such as 
wolves (Hansen et al., 2013; Klaczek et al., 2016). 
 
In northern Fennoscandia, there are approximately 600,000 semi-domesticated reindeer. Lichen rangelands 
are key to sustaining reindeer carrying capacity, with variable response to climate change: enhanced summer 
precipitation increases lichen biomass, while an increase in winter precipitation lowers it (Kumpula et al., 
2014). Fire disturbance reduces the amount of pasture available for domestic reindeer and increases 
predation on herding lands (Lavrillier and Gabyshev, 2017). Later ice formation on waterbodies can impact 
herding activities (Turunen et al., 2016). Ice formation from rain-on-snow events is associated with 
population changes including cases of catastrophic mass starvation (Bartsch et al., 2010; Forbes et al., 2016), 
but there is no evidence of trends in rain-on-snow events (Cohen et al., 2015; Dolant et al., 2017). 
 
Management of keystone species requires an understanding of pathogens and disease in the context of 
climate warming, but evidence of changing patterns across northern ecosystems (spanning terrestrial, 
aquatic, and marine environments) is hindered by an incomplete picture of pathogen diversity and 
distribution (Hoberg, 2013; Jenkins et al., 2013; Cook et al., 2017). Among ungulates, it is virtually certain 
that the emergence of disease attributed to nematode pathogens has accelerated since 2000 in the Canadian 
Arctic islands and Fennoscandia (Kutz et al., 2013; Hoberg and Brooks, 2015; Laaksonen et al., 2017; Kafle 
et al., 2018a). Discovery of the pathogenic bacterium Erysipelothrix rhusiopathiae has been linked to 
massive and widespread mortality among muskoxen from the Canadian Arctic Archipelago; loss of >50% of 
the population since 2010 may be attributable to disease interacting with extreme temperature events, 
although unequivocal links to climate have not been established (Kutz et al., 2015; Forde et al., 2016a; Forde 
et al., 2016b). Anthrax is projected to expand northward in response to warming, and resulted in substantial 
mortality events for reindeer on the Yamal Peninsula of Russia in 2016 with mobilization of bacteria 
possibly from a frozen reindeer carcass or melting permafrost (Walsh et al., 2018). In concert with climate 
forcing, pathogens are very likely responsible for increasing mortality in Arctic ungulates (muskox, 
caribou/reindeer) and alteration of transmission patterns in marine food chains, broadly threatening 
sustainability of subsistence and commercial hunting and fishing and safety of traditional foods for northern 
cultures at high latitudes (Jenkins et al., 2013; Kutz et al., 2014; Hoberg et al., 2017). 
 
3.4.3.2.3 Freshwater 
Climate-driven changes in seasonal ice and permafrost conditions influence water quality (high confidence). 
Shortened duration of freshwater ice cover (more light absorption, increased nutrient input) is expected to 
result in higher primary productivity (Hodgson and Smol, 2008; Vincent et al., 2011; Griffiths et al., 2017b) 
and may also encourage greater methane emissions from Arctic lakes (Greene et al., 2014; Tan and Zhuang, 
2015). Thaw slumps, active layer detachments, and peat plateau collapse affect surface water connectivity 
(Connon et al., 2014) and enhance sediment, particulate and solute fluxes in river and stream networks 
(Kokelj et al., 2013). The transfer of enhanced nutrients from land to water (driven by active layer thickening 
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and thermokarst processes; Abbott et al., 2015; Vonk et al., 2015) has been linked to heightened autotrophic 
productivity in freshwater ecosystems (Wrona et al., 2016). Still, there is low confidence in the influence of 
permafrost changes on dissolved organic carbon, because of competing mechanisms that influence carbon 
export. Permafrost thaw could contribute to the mobilization of previously frozen organic carbon (Abbott et 
al., 2014; Wickland et al., 2018; Walvoord et al., 2019) thereby enhancing both particulate and dissolved 
organic carbon export to aquatic systems. Increased delivery of this dissolved carbon from enhanced river 
discharge to the Arctic Ocean (Section 3.4.3.1.2) can exacerbate regionally-extreme aragonite 
undersaturation of shelf waters (Semiletov et al., 2016) driven by ocean uptake of anthropogenic CO2 
(Section 3.2.1.2.4). Conversely, reduced dissolved organic carbon export could accompany permafrost thaw 
as (1) water infiltrates deeper and has longer residence times for decomposition (Striegl et al., 2005) and (2) 
the proportion of groundwater (typically lower in dissolved organic carbon and higher in dissolved inorganic 
carbon than runoff) to total streamflow increases (Walvoord and Striegl, 2007). Increased thermokarst also 
has the potential to impact freshwater cycling of inorganic carbon (Zolkos et al., 2018). 
 
Enhanced subsurface water fluxes resulting from permafrost degradation has consequences for inorganic 
natural and anthropogenic constituents. Emerging evidence suggests large natural stores of mercury 
(Schuster et al., 2018; St Pierre et al., 2018) and other trace elements in permafrost (Colombo et al., 2018) 
may be released upon thaw, thereby having effects (largely unknown at this point) on aquatic ecosystems. In 
parallel, increased development activity in the Arctic is likely to lead to enhanced local sources of 
anthropogenic chemicals of emerging Arctic concern, including siloxanes, parabens, flame retardants, and 
per- and polyfluoroalkyl substances (AMAP, 2017c). For legacy pollutants, there is high confidence that 
black carbon and persistent organic pollutants (e.g., hexachlorocyclohexanes, polycyclic aromatic 
hydrocarbons, and polychlorinated biphenyls) can be transferred downstream and affect water quality 
(Hodson, 2014). Lakes can become sinks of these contaminants, while floodplains can be contaminated 
(Sharma et al., 2015). 
 
There is high confidence that habitat loss or change due to climate change impact Arctic fishes. Thinning ice 
on lakes and streams changes the overwintering habitat for aquatic fauna by impacting winter water volumes 
and dissolved oxygen levels (Leppi et al., 2016). Surface water loss, reduced surface water connectivity 
among aquatic habitats, and changes to the timing and magnitude of seasonal flows (Section 3.4.1.2) result in 
a direct loss of spawning, feeding, or rearing habitats (Poesch et al., 2016). Changes to permafrost 
landscapes have reduced freshwater habitat available for fishes and other aquatic biota, including aquatic 
invertebrates upon which the fish depend for food (Chin et al., 2016). Gullying deepens channels (Rowland 
et al., 2011; Liljedahl et al., 2016) that otherwise may connect lake habitats occupied by fishes. This can lead 
to the loss of surface water connectivity, limit fish access to key habitats, and lower fish diversity (Haynes et 
al., 2014; Laske et al., 2016). Small connecting stream channels, which are vulnerable to drying, provide 
necessary migratory pathways for fishes, allowing them to access spawning and summer rearing grounds 
(Heim et al., 2016; McFarland et al., 2017). 
 
Changes to the timing, duration, and magnitude of high surface flow events in early and late summer 
threaten Arctic fish dispersal and migration activities (Heim et al., 2016) (high confidence). Timing of 
important life history events such as spawning can become mismatched with changing stream flows (Lique 
et al., 2016). There is regional evidence that migration timing has shifted earlier and winter egg incubation 
temperature has increased for pink Salmon (Oncorhynchus gorbuscha), directly related to warming (Taylor, 
2007). While long-term, pan-Arctic data on run timing of fishes are limited, phenological shifts could create 
mismatches with food availability or habitat suitability in both marine and freshwater environments for 
anadromous species, and in freshwater environments for freshwater-resident species. Changes to the Arctic 
growing season (Xu et al., 2013a) increase the risk of drying of surface water habitats and pose a potential 
mismatch in seasonal availability of food in rearing habitats. 
 
Freshwater systems across the Arctic are relatively shallow, and thus are expected to warm (high 
confidence). This may make some surface waters inhospitably warm for cold water species such as Arctic 
Grayling (Thymallus arcticus) and whitefishes (Coregonus spp.), or may increase the risk of Saprolegnia 
fungus that appears to have recently spread rapidly, infecting whitefishes at much higher rates in Arctic 
Alaska than noted in the past (Sformo et al., 2017). High infection rates may be driven by stress or nutrient 
enrichment from thawing permafrost, which increases pathogen virulence with fish (Wedekind et al., 2010). 
Warmer water and longer growing seasons will also affect food abundance because invertebrate life histories 
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and production are temperature and degree-day dependent (Régnière et al., 2012). Increased nutrient export 
from permafrost loss (Frey et al., 2007), facilitated by warmer temperatures, will likely increase food 
resources for consumers, but the impact on lower trophic levels within food webs is not clearly understood. 
 
 
 [START BOX 3.4 HERE] 
 
Box 3.4: Impacts and Risks for Polar Biodiversity from Range Shifts and Species Invasions Related to 

Climate Change 
 
In polar regions climate-induced changes in terrestrial, ocean and sea ice environments, together with human 
introduction of non-native species, have expanded the range of some temperate species and contracted the 
range of some polar fish and ice associated species (Section 3.2.3.2; Duffy et al., 2017) (high confidence for 
detection, medium confidence for attribution). In some cases, spatial shifts in distribution have also been 
influenced by fluctuations in population abundance linked to climate-induced impacts on reproductive 
success (Section 3.2.3). These changes have the potential to alter biodiversity in polar marine and terrestrial 
ecosystems (Frenot et al., 2005; Frederiksen, 2017; McCarthy et al., 2019) (medium confidence). 
 
Ongoing climate change induced reductions in suitable habitat for Arctic sea ice-affiliated endemic marine 
mammals is an escalating threat (Section 3.2.3.1) (high confidence). This is further complicated by the 
northward expansion of the summer ranges of a variety of temperate whale species, documented recently in 
both the Pacific and Atlantic sides of the Arctic (Brower et al., 2017; Storrie et al., 2018) and increasing 
pressure from anthropogenic activities. Also, over the recent decade a northward shift in benthic species, 
with subsequent changes in community composition has been detected in both the northern Bering Sea 
(Grebmeier, 2012), off Western Greenland (Renaud et al., 2015), and the Barents Sea (Kortsch et al., 2012) 
(medium confidence). At the same time as these northward expansions or shifts, a number of populations of 
species as different as polar bear and Arctic char show range contraction or population declines (Winfield et 
al., 2010; Bromaghin et al., 2015; Laidre et al., 2018). 
 
In the Arctic a number of fish species have changed their spatial distribution substantially over the recent 
decades (high confidence). The most pronounced recent range expansion into the Arctic of all may be that of 
the summer feeding distribution of the temperate Atlantic mackerel (Scomber scombrus) in the Nordic Seas. 
From 1997 to 2016 the total area occupied by this large stock expanded from 0.4 to 2.5 million km2 and the 
centre-of-gravity of distribution shifted westward by 1650 km and northward by 400 km (Olafsdottir et al., 
2019), far into Icelandic and Greenland waters and even up to Svalbard (Berge et al., 2015; Jansen et al., 
2016; Nøttestad et al., 2016). This range expansion was linked both to a pronounced increase in stock size 
and warming of the ocean (Berge et al., 2015; Olafsdottir et al., 2019) (high confidence). Under RCP4.5 and 
RCP8.5 further range expansions of mackerel are projected in Greenland waters (Jansen et al., 2016) 
(medium confidence). However, further northwards expansion of planktivorous species may generally be 
restricted by them not being adapted to lack of primary production during winter (Sundby et al., 2016). 
Range shifts have also been observed in the Bering Sea since 1993 with warm bottom temperatures being 
associated with range contractions of Arctic species, and range expansions of sub-arctic species, with 
responses dependent on species specific vulnerably (Alabia et al., 2018; Stevenson and Lauth, 2018). 
 
In the Barents Sea, major expansions in distribution over the recent years to decades have been well 
documented for both individual species and whole biological communities (high confidence). New 
information strengthens findings reported in WGII AR5 of ecologically- and commercially-important fish 
stocks having extended their habitats markedly to the north and east, concomitant to increased sea 
temperature and retreating sea ice. This includes capelin (Ingvaldsen and Gjøsæter, 2013), Atlantic cod 
(Kjesbu et al., 2014), and haddock (Landa et al., 2014). Of even greater importance is novel evidence of 
distinct distributional changes at the community level (Fossheim et al., 2015; Kortsch et al., 2015; Frainer et 
al., 2017) (Box 3.4 Figure 1). Until recently, the northern Barents Sea was dominated by small-sized, slow-
growing fish species with specialized diets, mostly living in close association with the sea floor. 
Simultaneous with rising sea temperatures and retreating sea ice, these Arctic fishes are being replaced by 
boreal, fast-growing, large-bodied generalist fish moving in from the south. These large, migratory predators 
take advantage of increased production while the Arctic fish species suffer from higher competition and 
predation and are retracting northwards and eastwards. Consequently, climate change is inducing structural 
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change over large spatial scales, leading to a borealization (‘Atlantification’) of the European Arctic 
biological communities (Fossheim et al., 2015; Kortsch et al., 2015; Frainer et al., 2017) (medium 
confidence).  
 
There is evidence based on population genetics that the ecosystem off Northeast Greenland is also likely to 
become populated by a larger proportion of boreal species with ocean warming. Andrews et al. (2019) 
show that Atlantic cod, beaked redfish (Sebastes mentella), and deep-sea shrimp (Pandalus borealis) 
recently found on the Northeast Greenland shelf originate from the quite distant Barents Sea, and 
suggested that pelagic offspring were dispersed via advection across the Fram Strait. 
 
 

 
Box 3.4, Figure 1: Spatial distribution of fish communities identified at bottom trawl stations in the Barents Sea (north 
of northern Norway and Russia, position indicated by red box in small globe) in (a) 2004 and (b) 2012. Atlantic (red), 
Arctic (blue) and Central communities (yellow). Circles: shallow sub-communities, triangles: deep sub-communities. 
Modified from Fossheim et al. (2015). 
 
 
Physical barriers to range expansions into the high Arctic interior shelf systems and the outflow systems of 
Eurasia and the Canadian Archipelago will continue to govern future expansions of fish populations (medium 
confidence). The limited available information on marine fish from other Arctic shelf regions reveals a 
latitudinal cline in the abundance of commercially-harvestable fish species. For instance, there is evidence of 
latitudinal partitioning between the four dominant mid-water species (Polar cod, saffron cod [Eleginus 
gracilis], capelin, and Pacific herring, [Clupea pallasii]) in the Chuckchi and Northern Bering Sea, with 
Polar cod being most abundant to the north (De Robertis et al., 2017). These latitudinal gradients suggest that 
future range expansions of fish populations will continue to be governed by a combination of physical 
factors affecting overwintering success and the availability, quality and quantity of prey (medium 
confidence). 
 
In Antarctic marine systems, there is evidence of recent climate-related range shifts in the southwest Atlantic 
and West Antarctic Peninsula for penguin species (Pygoscelis papua and P. antarctica) and for Antarctic 
krill (Euphausia superba), but mesozooplankton communities do not appear to have changed or shifted in 
response to ocean warming (Section 3.2.3.2). Recent evidence suggests that the Antarctic Circumpolar 
Current and its associated fronts and thermal gradients may be more permeable to biological dispersal than 
previously thought, with storm-forced surface waves and ocean eddies enhancing oceanographic 
connectivity for drift particles in surface layers of the Southern Ocean (Fraser et al., 2017; Fraser et al., 
2018) (low confidence), but it is unclear whether this will be an increasingly-important pathway under 
climate change. Greater ship activity in the Southern Ocean may also present a risk for increasing 
introduction of non-native marine species, with the potential for these species to become invasive with 
changing environmental conditions (McCarthy et al., 2019). Current evidence of invasions by shell-crushing 
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crabs on the Antarctic continental slope and shelf remains equivocal (Griffiths et al., 2013; Aronson et al., 
2015; Smith et al., 2017d). 
 
On Arctic land, northward range expansions have been recorded in species from all major taxon groups 
based both on scientific studies and local observations (high confidence) (CAFF, 2013b; AMAP, 2017a; 
AMAP, 2017b; AMAP, 2018). The most recent examples of terrestrial vertebrates expanding northwards 
include a whole range of mammals in Yakutia, Russia (Safronov, 2016), moose (Alces alces) into the Arctic 
region of both northern continents (Tape et al., 2016), and North American beaver (Castor canadensis) in 
Alaska (Tape et al., 2018). In parallel with these expansions, pathogens and pests are also spreading north 
(CAFF, 2013b; Taylor et al., 2015; Forde et al., 2016b; Burke et al., 2017b; Kafle et al., 2018a). A 
widespread change is tundra greening, which in some cases is linked to shifting plant dominance within 
Arctic plant communities, in particular an increase in woody shrub biomass as conditions become more 
favorable for them (Myers-Smith et al., 2015; Bhatt et al., 2017). 
 
Expansion of subarctic terrestrial species and biological communities into the Arctic and displacing native 
species is considered a major threat, since unique Arctic species may be less competitive than encroaching 
subarctic species favoured by changing climatic conditions (CAFF, 2013b). Similar displacements may take 
place within zones of the Arctic when Low- and Mid-Arctic species expand northward. Here, the most 
vulnerable species and communities may be in the species-poor, but unique, northernmost sub-zone of the 
Arctic because species cannot migrate northward as southern species encroach (CAVM Team, 2003; Walker 
et al., 2016; AMAP, 2018). This ‘Arctic squeeze’ is a combined effect of the fact that the area of the globe 
increasingly shrinks when moving poleward and that there is nowhere further north on land to go for 
terrestrial biota at the northern coast. The expected overall result of these shifts and limits will be a loss of 
biodiversity (CAFF, 2013b; CAFF, 2013a; AMAP, 2018) (medium confidence). At the southern limit of the 
Arctic, thermal hotspots may support high biological productivity, but not necessarily high biodiversity 
(Walker et al., 2015) and may even act as advanced bridgeheads for expansion of subarctic species into the 
true Arctic (medium confidence). At the other end of the Arctic zonal range, a temperature increase of only 
1–2°C in the northernmost subzone may allow the establishment of woody dwarf shrubs, sedges and other 
species into bare soil areas that may radically change its appearance and ecological functions (Walker et al., 
2015; Myers-Smith et al., 2019) (medium confidence).  
 
Range expansions also include the threat from alien species brought in by humans to become invasive and 
outcompete native species. Relatively few invasive alien species are presently well established in the Arctic, 
but many are thriving in the subarctic and may expand as a result of climate change (CAFF, 2013b; CAFF, 
2013a). Examples of this include: American mink (Neovison vison) and Nootka lupin (Lupinus nootkatensis) 
in Arctic western Eurasia, Greenland and Iceland that are already causing severe problems to native fauna 
and flora (CAFF and PAME, 2017). 
 
Alien species are a major driver of terrestrial biodiversity change also in the Antarctic region (Frenot et al., 
2005; Chown et al., 2012; McClelland et al., 2017). The Protocol on Environmental Protection to the 
Antarctic Treaty restricts the introduction of non-native species to Antarctica as do the management 
authorities of sub-Antarctic islands (De Villiers et al., 2006). Despite this, alien species and their propagules 
continue to be introduced to the Antarctic continent and sub-Antarctic islands (Hughes et al., 2015). To date, 
14 non-native terrestrial species have colonised the Antarctic Treaty area (excluding subantarctic islands) 
(Hughes et al., 2015), while the number in the subantarctic is much higher (on the order of 200 species) 
(Frenot et al., 2005). Species distribution models for terrestrial invasive species indicate that climate does not 
currently constitute a barrier for the establishment of invasive species on all subantarctic islands, and that the 
Antarctic Peninsula region will be the most vulnerable location on the Antarctic continent to invasive species 
establishment under RCP8.5 (Duffy et al., 2017). Thus, for continental Antarctica, existing climatic barriers 
to alien species establishment will weaken as warming continues across the region (medium confidence). An 
increase in the ice-free area linked to glacier retreat in Antarctica is expected to increase the area available 
for new terrestrial ecosystems (Lee et al., 2017a). Along with growing number of visitors, this is expected to 
increase in the establishment probability of terrestrial alien species (Chown et al., 2012; Hughes et al., 2015) 
(medium confidence).  
 
[END BOX 3.4 HERE] 
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3.4.3.3 Impacts on Social-Ecological Systems 
 
The Arctic is home to over four million people, with large regional variation in population distribution and 
demographics (Heleniak, 2014). ‘Connection with nature’ is a defining feature of Arctic identity for 
indigenous communities (Schweitzer et al., 2014) because the lands, waters, and ice that surround 
communities evoke a sense of home, freedom, and belonging and are crucial for culture, life, and survival 
(Cunsolo Willox et al., 2012; Durkalec et al., 2015). Climate-driven environmental changes are affecting 
local ecosystems and influencing travel, hunting, fishing, and gathering practises. This has implications for 
people’s livelihoods, cultural practices, economies, and self-determination. 
 
3.4.3.3.1 Food and water security 
Impacts of climate change on food and water security in the Arctic can be severe in regions where 
infrastructure (including ice roads), travel, and subsistence practices are reliant on elements of the cryosphere 
such as snow cover, permafrost, and freshwater or sea ice (Cochran et al., 2013; Inuit Circumpolar Council, 
2015). 
 
There is high confidence in indicators that food insecurity risks are on the rise for Indigenous Arctic peoples. 
Food is strongly tied to culture, identity, values, and ways of life (Donaldson et al., 2010; Cunsolo Willox et 
al., 2015; Inuit Circumpolar Council, 2015); thus, impacts to food security go beyond access to food and 
physical health. Food systems in northern communities are intertwined with northern ecosystems because of 
subsistence hunting, fishing, and gathering activities. Environmental changes to animal habitat, population 
sizes, and movement mean that culturally-important food species may no longer be found within accessible 
ranges or familiar areas (Parlee and Furgal, 2012; Rautio et al., 2014; Inuit Circumpolar Council, 2015; 
Lavrillier et al., 2016) (Section 3.4.3.2.2). This impacts negatively the accessibility of culturally-important 
local food sources (Lavrillier, 2013; Rosol et al., 2016) that make important contributions to a nutritious diet 
(Donaldson et al., 2010; Hansen et al., 2013; Dudley et al., 2015). Longer open water seasons and poorer ice 
conditions on lakes impact fishing options (Laidler, 2012) and waterfowl hunting (Goldhar et al., 2014). 
Permafrost warming and increases in active layer thickness (Section 3.4.1.3) reduce the reliability of 
permafrost for natural refrigeration. In some cases these changes have reduced access to, and consumption 
of, locally resourced food and can result in increased incidence of illness (Laidler, 2012; Cochran et al., 
2013; Cozzetto et al., 2013; Rautio et al., 2014; Beaumier et al., 2015). These consequences of climate 
change are intertwined with processes of globalization, whereby complex social, economic, and cultural 
factors are contributing to a dietary transformation from locally resourced foods to imported market foods 
across the Arctic (Harder and Wenzel, 2012; Parlee and Furgal, 2012; Nymand and Fondahl, 2014; Beaumier 
et al., 2015). Limiting exposures to zoonotic, foodborne, and waterborne pathogens (Section 3.4.3.2.2) 
depends on accurate and comprehensive data on species diversity, biology and distribution, and pathways for 
invasion (Hoberg and Brooks, 2015; Kafle et al., 2018b). 
 
There is high confidence that changes to travel conditions impact food security through access to hunting 
grounds. Shorter snow cover duration (Section 3.4.1.1), and changes to snow conditions (such as density) 
make travel more difficult and dangerous (Laidler, 2012; Ford et al., 2019). Changes in dominant wind 
direction and speed reduce the reliability of traditional navigational indicators such as snow drifts, increasing 
safety concerns (Ford and Pearce, 2012; Laidler, 2012; Ford et al., 2013; Clark et al., 2016b). Permafrost 
warming, increased active layer thickness and landscape instability (Section 3.4.1.3), fire disturbance, and 
changes to water levels (Section 3.4.1.2) impact overland navigability in summer (Goldhar et al., 2014; 
Brinkman et al., 2016; Dodd et al., 2018). 
 
There is high confidence that both risks and opportunities arise for coastal communities with changing sea 
ice and open water conditions. Of particular concern for coastal communities is landfast sea ice (Section 
3.3.1.1.5), which creates an extension of the land in winter that facilitates travel (Inuit Circumpolar Council 
Canada, 2014). The floe edge position, timing and dynamics of freeze-up and break-up, sea ice stability 
through the winter, and length of the summer open water season are important indicators of changing ice 
conditions and safe travel (Gearheard et al., 2013; Eicken et al., 2014; Baztan et al., 2017). Warming water 
temperature, altered salinity profiles, snow properties, changing currents and winds all have consequences 
for the use of sea ice as a travel or hunting platform (Hansen et al., 2013; Eicken et al., 2014; Clark et al., 
2016a). More leads (areas of open water), especially in the spring, can mean more hunting opportunities such 
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as whaling off the coast of Alaska (Hansen et al., 2013; Eicken et al., 2014). In Nunavut, a floe edge closer 
to shore improves access to marine mammals such as seals or narwhal (Ford et al., 2013). However, these 
conditions also hamper access to coastal or inland hunting grounds (Hansen et al., 2013; Durkalec et al., 
2015), have increased potential for break-off events at the floe edge (Ford et al., 2013), or can result in 
decreased presence (or total absence) of ice-associated marine mammals with an absence of summer sea ice 
(Eicken et al., 2014). 
 
Many northern communities rely on ponds, streams, and lakes for drinking water (Cochran et al., 2013; 
Goldhar et al., 2013; Nymand and Fondahl, 2014; Daley et al., 2015; Dudley et al., 2015; Masina et al., 
2019), so there is high confidence that projected changes in hydrology will impact water supply (Section 
3.4.2.2). Surface water is vulnerable to thermokarst disturbance and drainage, as well as bacterial 
contamination, the risks of which are increased by warming ground and water temperatures (Cozzetto et al., 
2013; Goldhar et al., 2013; Dudley et al., 2015; Masina et al., 2019). Icebergs or old multi-year ice are 
important sources of drinking water for some coastal communities, so reduced accessibility to stable sea ice 
conditions affects local water security. Small remote communities have limited capacity to respond quickly 
to water supply threats, which amplifies vulnerabilities to water security (Daley et al., 2015). 
 
3.4.3.3.2 Communities 
Culture and knowledge 
Spending time on the land is culturally important for indigenous communities (Eicken et al., 2014; Durkalec 
et al., 2015). There is high confidence that daily life is influenced by changes to ice freeze-up and break-up 
(rivers/lakes/sea ice), snow onset/melt, vegetation phenology, and related wildlife/fish/bird behaviour (Inuit 
Circumpolar Council, 2015). Inter-generational knowledge transmission of associated values and skills is 
also influenced by climate change because younger generations do not have the same level of experience or 
confidence with traditional indicators (Ford, 2012; Parlee and Furgal, 2012; Eicken et al., 2014; Pearce et al., 
2015). Climate-driven changes undermine confidence in indigenous knowledge holders in regards to 
traditional indicators used for safe travel and navigation (Parlee and Furgal, 2012; Golovnev, 2017; Ford et 
al., 2019). 
 
Economics 
The Arctic mixed economy is characterized by a combination of subsistence activities, and employment and 
cash income. There is low confidence about the extent and nature of impact of climate change on local 
subsistence activities and economic opportunities across the Arctic (e.g., hunting, fishing, resource 
extraction, tourism and transportation; see Section 3.2.4) because of high variability between communities 
(Harder and Wenzel, 2012; Cochran et al., 2013; Clark et al., 2016b; Fall, 2016; Ford et al., 2016; Lavrillier 
et al., 2016). Longer ice-free travel windows in Arctic seas could lower the costs of access and development 
of northern resources (delivering supplies and shipping resources to markets) and thus, may contribute to 
increased opportunities for marine shipping, commercial fisheries, tourism, and resource development 
(Sections 3.2.4.2, 3.2.4.3) (Ford et al., 2012; Huskey et al., 2014; Overland et al., 2017). This has important 
implications for economic development, particularly in relation to local employment opportunities but also 
raises concerns of detrimental impacts on animals, habitat, and subsistence activities (Cochran et al., 2013; 
Inuit Circumpolar Council, 2015). 
 
3.4.3.3.3 Health and wellbeing 
For many polar residents, especially Indigenous peoples, the physical environment underpins social 
determinants of well-being, including physical and mental health. Changes to the environment impact most 
dimensions of health and well-being (Parlee and Furgal, 2012; Ostapchuk et al., 2015). Climate change 
consequences in polar regions (Sections 3.3.1.1, 3.4.1.2) have impacted key transportation routes (Gearheard 
et al., 2006; Laidler, 2006; Ford et al., 2013; Clark et al., 2016a) and pose increased risk of injury and death 
during travel (Durkalec et al., 2014; Durkalec et al., 2015; Clark et al., 2016b; Driscoll et al., 2016). 
 
Foodborne disease is an emerging concern in the Arctic because warmer waters, loss of sea ice (Section 
3.3.1.1), and resultant changes in contaminant pathways can lead to bioaccumulation and biomagnification 
of contaminants in key food species. While many hypothesized foodborne diseases are not well studied 
(Parkinson and Berner, 2009), foodborne gastroenteritis is associated with shellfish harvested from warming 
waters (McLaughlin et al., 2005; Young et al., 2015). Mercury presently stored in permafrost (Schuster et al., 
2018) has potential to accumulate in aquatic ecosystems. 
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Climate change increases the risk of waterborne disease in the Arctic via warming water temperatures and 
changes to surface hydrology (Section 3.4.1.2) (Parkinson and Berner, 2009; Brubaker et al., 2011; Dudley 
et al., 2015). After periods of rapid snowmelt, bacteria can increase in untreated drinking water, with 
associated increases in acute gastrointestinal illness (Harper et al., 2011). Consumption of untreated drinking 
water may increase duration and frequency of exposure to local environmental contaminants (Section 
3.4.3.2.3) or potential waterborne diseases (Goldhar et al., 2014; Daley et al., 2015). The potential for 
infectious gastrointestinal disease is not well understood, and there are concerns in relation to the safety of 
storage containers of raw water in addition to the quality of the source water itself (Goldhar et al., 2014; 
Wright et al., 2017; Masina et al., 2019). 
 
Climate change has negatively affected place attachment via hunting, fishing, trapping, and traveling 
disruptions, which have important mental health impacts (Cunsolo Willox et al., 2012; Durkalec et al., 2015; 
Cunsolo and Ellis, 2018). The pathways through which climate change impacts mental wellness in the Arctic 
varies by gender (Bunce and Ford, 2015; Ostapchuk et al., 2015; Bunce et al., 2016) and age (Petrasek-
MacDonald et al., 2013; Ostapchuk et al., 2015). Emotional impacts of climate-related changes in the 
environment were significantly higher for women compared to men, linked to concern for family members 
(Ostapchuk et al., 2015). However, men are also vulnerable due to gendered roles in subsistence and cultural 
activities (Bunce and Ford, 2015). In coastal areas, sea ice means freedom for travel, hunting, and fishing, so 
changes in sea ice affect the experience of and connection with place. In turn, this influences individual and 
collective mental/emotional health, as well as spiritual and social vitality according to relationships between 
sea ice use, culture, knowledge, and autonomy (Cunsolo Willox et al., 2013a; Cunsolo Willox et al., 2013b; 
Gearheard et al., 2013; Durkalec et al., 2015; Inuit Circumpolar Council, 2015). 
 
3.4.3.3.4 Infrastructure 
Permafrost is undergoing rapid change (Section 3.4.1.3), creating challenges for planners, decision makers, 
and engineers (AMAP, 2017d). The observed changes in the ground thermal regime (Romanovsky et al., 
2010; Romanovsky et al., 2017; Biskaborn et al., 2019) threaten the structural stability and functional 
capacities of infrastructure, in particular that which is located on ice-rich frozen ground. Extensive 
summaries of construction damages along with adaptation and mitigation strategies are available (Larsen et 
al., 2014; Dore et al., 2016; AMAP, 2017d; Pendakur, 2017; Shiklomanov et al., 2017a; Shiklomanov et al., 
2017b; Vincent et al., 2017). 
 
Projections of climate and permafrost suggest that a wide range current infrastructure will be impacted by 
changing conditions (medium confidence). A circumpolar study found that approximately 70% of 
infrastructure (residential, transportation and industrial facilities), including over 1200 settlements (~40 with 
population more than 5000) are located in areas where permafrost is projected to thaw by 2050 under 
RCP4.5 (Hjort et al., 2018). Regions associated with the highest hazard are in the thaw-unstable zone 
characterized by relatively high ground-ice content and thick deposits of frost-susceptible sediments 
(Shiklomanov et al., 2017b). By 2050, these high-hazard environments contain one-third of existing pan-
Arctic infrastructure. Onshore hydrocarbon extraction and transportation in the Russian Arctic are at risk: 
45% of the oil and natural gas production fields in the Russian Arctic are located in the highest hazard zone. 
 
In a regional study of the state of Alaska, cumulative expenses projected for climate-related damage to 
public infrastructure totalled USD5.5 billion between 2015 and 2099 under RCP8.5 (Melvin et al., 2017). 
The top two causes of damage related costs were projected to be road flooding from increased precipitation, 
and building damage associated with near-surface permafrost thaw. These costs decreased by 24% to 
USD4.2 billion for the same time frame under RCP4.5, indicating that reducing greenhouse gas emissions 
globally could lessen damages (Figure 3.13). In a related study that included these costs and others, as well 
as positive gains from climate change in terms of a reduction in heating costs attributable to warmer winter, 
annual net costs were still USD340–$700 million, or 0.6%–1.3% of Alaska’s GDP, suggesting that climate 
change costs will outweigh positive benefits, at least for this region (Berman and Schmidt, 2019). 
 
Winter roads (snow covered ground and frozen lakes) are distinct from the infrastructure considered earlier, 
but have a strong influence on the reliability and costs of transportation in some remote northern 
communities and industrial development sites (Parlee and Furgal, 2012; Huskey et al., 2014; Overland et al., 
2017). For these communities, changing lake and river levels and the period of safe ice cover all affect the 
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duration of use of overland travel routes and inland waterways, with associated implications for increased 
travel risks, time, and costs (Laidler, 2012; Ford et al., 2013; Goldhar et al., 2014). There have been recent 
instances of severely curtailed ice road shipping seasons due to unusually warm conditions in the early 
winter (Sturm et al., 2017). While the impact of human effort on the maintenance of winter roads is difficult 
to quantify, a reduction in the operational time window due to winter warming is projected (Mullan et al., 
2017). 
 
 
3.5 Human Responses to Climate Change in Polar Regions 
 
3.5.1 The Polar Context for Responding 
 
Human responses to climate change in the Arctic and Antarctica are shaped by their unique physical, 
ecological, social, cultural, and political conditions. Extreme climatic conditions, remoteness from densely 
populated regions, limited human mobility, short seasons of biological productivity, high costs in monitoring 
and research, sovereignty claims to lands and waters by southern-based governments, a rich diversity of 
indigenous cultures, and institutional arrangements that in some cases recognize indigenous rights and 
support regional and international cooperation in governance are among the many factors that impede and or 
facilitate adaptation. 
 
The social and cultural differences are an especially noteworthy factor in assessing polar responses. 
Approximately 4 million people currently reside in the Arctic with about three quarters residing in urban 
areas, and approximately 10% being Indigenous (AHDR, 2014). Regions of the Arctic differ widely in 
population, ranging from 94% of Iceland’s population living in urban environments to 68% of Nunavut, 
Canada’s population living in rural areas. And while there has been a general movement to greater 
urbanization in the Arctic (AHDR, 2014), that trend is not true for all regions (Heleniak, 2014). About 4400 
people reside in Antarctic in the summer and about 1100 in the winter, predominantly based at research 
stations of which approximately 40 are occupied year-round (The World Factbook, 2016). 
 
For most Arctic Indigenous peoples, human responses to climate change are viewed as a matter of cultural 
survival (Greaves, 2016) (Cross-Chapter Box 3 in Chapter 1). However, Indigenous people are not 
homogenous in their perspectives. While in some cases indigenous People are negatively impacted by 
sectoral activities such as mining and oil and gas development (Nymand and Fondahl, 2014), in other cases 
they benefit financially (Shadian, 2014), setting up dilemmas and potential internal conflicts (Huskey, 2018; 
Southcott and Natcher, 2018) (high confidence). Geopolitical complexities also confound responses. 
 
Together these conditions make for complexity and uncertainty in human decision making, be it at the 
household and community levels to the international level. Adding to uncertainty in human choice related to 
climate change is the interaction of climate with other forces for change, such as globalization and land and 
sea-use change. These interactions necessitate that responses to climate change consider cumulative effects 
as well as context-specific pathways for building resilience (Nymand and Fondahl, 2014; ARR, 2016).  
 
3.5.2 Responses of Human Sectors 
 
The sections below assess human responses to climate change in polar regions by examining various sectors 
of human-environment activity (i.e. social-ecological subsystems), reviewing their respective systems of 
governance related to climate change, and considering possible resilience pathways. Table 3.4 summarizes 
the consequences, interacting drivers, responses, and assets for responding to climate change by social-
ecological subsystems (i.e., sectors) of Arctic and Antarctic regions. An area of response not elaborated in 
this assessment is geo-engineered sea ice remediation to support local-to-regional ecosystem restoration and 
which may also affect climate via albedo changes. There is an emerging body of literature on this topic (e.g., 
Berdahl et al., 2014; Desch et al., 2017; Field et al., 2018), which at present is too limited to allow assessing 
dimensions of feasibility, benefits and risks, and governance. 
 
3.5.2.1 Commercial Fisheries 
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Responses addressing changes in the abundance and distribution of fish resources (Section 3.2.4.1) differ by 
region. In some polar regions, strategies of adaptive governance, biodiversity conservation, scenario 
planning, and the precautionary approach are in use (NPFMC, 2018). Further development of coordinated 
monitoring programs (Cahalan et al., 2014; Ganz et al., 2018), data sharing, social learning and decision-
support tools that alert managers to climate change impacts on species and ecosystems would allow for 
appropriate and timely responses including changes in overall fishing capacity, individual stock quotas, 
shifts between different target species, opening/closure of different geographic areas and balance between 
different fishing fleets (Busch et al., 2016; NPFMC, 2019; see Section 3.5.4). Scenario planning, adaptive 
management, and similar efforts will contribute to the resilience and conservation of these social-ecological 
systems (medium confidence). 
 
Five Arctic States, known as ‘Arctic 5’ (Canada, Denmark, Norway, Russia and the United States) have 
sovereign rights for exploring and exploiting resources within their 200 nautical mile Exclusive Economic 
Zones (EEZs) in the High Arctic and manage their resources within their own regulatory measures. A review 
of future harvest in the European Arctic (Haug et al., 2017) points towards high probability of increased 
northern movement of several commercial fish species (Section 3.3.3.1, Box 3.4), but only to the shelf slope 
for the demersal species. This shift suggests increased northern fishing activity, but within the EEZs and 
present management regimes (Haug et al., 2017) (medium confidence). 
 
In 2009, a new Marine Resources Act entered into force for Norway’s EEZ. This act applies to all wild 
living marine resources, and states that its purpose is to ensure sustainable and economically-profitable 
management of resources. Conservation of biodiversity is described as an integral part of its sustainable 
fisheries management and it is mandatory to apply ‘an ecosystem approach, taking into account habitats and 
biodiversity’ (Gullestad et al., 2017). In addition to national management, the Joint Norwegian-Russian 
Fisheries Commission provides cooperative management of the most important fish stocks in the Barents and 
Norwegian Seas. The stipulation of the total quota for the various joint fish stocks is a key element, as is 
more long-term precautionary harvesting strategies, better allowing for responses to climate change (medium 
confidence). A scenario-based approach to identify management strategies that are effective under changing 
climate conditions is being explored for the Barents Sea (Planque et al., 2019). 
 
In the U.S. Arctic an adaptive management approach has been introduced that utilises future ecological 
scenarios to develop strategies for mitigating the future risks and impacts of climate change (NPFMC, 2018). 
The fisheries of the southeastern Bering Sea are managed through a complex suite of regulations that 
includes catch shares (Ono et al., 2017), habitat protections, restrictions on forage fish, bycatch constraints 
(DiCosimo et al., 2015), and community development quotas. This intricate regulatory framework has 
inherent risks and benefits to fishers and industry by limiting flexibility (Anderson et al., 2017b). To address 
these challenges, the NPFMC recently adopted a Fishery Ecosystem Plan (FEP), which includes a multi-
model climate change action module (Punt et al., 2015; Holsman et al., 2017; Zador et al., 2017; Holsman et 
al., 2019). Despite this complex ecosystem-based approach to fisheries management, it may not be possible 
to prevent projected declines of some high-value species at high rates of global warming (Ianelli et al., 
2016). 
 
In the US portion of the Chukchi and Beaufort Seas EEZ, fishing is prohibited until sufficient information is 
obtained to sustainably manage the resource (Wilson and Ormseth, 2009). In the Canadian sector of the 
Beaufort Sea, commercial fisheries are currently only small scale and locally operated. However, with 
decreasing ice cover and potential interest in expanding fisheries, the Inuvialuit subsistence fishers of the 
western Canadian Arctic, developed a new proactive ecosystem-based Fisheries Management Framework 
was developed (Ayles et al., 2016). Also in Western Canada, the commercial fishery for Arctic char 
(Salvenius alpinus) in Cambridge Bay is co-managed by local Inuit organizations and Fisheries and Oceans 
Canada (DFO, 2014). 
 
The high seas region of the Central Arctic Ocean (CAO) is per definition outside of any nation’s EEZ. 
Recent actions of the international community show that a precautionary approach to considerations of CAO 
fisheries has been adopted (high confidence) and that expansion of commercial fisheries into the CAO will 
be constrained until sufficient information is obtained to manage the fisheries according to an ecosystem 
approach to fisheries management (high confidence). The Arctic 5 officially adopted the precautionary 
approach to fishing in 2015 by signing the Oslo Declaration concerning the prevention of unregulated fishing 
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in the CAO. The declaration established a moratorium to limit potential expansion of CAO commercial 
fishing until sufficient information, also on climate change impacts, is available to manage it sustainably.  
The Arctic 5 and several other nations subsequently agreed to a treaty that imposed a 16-year moratorium on 
commercial fishing in the CAO. Several other agreements have adopted the same approach, including the 
Central Arctic Ocean Fisheries (CAOF) Agreement.  
 
The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) is responsible for 
the conservation of marine resources south of the Antarctic Polar Front (CCAMLR, 1982), and has 
ecosystem-based fisheries management embedded within its convention (Constable, 2011). This includes the 
CCAMLR Ecosystem Monitoring Program, which aims to monitor important land-based predators of krill to 
detect the effects of the krill fishery on the ecosystem. Currently, there is no formal mechanism for choosing 
which data are needed in a management procedure for krill or how to include such data. However, this 
information will be important in enabling CCAMLR fisheries management to respond to the effects of 
climate change on krill and krill predators in the future.  
 
Commercial fisheries management responses to climate change impacts in the Southern Ocean may need to 
address the displacement of fishing effort due to poleward shifts in species distribution (Pecl et al., 2017) 
(Box 3.4) (low confidence). Fisheries in the Southern Ocean are relatively mobile and are potentially able to 
respond to range shifts in target species, which is in contrast to small-scale coastal fisheries in other regions. 
Management responses will also need to adapt to the effects of future changes in sea ice extent and duration 
on the spatial distribution of fishing operations (ATCM, 2017; Jabour, 2017) (Section 3.2.4). 
 
3.5.2.2 Arctic Subsistence Systems 
 
Subsistence users have responded to climate change by adapting their wildfood production systems and 
engaging in the climate policy processes at multiple levels of governance. The limitations of many formal 
institutions, however, suggest that in order to achieve greater resilience of subsistence systems with climate 
change, transformations in governance are needed to provide greater power sharing, including more 
resources for engaging in climate change studies and regional-to-national policy making (See 3.2.4.1.1, 
3.4.3.2.2, 3.4.3.3.1, 3.4.3.3.2, 3.4.3.3.3, 3.5.3).  
 
Adaptation by subsistence users to climate change falls into several categories. In some cases harvesters are 
shifting the timing of harvesting and the selection of harvest areas due to changes in seasonality and access 
to traditional use areas (AMAP, 2017a; AMAP, 2017b; AMAP, 2018). Changes in the navigability of rivers 
(i.e., shallower) and more open (i.e., dangerous) seas have resulted in harvesters changing harvesting gear, 
such as shifting from propeller to jet-propelled boats or all-terrain-vehicles, and to larger ocean-going vessels 
for traditional whaling (Brinkman et al., 2016). In many cases, using different gear results in an increase in 
fuel costs (e.g., jet boats are about 30% less efficient). Unsafe ice conditions have resulted in greater risks of 
travel on rivers and the ocean in the frozen months. In Savoonga, Alaska, whalers reported limitations in 
harvesting larger bowhead because of thin ice conditions that do not allow for safe haul outs, and as a result, 
community residents now anticipate a greater dependence on western Alaska’s reindeer as a source of meat 
in the future (Rosales and Chapman, 2015). Harvesters have also responded with switching of harvested 
species and in some cases doing without (AMAP, 2018). In many cases, adaption has allowed for continued 
provisioning of wildfoods in spite of climate change impacts (BurnSilver et al., 2016; AMAP, 2017a; 
Fauchald et al., 2017b) (medium confidence). 
 
The impacts of climate change have also required adaptation to the non-harvesting aspects of wildfood 
production, such as an abandonment of traditional food storage and drying practices (e.g., ice cellars) and an 
increased use of household and community freezers (AMAP, 2017a). In several cases there has been an 
increased emphasis on community self-reliance, such as use of household and community gardens for food 
production (Loring et al., 2016). In the future, agriculture may be more possible with improved conditions at 
the southern limit of the Arctic, and could supplement hunting and fishing (AMAP, 2018). 
 
Climate change may in the future bring both new harvestable fish, birds, mammals and berry-producing 
plants to the North, and reduced populations and or access to currently harvested species (AMAP, 2017a; 
AMAP, 2017b; AMAP, 2018). Adaptive co-management and stronger links of local-to-regional level 
management with national- to international-level agreements necessitate consideration for sustainable 



FINAL DRAFT Chapter 3 IPCC SR Ocean and Cryosphere 

 
Subject to Copyedit 3-80 Total pages:173 

harvest of new resources, as well as securing sustainable harvest or even full protection of dwindling or 
otherwise vulnerable populations. In these cases, adaptive co-management could be an efficient tool to 
achieve consensus on population goals, including international cooperation and agreements regarding 
migratory species shared between more countries (Kocho-Schellenberg and Berkes, 2014) (Section 3.5.4.3).  
While there has been involvement of subsistence users in monitoring and research on climate change 
(Section 3.5.4.1.1), resource management regimes that regulate harvesting are largely dictated by science-
based paradigms that give limited legitimacy to the knowledge and suggested preferences of subsistence 
users (Section 3.5.4.2, Cross-Chapter Box 4 in Chapter 1). 

The social costs and social learning associated with responding to climate change are often related. 
Involvement in adaptive co-management comes with high transaction costs (e.g., greater demands on 
overburdened indigenous leaders, added stress of communities living with limited resources) (Forbes et al., 
2015). In some cases, co-management has given communities a greater voice in decision making, but when 
ineffective, these arrangements can perpetuate dominant paradigms of resource management (AMAP, 2018). 
The perceived risks of climate change can at the same time reinforce cultural identify and motivate greater 
political involvement, which in turn, gives indigenous leaders experience as agents of change in policy 
making. Penn et al. (2016) pointed to these conflicting forces, arguing the need for a greater focus on 
community capacity and cumulative effects. 
 
Greater involvement of indigenous subsistence users in Canada occurs at the national and regional levels 
through the structures and provisions of indigenous settlement agreements (e.g., 1993 Nunavut Land Claims 
Agreement, 1984 Inuvialuit Final Agreement), fish and wildlife co-management agreements (e.g., Porcupine 
Caribou Management Agreement of 1986), and through various boundary organizations (e.g, CircumArctric 
Rangifer Monitoring and Assessment Network). Home rule in Greenland, established in 1979, gives the 
Naalakkersuisut (government of Greenland) authority on most domestic matters of governance. 

Indigenous leaders are responding to the risks of climate change by engaging in political processes at 
multiple levels and through different venues. However, indigenous involvement in IPCC assessments 
remains limited (Ford et al., 2016). At the United Nations Framework Convention on Climate Change 
(UNFCCC), the discursive space for incorporating perspectives of Indigenous peoples on climate change 
adaptation has expanded since 2010, which is reflected in texts and engagement with most activity areas 
(Ford et al., 2015) and by the establishment of the Local Communities and Indigenous Peoples Platform 
Facilitative Working Group in December 2018. Aleut International Association, Arctic Athabaskan Council, 
Gwich'in Council International, Inuit Circumpolar Council, Russian Association of Indigenous Peoples of 
the North, and the Saami Council, which sit as ‘Permanent Participants’ of the Arctic Council, are involved 
in many of its working groups and partake also at the political level (Section 3.5.3.2.1).  
 
3.5.2.3 Arctic Reindeer Herding 
 
Herders’ responses to climate change have varied by region and respective herding practices, and in some 
cases are constrained by limited access to pastures (Klokov, 2012; Forbes et al., 2016; Uboni et al., 2016; 
Mallory and Boyce, 2017). These conditions are exacerbated in some cases by high numbers of predators 
(Lavrillier and Gabyshev, 2018). In Fennoscandia, husbandry practices of reindeer by some (mostly Sami) 
include supplemental feeding, which provide a buffer for unfavourable conditions. In Alaska, reindeer 
herding is primarily free range, where herders must manage herd movements in the event of icing events and 
the potential loss of reindeer because the movements of caribou herds (wild reindeer), both of which are 
partially driven by climate. For Nenets of the Yamal, Russia, resilience in herding has been facilitated 
through herders’ own agency and, to some extent, the willingness of the gas industry to observe non-binding 
guidelines that provide for herders’ continued use of traditional migrations routes (Forbes et al., 2015). In 
response to climate change (i.e., icing events and early spring run offs blocking migration), the only way of 
avoiding high deer mortality is to change migration routes or take deer to other pastures. In practice, 
however, the full set of challenges has meant more Yamal herders opting out of the traditional collective 
migration partially or entirely to manage their herds privately. The reason to have private herds is one of 
adaptive advantage; smaller, privately-owned herds are nimbler in the face of rapid changes in land cover 
and the expansion of infrastructure (Forbes, 2013). The same logic has more recently been applied by some 
herders in the wake of recent rain-on-snow events (Section 3.4.3.2.2) (Forbes et al., 2016). In all these 
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regions, restrictions affecting the movement of reindeer to pastures are expected to negatively interact with 
the effects of climate, and affect the future sustainability of herding systems (high confidence).  
 
3.5.2.4 Tourism 
 
The growth of the polar tourism market is, in part, a response to climate change, as travellers seek ‘last-
chance’ opportunities, which, in turn, is creating new challenges in governance (Section 3.2.4.2). Polar-class 
expedition cruise vessels are now, for the first time, being purposefully built for recreational Arctic sea 
travel. The anticipated near- and long-term growth of Arctic tourism, especially with small vessels (yachts) 
(Johnston et al., 2017), points to a deficiency in current regulations and policies to address human safety, 
environmental risks, and culture al impacts. Industry growth also points to the need for operators, 
governments, destination communities, and others to identify and evaluate adaptation strategies, such as 
disaster relief management plans, updated navigation technologies for vessels, codes of conduct for visitors, 
and improved maps (Pizzolato et al., 2016) and to respond to perceptions of tourism by residents of local 
destinations (Kaján, 2014; Stokke and Haukeland, 2017). Efforts were initiated with stakeholders in Arctic 
Canada to identify strategies that would lower risks (Pizzolato et al., 2016); a next step to lower risks and 
build resilience is to further develop those strategies (AMAP, 2017a; AMAP, 2017b; AMAP, 2018). 
Opportunities for tourism vessels in the Arctic to contribute to international research activities (‘ships of 
opportunity’) may improve sovereignty claims in some regions, contribute to science, and enhance education 
of the public (Stewart et al., 2013; Arctic Council, 2015a; Stewart et al., 2015; de la Barre et al., 2016). 
 
Tourism activities in the Antarctic are conducted in accordance with the Protocol on Environmental 
Protection to the Antarctic Treaty, which establishes general environmental principles, environmental 
assessment requirements, a scheme of establishing protected areas, and restrictions on waste disposal. Site-
specific management tools are in place. While there are varying views amongst Antarctic Treaty Parties on 
the best management regulations for Antarctic tourism, these Parties continue to work to manage tourism 
activity, including growth in numbers of visitors. In addition to the Protocol, mandatory measures have been 
agreed to manage aspects of tourism activity. Industry self-regulation supplements these requirements, 
coordinated by the International Association of Antarctica Tour Operators (IAATO), which has worked with 
Antarctic Treaty Consultative Parties to manage changes in operations and their impact on ice-free areas 
(ATCM, 2016).  
 
3.5.2.5 Arctic Non-Renewable Extractive Industries 
 
Climate change has resulted a limited response by non-renewable resource extraction industries and agencies 
in the Arctic to changes in sea ice, thawing permafrost, spring run offs, and resultant timing of exploration, 
construction and use of ice roads, and infrastructure design (AHDR, 2014). In some regions, climate change 
has offered new development opportunities, although off-shore prospects remaining cost prohibitive given 
current world markets (Petrick et al., 2017). (In the area covered by the Antarctic Treaty, exploitation of 
mineral resources is prohibited by the Protocol on Environmental Protection to the Antarctic Treaty.) 
 
Climate change in some Arctic regions is facilitating easier access to natural resources (Section 3.5.2.3), 
which may generate financial capital for Arctic residents and their governments, including Indigenous 
peoples but also greater exposure to risks such as oil spills and increases in noise. Receding sea ice and 
glaciers has opened new possibilities for development, such as areas of receding glaciers of eastern 
Greenland (Smits et al., 2017). As mineral development commenced in Greenland, its home rule government 
developed environmental impact assessment protocols to provide for improved public participation (Forbes 
et al., 2015). Indigenous peoples are considered as non-state actors and in many, but not all cases, promote 
environmental protection in support of the sustainability of their traditional livelihoods. This protection is at 
times in opposition to the industrial development business sector, which is well-funded and lobbies strongly. 
Bilateral agreements for resource development in the Arctic are typically state dominated and controlled, and 
are negotiated with powerful non-state actors, such as state-dominated companies (Young, 2016). Among the 
non-state actors, new networks and economic forums have been established (Wehrmann, 2016). One 
example is the Arctic Economic Council, created by the Arctic Council during 2013-15 as an independent 
organization that facilitates Arctic business-to-business activities and supports economic development. 
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Several regional governments are assessing the long-term viability of ice roads, historically used for 
accessing mineral development sites, as well as some Arctic human settlements. In Northwest Territories, 
Canada, several ice roads are being replaced with all-season roads, with other replacements proposed. 
Assessing future conditions is key for planning and initiating new projects (Hori et al., 2018; Kiani et al., 
2018) but is often constrained by uncertainties of available climate models (Mullan et al., 2017). 
 
On the North Slope of Alaska, oil and gas development is now undergoing new expansion, while industry 
concurrently faces increasing challenges of climate change, such as shorter and warmer winters, the main 
season for oil exploration and production (Lilly, 2017). The method for building of ice roads on the North 
Slope has been somewhat modified to account for warmer temperatures during construction. There are also 
knowledge gaps in understanding implications of seismic studies with climate change on the landscape 
(Dabros et al., 2018). The issue of cumulative effects also raises questions of current practice of 
environmental impact assessment to evaluate potential cumulative effects (Kirkfeldt et al., 2016). 
 
Lilly (2017) reported that optimizing Alaska North Slope transportation networks during winter field 
operations is critical in managing increasing resource development and could potentially provide a better 
framework for environmentally-responsible development. Better understanding of environmental change is 
also important in ensuring continued oil field operations with protection of natural resources. Improved 
forecasting of short-term conditions (i.e., snow, soil temps, spring run offs) could allow management 
agencies to respond to conditions more proactively, and give industry more time to plan winter mobilization, 
such as construction of ice roads (low confidence). 
 
3.5.2.6 Infrastructure 
 
Reducing and avoiding the impacts of climate change on infrastructure will require special attention to 
engineering, land-use planning, maintenance operations, local culture, and private and public budgeting 
(AMAP, 2017a; AMAP, 2017b; AMAP, 2018). In some cases, relocation of human settlements will be 
required, necessitating more formal methods of assessing relocation needs and identifying sources of funding 
to support relocations (Cross-Chapter Box 9) (high confidence). 
 
A discussion of the relocation of Alaska’s coastal villages is found in Cross-Chapter Box 9. Alaskan coastal 
communities are not the only settlements potentially requiring relocation. Subsidence due to thawing 
permafrost and river and delta erosion makes other rural communities of Alaska and Russia vulnerable, 
potentially requiring relocation in the future (Bronen, 2015; Romero Manrique et al., 2018). These situations 
raise issues of environmental justice and human rights (Bronen, 2017), and illustrate the limits of 
incremental adaptation when transformation change is needed (Kates et al., 2012). In other cases, cultural 
resources in the form of historic infrastructure are being threatened and require mitigation (Radosavljevic et 
al., 2015). Responsibility for funding has been a key issue in the relocation process (Iverson, 2013) as well as 
the overall role of government and local communities in relocation planning (Marino, 2012; Romero 
Manrique et al., 2018). The Alaska Denali Commission, an independent federal agency designed to provide 
critical utilities, infrastructure and economic support throughout Alaska, is now serving as the lead 
coordinating organization for Alaska village relocations and managing federal funding allocations. Several 
efforts have also been undertaken to provide assessment frameworks and protocols for settlement relocation 
as an adaptive resource (Bronen, 2015; Ristroph, 2017). 
 
While there has been discussion of future ‘climigration’ in rural Alaska (Bronen and Chapin, 2013; 
Matthews and Potts, 2018), a study of Alaska rural villages threated by climate change showed no 
outmigration response (Hamilton et al., 2016). Several factors explain the lack of outmigration, including an 
unwillingness to move, attachment to place, people’s inability to relocate, the effectiveness of alternative 
ways of achieving acceptable outcomes, and methods of buffering through subsidies (Huntington et al., 
2018) (medium confidence). 
 
The current pan-Arctic trend of urbanization (AHDR, 2014), suggests that climate change responses related 
to infrastructure in towns and cities of the North will require significant adaptation in designs and increases 
in spending (Streletskiy et al., 2012). These costs do not include costs related to flooding and other stressors 
associated with warming or additional costs of commercial and industrial operations. Engineers in countries 
with permafrost are actively working to adapt the design of structures to degrading permafrost conditions 
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(Dore et al., 2016) and the effects of a warming climate, for example the Cold Climate Housing Research 
Center of Alaska. 
 
An analysis of the costs of total damages from climate change to public infrastructure in Alaska show the 
financial benefits of proactive adaptation (Melvin et al., 2017) (Figure 3.13). In addition to global carbon 
emission mitigation, hardening and redesigning of infrastructure can reduce costs of future climate-related 
impacts. For example, retrofitting and redesign infrastructure in order to handle increased precipitation and 
warmer temperatures can reduce climate-related costs by 50%, from $5.5 billion to $2.9 billion under 
RCP8.5 by 2100. The cost savings of retrofitting and redesigning infrastructure is even higher than the 
savings from carbon mitigation, where impact costs are estimated at $4.2 billion under RCP4.5 by 2100. 
Engineering adaptation provide proportionally similar cost savings no matter which emission scenario was 
used. 
 
 

 
Figure 3.12: Changes in public infrastructure damage costs in cumulative $USD by 2100 in Alaska under different 
emission scenarios. The inset showing airports, railroads, and pipelines has a different in scale than roads, buildings, 
and the total. Dark shades represent climate-related costs of impact with no engineering adaptation measures, whereas 
light shades represent the cost savings after engineering adaptation (figure modified from Melvin et al., 2017). 
 
 
3.5.2.7 Marine Transportation 
 
Increases in Arctic marine transportation create impacts and risks for ecosystems and people, such as an 
increased likelihood of accidents, the introduction of invasive species, oil spills, waste discharges, 
detrimental impacts on animals, habitat, and subsistence activities (Sections 3.2.4.3, 3.4.3.3.2). There has 
been a rise in geopolitical debate regarding national- and international-level regulations and policies, and 
maritime infrastructure to support Arctic shipping development (Heininen and Finger, 2017; AMAP, 2018; 
Drewniak et al., 2018; Nilsson and Christensen, 2019). Without further action leading to adequate 
implementation of well-developed management plans and region-specific regulations, anticipated future 
increases in Arctic shipping will pose a greater risk to people and ecosystems (high confidence). 
 
The International Maritime Organization has responsibility for the safety and security of shipping and the 
prevention of marine and atmospheric pollution by ships, including in the Arctic and Antarctic. There are a 
number of mechanisms standardizing regulation and governance, such as the International Convention for 
the Prevention of Pollution from Ships; the International Convention for the Safety of Life at Sea; the 
International Convention on Standards of Training, and the Certification and Watchkeeping for Seafarers, 
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and the newly implemented International Code for Ships Operating in Polar Waters, or Polar Code (IMO, 
2017). 
 
The Polar Code of 2017 sets new standards for vessels travelling in polar areas to mitigate environmental 
damage and improve safety (IMO, 2017). The Polar Code, however, currently excludes fishing vessels and 
vessels on government service, thereby excluding many shipping activities, particularly in the Antarctic 
region (IMO, 2017). Many ships travelling these waters will therefore continue to pose risks to the 
environment and to themselves, as they are not regulated under the Polar Code (high confidence). The Polar 
Code does not enhance enforcement capabilities or include environmental protection provisions to address a 
number of particular polar region-specific risks such as black carbon, ballast water, and heavy fuel oil 
transport and use in the Arctic (Anderson, 2012; Sakhuja, 2014; IMO, 2017). However, both Russian and 
Canadian legislation provide the possibility for stricter shipping provisions in ice-covered waters. The IMO 
has prohibited the use of heavy fuel oil in the Antarctic. 
 
States can individually or cooperatively pursue the establishment of Special Areas and Particularly Sensitive 
Sea Areas at the IMO with a view to protect ecologically-unique or -vulnerable and economically- or 
culturally-important areas in national and international waters from risks and impacts of shipping, including 
through routing, discharge and equipment measures. Continued, and in some areas, greater international 
cooperation on shipping governance can facilitate addressing emerging climate change issues (Arctic 
Council, 2015a; ARR, 2016; PEW Charitable Trust, 2016; Chénier et al., 2017; IMO, 2017) (high 
confidence). Cooperation of the member states of the Arctic Council resulted in the 2011 Agreement on 
Cooperation on Aeronautical and Maritime Search and Rescue in the Arctic and in the 2013 Agreement on 
Cooperation on Marine Oil Pollution Preparedness and Response in the Arctic. These agreements can, if 
adequately implemented, reduce risks from increased Arctic shipping (medium confidence), however, 
developing more effective measures is needed as preparedness and response gaps still exist, for example, for 
the central Arctic Ocean. 
 
Industry has responded to the increase in shipping activity by investing in development of shipping designs 
for travel in mixed-ice environments (Stephenson et al., 2011; Stephenson et al., 2013). These increases in 
investments are occurring in spite of the limited total savings when comparing shorter travel to increased 
CO2 emissions (Lindstad et al., 2016). In anticipation of spills, research in several regions has explored oil 
spill response viability and new methods of oil spill response for the Arctic environment (Bullock et al., 
2017; Dilliplaine, 2017; Holst-Andersen et al., 2017; Lewis and Prince, 2018) (medium confidence). A 
comparative risk assessment for spills has been developed for the Arctic waters (Robinson et al., 2017) and 
Statoil has developed and uses risk assessment decision-support tools for environmental management, 
together with environmental monitoring (Utvik and Jahre-Nilsen, 2016). These tools facilitate the assessment 
of Arctic oil-spill response capability, ice detection in low visibility, improved management of sea ice and 
icebergs, and numerical modelling of icing and snow as risk mitigation.  
 
3.5.2.8 Arctic Human Health and Well Being 
 
At present health adaptation to climate change is generally under-represented in policies, planning, and 
programming (AHDR, 2014). For instance, all initiatives of the Fifth National Communications of Annex I 
parties to the United Nations Framework Convention on Climate Change affect health vulnerability, 
however, only 15% of initiatives had an explicit human health component described (Lesnikowski et al., 
2011). The Arctic is no exception to this global trend. Despite the substantial health risks associated with 
climate change in the Arctic, health adaptation responses remain sparse and piecemeal (Lesnikowski et al., 
2011; Panic and Ford, 2013; Ford et al., 2014b; Loboda, 2014), with the health sector substantially under-
represented in adaptation initiatives compared to other sectors (Pearce et al., 2011; Ford et al., 2014b; 
National Research Council, 2015). Furthermore, the geographic distribution of publicly available 
documentation on adaptation initiatives is skewed in the Arctic, with more than three-quarters coming from 
Canada and USA (Ford et al., 2014a; Loboda, 2014).  
 
Many Arctic health adaptation efforts by governments have been groundwork actions, focused increasing 
awareness of the health impacts of climate change and conducting vulnerability assessments (Lesnikowski et 
al., 2011; Panic and Ford, 2013; Austin et al., 2015). For instance, in Canada this effort has included training, 
information resources, frameworks, general outreach and education, and dissemination of information to 
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decision makers (Austin et al., 2015). Finland’s national adaptation strategy outlines various anticipatory and 
reactive measures for numerous sectors, including health (Gagnon-Lebrun and Agrawala, 2007). In Alaska, 
the Arctic Investigations Program responds to infectious disease via advancing molecular diagnostics, 
integrating data from electronic health records and environmental observing networks, as well as improving 
access to in-home water and sanitation services. Furthermore, circumpolar efforts are also underway, 
including a circumpolar working group with experts from public health to assess climate-sensitive infectious 
diseases, and to identify initiatives that reduce the risks of disease (Parkinson et al., 2014). Importantly, 
health adaptation is occurring at the local scale in the Arctic (Ford et al., 2014a; Ford et al., 2014b). 
Adaptation at the local scale is broad, ranging from community freezers to increase food security, to 
community-based monitoring programs to detect and respond to climate-health events, to Elders mentoring 
youth in cultural activities to promote mental health when people are ‘stuck’ in the communities due to 
unsafe travel conditions (Pearce et al., 2010; Brubaker et al., 2011; Harper et al., 2012; Brubaker et al., 2013; 
Douglas et al., 2014; Austin et al., 2015; Bunce et al., 2016; Cunsolo et al., 2017) (high confidence). Several 
regional and national-level initiatives on food security (ICC, 2012), as well as research reporting high levels 
of household food insecurity (Kofinas et al., 2016; Watts et al., 2017) have prompted greater concerns for 
climate change (Loring et al., 2013; Beaumier et al., 2015; Islam and Berkes, 2016). A new initiative to 
operationalise One Health concepts and approaches under the AC’s Sustainable Development Working 
Group has gained momentum since 2015 (Ruscio et al., 2015). One Health approaches seek to link human, 
animal, and environmental health, using interdisciplinary and participatory methods that can draw on 
indigenous knowledge and local knowledge (Dudley et al., 2015). Thus far, the initiative has supported new 
regional-to-international networks, and proposals for its expansion. In the future, the ability to manage, 
respond, and adapt to climate-related health challenges will be a defining issue for the health sector in the 
Arctic (Ford et al., 2010; Durkalec et al., 2015) (medium confidence).  
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Table 3.4: Response of key human sectors /systems to climate change in polar regions. Table 3.4 summarizes the consequences, interacting drivers, responses, and 
assets of climate change responses by select human sectors (i.e., social-ecological systems) of Arctic and Antarctic regions. Also noted are anticipated future 
conditions and level of certainty and other drivers of change that may interact with climate and affect outcomes. Implications to world demands on natural resources, 
innovation and development of technologies, population trends and economic growth are likely to affect all systems, as is the Paris Agreement (AMAP, 2017b). In 
several cases, drivers of change interacting with climate change are regionally specific and not easily captured. In many cases there is limited information on human 
responses to climate change in the Russian Arctic.  

Sector /System Consequence of climate 
change  

Documented 
responses  

Key assets and strategies of 
adaptive and transformative 
capacity 

Anticipated future 
conditions / level of 
certainty 

Other forces for change that 
may interact with climate and 
affect outcomes. 

Commercial 
Fisheries  
 

Consequences are multi-
dimensional, including 
impacts to abundance 
and distribution of 
different target species 
differently, by region. 
Changes in coastal 
ecosystems affecting 
fisheries productivity  

Implementation of 
adaptive 
management 
practices to assess 
stocks, change 
allocations as 
needed, and address 
issues of equity 

Implementation of adaptive 
management that is closely 
linked to monitoring, 
research, and public 
participation in decisions 

Displacement of fishing 
effort will impact fishing 
operations in the eastern 
Bering Sea and Barents Sea 
as well as the CAMLR 
Convention area. 

Changes in human preference, 
demand, and markets, changes 
in gear, changes in policies 
affecting property rights. 
Changes due to offshore 
development and transportation. 

Subsistence 
(marine and 
terrestrial) 

Changes in species 
distribution and 
abundance (not all 
negative); impediments 
to access of harvesting 
areas; safety; changes in 
seasonality; reduced 
harvesting success and 
process of food 
production (processing, 
food storage; quality); 
threats to culture and 
food security 

Change in gear, 
timing of hunting, 
species switching; 
mobilization to be 
involved in 
political action 

Systems of adaptive co-
management that allow for 
species switching, changes 
in harvesting methods and 
timing, secure harvesting 
rights.  

Less access to some areas, 
more in others. Changes in 
distribution and abundance 
of resources. More 
restrictions with regulations 
related to species at risk. 
Adaptation at the 
individual, household, and 
community levels may be 
seriously restricted by 
conditions where there is 
poverty (high confidence) 

Changes in cost of fuel, land 
use affecting access, food 
preferences, harvesting rights; 
international agreements to 
protect vulnerable species.  

Reindeer 
Herding 

Rain-on-snow events 
causing high mortality 
of herds; shrubification 
of tundra pasture 
lowering forage quality 

Changes in 
movement patterns 
of herders; policies 
to ensure free-range 
movements; 

Flexibility in movement to 
respond to changes in 
pastures, secure land use 
rights and adaptive 
management. Continued 

Increased frequency of 
extreme events and 
changing forage quality 
adding to vulnerabilities of 
reindeer and herders 
(medium confidence)  

Change in market value of 
meat; overgrazing; Land-use 
policies affecting access to 
pasture and migration routes, 
property rights. 
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supplemental 
feeding.  

economic viability and 
cultural tradition.  

Tourism 
(Arctic and 
Antarctic) 

Warmer conditions, 
more open water, Public 
perception of ‘last 
chance’ opportunities 

Increased 
visitation, (quantity 
and quality) 
increase in off-
season tourism to 
polar regions 

Policies to ensure safety, 
cultural integrity, ecological 
health, adequate quarantine 
procedures 

Increased risk of 
introduction of alien 
species and direct effects of 
tourists on wildlife 

Travel costs. Shifting tourism 
market, more enterprises 

Non-
Renewable 
Resource 
Extraction 
(Arctic only) 

Reduced sea ice and 
glaciers offering some 
new opportunities for 
development; changes in 
hydrology (spring 
runoff), thawing 
permafrost, and 
temperature affect 
production levels, ice 
roads, flooding events, 
and infrastructure  

Some shifts in 
practices, greater 
interest in offshore 
and on-land 
development 
opportunities in 
coms regions.  

Modification of practices 
and use of climate change 
scenario analysis. 

Increased cost of operations 
in areas of permafrost 
thawing; more accessible 
areas in open waters and 
receding glaciers.  

Changes in policies affecting 
extent of sea & land use area, 
new extraction technologies 
(e.g., fracking), changes in 
markets (e.g., price of barrel of 
oil)  

Infrastructur
e  
-urban and 
rural human 
settlements, 
year-round  

Thawing permafrost 
affecting stability of 
ground; coastal erosion,  

Damaged and loss 
of infrastructure, 
increase in 
operating costs.  

Resources for assessments, 
mitigation, and where 
needed, relocation. 

Increasing cost to maintain 
infrastructure and greater 
demand for technological 
solutions to mitigate issues. 
Shortening windows of 
operation for use of ice 
roads; construction of all-
season roads. 

Weak regional and national 
economies, other disasters that 
divert resources, disinterest by 
southern-based law makers 

Marine 
Transportati
on 

Open seas allowing for 
more vessels; greater 
constraints in use of ice 
roads 

Increased shipping, 
tourism, more 
private vessels. 
Increased risk of 
hazardous waste 
and oil spills and 
accidents requiring 
search and rescue.  

Strong international 
cooperation leading to 
agreed-upon and enforced 
policies that maintain 
standards for safety; well-
developed response plans 
with readiness by agents in 
some regions 

Continued increases in 
shipping traffic with 
increased risks of accidents.  

Political conflict in other areas 
that impeded acceptance of 
policies for safety requirements, 
timing, and movements. 
Changing insurance premiums. 
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Human 
Health 

Threats to food security, 
potential threats to 
physical and 
psychological well being 

Greater focus on 
food security 
research; programs 
that address 
fundamental health 
issues 

Human and financial 
resources to support public 
programs in hinterland 
regions; cultural awareness 
of health issues as related to 
climate change.  

Greater likelihood of 
illnesses, food insecurity, 
cost of health care.  

A reduction (of increase) in 
public resources to support 
health services to rural 
community populations, 
research that links ecological 
change to human health 

Coastal 
settlements 
(See Cross-
Chapter Box 
9) 

Change in extent of sea 
ice with more storm 
surges, thawing of 
permafrost, and coastal 
erosion  

Maintenance of 
erosion mitigation; 
relocation planning, 
some but 
incomplete 
allocation for 
funding 

Local leadership and 
community initiatives to 
initiate and drive processes, 
responsive agencies, 
established processes for 
assessments and planning, 
geographic options. 

Increasing number of 
communities needing 
relocation, rising costs for 
mitigating erosion issues. 

Limitations of government 
budgets, other disasters that 
may take priority for spending, 
deficiencies in policies for 
addressing mitigation and 
relocation 
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3.5.3 Governance 1 
 2 
3.5.3.1 Local-to National Governance 3 
 4 
Responses to climate change at and across local, regional, and national levels occur directly and indirectly 5 
through a broad range of governance activities, such as land- and sea-use planning and regulations, economic 6 
development strategies, tax incentives for use of alternative energy technologies, permitting processes, 7 
resource management, and national security. Increasingly climate change is considered in environmental 8 
assessments and proposals for resource planning of polar regions.  9 
 10 
A comprehensive literature review of 157 discrete cases of Arctic adaptation initiatives Ford et al. (2014b) 11 
found that adaptation is primarily local and motivated by reducing risks and their related vulnerabilities (high 12 
confidence). Several elements for successful climate change adaptation planning at the local level have 13 
previously been identified: formal analytical models need to be relevant to the concerns and needs of 14 
stakeholders, experts should be made sensitive to community perspectives, information should be packaged 15 
and communicated in ways that are accessible to non-experts, and processes of engagement that foster 16 
creative problem solving be used. Furthermore, success of local government involvement in adaptation 17 
planning has been closely linked to transnational municipal networks that foster social learning and in which 18 
local governments assume a role as key players (Sheppard et al., 2011; Fünfgeld, 2015) (medium 19 
confidence). While transnational networks can be a catalyst for action and promoting innovation, there 20 
remain outstanding challenges in measuring the effectiveness of these networks (Fünfgeld, 2015).  21 
 22 
Adaptation through formal institutions by Indigenous people is enabled through self-government, land 23 
claims, and co-management institutions (Baird et al., 2016; Huet et al., 2017). However, organizational 24 
capacity is often a limiting factor in involvement (AHDR, 2014; Ford et al., 2014b; Forbes et al., 2015) (high 25 
confidence). Interactions across scales are also dependent on the extent to which various stakeholders are 26 
perceived as legitimate in their perceptions and recommendations, an issue related to the use of local 27 
knowledge and indigenous knowledge in governance (Cross-Chapter Box 4 in Chapter 1) (AHDR, 2014; 28 
Ford et al., 2014b; Forbes et al., 2015) (high confidence).  29 
 30 
At a more regional level, Alaska’s ‘Climate Action for Alaska’ was reconstituted in 2017 and is now actively 31 
linking local concerns with state-level policies and funding, as well as setting targets for future reductions in 32 
the state’s carbon-emission. The role of cross-scale boundary organizations in climate change adaptation 33 
planning, and how central government initiatives can ultimately translate into ‘hybrid’ forms of adaptation at 34 
the local level that allow for actions that are sensitive to local communities has proven important in Norway 35 
(Dannevig and Aall, 2015).  36 
 37 
At the national level, Norway, Sweden, and Finland have engaged in the European Climate Adaptation 38 
Platform (‘Climate-ADAPT’), a partnership that aims to support Europe in adapting to climate change by 39 
helping users to access and share data and information on expected climate change in Europe, current and 40 
future vulnerability of regions and sectors, national and transnational adaptation strategies and actions, 41 
adaptation case studies and potential adaptation options, and tools that support adaptation planning. Level of 42 
participation by country and the extent to which national-level efforts are linked with regional and local 43 
adaptation varies. The Canadian government’s actions on climate change have been among the most 44 
extensive of the Arctic nations, including funding of ArcticNet, a Network of Centres of Excellence, and 45 
consideration of climate change by The Northern Contaminants and Nutrition North Canada programs.  46 
 47 
3.5.3.2 International Climate Governance and Law: Implications for International Cooperation 48 
 49 
The way states and institutions manage international cooperation on environmental governance is changing 50 
in response to climate change in the polar regions. Rather than treating regional impacts of climate change 51 
and their governance in isolation (i.e., purely with a regional lens), the need to cooperate in a global multi-52 
regulatory fashion across several levels of governance is increasingly realised (Stokke, 2009; Cassotta et al., 53 
2016) (medium confidence). 54 
 55 
In both polar regions, cooperative approaches to regional governance have been developed to allow for the 56 
participation of non-state actors. In some cases, regimes allow for a substantial level of participation by 57 
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specific groups of the civil society, such as stakeholders (Jabour, 2017; Keil and Knecht, 2017). For 1 
example, in the Antarctic Treaty System, the Antarctic Treaty Parties included the Scientific Committee on 2 
Antarctic Research into their Protocol on Environmental Protection to the Antarctic Treaty. In the Arctic, the 3 
status of Permanent Participants has enabled the effective participation of Indigenous Peoples in the work of 4 
the Council (Pincus and Ali, 2016). Climate change has contributed to modifying the balance between the 5 
interests of state and non-state actors, leading to changing forms of cooperation (Young, 2016). While such 6 
changes and modifications occur in both the Arctic and Antarctic, the role of states has remained present in 7 
all the regimes and sectors of human responses (Young, 2016; Jabour, 2017). 8 
 9 
Addressing the risks of climate change impacts in polar regions also requires linking levels of governance 10 
and sector governance across local to global scales, considering impacts and human adaptation (Stokke, 11 
2009; Berkman and Vylegzhanin, 2010; Tuori, 2011; Young, 2011; Koivurova, 2013; Prior, 2013; Shibata, 12 
2015; Young, 2016) (high confidence). Despite established cooperation in international polar region 13 
governance, several authors come to the conclusion that the current international legal framework is 14 
inadequate when applying a precautionary approach at the regional level (medium confidence). For example, 15 
several studies have shown that the Convention on the Protection of the Marine Environment of the North 16 
East Atlantic (OSPAR), which applies only to the North East Atlantic, and that provides a framework for 17 
implementation of the United Nations Convention on the Law of the Sea (UNCLOS) and the Convention on 18 
Biological Diversity (CBD), are insufficient to deal with risks when applying a precautionary approach 19 
(Jakobsen, 2014; Hossain, 2015).  20 
 21 
In the Arctic, responses to climate change do not only lead to international governance cooperation but also 22 
to competition in access to natural resources, especially hydrocarbons. With ice retreating and thinning, and 23 
improved access to natural resources, coastal states are increasingly recurring to the option to invoke Article 24 
76 of the UNCLOS (Art. 76 UNCLOS; Verschuuren, 2013) and seek to demonstrate with scientific data, 25 
submitted to the Commission on the Limits of Continental Shelf, and within a set timeline, that their 26 
continental shelf is extended. In that case they can enjoy sovereign rights beyond the Exclusive Economic 27 
Zone. It is very unlikely that this new trend from states to refer to Article 76 will lead to future (military) 28 
conflicts (Berkman and Vylegzhanin, 2013; Kullerud et al., 2013; Stokke, 2013; Verschuuren, 2013), 29 
although the issue cannot be totally dismissed (Kraska, 2011; Åtland, 2013; Huebert, 2013; Cassotta et al., 30 
2015; Barret, 2016; Cassotta et al., 2016).  31 
 32 
In the Antarctic, cooperation in general does occur via UNCLOS, the Convention for the Safety of Life at 33 
Sea and the Convention for the Prevention of Pollution from Ships and the Polar Code. Global 34 
environmental and climate regimes that are implemented and managed through regional regimes (such as the 35 
Kyoto Protocol or the Paris Agreement) are also relevant for the Antarctic Treaty and its Protocol on 36 
Environmental Protection, which requires, amongst other issues, a minimization of adverse environmental 37 
impacts. Cooperation in the Antarctic also occurs through the Convention on the Conservation of Antarctic 38 
Marine Living Resources (CCAMLR). Climate change and its consequences for the marine environment are 39 
a central issue for CCAMLR because it challenges ways to regulate and manage fisheries and designate and 40 
manage Marine Protected Areas. Nevertheless, CCAMLR has not agreed to any climate change program and 41 
at its most recent meeting, there was again no agreement to do so (Brooks et al. (2018), CCAMLR Report on 42 
the Thirty-seven Meeting of the Commission, CCAMLR (2018)).�43 
 44 
 45 
3.5.3.2.1 Formal arrangements: polar conventions and institutions 46 
The Arctic Council 47 
International cooperation on issues related to climate change in the Arctic mainly occurs at the Arctic 48 
Council (herein ‘the Council’), and consequently in important areas of its mandate: the (marine) environment 49 
and scientific research (Koivurova, 2016; Tesar et al., 2016a; Wehrmann, 2016; Young, 2016). The Council 50 
is composed of eight Arctic States and six Permanent Participants representing organisations of Arctic 51 
Indigenous peoples. Observers status is open to: non-Arctic states, intergovernmental and inter-52 
parliamentary organizations, global and regional non-governmental organizations (NGOs). The Council is an 53 
example of cooperation through soft law, a unique institutional body that does not possess a legal personality 54 
and is neither an international law nor a completely state-centric institution. However, it is acting state-55 
centric and increasingly operating in a context of the Arctic affected by a changing climate, globalization and 56 
transnationalism (Baker and Yeager, 2015; Cassotta et al., 2015; Pincus and Speth, 2015) (medium 57 
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confidence). In 2013, China, South Korea, Italy, Japan, India and Singapore joined France, Germany, the 1 
Netherlands, Poland, Spain and the UK as Observers states to the Arctic Council; Switzerland was granted 2 
Observer status in 2017. Non-Arctic States are stimulating the Council towards adopting a new approach for 3 
Arctic governance that would leave greater space for their participation. 4 
 5 
Despite lacking the role to enact hard law, three binding agreements were negotiated under the auspices of 6 
the Council (in its task forces), the latest of which is the Agreement on Enhancing International Arctic 7 
Scientific Cooperation, which is an indication that the Council is preparing a regulatory role to respond to 8 
climate change in the Arctic using hard-law instruments (Koivurova, 2016; Shapovalova, 2016). Through 9 
organising the Task Force on Black Carbon and Methane (Koivurova, 2016), the Council has catalysed 10 
action on short-lived climate forcers as the task force was followed by the adoption in 2015 of the Arctic 11 
Council Framework for Action on Enhanced Black Carbon and Methane Emission Reductions. In this non-12 
legally binding agreement, Arctic States lay out a common vision for national and collective action to 13 
accelerate decline in black carbon and methane emissions (Shapovalova, 2016). The Council thereby moved 14 
from merely assessing problems to attempting to solve them (Baker and Yeager, 2015; Young, 2016; 15 
Koivurova and Caddell, 2018). While mitigation of global emissions from fossil fuels requires global 16 
cooperation, progress with anthropogenic emissions of short-term climate forcers (such as black carbon and 17 
methane) may be achieved through smaller groups of countries (Aakre et al., 2018). However, even though 18 
the Council has also embraced the Ecosystem Approach, it does not have a mandate to manage climate 19 
related risks and impacts, or apply a precautionary approach, on fisheries issues. 20 
 21 
Several studies have shown that the Council has the potential to enhance internal coherence in the current, 22 
fragmented landscape of multi-regulatory governance by providing integrated leadership. However, it is 23 
about as likely as not that the Council could play a strong role in combatting global climate problems and 24 
operating successfully within the climate transnational context unless it goes through restructuring and 25 
reconfiguration (Stokke, 2013; Baker and Yeager, 2015; Pincus and Speth, 2015; Cassotta et al., 2016; Tesar 26 
et al., 2016a; Wehrmann, 2016; Young, 2016; Koivurova and Caddell, 2018).  27 
 28 
The future of the governance of the changing Arctic Ocean, including the role of the Council will also 29 
depend on the implications of the development for a new agreement on the Conservation and Sustainable use 30 
of Marine Biodiversity of Areas beyond National Jurisdictions (BBNJ) under the UNCLOS (Baker and 31 
Yeager, 2015; De Lucia, 2017; Nengye et al., 2017; Koivurova and Caddell, 2018) (medium confidence). 32 
 33 
The Antarctic Treaty System 34 
The Antarctic Treaty System (ATS) is the collective term for the Antarctic Treaty and related agreements. 35 
The ATS regulates international relations with respect to Antarctica. 54 countries have acceded to the Treaty 36 
and 29 of them participate in decision making as Consultative Parties. 27 countries are Party to the 37 
Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR), and 40 have ratified the 38 
Protocol on Environmental Protection to the Antarctic Treaty (CEP). The importance of understanding, 39 
mitigating and adapting to the impacts of changes to the Southern Ocean and Antarctic cryosphere has been 40 
realized by all of the major bodies responsible for governance in the Antarctic region (south of 60°S). The 41 
Antarctic Treaty Consultative Parties agreed that a Climate Change Response Work Programme would 42 
address these matters (ATCM, 2016). This led to the establishment of the Subsidiary Group of the 43 
Committee for Environmental Protection on Climate Change Response (ATCM, 2017). By contrast, 44 
consensus is currently limiting work programme-level responses to climate change by CCAMLR (2017a), 45 
while opportunities exist to incorporate climate concerns into mechanisms for implementation and 46 
monitoring aimed to conserve ecosystems and the environment (Brooks et al., 2018). 47 
 48 
3.5.3.2.2 Informal arrangements 49 
The Antarctic Treaty Consultative Parties, through the Committee for Environmental Protection (CEP) and 50 
its Subsidiary Group of the Committee for Environmental Protection on Climate Change Response, continue 51 
to work closely with the Scientific Committee on Antarctic Research, the Council of Managers of National 52 
Antarctic Programs, the International Association of Antarctica Tour Operators and other NGOs to 53 
understand, mitigate and adapt to impacts associated with changes to the Southern Ocean and Antarctic 54 
cryosphere. Understanding, mitigating and adapting to climate change are among the key priorities identified 55 
for research in the region (Kennicutt et al., 2014a; Kennicutt et al., 2014b) and nationally funded bilateral 56 
and multi-lateral projects are underway.  57 
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 1 
3.5.3.2.3 Role of informal actors 2 
Several studies show that informal actors of the Arctic can influence decision-making process of the Council 3 
and shift the Council towards more cooperation with different actors to enhance the co-production of 4 
knowledge (Duyck, 2011; Makki, 2012; Keil and Knecht, 2017). Recently, non-state observers at the 5 
Council, such as the World Wide Fund for Nature (WWF) and the Circumpolar Conservation Union (CCU) 6 
have played a role in raising awareness on climate change responses and contributing to the work of the 7 
Council’s Working Groups and Expert Groups (Keil and Knecht, 2017).  8 
 9 
Within the Antarctic Treaty System, several non-state actors play a major role in providing advice and 10 
influencing the governance of Antarctica and the Southern Ocean. Among the most prominent actors are 11 
formal observers such as the Scientific Committee on Antarctic Research, and invited experts such as the 12 
International Association of Antarctica Tour Operators and the Antarctic and Southern Ocean Coalition. At 13 
meetings of CCAMLR, the Scientific Committee’s 2009 report on Antarctic Climate Change and the 14 
Environment (Turner et al., 2009) precipitated an Antarctic Treaty Meeting of Experts on Climate Change in 15 
2010 (Antarctic Treaty Meeting of Experts, 2010). The outcomes of the meeting led the Antarctic Treaty’s 16 
Committee for Environmental Protection to develop a Climate Change Response Work Programme (ATCM, 17 
2017). 18 
 19 
3.5.4 Towards Resilient Pathways 20 
 21 
This section presents the status of practices, tools and strategies currently employed in the Arctic and or 22 
Antarctica that can potentially contribute to climate resilient pathways. Seven general strategies for building 23 
resilience have been recognized: i) maintain diversity and redundancy, ii) manage connectivity, iii) manage 24 
slow variables and feedbacks, iv) foster an understanding of social-ecological systems as complex adaptive 25 
systems, v) encourage learning and experimentation, vi) broaden participation, and vii) promote polycentric 26 
governance systems (Biggs et al., 2012; Quinlan et al., 2016) (Cross-Chapter Box 2 in Chapter 1). 27 
 28 
The practices listed below are not inclusive of the many resilience-building efforts underway in the polar 29 
regions. Those described are well represented in the literature and have shown sufficient utility to merit 30 
further use (ARR, 2016; AMAP, 2017a; AMAP, 2017b; AMAP, 2018) (high confidence). Some require 31 
more refinement while others are well developed. The following sections assess the extent to which these 32 
practices operationalize resilience-building through knowledge co-production, the linking of knowledge with 33 
decision making, and implementation of resilience-based ecosystem management, considering also their 34 
application level and key facilitating conditions; a summary is presented in Table 3.5. 35 
 36 
 37 
Table 3.5: Summary of the assessment of practices, tools and strategies that can contribute to climate resilient 38 
pathways. Practices are shown with the potential extent of their contribution to resilience building, considering also 39 
seven general strategies (Biggs et al., 2012; Quinlan et al., 2016; Cross-Chapter Box 2 in Chapter 1). Also shown is the 40 
current level of their application in polar regions and key conditions facilitating implementation. 41 

Type of 
resilience-
building 
activity 

Practices, tool, or 
strategy 

Potential extent of contribution to 
resilience building  
(Large-Moderate-Limited) 
 and  
Areas of potential contributions to 
resilience: 
DIV = Maintain diversity & 

redundancy 
CON = Manage connectivity 
PAR = Broaden participation 
LEA = Encourage learning & 

experimentation 
SYS = Foster complex system 

understanding 
GOV = Enhance polycentric 

governance 
SLO = Manage slow variables and 

feedbacks 

Current level of application in 
polar regions 
(High-Medium-Low) 
 and 
Key conditions facilitating 
implementation: 
F= Financial support 
I= Institutional support 
T&S= Technical and science 

support 
L&I= Local & indigenous capacity 

and knowledge 
C= Interdisciplinary and/or cross-

cultural cooperation   
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Confidence regarding potential 
contribution to resilience building:  
▲▲▲=high ▲▲=medium ▲=low  

Knowledge 
Co-
Production 
and 
Integration 

Community-
based 
monitoring 

DIV, PAR, SYS 
▲▲ F, I, T&S, L&I, C 

Understanding 
regime shifts 

LEA, SYS, SLO 
▲▲▲ I, T&S, C 

Indicators of 
resilience and 
adaptive 
capacity  

PAR, LEA, SYS, SLO 
▲▲ F, L&I, T&S 

Linking 
Knowledge 
with 
Decision 
Making 

Participatory 
scenario analysis 
and planning 

PAR, LEA, SYS 
▲▲ T&S, L&I, C 

Structured 
decision making 

PAR, LEA, SYS 
▲ I, T&S, C 

Resilience-
based 
Ecosystem 
Stewardship 

Adaptive 
ecosystem 
governance 

DIV, PAR, LEA, SYS, GOV, SLO 
▲▲▲ I, T&S, L&I, C 

Spatial planning 
for biodiversity 

DIV, CON, GOV, SLO 
▲▲ I, T&S, L&I, C 

Linking 
ecosystem 
services with 
human 
livelihoods 

DIV, PAR, SYS, GOV, SLO 
▲▲▲ I, T&S, L&I, C 

 1 
 2 
3.5.4.1 Knowledge Co-production and Integration 3 
 4 
The co-production of knowledge and transdisciplinary research are currently contributing to the 5 
understanding of polar climate change through the use of a diversity of cultural, geographic, and disciplinary 6 
perspectives that provide a holistic framing of problems and possible solutions (Miller and Wyborn, 2018; 7 
Robards et al., 2018) (high confidence). 8 
 9 
Several factors are important in successful knowledge co-production, including use of social-ecological 10 
frameworks, engagement of a broad set actors with diverse epistemological orientations, a ‘team science’ 11 
approach to studies, strong leadership, attention to process (vs only products), and mutual respect for cultural 12 
differences (Meadow et al., 2015; National Research Council, 2015; Petrov et al., 2016) (high confidence). 13 
Knowledge co-production involving Indigenous peoples comes with its own set of challenges (Armitage et 14 
al., 2011; Robards et al., 2018). While advancements have been made, the practice of knowledge co-15 
production would benefit from further experimentation and innovation in methodologies and better training 16 
of researchers (van der Hel, 2016; Vlasova and Volkov, 2016; Berkes, 2017) (medium confidence). Three 17 
aspects of knowledge co-production are highlighted below. 18 
 19 
3.5.4.1.1 Community-based monitoring 20 
Community-based monitoring (CBM) in the Arctic has emerged as a practice of great interest because of its 21 
potential to link western ways of knowing with local knowledge and indigenous knowledge (Retter et al., 22 
2004; Johnson et al., 2015a; Johnson et al., 2015b; Kouril et al., 2016; AMAP, 2017a; Williams et al., 2018). 23 
In several CBM programs, innovative approaches using the internet, mobile phones, hand-held information 24 
devices (PDAs), and camera-equipped GPS units are capturing, documenting and communicating local 25 
observations of change (Brubaker et al., 2011; Brubaker et al., 2013). The integration of community 26 
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observations with instrument-based observations and its use in research has proven challenging, with 1 
technical and cultural issues (Griffith et al., 2018). Execution of CBM programs in the Arctic has also 2 
proven to be labour intensive and difficult to sustain, requiring long-term financial support, agreements 3 
specifying data ownership, sufficient human capital, and in some cases, the involvement of boundary 4 
organizations that provide technical support (Pulsifer et al., 2012; Eicken et al., 2014) and link CBM with 5 
governance (CAFF, 2015b; Robards et al., 2018). As is the case in all knowledge production, power 6 
relationships (i.e., who decides what is a legitimate observation, who has access to resources for 7 
involvement, who benefits) have been challenging where the legitimacy of local knowledge and indigenous 8 
knowledge is questioned (e.g., Pristupa et al., 2018). There is high agreement and limited evidence that CBM 9 
facilitates knowledge co-production and resilience building. More analyses of Arctic communities and their 10 
institutional capabilities related to CBM are needed to evaluate the potential of these observation systems, 11 
and experimentation and innovation may help determine how CBM can more effectively inform decision 12 
making beyond the community (Johnson et al., 2015a; Johnson et al., 2015b) (medium confidence).  13 
 14 
3.5.4.1.2 Understanding regime shifts 15 
Regime shifts are especially important in polar regions where there are limited data and where rapid 16 
directional change suggests the possibility of crossing thresholds that may dramatically alter the flow of 17 
ecosystem services (ARR, 2016). Better understanding of the thresholds and dynamics of regime shifts (i.e. 18 
SES state changes) is especially important for resilience building (ARR, 2016; Biggs et al., 2018; Rocha et 19 
al., 2018) (high confidence). While polar regime shifts have been documented (Biggs et al., 2018), most are 20 
poorly understood and rarely predictable (Rocha et al., 2018) (high confidence). Moreover, the focus on 21 
Arctic regime shifts to date has been on almost entirely on biophysical state changes that impact social 22 
systems. A limited number of studies have examined social regime shifts and fewer the feedbacks of social 23 
regimes shifts on ecosystems (Gerlach et al., 2017). Future needs for advancing knowledge of regime shifts 24 
include: 1) continued and refined updating of details on past regimes shifts, 2) structured comparative 25 
analysis of these phenomena to ascertain common patterns and variation, 3) greater investment in research 26 
resources on potential large-scale regime shifts, and 4) great attention on how social and economic change 27 
may affect ecosystems (ARR, 2016; Biggs et al., 2018). 28 
 29 
3.5.4.1.3 Indicators of resilience and adaptive capacity 30 
Well-crafted and effectively communicated indicators of polar geophysical, ecological and human systems 31 
have the potential to make complex issues more easily understood by society, including local residents and 32 
policy makers seeking to assess the implication of climate change (Petrov et al., 2016; Carson and 33 
Sommerkorn, 2017) (medium confidence). Having indicators of change is no guarantee they will be used; 34 
access to information, awareness of changing conditions, and the motivation to act are also important (e.g., 35 
van der Linden et al., 2015). 36 
 37 
Indicators of the state of polar geophysical systems, biodiversity, ecosystems, and human well-being are 38 
monitored as part of polar programs. For example, indicators are reported by the Arctic Council working 39 
groups Arctic Monitoring and Assessment Programme and Conservation of Arctic Flora and Fauna (e.g., 40 
Odland et al., 2016; CAFF, 2017; Box et al., 2019), the International Arctic Social Science Association (e.g., 41 
AHDR, 2014), the CCAMLR Ecosystem Monitoring Programme (e.g., Reid et al., 2005) and the Southern 42 
Ocean Observing System (e.g., Meredith et al., 2013). 43 
 44 
There is limited development of indicators of social-ecological resilience (Jarvis et al., 2013; Carson and 45 
Sommerkorn, 2017). As well, indicators of human adaptive capacity are typically based on qualitative case 46 
studies with limited quantitative data, and thus have limited comparability and generalizability (Ford and 47 
King, 2013; Petrov et al., 2016; Berman et al., 2017) (high confidence). The identification and on-going use 48 
of indicators of social-ecological resilience are theoretically best achieved through highly participatory 49 
processes that engage stakeholders of a locale, with those processes potentially resulting in self-reflection 50 
and actions that improve adaptive capacity (Quinlan et al., 2016; Carson and Sommerkorn, 2017), however, 51 
this is untested empirically (low confidence). 52 
 53 
3.5.4.2 Linking Knowledge with Decision Making 54 
 55 
While there is a growing expectation in polar (and other) regions for a more deliberate strategy to link 56 
science with social learning and policy making about climate change (and other matters) through iterative 57 
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interactions of researchers, managers, and other stakeholders, meeting that expectation is confounded by 1 
several deeply rooted issues (Armitage et al., 2011; ARR, 2016; Tesar et al., 2016b; Baztan et al., 2017; 2 
Forbis Jr and Hayhoe, 2018) (medium confidence).  3 
 4 
In spite of the development of practices like those described above and the establishment of many co-5 
managed arrangements in polar regions, scientists and policy makers often work in separate spheres of 6 
influence, tend to maintain different values, interests, concerns, responsibilities and perspectives, and gain 7 
limited exposure to the other’s knowledge system (see Liu et al., 2008; Armitage et al., 2011). Information 8 
exchange flows unequally, as officials struggle with information overload and proliferating institutional 9 
voices, and where local residents are mistrusting of scientists (Powledge, 2012). Inherent tensions between 10 
science-based assessment and interest-based policy, and many existing institutions often prevent direct 11 
connectivity. Further, the longstanding science mandate to remain ‘policy neutral’ typically leads to norms 12 
of constrained interaction (Neff, 2009) (high confidence).  13 
 14 
Creating pathways towards greater climate resilience will, therefore, depend, in part, on a redefined 15 
‘actionable science’ that creates bridges supporting better decisions through more rigorous, accessible, and 16 
engaging products, while shaping a narrative that instils public confidence (Beier et al., 2015; Fleming and 17 
Pyenson, 2017) (high confidence). Stakeholders of polar regions are increasingly using a suite of creative 18 
tools and practices for moving from theory to practice in resilience building by informing decision making 19 
and fostering long-term planning (Baztan et al., 2017). As noted above, these practices include participatory 20 
scenario planning, forecasting for stakeholders, and use structured decision making, solution visualization 21 
tools, and decision theatres (e.g., Schartmüller et al., 2015; Kofinas et al., 2016; Garrett et al., 2017; Holst-22 
Andersen et al., 2017; Camus and Smit, 2018). The extent to which these practices can contribute to 23 
resilience building in the future will depend, in part, on the willingness of key actors, such as scientists, to 24 
provide active decision-support services, more often than mere decision-support products (Beier et al., 25 
2015). While progress has been made in linking science with policy, more enhanced data collaboration at 26 
every scale, more strategic social engagement, communication that both informs decisions and improves 27 
climate literacy, and explicit creation of consensus documents that provide interpretive guidance about 28 
research implications and alternative choices will be important (high confidence). 29 
 30 
3.5.4.2.1 Participatory scenario analysis and planning 31 
Participatory scenario analysis is a quickly-evolving and widely-used practice in polar regions, and has 32 
proven particularly useful for supporting climate adaptation at multiple scales when it uses a social-33 
ecological perspective (ARR, 2016; AMAP, 2017a; Crépin et al., 2017; Planque et al., 2019) (medium 34 
confidence). While there are technical dimensions in scenario analysis and planning (e.g., the building of 35 
useful simulation models that capture and communicate nuanced social-ecological system dynamics such as 36 
long-fuse big bang processes, pathological dynamics, critical thresholds, and unforeseen processes (Crépin et 37 
al., 2017), there are also creative aspects, such as the use of art to help in the visualization of possible future 38 
(e.g., Planque et al., 2019).  39 
 40 
Participatory scenario analysis has been applied to various problem areas related to climate change responses 41 
in the polar regions. Applications demonstrate the utility of the practice for identifying possible local futures 42 
that consider climate change or socio-economic pathways (e.g., in Alaska, Ernst and van Riemsdijk, 2013; 43 
and in Eurasian reindeer-herding systems, van Oort et al., 2015; Nilsson et al., 2017) and interacting drivers 44 
of change (e.g., in Antarctica; Liggett et al., 2017). Scenario analysis proved helpful for stakeholders with 45 
different expertise and perspectives to jointly develop scenarios to inform ecosystem-based management 46 
strategies and adaptation options (e.g., in the Barents region; Nilsson et al., 2017; Planque et al., 2019) and to 47 
identify research needs (e.g., in Alaska; Vargas-Moreno et al., 2016), including informing and applying 48 
climate downscaling efforts (e.g., in Alaska; Ernst and van Riemsdijk, 2013).  49 
 50 
A review of scenario analysis in the Arctic, however, found that while the practice is widespread and many 51 
are using best-practice methods, less than half scenarios programs incorporated climate projections and that 52 
those utilizing a backcasting approach had higher local participation than those only using forecasting (Flynn 53 
et al., 2018). It noted that integrating different knowledge systems and attention to cultural factors influence 54 
program utility and acceptance. Planque et al. (2019) also found that most participating stakeholders had 55 
limited experience using scenario analysis, suggesting the importance of process methods for engaging 56 
stakeholders when exploring possible, likely, and desirable futures. The long-term utility of this practice in 57 



FINAL DRAFT Chapter 3 IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute 
Subject to Copyedit 3-96 Total pages: 173 

helping stakeholders engage with each other to envision possible futures and be forward-thinking in decision 1 
making will depend on the science of climate projections, further development of decision support systems 2 
to inform decision makers, attention to cultural factors and worldview, as well as refinement of processes 3 
that facilitate participants’ dialogue (medium confidence). 4 
 5 
3.5.4.2.2 Structured decision making 6 
Structured decision making (SDM) is an emerging practice used with stakeholders to identify alternative 7 
actions, evaluate trade-offs, and inform decisions in complex situations (Gregory et al., 2012). Few SDM 8 
processes have been undertaken in polar regions, with most as exploratory demonstration projects led by 9 
researchers. These have included indigenous residents and researchers identifying trade-offs and actions 10 
related to subsistence harvesting in a changing environment (Christie et al., 2018) stakeholder interviews to 11 
show how a ‘triage method’ can link community monitoring with community needs and wildlife 12 
management priorities (Wheeler et al., 2018), and the application of multicriteria decision analysis to address 13 
difficult decisions related to mining opportunities in Greenland (Trump et al., 2018). The Decision Theater 14 
North at the University of Alaska is also being explored as an innovative method of decision support 15 
(Kofinas et al., 2016). SDM may have potential in creating climate resilience pathways in polar regions (low 16 
confidence), but there is currently limited experience with its application. 17 
 18 
3.5.4.3 Resilience-based Ecosystem Stewardship 19 
 20 
Renewable resource management and biodiversity conservation that seek to maintain resources in historic 21 
levels and reduce uncertainty before taking action remains the dominant paradigm in polar regions (Chapin 22 
III et al., 2009; Forbes et al., 2015). The effectiveness of this approach, however, is increasingly challenged 23 
as the ranges and populations of species and state of ecosystems are being affected by climate change 24 
(Chapin III et al., 2010; Chapin III et al., 2015). Three practices that build and maintain social-ecological 25 
resilience in the face of climate change include Adaptive Ecosystem Governance, Spatial Planning for 26 
Biodiversity, and Linking Management of Ecosystem Services with Human Livelihoods.  27 
 28 
3.5.4.3.1 Adaptive ecosystem governance 29 
‘Adaptive Ecosystem Governance’ differs from conventional resource management or integrated ecosystem 30 
management (Chapin III et al., 2009; Chapin III et al., 2010; Chapin III et al., 2015), with a strong focus on 31 
trajectories of change (i.e., emergence), implying that maintaining ecosystems in a state of equilibrium is not 32 
possible (Biggs et al., 2012; ARR, 2016). This approach strengthens response options by maintaining or 33 
increasing resource diversity (to support human adaptation) and biological diversity (to support ecosystem 34 
adaptation) (Biggs et al., 2012; Chapin III et al., 2015; Quinlan et al., 2016) (high confidence). Adaptive 35 
ecosystem governance emphasizes iterative social learning processes of observing, understanding, and acting 36 
with collaborative partnerships, such as adaptive co-management arrangements currently used in regions of 37 
the Arctic (Armitage et al., 2009; Dale and Armitage, 2011; Chapin III et al., 2015; Arp et al., 2019). This 38 
approach is also currently realized through adaptive management of Arctic fisheries in Alaska that combines 39 
annual measures and within-season provisions informed by assessments of future ecosystem trends (Section 40 
3.5.2.1), and the use of simulation models with Canadian caribou co-management boards to assess the 41 
cumulative effects of proposed land-use change with climate change (Gunn et al., 2011; Russell, 2014a; 42 
Russell, 2014b). Linking these regional efforts to pan-polar programs can enhance resilience building cross 43 
multiple scales (e.g., Gunn et al., 2013) (medium confidence). 44 
 45 
3.5.4.3.2 Spatial planning for biodiversity 46 
Shifts in the distribution, abundance and human use of species and populations due to climate-induced 47 
cryosphere and ocean change, concurrent with land-use changes, increase the risks to ecosystem health and 48 
biodiversity (Kaiser et al., 2015). Building resilience in these challenging conditions follows from spatial 49 
planning for biodiversity that links multiple scales and considers how impacts to ecosystems may materialize 50 
in social-ecological systems elsewhere (Bengtsson et al., 2003; Cumming, 2011; Allen et al., 2016). 51 
Developing pathways for spatial resilience in polar regions involves systematic planning and designating 52 
networks of protected areas to protect connected tracts of representative habitats, and biologically and 53 
ecologically significant features (Ban et al., 2014). Protected area networks that combine both spatially rigid 54 
and spatially flexible regimes with climate refugia can support ecological resilience to climate change by 55 
maintaining connectivity of populations, foodwebs, and the flow of genes across scales (McLeod et al., 56 
2009). This approach reduces direct pressures on biodiversity, and thus, gives biological communities, 57 
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populations, and ecosystems the space to adapt (Nyström and Folke, 2001; Hope et al., 2013; Thomas and 1 
Gillingham, 2015) (medium confidence). Networks of protected areas are now being planned (Solovyev et 2 
al., 2017) and implemented (Juvonen and Kuhmonen, 2013) in the marine and terrestrial Arctic, 3 
respectively; expanding the terrestrial protected area network in Antarctica is discussed (Coetzee et al., 4 
2017). The planning of protected area networks in polar regions is currently an active topic of international 5 
collaboration in both polar regions (Arctic Council, 2015b; CCAMLR, 2016a; Wenzel et al., 2016). 6 
Designating marine protected area networks contributes to achieving Sustainable Development Goal 14 and 7 
the Aichi Targets of the Convention for Biological Diversity but is often contested due to competing 8 
interests for marine resources.  9 
 10 
3.5.4.3.3 Linking eosystem services with human livelihoods 11 
Incorporating measures of ecosystem services into assessments is key in integrating environmental, 12 
economic, and social policies that build resilience to climate change in polar regions (CAFF, 2015a; 13 
Malinauskaite et al., 2019; Sarkki and Acosta García, 2019) (high confidence). Currently, there is limited 14 
recognition of the wide range of benefits people receive from polar ecosystems and a lack of management 15 
tools that demonstrate their benefits in decision-making processes (CAFF, 2015a). The concept of ecosystem 16 
services is increasingly used in the Arctic, yet there continues to be significant knowledge gaps in mapping, 17 
valuation, and the study of the social implications of changes in ecosystem services. There are few Arctic 18 
examples of the application of ecosystem services in management (Malinauskaite et al., 2019). A strategy of 19 
ecosystem stewardship, therefore, is to maintain a continued flow of ecosystem services, recognizing how 20 
their benefits provide incentives for preserving biodiversity, while also ensuring options for sustainable 21 
development and ecosystem-based adaptation (Chapin III et al., 2015; Guerry et al., 2015; Díaz et al., 2019). 22 
Arctic stewardship opportunities at landscape, seascape, and community scales to a great extent lie in 23 
supporting culturally engrained (often traditional indigenous) values of respect for land and animals, and 24 
reliance on the local environment through the sharing of knowledge and power between local users of 25 
renewable resources and agencies responsible for managing resources (Mengerink et al., 2017) (high 26 
confidence). In the Antarctic, ecosystem stewardship is dependent on international formally-defined and 27 
informally-enacted cooperation, and the recognition of its service to the global community (Section 3.5.3.2). 28 
 29 
 30 
3.6 Synopsis 31 
 32 
This chapter has assessed the consequences of climate change in the polar regions in three sections, focusing 33 
on sea ice and the ocean (Section 3.2), glaciers and ice sheets (Section 3.3), and permafrost and snow on land 34 
(Section 3.4). A systems approach was taken to assess individual and interacting changes within and between 35 
these elements to consider consequences, impacts and risks for marine and terrestrial ecosystems and for 36 
people. Mapping on to those observed and projected impacts, Section 3.5 assessed human responses to 37 
climate change in the polar regions. This brief synopsis considers the chapter findings across sections, and 38 
draws out three key assessment points that inform global responses to polar ocean and cryosphere change. 39 
 40 
1) Climate-induced changes to the polar cryosphere and oceans have global consequences and impacts.  41 
Loss of Arctic sea ice continues to add to global radiative forcing and has the potential to influence 42 
midlatitude weather on timescales of weeks to months (Section 3.2.1 Box 3.2), the Southern Ocean takes up 43 
a disproportionately high amount of atmospheric heat and carbon (Section 3.2.1), melting polar glaciers and 44 
the Antarctic and Greenland ice sheets contribute to observed and projected sea level rise long into the future 45 
(Sections 3.3.1, 3.3.2), and projected widespread disappearance of permafrost has the potential to accelerate 46 
global warming through the release of carbon dioxide and methane (Sections 3.4.2, 3.4.3). 47 
 48 
2) Across many aspects, the polar regions of the future will appear significantly different from those of today  49 
By the end of this century, Arctic sea ice and snow on land are projected to be diminished compared with 50 
today, as are the masses of the Antarctic and Greenland Ice Sheets and the polar glaciers (Sections 3.2.2, 51 
3.3.2; 3.4.2). Acidification of both polar oceans will have progressed; this, and changing marine habitats 52 
associated with ocean warming, are projected to impact marine ecosystems (Sections 3.2.2, 3.2.3). 53 
Permafrost thaw and decrease in snow on land are projected to drive habitat and biome shifts, affecting 54 
ranges and abundance of ecologically-important species, and driving changes in wildfire, vegetation and 55 
human infrastructure (Sections 3.4.2, 3.4.3). Collectively, these very different future polar environments 56 
pose strong challenges to sustainable use of natural resources, infrastructure, cultures, and lives and 57 
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livelihoods. Although manifested locally, these very different future polar environments have the potential to 1 
continue/accelerate the global impacts noted above.  2 
 3 
3) Choices are available that will influence the nature and magnitude of changes, potentially limiting their 4 
regional and global impacts and increasing the effectiveness of adaptation actions.  5 
Compared with high greenhouse gas emissions scenarios, projections using low emissions scenarios result in 6 
polar regions that will be significantly less altered. For example, for stabilised global warming of 1.5°C, a 7 
sea ice-free Arctic in September is projected to occur significantly less frequently than at 2°C (1% c.f. 10-8 
35%) (Section 3.2.2). The potential for reduced but stabilised Arctic autumn and spring snow extent by mid-9 
century for RCP2.6 contrasts with continued loss under RCP8.5, and the area with near-surface permafrost is 10 
projected to decrease less by 2100 under RCP2.6 than under RCP8.5 (Section 3.4.2). Polar glaciers are 11 
projected to lose much less mass between 2015 and 2100 under RCP2.6 compared with RCP8.5 (Cross-12 
Chapter Box 6 in Chapter 2). Acidification of the polar oceans will progress more slowly and affect much 13 
smaller areas under RCP2.6 compared with RCP8.5 (Section 3.2.2). These differences have strong 14 
implications for natural resource management, economic sectors, and Arctic cultures (Section 3.5.2). The 15 
choices that enable these differences influence the rate and magnitude of polar change, their consequences 16 
and impacts at regional and global scales, the effectiveness of adaptation, and opportunities for climate 17 
resilient pathways (Section 3.5.4). 18 
 19 
 20 
3.7 Key Knowledge Gaps and Uncertainties 21 
 22 
Beyond this report, progress requires that future assessments demonstrate increased confidence in various 23 
key aspects; this can be achieved by narrowing numerous gaps in knowledge. Some of the critical ones, 24 
which are priorities for future initiatives, are outlined here. 25 
 26 
Overturning circulation in the Southern Ocean is a key factor that controls heat and carbon exchanges with 27 
the atmosphere, and hence global climate, however there are no direct measures of this and only sparse 28 
indirect indicators of how it may be changing. This is a critical weakness in sustained observations of the 29 
global ocean. 30 
 31 
Snow depth on sea ice is essentially unmeasured, limiting mass balance estimates and ice thickness 32 
retrievals. Improved mechanistic understanding of the observed changes and trends in Antarctic sea ice is 33 
required, notably the decadal increase and very recent rapid retreat. This has consequences for climate, 34 
ecosystems and fisheries; however, lack of understanding and poor model performance translates to very 35 
limited predictive skill.  36 
 37 
Trends in snow water equivalent over Arctic land are inadequately known, reducing confidence in 38 
assessments of snow’s role in the water cycle and in insulating the underlying permafrost. Understanding of 39 
precipitation in the polar regions is critically limited by sparse observations, and there is a lack of 40 
understanding of the processes that drive regional variability in wetting/drying and greening/browning of the 41 
Arctic land surface. There is inadequate knowledge concerning carbon dioxide and methane emissions from 42 
land and sub-sea permafrost.  43 
 44 
There are clear regional gaps in knowledge of polar ecosystems and biodiversity, and insufficient population 45 
estimates/trends for many key species. Biodiversity projections are limited by key uncertainties regarding the 46 
potential for organisms to adapt to habitat change and the resilience of foodweb structures. Relatedly, 47 
knowledge gaps exist concerning how fisheries target levels will change alongside environmental change 48 
and how to incorporate this into decision making. Similarly, there are knowledge gaps on the extent to which 49 
changes in the availability of resources to subsistence harvesters affects food security of households.  50 
 51 
There is a need to better understand the evolution of polar glaciers and ice sheets, and their influences on 52 
global sea level. Longer and improved quantifications of their changes are required, especially where mass 53 
losses are greatest, and (relatedly) better attribution of natural versus anthropogenic drivers. Better 54 
understanding of the sensitivity of Antarctica to marine ice sheet instability is required, and whether recent 55 
changes in West Antarctica represent the onset of irreversible change. 56 
 57 
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There are critical gaps in knowledge concerning interactions between the atmosphere and specific elements 1 
of the polar ocean and cryosphere. Detailed assessment of atmospheric processes was outside the remit of 2 
this chapter, however such gaps limit understanding of ongoing and future trajectories of the polar regions 3 
and their climate systems. Relatedly, there is a paucity of studies analysing differences in the trajectories of 4 
polar cryosphere and ocean systems between low and very low greenhouse gas emission scenarios. 5 
 6 
There are critical needs to better understand the efficacy and limits of strategies for reducing risk and 7 
strengthening resilience for polar ecosystems and people, including the contribution of practices and tools to 8 
contribute to climate-resilient pathways. Knowledge on how to translate existing theoretical understandings 9 
of social-ecological resilience into decision making and governance is limited. There is limited 10 
understanding concerning the resources that are needed for successful adaptation responses and about the 11 
effectiveness of institutions in supporting adaptation. While the occurrence of regime shifts in polar systems 12 
is both documented and anticipated, there is little or no understanding of their preconditions or of indicators 13 
that would help pre-empt them. 14 
 15 
 16 

[START FAQ3.1 HERE] 17 
 18 
FAQ 3.1: How do changes in the Polar Regions affect other parts of the world? 19 
 20 

Climate change in the Arctic and Antarctic affect people outside of the polar regions in two key ways. First, 21 
physical and ecosystem changes in the polar regions have socio-economic impacts that extend across the 22 
globe. Second, physical changes in the Arctic and Antarctic influence processes that are important for global 23 
climate and sea level. 24 

 25 
Among the risks to societies and economies, aspects of food provision, transport, and access to non-26 
renewable resources are of great importance. Fisheries in the polar oceans support regional and global food 27 
security and are important for the economies of many countries around the world, but climate change alters 28 
Arctic and Antarctic marine habitats, and affects the ability of polar species and ecosystems to withstand or 29 
adapt to physical changes. This has consequences for where, when, and how many fish can be captured. 30 
Impacts will vary between regions, depending on the degree of climate change and the effectiveness of 31 
human responses. While management in some polar fisheries is among the most developed, scientists are 32 
exploring modifications to existing precautionary, ecosystem-based management approaches to increase the 33 
scope for adaptation to climate change impacts on marine ecosystems and fisheries. 34 
 35 
New shipping routes through the Arctic offer cost savings because they are shorter than traditional passages 36 
via the Suez or Panama Canals. Ship traffic has already increased and is projected to become more feasible 37 
in the coming decades as further reductions in sea ice cover make Arctic routes more accessible. Increased 38 
Arctic shipping has significant socio-economic and political implications for global trade, northern nations, 39 
and economies strongly linked to traditional shipping corridors, while also increasing environmental risk in 40 
the Arctic. Reduced Arctic sea ice cover allows greater access to offshore petroleum resources and ports 41 
supporting resource extraction on land. 42 
 43 
The polar regions influence the global climate through a number of processes. As spring snow and summer 44 
sea ice cover decrease, more heat is absorbed at the surface. There is growing evidence that ongoing changes 45 
in the Arctic, primarily sea ice loss, can potentially influence mid-latitude weather. As temperatures increase 46 
in the Arctic, permafrost soils in northern regions store less carbon. The release of carbon dioxide and 47 
methane from the land to the atmosphere further contributes to global warming. 48 
 49 
Melting ice sheets and glaciers in the polar regions cause sea levels to rise, affecting coastal regions and their 50 
large populations and economies. At present, the Greenland Ice Sheet and polar glaciers are contributing 51 
more to sea level rise than the Antarctic Ice Sheet. However, ice loss from the Antarctic Ice Sheet has 52 
continued to accelerate, driven primarily by increased melting of the underside of floating ice shelves, which 53 
has caused glaciers to flow faster. Even though it remains difficult to project the amount of ice loss from 54 
Antarctica after the second half of the 21st century, it is expected to contribute significantly to future sea 55 
level rise. 56 
 57 
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The Southern Ocean that surrounds Antarctica is the main region globally where waters at depth rise to the 1 
surface. Here, they become transformed into cold, dense waters that sink back to the deep ocean, storing 2 
significant amounts of human-produced heat and dissolved carbon for decades to centuries or longer, and 3 
helping to slow the rate of global warming in the atmosphere. Future changes in the strength of this ocean 4 
circulation can so far only be projected with limited certainty. 5 
 6 
[END FAQ3.1 HERE] 7 
 8 
 9 
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SM3.1 Polar Regions, People and the Planet 
 
SM3.1.1 Northern Hemispheric Climate Modes 
 
The Northern Hemisphere atmospheric wind motion is primarily a zonal jet stream that includes multiple 
north-south meandering wave patterns. Recurring climate patterns can also be described using modes of 
atmospheric variability. The most important patterns for the Northern Hemisphere climate are centred on the 
North Pole, the North Atlantic, and the North Pacific. 
 
The Arctic Oscillation (AO) or Northern Annular Mode in its positive sign has zonal symmetric flow centred 
on the North Pole. In its negative phase this pattern breaks down into a weaker and wavier circulation 
pattern. The North Atlantic Oscillation (NAO) is an Atlantic extension of the AO with a positive phase for 
lower pressure near Iceland (Thompson and Wallace, 1998). 
 
The pattern in the North Pacific is either captured by the Pacific North-American (PNA) pattern based on the 
height of constant pressure surfaces above the ground level (geopotential height) or the Pacific Decadal 
Oscillation (PDO) based on ocean temperature. Positive phase is associated with lower pressures in the 
Aleutian low pressure region and positive temperature anomalies in the Gulf of Alaska. 
 
Another pattern of interest is the Arctic Dipole (AD), which is the third hemispheric pattern. In contrast to 
the AO that is circular around a given latitudinal, the AD has flow across the central Arctic with high and 
low pressures on either side (Asia and North America).  
 
The historical time series of all these patterns have inter-annual and multi-year variability that is mostly 
internal atmospheric stochastic variability rather than driven by external forcing such as greenhouse gas 
warming. The cause of multi-year persistence to these patterns is not well understood. The winter AO was 
negative up to the late 1980s (except for the early 1970s), had a large positive sign in the early 1990s, and is 
mostly variable since then. The PNA/PDO had a large shift in the mid-1970s and is variable and slightly 
positive since then. The NAO was also positive in the 1990s and variable since then. The NAO had an 
extreme negative winter in 2010 and an extreme positive winter in 2015. In the early 2000s a strong AD 
helped to reinforce summer sea ice loss (Wang et al., 2009). Since AR5 there is medium evidence and 
medium confidence that much variability in Northern Hemispheric atmospheric modes remains driven by 
internal atmospheric processes. 
 
SM3.1.2 Arctic Amplification 
 
The impacts of global warming are strongly manifested in the polar regions because increases in air 
temperature lead to reductions in snow and ice, allowing more of the sun’s energy to be absorbed by the 
surface, fostering more melt (Manabe and Stouffer, 1980; Overland et al., 2017) (see Chapter 3, Box 3.1). 
Furthermore, increased exchanges of latent heat flux from the ocean to the atmosphere have led to increased 
atmospheric water vapour which contributes to further warming (Serreze et al., 2012). The sea ice albedo 
feedback has been implicated in dramatic sea ice loss events (Perovich et al., 2008) and in the observed 
Arctic amplification of warming trends (Serreze et al., 2009; Screen and Simmonds, 2010; Taylor et al., 
2013) (very high confidence).  
 
Modelling studies show that Arctic amplification is related to the observed transition from perennial to 
seasonal sea ice (Haine and Martin, 2017), but it can still occur in the absence of the sea ice-albedo feedback 
(Alexeev et al., 2005) because of the contributions from other processes. There is emerging evidence of 
increased warm, moist air intrusions in both winter and spring (Kapsch et al., 2015; Boisvert et al., 2016; 
Cullather et al., 2016; Mortin et al., 2016; Graham et al., 2017). Tropical convection may play a role by 
exciting these intrusion events on inter-decadal time scales (Lee et al., 2011). Intra-seasonal tropical 
convection variability may influence daily Arctic surface temperatures in both summer and winter (Yoo et 
al., 2012a; Yoo et al., 2012b; Henderson et al., 2014). The intrusion of weather events into the Arctic from 
the subarctic lead to increased downwelling longwave radiation from a warmer free troposphere as well as 
from increased atmospheric moisture. A large contributor to Arctic amplification is increased downwelling 
longwave radiation (Pithan and Mauritsen, 2014; Boeke and Taylor, 2018). It is important to recognize the 
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contributions from both local forcing (i.e., ice-albedo feedback, increased atmospheric water vapour and 
cloud cover) from remote forcing (i.e., changes in atmospheric circulation). 
 
SM3.1.3 Southern Hemispheric Climate Modes 
 
Observed changes in the Southern Hemisphere extratropical atmospheric circulation are primarily indicated 
by the Southern Annular Mode (SAM), the leading mode of extratropical variability in sea level pressure or 
geopotential heights which is related to the latitudinal position and strength of the mid-latitude eddy-driven 
jet (Thompson and Wallace, 2000). In winter and spring these winds exhibit more zonal asymmetries, 
expressed by the zonal wave 3 (ZW3) (Raphael, 2004) and Pacific South American (PSA) patterns (Irving 
and Simmonds, 2015). Understanding decadal variability, such as the Pacific Decadal 
Oscillation/Interdecadal Pacific Oscillation’s (PDO/IPO) impact on these modes is hampered by the 
shortness of the observational record, with limited station data available poleward of 40°S (Marshall, 2003). 
 
The SAM has a strong influence on the weather and climate of SH polar regions as well as southern 
Australia, New Zealand, southern South America and South Africa (see review article by Thompson et al. 
(2011)). Numerous studies have attributed a significant positive trend in the summertime SAM over the past 
30-50 years to anthropogenic forcing, in particular stratospheric ozone depletion and increasing greenhouse 
gases (Gillett et al., 2013) (Figure SM3.1). Though the exact mechanisms by which these forcings impact the 
circulation is unclear, they both act to enhance the meridional temperature gradient which leads to a 
poleward shift in the SH extratropical circulation. There is medium confidence that ozone depletion is the 
dominant driver of recent austral summer changes in the Southern Hemisphere circulation during the period 
of maximum ozone depletion from the late 1970s to late 1990s (Arblaster et al., 2014; Waugh et al., 2015; 
Karpechko and Maycock, 2018). In the years following, Waugh et al. (2015) and other studies argue for a 
strong impact of tropical Pacific sea surface temperatures in driving positive SAM trends (Schneider et al., 
2015; Clem et al., 2017). 
 
ZW3 describes the asymmetric part of the generally strongly zonally symmetric circulation in the SH 
extratropics and has been shown to impact the SH surface climate, blocking, sea-ice extent and the strength 
of the Amundsen Sea Low (Turner et al., 2017b; Schlosser et al., 2018). It has its strongest amplitude in SH 
winter and is more prominent during phases of negative SAM (Irving and Simmonds, 2015). No significant 
trends in the amplitude or phase of ZW3 over the satellite era have been found (Turner et al., 2017a). 
 
The Pacific South America (PSA) pattern reflects a Rossby wave train from the tropical Pacific and is the 
primary mechanism by which tropical Pacific sea surface temperatures, including the El Niño Southern 
Oscillation, impact the Antarctic climate (Mo and Higgins, 1998; Irving and Simmonds, 2016). It has been 
shown to be closely related to the Amundsen Sea Low and to have a strong influence on temperature and 
precipitation variability of West Antarctica and the Antarctic Peninsula as well as sea-ice in the Amundsen, 
Bellingshausen and Weddell Seas (Irving and Simmonds, 2016; Pope et al., 2017). The PSA has experienced 
a trend towards its more negative phase over the satellite era (Irving and Simmonds, 2016), consistent with a 
deepening of the Amundsen Sea Low (Chapin III et al., 2015; Schneider et al., 2015; Raphael et al., 2016), 
however there is low confidence in these trends and their attribution given the large internal variability in this 
region and shortness of the observational record. 
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Figure SM3.1: SAM index (black) and mid-latitude jet positions (blue) time series for (a) annual mean and (b-e) the 
four seasons. The SAM index (Marshall (2003); available for download from http://www.nerc-
bas.ac.uk/public/icd/gjma/newsam.1957.2007.seas.txt) is normalized by its standard deviation. The jet position is based 
on the maximum of Cross-Calibrated Multi-Platform (CCMP) satellite-based surface wind speed (Atlas et al. (2010); 
available for download at http://www.remss.com/measurements/ccmp.html) which starts in 1987. Statistically 
significant trends in the SAM over the time period shown are found for the annual mean and DJF and MAM. No 
statistically significant trends are found for the jet position over the shorter period for which it is available. Adapted 
from Karpechko and Maycock (2018). 
 
 
SM3.2 Implications of Climate Change for Polar Oceans and Sea Ice: Feedbacks and Consequences 

for Ecological and Social Systems 
 
SM3.2.1 Heat and Carbon Uptake by the Southern Ocean 
 
 

 
Figure SM3.2: CMIP5 multimodel mean changes in depth-integrated oceanic heat (a) and anthropogenic carbon (b) 
between 1870 (represented by mean of period 1861-80) and 1995 (represented by mean of period 1986-2005). In these 
models, the Southern Ocean accounts for 75 ± 22% of the total global ocean heat uptake and 43 ± 3% of anthropogenic 
CO2 uptake (Frölicher et al., 2015).  
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Figure SM3.3: (a) Zonally- and depth-integrated ocean heat content trends from EN4 datasets 
(https://www.metoffice.gov.uk/hadobs/en4/), for period 1982-2017. (b) Zonal-mean ocean potential temperature trend 
(shading) from EN4 for 1982-2017, with climatological ocean salinity in intervals of 0.15 (contours). Updated from 
Armour et al. (2016). 
 
 
Table SM3.1: Ocean heat content trend (0-2000m depth) during 1970-2017 using the Ordinary Least Square method. 
Units are1021 J yr-1. Values in curved brackets denote the proportion of heat storage in the Southern Ocean compared to 
the global ocean. Quoted uncertainties denote the 90% confidence interval. Data sources are Ishii (Ishii et al., 2017), 
IAP (Cheng et al., 2017), EN4 (Good et al., 2013), and updates thereof. The mean proportion and its 5%-95% 
confidence interval (1.65 times standard deviation of individual estimates) are provided in the bottom row. 

Region South of 20∘S South of 30∘S South of 35∘S South of 40∘S Global 

% of global 
ocean area 33% 25% 21% 18% 100% 

OHC Trend 
(1021 J yr-1)      

Ishii V7.2 2.83±0.28 (42%) 2.42±0.26 (36%) 2.10±0.22 (31%) 1.63±0.16 (24%) 6.73±0.55 

IAP 3.16±0.34 (45%) 2.78±0.29 (40%) 2.50±0.28 (36%) 1.99±0.24 (28%) 7.02±1.96 

EN4-GR10 2.32±0.42 (44%) 2.18±0.36 (41%) 2.05±0.32 (39%) 1.73±0.24 (33%) 5.28±1.01 

Mean 
[5%, 95%] 

44% 
[41%, 46%] 

39% 
[35%, 43%] 

35% 
[29%, 42%] 

28% 
[21%, 36%]   

 
 
Table SM3.2: Ocean heat content trend (0-2000m depth) during 2005-2017 using the Ordinary Least Square method. 
Units are 1021 J yr-1. Values in curved brackets denote the proportion of heat storage in the Southern Ocean compared to 
the global ocean. Quoted uncertainties denote the 90% confidence interval, taking into account the reduction in the 
degrees of freedom implied by the temporal correlation of the residuals. Data sources are as per Table SM3.1, plus 
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IPRC (2015) (http://apdrc.soest.hawaii.edu/projects/argo/), Scripps (Roemmich and Gilson, 2009), JAMSTEC (Hosoda 
et al., 2011) and updates thereof. The mean proportion and its 5%-95% confidence interval (1.65 times standard 
deviation of individual estimates) are provided in the bottom row. 

Region South of 20∘S South of 30∘S South of 35∘S South of 40∘S Global 

% of global 
ocean area 33% 25% 21% 18% 100% 

OHC Trend 
(1021 J yr-1)      

Ishii V7.2 5.90±1.19 (59%) 5.20±1.03 (52%) 4.29±0.84 (43%) 3.10±0.54 
(31%) 10.06±1.28 

IAP 5.10±1.13 (60%) 4.55±1.00 (54%) 3.96±0.81 (47%) 3.10±0.58 
(37%) 8.45±1.04 

EN4-GR10 6.08±1.24 (58%) 5.38±1.30 (51%) 4.56±1.19 (43%) 3.22±0.88 
(30%) 10.57±1.17 

IPRC 6.92±2.03 (69%) 6.24±1.80 (63%) 5.34±1.51 (54%) 3.41±1.19 
(34%) 9.96±1.57 

Scripps 4.73±0.79 (56%) 4.22±0.70 (50%) 3.64±0.60 (43%) 2.66±0.46 
(32%) 8.38±1.31 

JAMSTEC 5.05±0.78 (56%) 4.44±0.63 (49%) 3.79±0.54 (42%) 2.69±0.38 
(30%) 9.06±0.67 

Mean 
[5%, 95%] 

60% 
[52%, 68%] 

53% 
[45%, 62%] 

45% 
[38%, 53%] 

32% 
[28%,37%]  

 
 
Table SM3.3: As per Table SM3.1, but for ocean heat content trends (0-2000m depth) during 1970-2004.  

Region South of 20∘S South of 30∘S South of 35∘S South of 40∘S Global 

% of global 
ocean area 33% 25% 21% 18% 100% 

OHC Trend 
(1021 J yr-1)      

Ishii V7.2 2.10±0.32 (40%) 1.74±0.28 (33%) 1.49±0.24 (28%) 1.13±0.18 (21%) 5.28±0.63 

IAP 2.59±0.44 (48%) 2.40±0.42 (45%) 2.21±0.43 (41%) 1.78±0.40 (33%) 5.32±1.01 

EN4-GR10 0.85±0.37 (37%) 0.99±0.32 (43%) 1.04±0.31 (44%) 0.94±0.24 (40%) 2.33±0.90 

Mean 
[5%, 95%] 

42% 
[32%, 51%] 

40% 
[30%, 51%] 

38% 
[24%, 52%] 

31% 
[15%, 47%]  

 
 
SM3.2.2 Stratification 
 
Changing stratification in the polar oceans is of key significance to climate and ecosystems. Upper-ocean 
stratification mediates the transfer of heat, salt and nutrients between the surface ocean and the ocean 
interior, and is an important factor in determining the rates and distributions of marine primary production. 
 
Arctic Ocean stratification is strongest at the base of the surface mixed layer, with mixed-layer depths 
ranging around 25-50 m in winter and around 5-30 m in summer (Peralta-Ferriz and Woodgate, 2015). 
General trends between 1979 and 2012 across the entire central Arctic over all seasons, and in the winter in 
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the boundary regions (Chukchi, southern Beaufort and Barents seas) indicate a mixed layer shoaling of about 
0.5 to 1 m yr–1, with mixed-layer deepening trends evident in some regions (e.g., the southern Beaufort Sea 
in summer; Peralta-Ferriz and Woodgate, 2015). Shoaling has been attributed to surface ocean freshening 
and inhibition of mixed-layer deepening by convection and shear-driven mixing, whilst deepening trends 
have been attributed to winds that drive offshore transport of surface freshwater (Peralta-Ferriz and 
Woodgate, 2015). The Atlantification in the Eurasian Basin is associated with weakening stratification in the 
eastern Eurasian Basin at the top boundary of the Atlantic Water Layer from 2012 to 2016, related to 
reduced sea-ice cover and increased vertical mixing (Polyakov et al., 2017). 
 
For the Southern Ocean, there is only limited evidence for stratification changes in the post-AR5 period. 
Section 3.3.3 assesses the potential of freshwater discharge from the Antarctic Ice Sheet to influence such 
stratification. 
 
 
SM3.2.3 Decadal Variability in the Southern Ocean Air-sea Flux of CO2 
 
 

 
Figure SM3.4: (a) Decadal variability in the Southern Ocean air-sea CO2 flux anomaly (adapted from Landschützer et 
al. (2015)). Curves contrast the decadal model reconstruction (1982-2012) of CO2 air-sea flux anomalies from 
observations and neural network against a second empirical method (Rodenbeck et al., 2014) and a model-based steady-
state linear trend of an increasing CO2 sink. Yellow shading denotes the period of the weakening of the Southern Ocean 
carbon sink, separating periods of strengthening before and after. (b) The interannual variability of the seasonal cycle of 
ΔpCO2 showing that the decadal trend (1998-2012) is strongly associated with trends in winter peaks of ΔpCO2, 
whereas the summer minima have stronger interannual modes. σ denotes 1 standard deviation. (Adapted from Gregor et 
al. (2017)).  
 
 
SM3.2.4 Variability and Trends in DIC Buffer Factor (γ) 
 
The Dissolved Inorganic Carbon (DIC) buffer factor (γ) reflects the sensitivity of changing ocean pCO2 to a 
changing DIC (Egleston et al., 2010). The Revelle Factor is the reciprocal of γ, i.e. Revelle Factor = 1/ γ.  
Decreasing buffer factor (or increasing Revelle Factor) with rising atmospheric pCO2 linked to 
anthropogenic emissions acts as a strong positive feedback on atmospheric CO2, by reducing potential future 
uptake of CO2 by the Southern Ocean (Wang et al., 2016). The Revelle Factor will grow to become one of 
the most important factors reducing the capacity of the Southern Ocean to take up anthropogenic CO2 
(Egleston et al., 2010) and play a positive feedback role in the carbon – climate system as well as early onset 
of hypercapnia or carbonate under saturation (McNeil and Sasse, 2016; Kwiatkowski and Orr, 2018).  
 
One of the important outcomes predicted by carbonate equilibrium theory for a decreasing buffering capacity 
is an amplified seasonal variability of pCO2 (Egleston et al., 2010; McNeil and Sasse, 2016). A century-scale 
set of model runs comparing the RCP8.5 scenario with a control (constant at pre-industrial pCO2) showed 
that the seasonal cycle of pCO2 amplified by a factor of 2 – 3 mainly due to the increased sensitivity of CO2 
to summer DIC drawdown by primary productivity (Hauck and Volker, 2015). Thus in future, as buffering 
capacity of the ocean decreases towards the end of the century, biology will have an increased contribution 
to the uptake of anthropogenic carbon during the summer in the Southern Ocean (Hauck and Volker, 2015).  
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This has been further investigated using observation-based CO2 products (Landschützer et al., 2018). Using 
the data product that spans 34 years (1982-2015) the study confirms the model predictions that there already 
exists an observable trend in the increase of the mean seasonal amplitude of the seasonal cycle of pCO2 of 
1.1 ± 0.3 μatm per decade in the Southern Ocean (Landschützer et al., 2018) (Figure SM3.5a). It also shows 
that this mean trend is the net effect of opposing contributions from biogeochemical (non-thermal) (2.9 ± 
0.7) and thermal (-2.1 ± 0.5) forcings (Figure SM3.5b). Thermal forcing refers to forcing from changes in 
sea surface temperature driven by heat uptake or circulation changes. Biogeochemical or non-thermal forcing 
refers to seasonal primary productivity and mixing or entrainment. Overall, these changes to the 
characteristics of the seasonal cycle of biogeochemistry and CO2 because of the trends in reduced buffering 
will become dominant drivers of the long-term trend of the fluxes and storage of anthropogenic CO2 in the 
Southern Ocean (Hauck and Volker, 2015; McNeil and Sasse, 2016).  
 
 

 
Figure SM3.5: (a) The significant multi-decadal (1982-2005) trend (1.1 ± 0.3 μatm per decade) in increasing amplitude 
of the seasonal cycle of pCO2 in the Southern Ocean. (b) The seasonal trend signal decomposed for thermal and non-
thermal drivers: non-thermal (DIC) drivers dominate the trend (b). Adapted from Landschützer et al. (2018).  
 
 
SM3.2.5 Decadal Changes in Southern Ocean Carbon Storage Rates 
 
Decadal changes in the modelled net carbon and observed anthropogenic carbon storage rates may be linked 
to the decadal phases of the upper-ocean overturning circulation (DeVries et al., 2017) (Table SM3.4). The 
net carbon storage is largely influenced by changes in the elevated natural CO2 derived from DIC-rich deep 
ocean waters that have not had contact with the atmosphere since the start of the industrial period. This has 
the potential to explain why storage increases when upper-ocean overturning weakens and outgassing is 
reduced (DeVries et al., 2017). In contrast, anthropogenic carbon has maximum storage during high upper-
ocean overturning periods, probably due to its sensitivity to the increased rate of subduction of mode and 
intermediate waters (Tanhua et al., 2017). The magnitude of the carbon storage variability is therefore an 
indication of the sensitivity of the system to small wind-driven adjustments in the upper-ocean overturning 
circulation (Swart et al., 2014; Swart et al., 2015). 
 
 
Table SM3.4: Comparison of the phasing and magnitude of the decadal variability in net carbon and anthropogenic 
carbon storage in the Southern Ocean (DeVries et al., 2017; Tanhua et al., 2017). UOOC = Upper-Ocean Overturning 
Circulation; CANT = anthropogenic carbon. 

Decade DeVries et al. (2017)  Tanhua et al. 
(2017) 

 

 Net storage CO2 Explanation CANT Storage Rates Explanation 

1980s High - 0.53 Pg C y–1 Slow UOOC Outgassing 
reduced - storage increased 

1984–1990 
440 kmol yr–1m–1 

Lower storage in mode 
waters 

1990s Low - 0.20 Pg C y–1 Faster UOOC Outgassing 
increased - storage reduced 

1984–2005 
1142 kmol yr–1m-1 

High storage in mode 
waters 

2000s High - 0.61 PgC y–1 Slow UOOC Outgassing 
decreased - storage increased 

2005–2012 
–752 kmol yr–1m-1 

Lower storage in 
intermediate waters 
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Table SM3.5: Timing of the onset of monthly and annual-mean undersaturation in the Southern Ocean under different 
emission scenarios. The effect of the abrupt change threshold between RCP2.6 and RCP4.5/8.5 is apparent. Although 
all scenarios show an onset of month-long undersaturation in the 21st century, the area covered by this condition under 
RCP2.6 is 0.2% of that covered by RCP8.5 (Sasse et al., 2015). 

Scenario Onset of month-long 
undersaturation 

Onset of annual 
undersaturation 

% Impact area relative to RCP8.5 

    
RCP8.5 2048 ± 15 + 10–20 - 
RCP4.5 2073 ± 17 + 10–20  
RCP2.6 2033 ± 15 - None 0.2% 

 
 
SM3.2.6 Climate Change Impacts on Arctic Kelp Forests 
 
In the Arctic, biodiversity of macroalgae and biomass of kelps and associated fauna have considerably 
increased in the intertidal to shallow subtidal zone over the last two decades, causing changes in the food 
web structure and functionality. This is mostly accounted for by reduced physical impact by ice-scouring and 
increased light availability as a consequence of warming and concomitant fast-ice retreat (Kortsch et al., 
2012; Bartsch et al., 2016; Paar et al., 2016) (medium confidence). Increase of summer seawater 
temperatures up to 10°C (IPCC 2100 scenario) will not be detrimental for Arctic kelp species. A further 
seawater temperature increase above 10°C which is only expected under extreme warming scenarios will 
definitely suppress the abundance, growth and productivity of Arctic endemic Laminaria solidungula and 
sub-Arctic Alaria esculenta but not of cold-temperate to Arctic Laminaria digitata and Saccharina latissima 
(Dieck, 1992; Gordillo et al., 2016; Roleda, 2016; Zacher et al., 2016) (high confidence). In total, these data 
support projections that kelp and macroalgal production will increase in the future Arctic (e.g., Krause-
Jensen et al., 2016). This will become more pronounced when rocky substrates hidden in current permafrost 
areas (Lantuit et al., 2012) become readily colonized by kelp and other macroalgae during their transition 
toward ice-free conditions, as has been verified for Antarctica (Liliana Quartino et al., 2013; Campana et al., 
2017) (high confidence).  
 
Besides the direct effects of temperature, sedimentation is a major driver in fjord systems influenced by 
glaciers. The reduced depth extension of several kelp species in Kongsfjorden between 1986 and 2014 was 
attributed to overall increased turbidity and sedimentation (Bartsch et al., 2016). Sedimentation may also 
inhibit the germination of Arctic kelp spores and reduce their subsequent sporophyte recruitment (Alaria 
esculenta, Saccharina latissima, Laminaria digitata). Interaction with grazing and a simulated increase in 
summer sea temperatures by 3–4°C (scenario for 2100) partially counteracts the negative impact of 
sedimentation in a species-specific manner (Zacher et al., 2016). Transient sediment cover on kelp blades on 
the other hand provides an effective shield against harmful ultraviolet radiation (Roleda et al., 2008). Glacial 
melt also increases freshwater inflow into Arctic fjord systems and thereby may impose hyposaline 
conditions to shallow water kelps. Pre-conditioning with low salinity as a stressor results in an increased 
tolerance towards UV-radiation in Arctic Alaria esculenta, thereby indicating the potential of cross-
acclimation under environmental change (Springer et al., 2017).  
 
Ocean acidification in interaction with climate warming will be most pronounced in the Arctic, where kelp 
and kelp-like brown algae show variable species-specific responses under end of the century scenarios for 
CO2 (390 and 1000 ppm) and temperature (4°C and 10°C) (Gordillo et al., 2015; Gordillo et al., 2016; 
Iñiguez et al., 2016). On the biochemical side, warming involves photochemistry adjustments while 
increased CO2 mainly affects the carbohydrate and lipid content suggesting that ocean acidification may 
change metabolic pathways of carbon in kelps (Gordillo et al., 2016). Increased CO2 also affects 
photosynthetic acclimation under UV radiation in Arctic Alaria esculenta and Saccharina latissima (Gordillo 
et al., 2015). Experimental observations support that interactions between temperature and CO2 are low, 
indicating a higher resilience of Arctic kelp communities to these climate drivers than their cold-temperate 
counterparts (Olischläger et al., 2014; Gordillo et al., 2016).  
 
SM3.2.7 Southern Ocean Foodwebs 
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Marine foodwebs encompass the relationship between predators and prey in the oceans, also reflecting the 
interactions between the environment, primary production and the transfer of energy through ecosystems. 
Southern Ocean foodwebs are complex and while Antarctic krill (Euphausia superba) play a central role as 
grazers and as prey items for fish, squid, marine mammals and seabirds, the trophic role of this species varies 
between different regions (Section 3.2.3.2; Figures SM3.7 and SM3.6). No information is currently available 
regarding projected changes in the configuration of Southern Ocean foodwebs at the circumpolar or sector 
scale. 
 
 

 
Figure SM3.6. Configuration of the Southern Ocean foodweb (updated from McCormack et al., 2017). Foodweb 
groups are coloured according to broad taxonomic groups (e.g. yellow for benthic organisms, red for zooplankton) with 
numbers corresponding to the name of the group listed in the key. Silhouettes are representative of the types of 
organisms associated with each group. Connections are coloured according to prey species/group and are directed 
towards the relevant predator group. 
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Figure SM3.7: Configurations of foodwebs in the four major oceanic sectors of the Southern Ocean (sector boundaries 
represented in central Antarctic map) a) The Atlantic sector b) Indian sector c) East Pacific sector d) West Pacific sector 
(updated from McCormack et al., 2017). Colours and numbers correspond to those listed within the key. The size of 
different nodes (groups) is indicative of the number of species aggregated within each group and the width of the 
connections corresponds to the average fraction of occurrence of the trophic interaction between the two groups as 
reported in the SCAR Southern Ocean Diet and Energetics Database. Grey nodes indicate no fraction of occurrence data 
is currently available for the associated group in the database with other nodes coloured according to broad taxonomic 
groups (e.g. yellow for benthic organisms, red for zooplankton). Connections are coloured according to prey 
species/group and are directed towards the relevant predator group. 
 
 
SM3.3 Polar Ice Sheets and Glaciers: Changes, Consequences and Impacts 
 
SM3.3.1 Methods of Observing Ice Sheet Changes 
 
Since the late-20th century and the beginning of the satellite era, frequent observations of ice sheet mass 
change have been made using three complementary approaches: 1) volume-change measurements from laser 
or radar altimetry, combined with modelled estimates of the variable density and compaction of firn and 
snow to calculate mass change; 2) input-output budgeting, comparing modelled surface mass balance inputs 
over major glacier catchments to mass outputs through glacier flux gates at or near the grounding line, using 
surface flow velocities estimated from radar or optical satellite images and ice thickness data; 3) changes in 
gravitational field over the ice sheets from satellite gravimetry. Since AR5 there has been substantial 
improvements in high temporal and spatial resolution ice velocity mapping (e.g., Nagler et al., 2015). For the 
Greenland and Antarctic ice sheets, pre-satellite mass changes have been reconstructed using firn/ice core 
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and geological evidence. Where possible, this chapter uses paleo evidence to contextualise assessments of 
recent mass changes.  
 
SM3.3.1.1 West Antarctica and Antarctic Peninsula 
 
Inter-comparison between satellite methods over a common period 
Comparing the three satellite methods described above for the 2003–2010 period, the estimates from 
altimetry, gravimetry and input-output budgeting for WAIS are –70 ± 8 Gt yr–1, –101 ± 9 Gt yr–1 and –115 ± 
43 Gt yr–1 (The IMBIE Team, 2018) or, for a combined gravimetry-altimetry assessment, –98 ± 13 Gt yr–1 
(Mémin et al., 2014) (medium evidence; high agreement in sign, medium agreement in magnitude). For the 
AP, the equivalent values are –10 ± 9 Gt yr–1, –23 ± 5 Gt yr–1 and –51 ± 24 Gt yr–1 (The IMBIE Team, 2018) 
(medium evidence; high agreement in sign, medium agreement in magnitude). 
 
WAIS inter-comparison of satellite-derived mass changes through time 
A substantial increase in WAIS mass loss reported by two multi-method studies (Bamber et al., 2018; The 
IMBIE Team, 2018) (Table SM3.6) is supported by additional estimates from input-output budgeting of –34 
± 9 Gt yr–1 in 1979–2003, increasing to –112 ± 12 Gt yr–1 in 2003–2016 (Rignot et al., 2019) and –214 ± 51 
Gt yr–1 between approximately 2008 and 2015 (Gardner et al., 2018), by a satellite radar-altimetry-derived 
rate of –134 ± 27 Gt yr–1 for 2010 to 2013 (McMillan et al., 2014), and by studies focussing on the 
Amundsen Sea Embayment (ASE) (below).  
 
WAIS mass loss concentrated in the Amundsen Sea Embayment (ASE) 
With robust evidence in the ASE, the three satellite measurement methods showed high agreement in both 
loss rates (–102 ± 10 Gt yr–1) and in acceleration in loss (–15.7 ± 4.0 Gt yr–2) for 2003–2011 (Velicogna et 
al., 2014). Similarly for 2003-2013 there is high agreement with gravimetry (–110 ± 6 Gt yr–1 with an 
acceleration of –15.1 Gt yr–2) (Velicogna et al., 2014) (or a loss rate of around –120 Gt yr–1 given updated 
observations of isostatic rebound; Barletta et al. (2018)), and with a statistical inversion of altimetry, 
gravimetry and GPS data (–102 ± 6 Gt yr–1) (Martín‐Español et al., 2016), and also with input-output 
budgeting (–138 ± 42 Gt yr–1) for 2008–2015 (Gardner et al., 2018). 
 
AP inter-comparison of satellite-derived mass changes through time 
On the AP, a multi-method assessment showing an increase in mass loss from the 1990s to the last decade 
(Table 3.3) is supported by comparable loss estimates of –28 ± 7 Gt yr–1 for 2003–2013 from a statistical 
inversion of altimetry, gravimetry and GPS (Martín‐Español et al., 2016), –31 ± 4 Gt yr–1 from gravimetry 
for 2003–2013 (with an acceleration of –3.2 ± 0.6 Gt yr–2) (Velicogna et al., 2014), and from radar altimetry, 
–23 ± 18 Gt yr–1 for 2010 to 2013 (McMillan et al., 2014) and –31 ± 29 Gt yr–1 for 2008–2015 (Gardner et 
al., 2018). 
 
SM3.3.1.2 East Antarctic Ice Sheet 
 
Inter-comparison between satellite methods over a common period 
Altimetry, gravimetry and input-output budgeting for the 2003–2010 period for EAIS give estimates of +37 
± 18 Gt yr–1, +47 ± 18 Gt yr–1 and –35 ± 65 Gt yr–1 (The IMBIE Team, 2018), or, for a combined gravimetry-
altimetry assessment, +51 ± 22 Gt yr–1 (Mémin et al., 2014), estimates that agree within uncertainties but 
vary in sign around zero. 
 
Inter-comparison of satellite-derived mass changes through time 
In addition to the two multi-method satellite studies reported in Table 3.3, supporting evidence of variability 
but no clear multiannual trend comes from input-output budgets for EAIS ranging from –35 to +13 Gt yr–1 
from 1979–2016 (Rignot et al., 2019) and +61 ± 73 Gt yr–1 from 2008–2015 (Gardner et al., 2018), –3 ± 36 
Gt yr–1 from radar altimetry for 2010–2013 (McMillan et al., 2014), and +56 ± 18 Gt yr–1 for 2003–2013 
from a statistical inversion of altimetry, gravimetry and GPS (Zammit‐Mangion et al., 2014; Martín‐Español 
et al., 2016). One altimetry study that considered observed EAIS volume changes to be dominated by 
ongoing post-Holocene dynamic thickening (i.e., at the density of ice as opposed to lower-density snow and 
firn) calculated large EAIS mass gains of approximately +136 Gt yr–1 between 1992 and 2008 (Zwally et al., 
2015), though this disagrees with other studies (Bamber et al., 2018) and was not reproduced in a sensitivity 
study that tested this assumption (Martin-Español et al., 2017). 
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SM3.3.1.3 Greenland Ice Sheet 
 
Inter-comparison of satellite-derived mass changes through time 
A multi-method satellite assessment (Table 3.3) (Bamber et al., 2018) is supported by similar results for 
overlapping periods from radar altimetry (–269 ± 51 Gt yr–1 for 2011–2016) (McMillan et al., 2016), input-
output budgeting (–247 ± 28 Gt yr–1 for 2000–2012 ) (Enderlin et al., 2014) (potentially –266 Gt yr–1 
accounting for long-term mass gains before 1990; Colgan et al. (2015)), and gravimetry (–280 ± 58 Gt yr–1 
for 2003–2013) (Velicogna et al., 2014). 
 
 

 
Figure SM3.8: Antarctic regional mass trends for the period 2003–2013 distinguishing the surface mass balance (blue) 
and ice dynamics (brown) components and the total mass change (black) for the West Antarctic Ice Sheet, Antarctic 
Peninsula, and East Antarctic Ice Sheet. The 1σ confidence interval is given by the error bars (after, Martín-Español et 
al., 2016).  
 
 
Table SM3.6: Summary of total AIS mass balance (combined AP, WAIS and EAIS) for various periods. 

Period AIS Mass balance (Gt yr–1) Uncertainty (Gt yr–1) Source 
2003–2010 –47 35 (Mémin et al., 2014) 
2003–2013 –84 22 (Martín‐Español et al., 2016) 
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2003–2013 –67 44 (Velicogna et al., 2014) 
2010–2013 –160 81 (McMillan et al., 2014) 
2008–2015 –183 94 (Gardner et al., 2018) 
1992–2016 –93 49 (Bamber et al., 2018) 
1992–2017 –109 56 (The IMBIE Team, 2018) 
1992–1996 –27 106 (Bamber et al., 2018) 
1992–1997 –49 67 (The IMBIE Team, 2018) 
1997–2001 –103 157 (Bamber et al., 2018) 
1997–2002 –38 64 (The IMBIE Team, 2018) 
2002–2006 –25 54 (Bamber et al., 2018) 
2002–2007 –73 53 (The IMBIE Team, 2018) 
2007–2011 –117 28 (Bamber et al., 2018) 
2007–2012 –160 50 (The IMBIE Team, 2018) 
2012–2016 –191 47 (Bamber et al., 2018) 
2012–2017 –219 43 (The IMBIE Team, 2018) 

 
 
SM3.3.2 Projections for Polar Glaciers 
 
Table SM3.7: Region-specific projected mass changes for polar glaciers at 2100 CE as a percentage change relative to 
modelled 2015 values. Results show multi-model means and standard deviations (SD) in response to Representative 
Concentration Pathway (RCP) emission scenarios. Means and SD are calculated from 6 participating glacier models 
forced by more than 20 General Circulation Models; results for RCP2.6 are from 46 individual glacier model 
simulations, while the RCP8.5 results are from 88 glacier model simulations (Hock et al., 2019).  

Region (see Figure 3.8) RCP2.6 mean ± SD RCP8.5 mean ± SD 
Arctic Canada North  –12 ± 8 –23 ± 15 
Arctic Canada South  –21 ± 17 –41 ± 25 
Greenland periphery  –17 ± 10 –33 ± 16 
Svalbard –36 ± 24 –61 ± 23 
Russian Arctic  –28 ± 22 –46 ± 29 
Antarctic periphery and Sub-Antarctic  –13 ± 5 –26 ± 10 
All Arctic regions listed above and also including Alaska, 
Iceland, and Scandinavia  

–21 ± 10 –38 ± 14 

All polar regions (Antarctic periphery and Sub-Antarctic, 
Arctic Canada North and South, Alaska, Greenland periphery, 
Iceland, Scandinavia, Svalbard, and the Russian Arctic) 

–16 ± 7 –33 ± 11 

 
 
SM3.4 Summary of Consequences and Impacts 
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Figure SM3.9: Synthesis of consequences and impacts in polar regions assessed in Chapter 3. For each named region, 
physical changes (red/orange boxes), impacts on key ecosystems (green boxes), and impacts on human systems and 
ecosystem services (blue boxes) are shown.  Physical changes are attributable to rising greenhouse gas concentrations 
and associated warming at either global or regional scales with the confidence indicated; attribution is less certain at 
regional scales due to higher internal variability. Physical changes in the oceans refer to bulk averages horizontally and 
vertically for each of the regions named. For land regions, only impacts that are at least partly attributed to a change in 
the cryosphere are shown, and only if assessed at medium or high confidence for the respective region. For physical 
changes, + or – refers to an increase or decrease in level or frequency of the measured parameter. For impacts on 
ecosystems, human systems and ecosystems services, + or – depicts a positive (beneficial) or negative (adverse) 
impacts on the relevant service, respectively. A dot represents both positive and negative impacts being observed. The 
physical changes in the ocean are defined as: Temperature in the 0-700 m layer of the ocean, Oxygen in the 0-1200 m 
layer or oxygen minimum layer, Ocean pH is surface/upper ocean pH. Ecosystems on Land: Tundra refers to Arctic 
tundra and the terrestrial Antarctic ecosystems. Underlying data and cross-references to sections are given in Tables 
SM3.8 – SM3.10. The term epipelagic for Ecosystems includes the pelagic realm for polar regions. 
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Table SM3.8: Observed physical changes in the ocean and cryosphere in the polar regions as depicted in Figure SPM.2 and Figure SM3.9. 
Region Location Physical Changes Direction of change  Notes Detection 

confidence  
Attribution to 
climate change 

Section Reference 

Ocean        

Arctic Ocean Temperature Increase 
Temperature assessed in a bulk 
average sense over the region High Medium 3.2.1.2.1 

Arctic Ocean Oxygen NA     

Arctic Ocean Ocean pH 
Decrease in pH 
(acidification) 

pH assessed at surface / upper 
ocean High High 3.2.1.2.4 

Arctic Ocean Sea Ice Extent Decrease  High High 3.2.1.1 

Arctic Ocean Sea level Increase  Low Low 4.2.2.6 

Antarctic Southern Ocean Temperature Increase 
Temperature assessed in a bulk 
average sense over the region High Medium 3.2.1.2.1 

Antarctic Southern Ocean Oxygen Decrease  Medium Low 5.2.3 

Antarctic Southern Ocean Ocean pH 
Decrease in pH 
(acidification) 

pH assessed at surface / upper 
ocean High  High 3.2.1.2.4 

Antarctic Southern Ocean Sea Ice Extent Neutral  High Low 3.2.1.1 

Antarctic Southern Ocean Sea level Increase  Medium Medium 4.2.2.6 

        

Land        

Arctic Alaska Cryosphere Decrease  High High 3.4.1.1; 3.4.1.2; 3.4.1.3 

Arctic Alaska Fire Increase  High High 3.4.1.2.4 

Arctic Alaska Subsidence Increase  Medium Medium 3.4.1.2.4 

Arctic 
Canadian Arctic + 
Greenland Cryosphere Decrease 

 
High High 3.4.1.1; 3.4.1.2; 3.4.1.3 

Arctic 
Canadian Arctic + 
Greenland Fire Increase 

 
High High 3.4.1.2.4 

Arctic 
Canadian Arctic + 
Greenland Subsidence Increase 

 
Medium Medium 3.4.1.2.4 

Arctic Russian Arctic Cryosphere Decrease  High High 3.4.1.1; 3.4.1.2; 3.4.1.3 

Arctic Russian Arctic Fire Increase  High High 3.4.1.2.4 

Arctic Russian Arctic Subsidence Increase  Medium Medium 3.4.1.2.4 

Antarctic Entire continent Cryosphere Decrease  Medium Medium 3.4.1.2 
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Table SM3.9: Observed impacts on ecosystems related to changes in the ocean and cryosphere in the polar regions as depicted in Figure SPM.2 and SM3.9 (NA = no data or not 
assessed) 
Region Location (where 

applicable) 
Ecosystem Impact direction Impact types Detection 

confidence 
Attribution 
confidence 

Section reference 

Ocean        
Arctic  Epipelagic* Positive and negative Mixed impacts (+ and -) see Figure 

3.5. 
High Medium Box 3.4; 3.2.3, Fig. 3.5 

Arctic  Coral  NA NA    
Arctic  Coastal Wetlands NA NA    
Arctic  Polar Benthos Positive and negative Mixed impacts (+ and -) with 

motile epifaunal biomass 
increasing in some regions, 
evidence of reductions in energy 
export to the sea floor, and shifting 
biogeography.  

Medium Medium 3.2.3 

Arctic  Ice-associated Negative Reduction in habitat for ice 
associated marine mammals, 
changes in the availability of prey 
but also increased ice algae blooms 
due to reductions in multi-year ice. 

High Medium 3.2.3 

Arctic  Deep sea No change No observed change (but negative 
impacts predicted) 

  3.2.3 

Arctic  Kelp forest Positive Increased light, reduced ice-
scouring due to fast ice retreat. 
Studies limited to a few regions. 

Medium Medium 3.A.2.5 

Arctic  Rocky shores No change NA    
Antarctic  Epipelagic* Positive and negative Mixed effects (+ and -) for pelagic 

ecosystems summarized in Figure 
3.6 

Medium Medium Fig 3.6; 3.2.3 

Antarctic  Coral  NA NA    
Antarctic Antarctic Peninsula Polar Benthos Positive Ice shelf loss and retreat of coastal 

glaciers created habitat for new 
seabed communities 

Medium Medium 3.3.3.4; Fig 3.6 

Antarctic Antarctic Peninsula Ice-associated 
ecosystems 

Positive and negative Mixed effects (+ and -). Habitat 
shifts for Antarctic krill and 
penguins associated with sea ice 
change 

Medium Medium Fig 3.6; 3.2.3; Box 3.4 

Antarctic  Deep sea No change No observed change (but negative 
impacts predicted) 

NA NA 3.2.3 
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Antarctic  Kelp forest NA NA    
Antarctic  Rocky shores NA NA    
        
Land        

Arctic Alaska Tundra Positive and negative Vegetation High Medium 3.4.3.2.1 

Arctic Alaska Tundra Negative Reindeer /caribou High Low 3.4.3.2.2 

Arctic Alaska Tundra Positive and negative Wildlife Medium Low Box 3.4; 3.4.3.2.2 

Arctic Alaska Boreal/montane forest Positive and negative Vegetation High Medium 3.4.3.2.1 

Arctic Alaska Boreal/montane forest Negative Reindeer /caribou High Low 3.4.3.2.2 

Arctic Alaska Boreal/montane forest Positive and negative Wildlife Medium Low Box 3.4; 3.4.3.2.2 

Arctic Alaska Rivers/streams Negative Habitat Medium Medium-Low 3.4.3.2.3 

Arctic Alaska Rivers/streams Negative Wildlife Low Low 3.4.3.2.3 

Arctic Alaska Lakes/ponds Positive and negative Habitat Medium Medium-Low 3.4.3.2.3 

Arctic Alaska Lakes/ponds Positive and negative Wildlife Low Low 3.4.3.2.3 

Arctic Canadian Arctic + 
Greenland 

Tundra Positive and negative Vegetation High Medium 3.4.3.2.1 

Arctic Canadian Arctic + 
Greenland 

Tundra Negative Reindeer /caribou High Low 3.4.3.2.2 

Arctic Canadian Arctic + 
Greenland 

Tundra Positive and negative Wildlife Medium Low Box 3.4; 3.4.3.2.2 

Arctic Canadian Arctic + 
Greenland 

Boreal/montane forest Positive and negative Vegetation High Medium 3.4.3.2.1 

Arctic Canadian Arctic + 
Greenland 

Boreal/montane forest Negative Reindeer /caribou High Low 3.4.3.2.2 

Arctic Canadian Arctic + 
Greenland 

Boreal/montane forest Positive and negative Wildlife Medium Low Box 3.4; 3.4.3.2.2 

Arctic Canadian Arctic + 
Greenland 

Rivers/streams Negative Habitat Medium Medium-Low 3.4.3.2.3 

Arctic Canadian Arctic + 
Greenland 

Rivers/streams Negative Aquatic biota Low Low 3.4.3.2.3 

Arctic Canadian Arctic + 
Greenland 

Lakes/ponds Positive and negative Habitat Medium Medium-Low 3.4.3.2.3 

Arctic Canadian Arctic + 
Greenland 

Lakes/ponds Positive and negative Aquatic biota Low Low 3.4.3.2.3 
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Arctic Russian Arctic Tundra Positive and negative Vegetation High Medium 3.4.3.2.1 

Arctic Russian Arctic Tundra Negative Reindeer /caribou High Low 3.4.3.2.2 

Arctic Russian Arctic Tundra Positive and negative Wildlife Medium Low Box 3.4; 3.4.3.2.2 

Arctic Russian Arctic Boreal/montane forest Positive and negative Vegetation High Medium 3.4.3.2.1 

Arctic Russian Arctic Boreal/montane forest Negative Reindeer /caribou High Low 3.4.3.2.2 

Arctic Russian Arctic Boreal/montane forest Positive and negative Wildlife Medium Low Box 3.4; 3.4.3.2.2 

Arctic Russian Arctic Rivers/streams Negative Habitat Medium Medium-Low 3.4.3.2.3 

Arctic Russian Arctic Rivers/streams Negative Wildlife Low Low 3.4.3.2.3 

Arctic Russian Arctic Lakes/ponds Positive and negative Habitat Medium Medium-Low 3.4.3.2.3 

Arctic Russian Arctic Lakes/ponds Positive and negative Wildlife Low Low 3.4.3.2.3 

Antarctic Entire continent Tundra Negative Invasiveness High Low Box 3.4 
*The pelagic realm which includes open waters deeper than 200 m is included in the category epipelagic. 
 
 
Table SM3.10: Observed impacts on ecosystem services and human systems related to changes in the ocean and cryosphere in the polar regions as depicted in Figure SPM.2 and 
Figure SM3.9 (NA = no data or not assessed). 
Region Location (where 

applicable) 
Ecosystem Services Impact direction Impact types Detection 

confidence 
Attribution 
confidence 

Section reference 

Ocean        
Arctic 

 

Fisheries Positive and negative Mixed effects (+ and -). Changes 
in catch level and distribution of 
catch observed in some regions. 

High Medium 3.2.3, 3.4.3, 3.5 

Arctic 

 

Tourism Positive Increase in tourist marine and 
cruise tourism related to an 
increase in accessibility. Other 
factors also contribute to increase 
in tourism. 

High Medium 3.2.4.2 

Arctic 

 

Habitat Services Positive and negative Mixed effects (+ and -). Decreases 
in sea ice and multi-year ice has 
both positive and negative changes 
in habitats important to ecosystem 
service delivery. 

High Medium 3.5 

Arctic 

 

Transportation & 
Shipping 

Positive Increase in shipping activity 
concurrent with reductions in sea 
ice extent. 

High Medium 3.2.4.3 
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Arctic 

 

Cultural Services Negative Adaptation has mostly allowed 
continued provisioning wild foods, 
shelter and water, but at increased 
costs and hardships 

Medium Medium 3.5.2.2 

Arctic  Carbon sequestration NA     

Antarctic Southwest Atlantic Fisheries Positive and negative Some evidence that changes in sea 
ice have influenced the area of 
operation of the krill fishery 

Low Low 3.2.4.1 

Antarctic Antarctic Peninsula Tourism Positive Increase in tourist number, increase 
in tour operators, risks to 
vulnerable ecosystems 

High Low 3.2.4.2 

Antarctic 

 

Habitat Services Positive and negative There has been an increase in the 
area of habitat protected, but both 
positive and negative changes in 
habitats important to ecosystem 
service delivery. 

Medium Low 3.2.3 

Antarctic 

 

Transportation & 
Shipping 

No change No observed impacts of climate 
change on Transportation for the 
Southern Ocean 

   

Antarctic  Cultural Services NA     

Antarctic  Carbon sequestration NA     

        

Land        

 Alaska Tourism NA     

 Alaska Infrastructure Negative Permafrost thaw + other climate 
related  

High Medium 3.4.3.3.4; 3.5.2.6 

 Alaska Cultural services Negative Livelihoods High High 3.4.3.3.1; 3.4.3.3.2; 
3.5.2.1; 3.5.2.2; 3.5.2.3; 
3.5.2.4 

 Alaska Cultural services Negative Health and well being Low Low 3.4.3.3.2; 3.5.2.8 

 Alaska Migration Positive (or neutral, see 
note in impact column) 

Village relocation planning 
(ongoing processes, no 
implementation to date) 

High Medium 3.5.2.6 

 Canadian Arctic + 
Greenland 

Tourism NA     

 Canadian Arctic + 
Greenland 

Infrastructure Negative Permafrost thaw + other climate 
related  

High Medium 3.4.3.3.4; 3.5.2.6 
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 Canadian Arctic + 
Greenland 

Cultural services Negative Livelihoods High High 3.4.3.3.1; 3.4.3.3.2; 
3.5.2.1; 3.5.2.2; 3.5.2.3; 
3.5.2.4 

 Canadian Arctic + 
Greenland 

Cultural services Negative Health and well being Low Low 3.4.3.3.2; 3.5.2.8 

 Canadian Arctic + 
Greenland 

Migration NA     

 Russian Arctic Tourism NA     

 Russian Arctic Infrastructure Negative Permafrost thaw + other climate 
related  

High Medium 3.4.3.3.4; 3.5.2.6 

 Russian Arctic Cultural services Negative Livelihoods High High 3.4.3.3.1; 3.4.3.3.2; 
3.5.2.1; 3.5.2.2; 3.5.2.3; 
3.5.2.4 

 Russian Arctic Cultural services Negative Health and well being Low Low 3.4.3.3.2; 3.5.2.8 
 Russian Arctic Migration NA     
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Executive Summary  
 
This chapter assesses past and future contributions to global, regional and extreme sea level changes, 
associated risk to low-lying islands, coasts, cities, and settlements, and response options and pathways to 
resilience and sustainable development along the coast. 
 
Global mean sea level (GMSL) is rising (virtually certain1) and accelerating (high confidence2). The 
sum of glacier and ice sheet contributions is now the dominant source of GMSL rise (very high 
confidence). GMSL from tide gauges and altimetry observations increased from 1.4 mm yr–1 over the period 
1901–1990 to 2.1 mm yr–1 over the period 1970-2015 to 3.2 mm yr–1 over the period 1993–2015 to 3.6 mm 
yr–1 over the period 2005–2015 (high confidence). The dominant cause of global mean sea level rise since 
1970 is anthropogenic forcing (high confidence) (4.2.2.1.6, 4.2.2.5). 
  
Global mean sea level was considerably higher than today during past climate states that were slightly 
warmer than preindustrial, including the Last Interglacial (LIG; 129–116 thousand years ago), when 
global mean surface temperature was 0.5ºC to 1.0ºC warmer, and the mid-Pliocene Warm Period 
(mPWP; ~3.3 to 3.0 million years ago), 2º-4º C warmer. Despite the modest global warmth of the Last 
Interglacial, Greenland and Antarctic ice sheets contributed 6-9 m to GMSL (high confidence), but not 
more than 10 m (medium confidence). Based on new understanding about geological constraints since 
AR5, 25 m is a plausible upper bound on GMSL during the mid-Pliocene Warm Period (low 
confidence). Ongoing uncertainties in paleo sea-level reconstructions and modeling hamper conclusions 
regarding the total magnitudes and rates of past sea level rise. Furthermore, the long (multi-millennial) 
timescales of these past climate and sea level changes, and regional climate influences from changes in 
Earth’s orbital configuration and climate system feedbacks, lead to low confidence in direct comparisons 
with near-term future changes. (4.2.2, 4.2.2.1, 4.2.2.5, CCB-5, Supplementary Material (SM) 4.1) 
  
Non-climatic anthropogenic drivers, including recent and historical demographic and settlement 
trends and anthropogenic subsidence, have played an important role in increasing low-lying coastal 
communities’ exposure and vulnerability to sea level rise and extreme sea level events (very high 
confidence). In coastal deltas, for example, these drivers have altered freshwater and sediment availability 
(high confidence). In low-lying coastal areas more broadly, human-induced changes can be rapid and modify 
coastlines over short periods of time, outpacing the effects of SLR (high confidence). Adaptation can be 
undertaken in the short- to medium-term by targeting local drivers of exposure and vulnerability, 
notwithstanding uncertainty about local SLR impacts in coming decades and beyond (high confidence; 
4.2.2.4, 4.3.1, 4.3.2.2, 4.3.2.2., 4.3.2.3). 
  
Coastal ecosystems are already impacted by the combination of sea level rise, other climate-related 
ocean changes, and adverse effects from human activities on ocean and land (high confidence). 
Attributing such impacts to sea level rise, however, remains challenging due to the influence of other 
climate-related and non-climatic drivers such as infrastructure development and human-induced 
habitat degradation (high confidence). Coastal ecosystems, including saltmarshes, mangroves, vegetated 
dunes and sandy beaches, can build vertically and expand laterally in response to SLR, though this capacity 
varies across sites (high confidence). These ecosystems provide important services that include coastal 
protection and habitat for diverse biota. However, as a consequence of human actions that fragment wetland 
habitats and restrict landward migration, coastal ecosystems progressively lose their ability to adapt to 

                                                   
1 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: 
Virtually certain 99–100% probability, Very likely 90–100%, Likely 66–100%, About as likely as not 33–66%, 
Unlikely 0–33%, Very unlikely 0–10%, and Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–
100%, More likely than not >50–100%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed 
likelihood is typeset in italics, e.g., very likely (see Section 1.9.2 and Figure 1.4 for more details). This Report also uses 
the term ‘likely range’ to indicate that the assessed likelihood of an outcome lies within the 17-83% probability range. 
2 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; 
and for the degree of agreement: low, medium, or high. A level of confidence is expressed using five qualifiers: very 
low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and 
agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of 
agreement are correlated with increasing confidence (see Section 1.9.2 and Figure 1.4 for more details). 
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climate-induced changes and provide ecosystem services, including acting as protective barriers (high 
confidence; 4.3.2.3). 
  
Coastal risk is dynamic and increased by widely observed changes in coastal infrastructure, 
community livelihoods, agriculture and habitability (high confidence). As with coastal ecosystems, 
attribution of observed changes and associated risk to sea level rise remains challenging. Drivers and 
processes inhibiting attribution include demographic, resource- and land-use changes, and anthropogenic 
subsidence (4.3.3, 4.3.4). 
 
A diversity of adaptation responses to coastal impacts and risks have been implemented around the 
world, but mostly as a reaction to current coastal risk or experienced disasters (high confidence). Hard 
coastal protection measures (dikes, embankments, sea walls, surge barriers) are widespread, providing 
predictable levels of safety in North West Europe, East Asia, and around many coastal cities and deltas. 
Ecosystem-based adaptation is continuing to gain traction worldwide, providing multiple co-benefits, but 
there is still low agreement on its cost and long-term effectiveness. Advance, which refers to the creation of 
new land by building into the sea (e.g., land reclamation), has a long history in most areas where there are 
dense coastal populations. Accommodation measures, such as early warning systems for extreme sea level 
events, are widespread. Retreat is observed but largely restricted to small communities or carried out for the 
purpose of creating new wetland habitat (4.4.2.3, 4.4.2.4, 4.4.2.5). 
  
Projections 
  
Future rise in global mean sea level caused by thermal expansion, melting of glaciers and ice sheets, 
and land water storage changes, is strongly dependent on which RCP emission scenario is followed. 
Sea level rise at the end of the century is projected to be faster under all scenarios, including those 
compatible with achieving the long-term temperature goal set out in the Paris Agreement. GMSL will 
rise between 0.43 m (0.29–0.59 m, likely range) (RCP2.6) and 0.84 m (0.61–1.10 m, likely range) 
(RCP8.5) by 2100 (medium confidence) relative to 1986-2005. Beyond 2100, sea level will continue to rise 
for centuries due to continuing deep ocean heat uptake and mass loss of the Greenland and Antarctic ice 
sheets (4.2.3.5), and will remain elevated for thousands of years (high confidence). For RCP8.5, estimates for 
2100 are higher and the uncertainty range larger than in AR5. Antarctica could contribute up to 28 cm of sea 
level rise (RCP8.5, upper end of likely range) by the end of the century (medium confidence). Estimates of 
sea level rise higher than the likely range are also provided here for decision makers with low risk tolerance 
(SR1.5, 4.1, 4.2.3.2). 
 
Under RCP8.5, the rate of sea level rise will be 15 mm yr–1 (10–20 mm yr–1, likely range) in 2100, and 
could exceed several cm yr–1 in the 22nd century. These high rates challenge the implementation of 
adaptation measures that involve a long lead-time, but this has not yet been studied in detail (4.2.3.2, 
4.4.2.2.3). 
  
Processes controlling the timing of future ice-shelf loss and the extent of ice sheet instabilities could 
increase Antarctica’s contribution to sea level rise to values higher than the likely range on century 
and longer time-scales (low confidence). Evolution of the Antarctic Ice Sheet beyond the end of the 21st 
century is characterized by deep uncertainty3 as ice sheet models lack realistic representations of some of the 
underlying physical processes. The few model studies available addressing timescales of centuries to 
millennia indicate multi-meter rise in sea level for RCP8.5 (medium confidence). There is low confidence in 
threshold temperatures for ice sheet instabilities and the rates of GMSL rise they can produce. (Cross-
Chapter Box 5 in Chapter 1, Cross-Chapter Box 8 in Chapter 3, and Sections 4.1, 4.2.3.1.1, 4.2.3.1.2, 
4.2.3.6). 
  
Sea level does not and will not rise uniformly. Thermal expansion, ocean dynamics and land ice loss 
contributions will generate regional departures of about ±30% around the GMSL rise. Local 

                                                   
3 Statements about uncertainty in section 4.2 are contingent upon the RCP or other emissions assumptions that 
accompany them. In 4.4, the entirety of information facing a decision maker is taken into consideration, including the 
unknown path of future emissions, in assessing uncertainty. Depending on which perspective is chosen, uncertainty 
may or may not be characterized as ‘deep’. 
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anthropogenic subsidence and change in wave height and period are important contributors to future 
changes in relative sea level (RSL) at the coast (high confidence). Subsidence caused by human activities 
is currently the most important cause of RSL change in many delta regions. In addition, changes in wave 
height and period at some locations have larger effects on coastal flooding than RSL change (medium 
confidence). While the comparative importance of climate-driven RSL rise will increase over time, these 
findings on anthropogenic subsidence and waves imply that a consideration of local processes is critical for 
projections of sea level impacts at local scales (high confidence; 4.2.1.6, 4.2.2.4). 
  
Due to projected global mean sea level rise, extreme sea level events (ESLs) that are historically rare 
(for example, today’s hundred-year event) will become common by 2100 under all RCPs (high 
confidence). Many low-lying megacities and small islands at almost all latitudes will experience such events 
annually by 2050 (4.2.3.4). Greenhouse gas mitigation envisioned in low-emission scenarios (e.g., RCP2.6) 
is expected to sharply reduce but not eliminate risk to low-lying coasts and islands from SLR and ESL 
events. Low-emission scenarios lead to slower rates of SLR and allow for a wider range of adaptation 
options. For the first half of the 21st century differences in ESL events among the scenarios are small, 
facilitating adaptation planning (4.2.2.5). 
 
Non-climatic anthropogenic drivers will continue to increase the exposure and vulnerability of coastal 
communities to future sea level rise and extreme sea level events in the absence of major adaptation 
efforts compared to today (high confidence). (4.3.4, Cross-Chapter Box 9). 
 
The expected impacts of sea level rise on coastal ecosystems over the course of the century include 
habitat contraction, loss of functionality and biodiversity, and lateral and inland migration. Impacts 
will be exacerbated in cases of land reclamation and where anthropogenic barriers prevent inland 
migration of marshes and mangroves and limit the availability and re-location of sediment (high 
confidence). Under favorable conditions, marshes and mangroves have been found to keep pace with fast 
rates of SLR (e.g., > 10mm/year), but this capacity varies significantly depending on factors such as wave 
exposure of the location, tidal range, sediment trapping, overall sediment availability, and coastal squeeze 
(high confidence) (4.3.3.5.1). 
  
In the absence of adaptation, more intense and frequent extreme sea level events, together with trends 
in coastal development will increase expected annual flood damages by 2-3 orders of magnitude by 
2100 (high confidence). However, well-designed coastal protection is very effective in reducing 
expected damages and cost efficient for urban and densely populated regions, but generally 
unaffordable for rural and poorer areas (high confidence). Effective protection requires investments on 
the order of tens to several hundreds of billions of US$ per year globally (high confidence). While 
investments are generally cost efficient for densely populated and urban areas (high confidence), rural and 
poorer areas will be challenged to afford such investments with relative annual costs for some small island 
states amounting to several percent of GDP (high confidence). Even with well-designed hard protection, the 
risk of possibly disastrous consequences in the event of failure of defenses remains (4.3.4, 4.4.2.2, 4.4.3.2, 
Cross-Chapter Box 9). 
  
Risk related to sea level rise (including erosion, flooding and salinization) is expected to significantly 
increase by the end of this century along all low-lying coasts in the absence of major additional 
adaptation efforts (very high confidence). While only urban atoll islands and some Arctic communities are 
expected to experience high risk relative to today in a low emission pathway, high to very high risks are 
expected in all low-lying coastal settings at the upper end of the likely range for high emission pathways 
(medium confidence). However, the transition from moderate to high and from high to very high risk will 
vary from one coastal setting to another (high confidence). While a slower rate of SLR enables greater 
opportunities for adapting, adaptation benefits are also expected to vary between coastal settings. Although 
ambitious adaptation will not necessarily eradicate end-century SLR risk (medium confidence), it will help to 
buy time in many locations and therefore help to lay a robust foundation for adaptation beyond 2100. (4.1.3, 
4.3.4, Box 4.1, SM4.2). 
  
Choosing and Implementing Responses. 
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All types of responses to sea-level rise, including protection, accommodation, ecosystem-based 
adaptation, advance and retreat, have important and synergistic roles to play in an integrated and 
sequenced response to sea-level rise (high confidence). Hard protection and advance (building into the sea) 
is economically efficient in most urban contexts facing land scarcity (high confidence), but can lead to 
increased exposure in the long term. Where sufficient space is available, ecosystem-based adaptation can 
both reduce coastal risks and provide multiple other benefits (medium confidence). Accommodation such as 
flood-proofing buildings and early warning systems for ESL events are often both low-cost and highly cost-
efficient in all contexts (high confidence). Where coastal risks are already high, and population size and 
density are low, or in the aftermath of a coastal disaster, retreat may be especially effective, albeit socially, 
culturally, and politically challenging (4.4.2.2, 4.4.2.3, 4.4.2.4, 4.4.2.5, 4.4.2.6, 4.4.3). 
 
Technical limits to hard protection are expected to be reached under high emission scenarios (RCP8.5) 
beyond 2100 (high confidence) and biophysical limits to ecosystem-based adaptation may arise during 
the 21st century, but economic and social barriers arise well before (medium confidence). Economic 
challenges to hard protection increase with higher sea levels and will make adaptation unaffordable before 
technical limits are reached (high confidence). Drivers other than SLR are expected to contribute more to 
biophysical limits of ecosystem-based adaptation. For corals, limits may be reached during this century, due 
to ocean acidification and ocean warming, and for tidal wetlands due to pollution and infrastructure limiting 
their inland migration. Limits to accommodation are expected to occur well before limits to protection occur. 
Limits to retreat are uncertain, reflecting research gaps. Social barriers (i.e., governance challenges) to 
adaptation are already encountered (4.4.2.2, 4.4.2.3., 4.4.2.3.2, 4.4.2.5, 4.4.2.6, 4.4.3., Cross-Chapter Box 9). 
 
Choosing and implementing responses to sea level rise presents society with profound governance 
challenges and difficult social choices, which are inherently political and value-laden (high confidence). 
The large uncertainties about post 2050 SLR, and the substantial impact expected, challenge established 
planning and decision-making practises and introduce the need for coordination within and between 
governance levels and policy domains. SLR responses also raise equity concerns about marginalising those 
most vulnerable and could potentially spark or compound social conflict (high confidence). Choosing and 
implementing responses is further challenged through a lack of resources, vexing trade-offs between safety, 
conservation and economic development, multiple ways of framing the “SLR problem”, power relations, and 
various coastal stakeholders having conflicting interests in the future development of heavily used coastal 
zones (high confidence) (4.4.2, 4.4.3). 
  
Despite the large uncertainties about post 2050 sea level rise, adaptation decisions can be made now, 
facilitated by using decision analysis methods specifically designed to address uncertainty (high 
confidence). These methods favour flexible responses (i.e., those that can be adapted over time) and 
periodically adjust decisions (i.e., adaptive decision making).  They use robustness criteria (i.e., effectiveness 
across a range of circumstances) for evaluating alternative responses instead of standard expected utility 
criteria (high confidence). One example is adaptation pathway analysis, which has emerged as a low-cost 
tool to assess long-term coastal responses as sequences of adaptive decisions in the face of dynamic coastal 
risk characterized by deep uncertainty (medium evidence, high agreement). The range of sea level rise to be 
considered in decisions depends on the risk tolerance of stakeholders, with stakeholders whose risk tolerance 
is low also considering sea level rise higher than the likely range (4.1, 4.4.4.3). 
 
Adaptation experience to date demonstrates that using a locally appropriate combination of decision 
analysis, land-use planning, public participation and conflict resolution approaches can help to 
address the governance challenges faced in responding to SLR (high confidence).  Effective SLR 
responses depend, first, on taking a long-term perspective when making short-term decisions, explicitly 
accounting for uncertainty of locality-specific risks beyond 2050 (high confidence), and building governance 
capabilities to tackle the complexity of SLR risk (medium evidence, high agreement). Second, improved 
coordination of SLR responses across scales, sectors and policy domains can help to address SLR impacts 
and risk (high confidence). Third, prioritising consideration of social vulnerability and equity underpins 
efforts to promote fair and just climate resilience and sustainable development (high confidence), and can be 
helped by creating safe community arenas for meaningful public deliberation and conflict resolution 
(medium evidence, high agreement). Finally, public awareness and understanding about SLR risks and 
responses can be improved by drawing on local, indigenous and scientific knowledge systems, together with 
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social learning about locality-specific SLR risk and response potential (high confidence)(4.4.4.2, 4.4.5, Table 
4.9). 
   
Achieving the United Nations Sustainable Development Goals and charting Climate Resilient 
Development Pathways depends in part on ambitious and sustained mitigation efforts to contain SLR 
coupled with effective adaptation actions to reduce SLR impacts and risk (medium evidence, high 
agreement). 
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4.1 Synthesis  
 
4.1.1 Purpose, Scope, and Structure of this Chapter 
 
This chapter assesses the literature published since the IPCC’s Fifth Assessment Report (AR5) on past and 
future contributions to global, regional and extreme sea level changes, associated risk to low-lying islands, 
coasts, cities, and settlements, and response options and pathways to resilience and sustainable development 
along the coast. The chapter follows the risk framework of AR5, in which risk is assessed in terms of hazard, 
exposure, and vulnerability (Cross-Chapter Box 1 Chapter 1; Box 4.1), and is structured as follows (Figure 
4.1): 
• Section 4.1 (this section) presents a high-level synthesis of our assessment and provides entry points to 

more specific content found in the other sections. 
• Section 4.2 assesses the current understanding of processes contributing to mean and extreme sea level 

rise (SLR) globally, regionally, and locally, with an emphasis on new insights about the Antarctic ice 
sheet contribution.  

• Section 4.3 assesses how mean and extreme sea-level changes translate into coastal hazards (e.g., 
flooding, erosion, salinity intrusion), how these interact with socio-economic drivers of coastal exposure 
and vulnerability, and how this interaction translates into observed impacts and projected risks for 
ecosystems, natural resources and human systems. 

• Section 4.4 assesses the cost, effectiveness, co-benefits, efficiency and technical limits of different types 
of SLR responses and identifies governance challenges (also called barriers) associated with choosing 
and implementing responses. Next, we assess planning, public participation, conflict resolution and 
decision methods for addressing the identified governance challenges as well as practical lessons learned 
in local cases. 
 
 

 
Figure 4.1: Schematic illustration of the interconnection of Chapter 4 themes, including drivers of sea level rise and 
(extreme) sea level hazards (Section 4.2), exposure, vulnerability, impacts and risk related to sea level rise (Section 
4.3), and responses, associated governance challenges and practises and tools for enabling social choices and addressing 
governance challenges (Section 4.4). 
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4.1.2 Future Sea-level Rise and Implications for Responses 
 
For understanding responses to climate-change induced SLR, two aspects of sea level are important to note 
initially: 
    
1. Climate-change induced global mean sea level (GMSL) rise is caused by thermal expansion of ocean 

water and ocean mass gain, the latter primarily due to a decrease in land-ice mass decrease. However, 
responses to SLR are local and hence always based on relative sea level (RSL) experienced at a 
particular location. GMSL is modified regionally by climate processes and locally by a variety of factors, 
some driven or influenced by human activity. Of particular relevance for responding to SLR is 
anthropogenic subsidence, which can lead to rates of RSL rise that exceed those of climate-induced SLR 
by an order of magnitude, specifically in delta regions and near cities (4.2.2.4). In these subsiding 
regions, one available response to prepare for future climate-induced SLR is to manage and reduce 
anthropogenic subsidence (4.4.2). 

2. The combination of gradual change of mean sea level with extreme sea level (ESL) events such as tides, 
surges and waves causes coastal impacts (4.2.3). Extreme sea level events at the coast that are rare today 
will become more frequent in the future, which means that for many locations, the main starting point for 
coastal planning and decision making is information on current and future ESL events. One important 
response for preparing for future SLR is to improve observational systems (tide gauges, wave buoys and 
remote sensing techniques), because in many places around the world current frequencies and intensities 
of ESL events are not well understood due to a lack of observational data (4.2.3.4.1). 

 
After an increase of sea level from 1–2 mm yr–1 in most regions over the past century, we now experience 
rates of 3–4 mm yr–1 that will further increase to 4–9 mm yr–1 under RCP2.6 and 10–20 mm yr–1 at the end of 
the century under RCP8.5. Nevertheless, up to 2050, uncertainty in climate change-driven future sea level is 
relatively small, which provides a robust basis for short-term (£30 years) adaptation planning. Global mean 
sea level will rise between 0.24 m (0.17–0.32 m, likely range) under RCP2.6 and 0.32 m (0.23–0.40 m, likely 
range) under RCP8.5 (medium confidence; 4.2.3). The combined effect of mean and extreme sea levels 
results in events which are rare in the historical context (return period of 100 years or larger; probability 
<0.01 yr–1) occurring yearly at some locations by the middle of this century under all emission scenarios 
(4.2.3.4.1; high confidence). This includes, for instance, those parts of the intertropical low-lying coasts that 
are currently exposed to storm surges only infrequently. Hence, additional adaptation is needed irrespective 
of the uncertainties in future global greenhouse gas emissions and in the Antarctic contribution to SLR. 
 
Beyond 2050, uncertainty in climate change induced SLR increases substantially due to uncertainties in 
emission scenarios and the associated climate changes, and the response of the Antarctic ice sheet in a 
warmer world. Combining process-model based studies in which we have medium confidence, we find that 
GMSL is projected to rise between 0.43 m (0.29–0.59 m, likely range) under RCP 2.6 and 0.84 m (0.61–1.10 
m, likely range) under RCP 8.5 by 2100 (Figure 4.3, Panel A). The range that needs to be considered for 
planning and implementing coastal responses depends on the risk tolerance of stakeholders (i.e., those 
deciding and those affected by a decision; 4.4.4.3.2). Stakeholders that are risk tolerant (e.g., those planning 
for investments that can be very easily adapted to unforeseen conditions) may prefer to use the likely ranges 
of RCP2.6 and RCP8.5 for long-term adaptation planning. Stakeholders with a low risk tolerance (e.g., those 
planning for coastal safety in cities and long term investment in critical infrastructure) may also consider sea-
level rise above this range, because there is a 17% chance that GMSL will exceed 0.59 m under RCP2.6 and 
1.10 m under RCP8.5 in 2100. Process-model based studies cannot yet provide this information, but expert 
elicitation studies show that a GMSL of 2 m in 2100 cannot be ruled out (4.2.3). 
 
Despite the large uncertainty in late 21st century SLR, progress in adaptation planning and implementation is 
feasible today and may be economically beneficial. Many coastal decisions with time horizons of decades to 
over a century are made today (e.g. critical infrastructure, coastal protection works, city planning, etc.) and 
accounting for relative SLR can improve these decisions. Decision-analysis methods specifically targeting 
situations of large uncertainty are available and, combined with suitable planning, public participation and 
conflict resolution processes, can improve outcomes (high confidence; 4.4.4.2, 4.4.4.3). For example, 
adaptation pathway analysis recognizes and enables sequenced long-term decision-making in the face of 
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dynamic coastal risk characterized by deep uncertainty (medium evidence, high agreement; 4.4.4.3.4). The 
use of these decision analysis tools can be integrated into statutory land-use or spatial planning provisions to 
formalise these decisions and enable effective implementation by relevant governing authorities (4.4.4.2). 
Beyond 2100, sea level will continue to rise for centuries and will remain elevated for thousands of years 
(high confidence; 4.2.3.5). Only a few modelling studies are available for SLR beyond 2100. However, all 
studies agree that the difference in GMSL between RCP2.6 and RCP8.5 increases substantially on multi-
centennial and millennial time-scales (very high confidence). On a millennial time-scale, this difference is 
about 10 meters in some model simulations, whereas it is only several decimeters at the end of 21st century. 
The larger the emission scenario the larger the risks associated with SLR as already pointed out in SR1.5. 
Under RCP8.5 the few available studies indicate a likely range of 2.3–5.4 m (low confidence) in 2300. With 
strong mitigation efforts (RCP2.6), sea level rise will be kept to a likely range of 0.6–1.1 m (Figure 4.2). 
Regardless, ambitious and sustained adaptation efforts are needed to reduce risks. 
 
 

 
Figure 4.2: Projected sea-level rise until 2300. The inset shows an assessment of the likely range of the projections for 
RCP2.6 and RCP8.5 up to 2100 (medium confidence). Projections for longer time scales are highly uncertain but a 
range is provided (4.2.3.6). For context, results are shown from other estimation approaches in 2100. The two sets of 
two bars labelled B19 are from an expert elicitation for the Antarctic component (Bamber et al., 2019), and reflect the 
likely range for a 2 and 50C temperature warming (low confidence; details section 4.2.3.3.1). The bar labelled “prob”. 
indicates the likely range of a set of probabilistic projections (4.2.3.2). The arrow indicated by S19 shows the result of 
an extensive sensitivity experiment with a numerical model for the Antarctic ice sheet combined, like the results from 
B19 and “prob.”, with results from Church et al. (2013) for the other components of sea level rise. S19 bars also show 
the likely range. 
 
 
4.1.3 Sea-level Rise Impacts and Implications for Responses 
 
Rising mean and extreme sea-level threaten coastal zones through a range of coastal hazards including (i) the 
permanent submergence of land by higher mean sea-levels or mean high tides; (ii) more frequent or intense 
coastal flooding; (iii) enhanced coastal erosion; (iv) loss and change of coastal ecosystems; (v) salinization 
of soils, ground and surface water; and (vi) impeded drainage. At the century scale and without adaptation, 
the vast majority of low-lying islands, coasts and communities face substantial risk from these coastal 
hazards, whether they are urban or rural, continental or island, at any latitude, and irrespective of their level 
of development (Section 4.3.4; Figure 4.3; high confidence). In the absence of an ambitious increase in 
adaptation efforts compared to those currently underway, high to very high risks are expected in many 
coastal geographies at the upper end of the RCP8.5 likely range. These include coastal megacities, urban 
atoll islands, densely populated deltas, and Arctic communities (Chapter 4 Box 4; Figure 4.3 and Section 
4.3.4). At the same time coastal protection is very effective and cost-efficient for cities but not for less 
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densely populated rural areas. Some geographies, such as urban atoll islands and Arctic communities face 
high risk even in RCP2.6 (medium confidence).  
 
In many places, however, non SLR-related, local environmental and human dimensions of exposure and 
vulnerability play a critical role in increasing exposure and vulnerability to coastal hazards (Section 4.3.2.5). 
For example, the ability of morphological and ecological systems (Sections 4.3.3.3 and 4.3.3.5) to protect 
human settlements and infrastructure by attenuating ESL events and stabilizing shorelines is progressively 
being lost due to coastal squeeze, pollution, habitat degradation and fragmentation (Section 4.3.3.5.4; high 
confidence). Hence, an important near term response to RSL rise is to reduce these adverse environmental 
and human dimensions of exposure and vulnerability. In addition, the drivers of exposure and vulnerability 
vary across different coastal contexts ranging from megacities to small islands (Sections 4.3.3, 4.3.4). 
Accordingly, effective responses need to be context-specific, and address the locality-specific drivers of risk. 
 
 

 
Figure 4.3: Additional risk related to sea level rise for low-lying coastal areas by the end of the 21st century. Section 
4.3.4 provides a synthesis of the assessment methodology and the findings, while SM4.3 provides details. Panel A 
describes global mean seal level (GMSL) rise observations for the Present-day (1986-2005) and projections under 
RCP2.6 and RCP8.5 by 2100 relative to the Present-day (1986-2005), according to advances in this chapter. Relative 
sea level (RSL) changes at specific locations are represented by the coloured blocs (range of the real-world case studies 
used) and coloured dotted lines (mean) at the background of Panel B. Panel B describes risk to local geographies as 
assessed in this chapter. Each generic geography is supported by real-world case studies described in the literature (Box 
4.1, 4.3.4.1 and Table SM4.2.5): three for megacities, three for urban atoll islands, two for large tropical agricultural 
deltas, five for Arctic communities. N.B (1): only Arctic communities remote from regions of rapid glacial-isostatic 
emergence have been selected for this assessment. N.B (2): according to the specific scope of the chapter, this 
assessment focuses on the additional risks due to SLR and does not account for changes in extreme event climatology 
(Sections 4.2.3.4.1 to 4.2.3.4.3, 6.3.1.1 to 6.3.1.3), which in some cases would imply a different level of risk than 
assessed here. Panel B also distinguishes between two adaptation scenarios. (A) “No-to-moderate adaptation” 
represents a business-as-usual scenario where no major additional adaptation efforts compared to today’s level of effort 
are implemented (i.e., neither further significant intensification of action nor new types of actions). (B) “High 
adaptation” represents the opposite situation, i.e. an ambitious combination of both incremental and transformational 
adaptation that leads to significant additional efforts compared to today and to (A). Here, the authors assume adaptation 
implemented at its full potential, i.e. the extent of adaptation that is technologically possible, with minimal financial, 
social and political barriers. 
 
 
4.1.4 Response Options, Governance Challenges and Ways Forward 
 
Responding to sea-level rise refers to reducing hazards, exposure and vulnerability of low-lying coastal areas. 
It can be approached in fundamentally different ways and five major categories are described in this chapter 
(Box 4.3): Protection reduces coastal risk and impacts by blocking the inland propagation and other effects of 
mean or extreme sea-levels hazards (e.g., through dikes, seawalls, storm surge barriers, breakwaters, beach-
dune systems, etc.). Advance creates new land by building seawards (e.g., reclamation of new land above sea 
levels or planting vegetation with the specific intention to support natural accretion of land). Ecosystem-based 
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adaptation provides a combination of the benefits of protect and advance strategies based on the conservation 
and restoration of ecosystems such as reefs and coastal vegetation. Accommodation includes a diverse set of 
biophysical and institutional responses to reduce vulnerability of coastal residents, human activities, 
ecosystems and the built environment (e.g., raising buildings, planting salt tolerant crops, insurance, and early 
warning systems for ESL events). Retreat reduces exposure to coastal hazards by moving people, assets and 
human activities out of the exposed coastal area. 
  
Each type of response has particular advantages and disadvantages, and may play a synergistic role in an 
integrated and sequenced response to SLR. For example, hard protection needs less space and its effectiveness 
is more predictable than for EbA (high confidence; 4.4.2.2.4, 4.4.2.3.4). EbA has advantages of contributing 
to conservation goals and providing additional ecosystem services such as carbon sequestration and improved 
water quality (4.4.2.2.5). EbA can become more effective over time, because coastal ecosystems can migrate 
inland with rising sea levels, provided this is not restricted by infrastructure (4.4.2.2.4). In practise, hard, 
sediment-based and ecosystem-based protection responses are often combined and there is high agreement 
that such hybrid approaches are a promising way forward (4.4.2.3.1). Advance is an option widely practised 
when land is scarce and offers the opportunity to finance adaptation through land sale revenues, but can also 
increase exposure and destroy coastal wetlands and their protective function (4.4.2.4). Accommodation 
measures such as flood-proofing buildings, flood forecasting, early warning and emergency planning have 
high benefit-cost ratios, which means that implementing them is much cheaper than doing nothing (4.4.2.5.6). 
Retreat, and avoidance of development in some locations, are the only types of responses that eliminate 
residual risks, assuming there is sufficiently safe alternative land to retreat to or develop (4.4.2.6, Cross-
Chapter Box 9).  
 
Given diverse geographies and contexts (4.1.3), and the pros and cons of different responses, there is no 
silver bullet for responding to SLR. Rather, each coastal locality requires a tailor made response that uses an 
appropriate mix of measures, sequenced over time as sea level rises. We illustrate possible integrated 
response strategies for two contrasting types of settlements: densely populated urban and sparsely populated 
rural coasts. 
 
For densely populated urban low elevation areas, including continental and island cities and megacities, hard 
protection has played and will continue to play the central role in response strategies (4.4.2.2, Box 4.1). In 
general, it is technologically feasible and economically efficient to protect large parts of cities against 21st 
century sea-level rise (high confidence; 4.4.2.2.4, 4.4.2.7). However, questions of affordability remain for 
poorer and developing regions (4.3.3.4, 4.4.2.2.3). In cities, advance can offer a way to finance coastal 
protection through revenues generated from newly created land (4.4.2.4), but raises equity concerns with 
regard to the distribution of costs and access to the new land (4.4.2.4.6). Where space is available, 
ecosystem-based adaptation can supplement hard protection (4.4.2.3), except in situations where other 
human interventions, like infrastructure and pollution, interfere with EbA, especially for RCP8.5 (Cross-
Chapter Box 9 in Chapter 5). Retreat may currently be favored over rebuilding in the aftermath of major 
flooding disasters, but in densely populated areas protected by hard infrastructure, general retreat need not be 
considered until later in the century once it is known whether or not SLR will follow the higher end of the 
projections (+1.1 m or more by 2100; 4.4.2.6). 
 
Along sparsely populated rural coasts, safeguarding communities by conserving coastal ecosystems and 
natural morphodynamic processes, and restoring those already degraded, is the central element of an 
integrated strategy. Intact coastal ecosystems can protect settlements and, in some contexts, natural 
sedimentation processes and avoiding sand mining can help to raise exposed land (4.4.2.2). Hard coastal 
protection can lead to flooding or erosion elsewhere (4.4.2.2.5), and the destruction of ecosystems and the 
coastal protection they offer (4.3.3.5). Ecosystem health can be further maintained by reducing non-climatic 
drivers such as those that interrupt sediment flows in deltas and estuaries (4.3.2.3). Hard protection may be 
appropriate for areas containing high value assets (e.g., settlements, cultural sites). Retreat is worth 
considering now where coastal population size and density is low, risks are already high, and the economic, 
cultural and socio-political impacts of retreat and resettlement are carefully considered and addressed by at-
risk communities and their governing authorities. 
 
Designing and implementing an appropriate mix of responses is not only a technical task but also an 
inherently political and value-laden social choice that involves trade-offs between multiple values, goals and 
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interests (Section 4.4.3). Specifically, distinctive features of SLR together with this complex nature of social 
choices give rise to five overarching governance challenges (Section 4.4.3.3): 
1. Time horizon and uncertainty associated with SLR beyond 2050 challenge standard planning and 

decision making practises (high confidence). 
2. Cross-scale and cross-domain coordination linking differing jurisdictional levels, sectors, and policy 

domains is often needed for effective responses (medium confidence). 
3. Equity and social vulnerability are often negatively affected by SLR and also responses to SLR, which 

can undermine societal aspirations such as achieving the SDGs (high confidence). 
4. Social conflict (i.e., nonviolent struggle between groups, organisations and communities over values, 

interests, resources, and influence or power) caused or exacerbated by SLR could escalate over time and 
become very difficult to resolve (high confidence). 

5. Complexity, reinforced by the combination of the above challenges, makes it difficult to understand and 
address SLR (high confidence). 

 
These governance challenges can be addressed through an integrated combination of well-established and 
emerging planning, public participation and conflict resolution practices (Section 4.4.4.2), decision analysis 
methods (Section 4.4.4.3), and enabling conditions (Section 4.4.5). For example, iterative planning and 
flexible, adaptive and robust decision-making can help coastal communities to plan for the future and 
account for SLR uncertainty. Planning can also enable thinking and action across spatial, temporal and 
governance scales and thus help to coordinate roles and responsibilities across multiple governance levels. 
Public participation approaches can be designed to account for divergent perspectives in making difficult 
social choices, enhancing social learning, experimentation and innovation in developing locally appropriate 
SLR responses. Conflict resolution approaches have a considerable potential to improve adaptation prospects 
by harnessing the productive potential of nonviolent conflict. 
 
 
4.2 Physical Basis for Sea Level Change and Associated Hazards 
 
As a consequence of natural and anthropogenic changes in the climate system, sea level changes are 
occurring on temporal and spatial scales that threaten coastal communities, cities, and low-lying islands. Sea 
level in this context means the time average height of the sea surface, thus eliminating short duration 
fluctuations like waves, surges and tides. Global mean sea level (GMSL) rise refers to an increase in the 
volume of ocean water caused by warmer water having a lower density, and by the increase in mass caused 
by loss of land ice or a net loss in terrestrial water reservoirs. Spatial variations in volume changes are related 
to spatial changes in the climate. In addition, mass changes due to the redistribution of water on the Earth's 
surface and elastic deformation of the lithosphere leads to a change in the Earth's rotation and gravitational 
field, producing distinct spatial patterns in regional sea level change. In addition to the regional changes 
associated with contemporary ice and water redistribution, the solid Earth may cause sea level changes due 
to tectonics, mantle dynamics or glacial isostatic adjustment (see Section 4.2.1.5). These processes cause 
vertical land motion and sea surface height changes at coastlines. Hence, relative sea level (RSL) change is 
defined as the change in the difference in elevation between the land and the sea surface at a specific time 
and location (Farrell and Clark, 1976). Here, regional sea level refers to spatial scales of around 100 km, 
while local sea level refers to spatial scales smaller than 10 km.  
 
In most places around the world, current annual mean rates of relative sea level changes are typically on the 
order of a few mm yr–1 (see Figure 4.6). Risk associated with changing sea level also is related to individual 
events that have a limited duration, superimposed on the background of these gradual changes. As a result, 
the gradual changes in time and space have to be assessed together with processes that lead to flooding and 
erosion events. These processes include storm surges, waves, and tides or a combination of these processes 
and lead to extreme sea level (ESL) events (see Figure 4.4). In this section, newly emerging understanding of 
these different episodic and gradual aspects of sea level change are assessed, within a context of sea level 
changes measured directly over the last century, and those inferred for longer geological timescales. This 
longer-term perspective is important for contextualizing future projections of sea level and providing 
guidance for process-based models of the individual components of sea level rise, in particular the ice sheets. 
In addition, anthropogenic subsidence may affect local sea level substantially in many locations but this 
process is not taken into account in values reported here for projected sea level rise unless specifically noted. 
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4.2.1 Processes of Sea Level Change 
 
Sea level changes have been discussed throughout the various IPCC assessment reports as sea level rise is a 
key feature of climate change. Only recently has the complex interactions between the oceans and ice sheets 
been recognized as an important driver of processes that can lead to rapid dynamical changes in the ice 
sheets. Understanding of basal melt below the ice shelves, ice calving processes and glacial hydrological 
processes was also limited. Projections of future sea level in AR4 (Lemke et al., 2007) were presented with 
the caveat that dynamical ice-sheet processes were not accounted for, as our physical understanding of these 
processes was too rudimentary and no literature could be assessed (Bindoff et al., 2007). In AR5 (Church et 
al., 2013), a first attempt was made to quantify the dynamic contribution of the ice sheets, although still with 
limited physics, relying mainly on an extrapolation of existing observations (Little et al., 2013) and a single 
process based case study (Bindschadler et al., 2013). Here the focus is on sea level changes around coastlines 
and low-lying islands, updating the global mean sea level rise by including a new estimate of the dynamic 
contribution of Antarctica. We explain the mechanism driving past and contemporary sea level changes and 
episodic extremes of sea level and assess confidence in regional projections of future sea level over the 21st 
century and beyond.  
 
4.2.1.1 Ice Sheets and Ice Shelves 
 
The ice sheets on Greenland and Antarctica contain most of the fresh water on the Earth’s surface. As a 
consequence, they have the greatest potential to cause changes in sea level. Figure 4.4 illustrates the size of 
land ice reservoirs and the most important processes that drive mass changes of ice sheets. 
 
Ice sheets change sea level through the loss or gain of ice above flotation, defined as the ice thickness in 
exceedance of the smallest thickness that would remain in contact with the sea floor at hydrostatic 
equilibrium. The Greenland Ice Sheet (GIS) is currently losing mass at roughly twice the pace of the 
Antarctic Ice Sheet (AIS; Table 4.1). However, Antarctica contains eight times more ice above flotation than 
Greenland. Furthermore, a substantial fraction of the AIS rests on bedrock below sea level, making the ice 
sheet responsive to changes in ocean-driven melt and possibly vulnerable to marine ice sheet instabilities 
(Cross-Chapter Box 8 in Chapter 3) that can drive rapid mass loss. 
 
Ice sheets gain or lose mass through changes in surface mass balance (SMB), the sum of accumulation and 
ablation controlled by atmospheric processes, the loss of ice to the ocean though melting of ice shelves, and 
by calving (breaking off of ice bergs) at marine-terminating ice fronts (see Chapter 3). Ice shelves, the 
floating extensions of glacial ice flowing into the ocean (Figure 4.4) do not directly contribute to sea level, 
but they play an important role in ice-sheet dynamics by providing resistance to the seaward flow of the 
grounded ice upstream (Fürst et al., 2016; Reese et al., 2018b). Ice shelves gain mass through the inflow of 
ice from the ice sheet, precipitation, and accretion at the ice-ocean interface. They lose mass through a 
combination of calving and by melting from below, especially where basal ice is in contact with warm water 
(Paolo et al., 2015, Khazendar et al., 2016). Calving rates at the terminus of marine terminating ice fronts are 
governed by complex ice-mechanical processes, the internal strength of the ice, and interaction with ocean 
waves and tides (Benn et al., 2007; Bassis, 2011; Massom et al., 2018). Sub-ice shelf melts rates are 
controlled by ice-ocean interactions involving the large-scale circulation, more localized heat and fresh water 
fluxes, and micro (mm)-scale processes in the ice-ocean boundary layer (Gayen et al., 2015; Dinniman et al., 
2016; Schodlok et al., 2016). Ice shelves are also impacted by surface processes. Where surface melt rates 
are high, ice shelves not only lose mass, they can collapse (hydrofracture) from flexural stresses caused by 
the movement of the meltwater and the deepening of water-filled crevasses (Banwell et al., 2013; Macayeal 
and Sergienko, 2013; Kuipers Munneke et al., 2014). These complex ice-ocean interactions, calving, and 
hydrofracture processes remain difficult to model, particularly at the scale of ice-sheets. 
 
Our understanding of ice sheets has progressed substantially since AR5, although deep uncertainty (Cross-
Chapter Box 5 in Chapter 1) remains with regard to their potential contribution to future sea-level rise, 
especially on time scales longer than a century. This is particularly true for Antarctica. 
 
4.2.1.2 Glaciers 
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Glaciers outside of the Greenland and Antarctic ice sheets are important contributors to sea level change 
(Figure 4.4). Because of their specific accumulation and ablation rates, which are often high compared to 
those of the ice sheets, they are sensitive indicators of climate change and respond fast to change in the 
climate. Over the past century, glaciers have added more mass to the ocean than the Greenland and Antarctic 
ice sheets combined (Gregory et al., 2013). However, the mass of glaciers is small by comparison, equivalent 
to only 0.32 ± 0.08 m mean sea level rise if only the fraction of ice above sea level is considered (Farinotti et 
al., 2019). Sections 2.2.3, 3.3.2 and Cross-Chapter Box 6 in Chapter 2 provide a detailed discussion of 
glacier response to climate change.  
 
4.2.1.3 Ocean Processes 
 
In general, increasing temperatures lead to a lower density (“thermal expansion”) and therefore the larger its 
volume per unit of mass. Thus, warming leads to a higher sea level even when the ocean mass remains 
constant. Over at least the last 1500 years changes in sea level were related to global mean temperatures 
(Kopp et al., 2016), partly because of ice mass loss, and partly because of thermal expansion. Models and 
observations indicate that over recent decades, more than 90% of the increase in energy in the climate system 
has been stored in the ocean. Hence, thermal expansion provides insight in climate sensitivity (Church et al., 
2013). Findings from sea level studies and the energy budget are consistent (Otto et al., 2013). As thermal 
expansion per degree is dependent on the temperature itself, heat uptake by a warm region has a larger 
impact on sea level rise than heat uptake by a cold region. This contributes to regional changes in sea level, 
which are also caused by the water temperature and salinity variations (e.g., Lowe and Gregory, 2006; 
Suzuki and Ishii, 2011; Bouttes et al., 2014; Saenko et al., 2015). Regional patterns in sea-level change are 
also modified from the global average by oceanic and atmospheric (fluid) dynamics (Griffies and 
Greatbatch, 2012), including trends in ocean currents, redistribution of temperature and salinity (sea water 
density), buoyancy, and atmospheric pressure. An analysis of these trends in CMIP5 GCMs (Yin, 2012) 
demonstrates the potential for >15 cm of sea level rise by 2100 and >30 cm by 2300 (RCP8.5) along the East 
Coast of the United States and Canada from fluid dynamical processes alone. However, CMIP6 GCM 
simulations are not yet available for an updated analysis in SROCC. 
 
4.2.1.4 Terrestrial Reservoirs 
 
Global sea level changes are also affected by changes in terrestrial reservoirs of liquid water. Withdrawal of 
groundwater and storage of fresh water through dam construction (Chao et al., 2008; Fiedler and Conrad, 
2010) in the earlier parts of the 20th century dominated, leading to sea level fall, but in recent decades, land 
water depletion, due to domestic, agricultural and industrial usage, has begun to dominate and contributes to 
sea level rise (Wada et al., 2017). Changes in terrestrial reservoirs may also be related to climate variability: 
in particular, the El Nino Southern Oscillation (ENSO) has a strong impact on precipitation distribution and 
temporary storage of water on continents (Boening et al., 2012; Cazenave et al., 2012; Fasullo et al., 2013). 
 
4.2.1.5 Geodynamic Processes 
 
Changing distributions of water mass between land, ice, and ocean reservoirs cause nearly instantaneous 
changes in the Earth’s gravity field and rotation, and elastic deformation of the solid Earth. These processes 
combine to produce spatially varying patterns of sea-level change (Mitrovica et al., 2001; Mitrovica et al., 
2011). For example, adjacent to an ice sheet losing mass, reduces gravitational attraction between the ice and 
nearby ocean causes RSL to fall, despite the rise in GMSL from the input of melt water to the ocean. The 
opposite effect is found far from the ice-sheet, where RSL rise can be enhanced as much as 30% relative to 
the global average. 
 
On timescales longer than the elastic Earth response, redistributions of water and ice cause time-dependent, 
visco-elastic deformation. This is observed in regions previously covered by ice during the Last Glacial 
Maximum (LGM), including much of Scandinavia and parts of North America (Lambeck et al., 1998; 
Peltier, 2004), where glacio-isostatic adjustment (GIA) is causing uplift and a lowering of RSL that 
continues today. In other locations, proximal to the previous ice load, and where a glacial forebulge once 
existed, the relaxing forebulge can contribute to a relative sea level rise, as currently being experience along 
the coastline of the northeastern United States. Water being syphoned to high latitudes as the peripheral 
bulges collapse leads to a widespread RSL fall in equatorial regions, while the overall loading of ocean crust 



FINAL DRAFT Chapter 4 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 4-16 Total pages: 169 

by melt water can cause uplift of land areas near continental margins, far from the location of previous ice 
loading (Mitrovica and Milne, 2003; Milne and Mitrovica, 2008). Rates of modern vertical land motion 
associated with these post-glacial processes are generally on the order of a few mm yr–1 or less, but can 
exceed 1 cm yr–1 in some places. Because these gravity, rotation, and deformation (GRD) processes control 
spatial patterns of sea-level rise from melting land ice, they need to be accounted for in regional-to-local sea 
level assessments. GRD processes are also important for marine-based ice sheets themselves, because they 
reduce RSL at retreating grounding lines which can slow and reduce retreat (Gomez et al., 2015; see 
4.3.3.1.2 and Cross-chapter Box 8 in Chapter 3; Larour et al., 2019).  
 
Vertical land motion from tectonics and dynamic topography associated with viscous mantle processes also 
affect spatial patterns of relative sea-level change. These geological processes are important for 
reconstructing ancient sea-levels based on geological indicators (Austermann and Mitrovica, 2015; see 
SM4.1). Along with other natural and anthropogenic processes including volcanism, compaction, and 
anthropogenic subsidence from ground water extraction (Section 4.2.2.4) these geodynamic processes can be 
locally important, producing rates of vertical land motion comparable to or greater than rates of GMSL 
change (Wöppelmann and Marcos, 2016). In this chapter we use in particular GIA and anthropogenic 
subsidence, and other components of vertical land motion are ignored unless explicitly stated. 
 
4.2.1.6 Extreme Sea Level Events 
 
Superimposed on gradual changes in RSL, as described in the previous sections, tides, storm surges, waves 
and other high-frequency processes (Figure 4.4) can be important. Understanding the localized impact of 
such processes requires detailed knowledge of bathymetry, erosion and sedimentation, as well as a good 
description of the temporal variability of the wind fields generating waves and storm surges. The potential 
for compounding effects, like storm surge and high SLR, are of particular concern as they can contribute 
significantly to flooding risks and extreme events (Little et al., 2015a). These processes can be captured by 
hydrodynamical models (see Section 4.2.3.4). 
 
 

 
Figure 4.4: A schematic illustration of the climate and non-climate driven processes that can influence global, regional 
(green colours), relative and extreme sea level events (red colors) along coasts. Major ice processes are shown in purple 
and general terms in black. SLE stands for Sea Level Equivalent and reflects the increase in GMSL if the mentioned ice 
mass is melted completely and added to the ocean. 
 
 
4.2.2 Observed Changes in Sea Level (Past and Present) 
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Sea-level changes in the distant geologic past provide information on the size of the ice sheets in climate 
states different from today. Past intervals with temperatures comparable to or warmer than today are of 
particular interest, and since AR5 (Masson-Delmotte et al., 2013) they have been increasingly used to test 
and calibrate process-based ice sheet models used in future projections (DeConto and Pollard, 2016; 
Edwards et al., 2019; Golledge et al., 2019). These intervals include the Mid-Pliocene Warm Period 
(MPWP) around 3.3–3.0 Myrs ago, when atmospheric CO2 concentrations were similar to today (~300-450 
ppmv; Badger et al., 2013; Martínez-Botí et al., 2015; Stap et al., 2016) and global mean temperature was 2 
ºC–4ºC warmer than preindustrial (Dutton et al., 2015a; Haywood et al., 2016) and the Last Interglacial 
(LIG) around 129–116 kyr ago, when global mean temperature was 0.5 ºC–1.0ºC warmer (Capron et al., 
2014; Dutton et al., 2015a; Fischer et al., 2018) and sea surface temperatures were similar to today (Hoffman 
et al., 2017). Updated reconstructions of GMSL (Dutton et al., 2015a) based on ancient shoreline elevations 
corrected to account for geodynamic processes (4.2.1.5), and geochemical records extracted from marine 
sediment cores, indicate sea levels were >5 m higher than today during these past warm periods (medium 
confidence). 
 
Most estimates of peak GMSL during the MPWP range between 6 and 30 m higher than today (Miller et al., 
2012; Rovere et al., 2014; Dutton et al., 2015a) but with deep uncertainty (Cross-Chapter Box 5 in Chapter 
1) and few constraints on the high end of the range. The large uncertainty is contributed by uncertain GIA 
corrections applied to paleo shoreline indicators (Raymo et al., 2011; Rovere et al., 2014), dynamic 
topography, the vertical land surface motion associated with Earth’s mantle flow (Rowley et al., 2013), and 
possible biases in geochemical records of ice volume derived from marine sediments (Raymo et al., 2018). 
Estimates of GMSL >10 meters higher than today require a meltwater contribution from the East Antarctic 
Ice Sheet in addition to the Greenland and West Antarctic Ice Sheets (Miller et al., 2012; Dutton et al., 
2015a). Pliocene modelling studies appearing since AR5 (Masson-Delmotte et al., 2013) demonstrate the 
potential for substantial retreat of East Antarctic ice into deep submarine basins (Austermann and Mitrovica, 
2015; Pollard et al., 2015; Aitken et al., 2016; DeConto and Pollard, 2016; Gasson et al., 2016; Golledge et 
al., 2019), as does emerging geological evidence from marine sediment cores recovered from the East 
Antarctic margin (Cook et al., 2013; Patterson et al., 2014; Bertram et al., 2018). However, the range of 
maximum Pliocene GMSL contributions from Antarctic modelling (Austermann and Mitrovica, 2015; 
Pollard et al., 2015; Yamane et al., 2015; DeConto and Pollard, 2016; Gasson et al., 2016) remains large (5.4 
m to 17.8 m), providing little additional constraint on the geological estimates. Land surface exposure 
measurements on sediment sourced from East Antarctica (Shakun et al., 2018) suggests Pliocene ice loss was 
limited to marine-based ice, where the bedrock is below sea level and possibly prone to marine ice sheet 
instabilities (Cross-Chapter box 8 in Chapter 3). The total potential contribution to GMSL rise from marine-
based ice in Antarctica is ~22.5 m (Fretwell et al., 2013). Combined with the complete loss of the GIS, this 
could conceivably produce ~30 m of GMSL rise. However, this would require maximum retreat of 
Greenland and Antarctic ice sheets to be synchronous, which is not probable due to orbitally paced, 
interhemispheric asymmetries in Greenland and Antarctic climate (de Boer et al., 2017). As such, we find 25 
m to be a reasonable upper bound on GMSL during the MPWP, but with low confidence. 
 
An updated estimate of maximum GMSL during the more geologically recent LIG ranges between 6 and 9 m 
higher than today (Dutton et al., 2015a). This is close to the values reported by a probabilistic analysis of 
globally-distributed sea-level indicators (Kopp et al., 2009), but slightly higher than AR5’s central estimate 
of 6 m. Like the mid-Pliocene, the LIG estimates also suffer from uncertainties in GIA corrections and 
dynamic topography. Düsterhus et al. (2016) applied data assimilation techniques including GIA corrections 
to the same LIG dataset used by Kopp et al. (2009) and found good agreement (7.5 �  1.1 m likely range) 
with Kopp et al. (2009) and Dutton et al. (2015a), but the upper range remains poorly constrained. Their 
estimates of peak LIG sea level are sensitive to the assumed ice history before and after the LIG, consistent 
with the results of other studies (Lambeck et al., 2012; Dendy et al., 2017). Austermann et al. (2017) 
compared a compilation of last interglacial (LIG) shoreline indicators with dynamic topography simulations. 
They found that vertical surface motions driven by mantle convection can produce several meters of 
uncertainty in LIG sea level estimates, but their mean and most probable estimates of 6.7 m and 6.4 m are 
broadly in line with other estimates.  
Greenland and Antarctic climate change on these timescales is influenced by interhemispheric differences in 
polar amplification (Stap et al., 2018), changes in Earth’s orbit, and long-term climate system processes. This 
complicates relationships between global mean temperature and ice-sheet response. On Greenland, the 
magnitude of LIG summer warming and changes in ice sheet volume continue to be contested. Extreme 
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summer warming of 6º C or more, reconstructed from ice cores (Dahl-Jensen et al., 2013; Landais et al., 
2016; Yau et al., 2016) and lake archives (McFarlin et al., 2018) is in apparent conflict with a persistent, 
spatially extensive GIS reconstructed from ice cores and radar imaging (Dahl-Jensen et al., 2013). Maximum 
retreat of the GIS during the LIG varies widely among modelling studies, ranging from ~1 m to ~6 m 
(Helsen et al., 2013; Quiquet et al., 2013; Dutton et al., 2015a; Goelzer et al., 2016; Yau et al., 2016); 
however, the models consistently indicate a small Greenland contribution to GMSL early in the interglacial, 
implying Antarctica was the dominant contributor to the early interglacial highstand of 6 ± 1.5 m, beginning 
around 129 ka (Dutton et al., 2015b). An early LIG loss of Antarctic ice is consistent with recent ice-sheet 
modelling (DeConto and Pollard, 2016; Goelzer et al., 2016). Due to its bedrock configuration and 
susceptibility to marine ice sheet instabilities (Cross-Chapter Box 8 in Chapter 3), the WAIS would have 
been especially vulnerable to subsurface ocean warming during the LIG (Sutter et al., 2016). However, most 
evidence of WAIS retreat during the LIG remains indirect (Steig et al., 2015) and firm geological evidence 
has yet to be uncovered. A recent analysis of East Antarctic sediments provides evidence of some ice retreat 
in Wilkes subglacial basin during the LIG (Wilson and Forsyth, 2018), but the volume of ice loss is not 
quantified. 
 
GMSL during the LIG was at times higher than today (virtually certain), with a likely range between 6 and 9 
m, and not expected to be more than 10 m (medium confidence). Due to ongoing uncertainties in the 
evolution of atmospheric and oceanic warming over and around the ice sheets, and low confidence in the 
relative contributions of Antarctic versus Greenland meltwater to GMSL change, the LIG is here not used to 
assess the sensitivity of the ice sheets for the current climate change. As such, we have low confidence in the 
utility of changes in either MPWP or LIG sea level changes to quantitatively inform near-term future rates of 
GMSL rise. 
 
An expanded summary of recent advances and ongoing difficulties in reconstructing these time periods in 
terms of climate, sea level, and implications for the future evolution of ice sheets and sea-level, is provided 
in SM4.1. 
 
4.2.2.1 Global Mean Sea Level Changes During the Instrumental Period  
 
Observational estimates of the sea level variations over past millennia rely essentially on proxy-based 
regional relative sea-level reconstructions corrected for GIA. Since AR5, the increasing availability of 
regional proxy-based reconstructions enables the estimation of GMSL change over the last ∼3 kyr. The first 
statistical integration of the available reconstructions shows that the GMSL experienced variations of ±9 [±7 
to ±11] cm (5%–95% uncertainty range; Kopp et al., 2016) over the 2400 years preceding the 20th century 
(medium confidence). This is more tightly bound than the AR5 assessment which indicated a variability in 
GMSL that was <±25 cm over the same period. This progress since AR5 confirms that it is virtually certain 
that the mean rate of GMSL has increased during the last two centuries from relatively low rates of change 
during the late Holocene (order tenths of mm yr–1) to modern rates (order mm yr–1; Woodruff et al., 2013). 
 
Over the last two centuries, sea level observations have mostly relied on tide gauge measurements. This 
record, beginning around 1700 in some locations (Holgate et al., 2012; PSMSL, 2019), provides insight into 
historic sea level trends. Since 1992, the emergence of precise satellite altimetry has advanced our 
knowledge on GMSL and regional sea level changes considerably through a combination of near global 
ocean coverage and high spatial resolution. It has also enabled more detailed monitoring of land ice loss. 
Since 2002, high precision gravity measurements provided by the GRACE (Gravity Recovery and Climate 
Experiment) and GRACE Follow-On missions show the loss of land ice in Greenland and Antarctica, and 
confirm independent assessments of ice sheet mass changes based on satellite altimetry (Shepherd et al., 
2012; The Imbie team, 2018) and InSAR measurements combined with ice sheet SMB estimates (Noël et al., 
2018; Rignot et al., 2019). Since 2006, when the array of Argo profiling floats reached near-global coverage, 
it has been possible to get an accurate estimate of the ocean thermal expansion (down to 2000 m depth) and 
test the closure of the sea level budget. The combined analysis of the different observing systems that are 
available has improved significantly the understanding of the magnitude and relative contributions of the 
different processes causing sea level change. In particular, important progress has been achieved since AR5 
on estimating and understanding the increasing contribution of the ice sheets to sea level rise. 
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4.2.2.1.1 Tide gauge records 
The number of tide gauges has increased over time from only a few in northern Europe in the 18th century to 
more than 2000 today along the world’s coastlines. Because of their location and limited number, tide gauges 
sample the ocean sparsely and non-uniformly with a bias towards the Northern Hemisphere. Most tide gauge 
records are short and have significant gaps. In addition, tide gauges are anchored on land and are affected by 
the vertical motion of Earth’s crust caused by both natural processes (e.g., GIA, tectonics and sediment 
compaction; Wöppelmann and Marcos, 2016; Pfeffer et al., 2017) and anthropogenic activities (e.g., 
groundwater depletion, dam building or settling of landfill in urban areas; Raucoules et al., 2013; Pfeffer et 
al., 2017). When estimating the GMSL due to the ocean thermal expansion and land ice melt, tide gauges 
must be corrected for this vertical land motion (VLM), where VLM=GIA+anthropogenic subsidence+ 
(tectonics, natural subsidence). This is possible with stations of the Global Positioning System (GPS) 
network when they are co-located with tide gauges (Santamaría-Gómez et al., 2017; Kleinherenbrink et al., 
2018). However, this approach provides information on the VLM over the past two to three decades and has 
limited value over longer time scales for places where the VLM has varied significantly through the last 
century (Riva et al., 2017).  
 
AR5 assessed the different strategies to estimate the 20th century GMSL changes. These strategies only 
accounted for the inhomogeneous space and time coverage of tide gauge data and for the VLM induced by 
GIA (Figure 4.5). Since AR5 two new approaches have been developed. The first one uses a Kalman 
smoother which combines tide gauge records with the spatial patterns associated with ocean dynamic 
change, change in land ice and GIA. It enables accounting for the inhomogeneous distribution of tide gauges 
and the VLM associated to both GIA and current land ice loss (Hay et al., 2015)( Figure 4.5). The second 
approach uses ad hoc corrections to tide gauge records with an additional spatial pattern associated with 
changes in terrestrial water storage to account for the inhomogeneous distribution in tide gauges. It also 
accounts for the total VLM (Dangendorf et al., 2017) (Figure 4.5). Both methods yield significantly lower 
GMSL changes over the period 1950–1970 than previous estimates, leading to long-term trends since 1900 
that are smaller than previous estimates by 0.4 mm yr–1 (Figure 4.5). Different arguments including biases in 
the tide gauge datasets (Hamlington and Thompson, 2015), biases in the averaging technique and absence of 
VLM correction (Dangendorf et al., 2017), or in the spatial patterns associated with the sea level 
contributions (Hamlington et al., 2018) have been proposed to explain these smaller GMSL rates. There is no 
agreement yet on which is the primary reason for the differences and it is not clear whether all the reasons 
invoked can actually explain all the differences across reconstructions. As there is no clear evidence to 
discard any reconstruction, we consider in this assessment the ensemble of AR5 sea level reconstructions 
augmented by the two recent reconstructions from Hay et al. (2015) and Dangendorf et al. (2017) to evaluate 
the GMSL changes over the 20th century. On this basis, we estimate that it is very likely that the long-term 
trend in GMSL estimated from tide gauge records is 1.5 [1.1–1.9] mm yr–1 between 1902 and 2010 for a total 
sea level rise of 0.16 [0.12–0.21] m (see also Table 4.1). This estimate is consistent with the AR5 assessment 
(but with an increased uncertainty range) and confirms that it is virtually certain that GMSL rates over the 
20th century are several times as large as GMSL rates during the late Holocene (see 4.2.2.1). Over the 20th 
century the GMSL record also shows an acceleration (high confidence) as now four out of five 
reconstructions extending back to at least 1902 show a robust acceleration (Jevrejeva et al., 2008; Church 
and White, 2011; Ray and Douglas, 2011; Haigh et al., 2014b; Hay et al., 2015; Watson, 2016; Dangendorf 
et al., 2017). The estimates of the acceleration ranges between -0.002–0.019 mm yr–1 over 1902-2010 are 
consistent with AR5.  
 
4.2.2.1.2 Satellite altimetry  
High precision satellite altimetry started in October 1992 with the launch of the TOPEX/Poseidon and Jason 
series of spacecraft. Since then, 11 satellite altimeters have been launched providing nearly global sea level 
measurements (up to ±82° latitude) over more than 25 years. Six groups (AVISO/CNES, SL_cci/ESA, 
University of Colorado, CSIRO, NASA/GSFC, NOAA; Nerem et al., 2010; Henry et al., 2014; Leuliette, 
2015; Watson et al., 2015; Beckley et al., 2017; Legeais et al., 2018) provide altimetry-based GMSL time 
series. Since AR5, several studies using two independent approaches based on tide gauge records (Watson et 
al., 2015) and the sea level budget closure (Chen et al., 2017; Dieng et al., 2017) identified a drift of 1.5 
(0.4–3.4) mm yr–1 in TOPEX A from January 1993 to February 1999. Accounting for this drift leads to a 
revised GMSL rate from satellite altimetry of 3.16 [2.79 to 3.53] for 1993–2015 (WCRP Global Sea Level 
Budget Group, 2018) (see Table 4.1) compared to 3.3 mm yr–1 [2.7–3.9] for 1993-2010 in AR5. Compared to 
AR5, the revised satellite altimetry GMSL estimates now show with high confidence an acceleration of 
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0.084 [0.059–0.090] mm yr–1 over 1993–2015 (5–95% uncertainty range) (Watson et al., 2015; Nerem et al., 
2018). This acceleration is due to an increase in Greenland mass loss since the 2000s (Chen et al., 2017; 
Dieng et al., 2017) and a slight increase in all other contributions probably partly due to the recovery from 
the Pinatubo volcanic eruption in 1991 (Fasullo et al., 2016) and partly due to increased GHG concentrations 
e.g., (Slangen et al., 2016) (high confidence). 
 
4.2.2.2 Contributions to Global Mean Sea Level Change During the Instrumental Period 
 
The different contributions to the GMSL rise are independently observed over various time scales. They are 
compared with simulated estimates from climate model experiments of Climate Model Intercomparison 
Project Phase 5 (CMIP5; Taylor et al., 2012) when available (see Table 4.1). We compare the observations 
with experiments beginning in the mid-19th century, forced with past time-dependent anthropogenic changes 
in atmospheric composition, natural forcings due to volcanic aerosols and variations in solar irradiance 
(Taylor et al., 2012). The objective is first, to assess our understanding of the causes of observed sea level 
changes and second, to evaluate the ability of coupled climate models to simulate these causes. It enables us 
to evaluate the confidence level we have in current coupled climate models that form the basis of future sea 
level projections.  
 
 
Table 4.1: Global mean sea level budget over different periods from observations and from climate model base 
contributions. All values are in mm yr–1. Values in brackets in 4.2 are uncertainties ranging from 5 to 95%. The climate 
model historical simulations end in 2005; projections for RCP8.5 are used for 2006–2015. The modelled thermal 
expansion, glacier and ice sheet SMB contributions are computed from the CMIP5 models as in Slangen et al. (2017b). 
For the model contributions, uncertainties are estimated from the spread of the ensemble of model simulations 
following Slangen et al. (2017b), see the footnotes for the details on the uncertainty propagation. 
Source 1901–1990 1970–2015 1993–2015 2006–2015 

Observed contribution to 
GMSL rise  

    

Thermal expansion -- 0.89 [0.84 to 0.94] a 1.36 [0.96 to 1.76] a  1.40 [1.08 to 1.72]a 

Glaciers except in 
Greenland and 
Antarctica 

0.49 [0.34 to 0.64]b 0.46 [0.21 to 0.72]o 0.56 [0.34 to 0.78] p 0.61 [0.53 to 0.69]n 

Greenland ice sheet 
including peripheral 
glaciers 
 

0.40 [0.23 to 0.57]c --  0.46 [0.21 to 0.71]d 0.77 [0.72 to 0.82]d 

Antarctica ice sheet 
including peripheral 
glaciers  
 

-- -- 0.29 [0.11 to 0.47]e 0.43 [0.34 to 0.52]e 

Land water storage -0.12f -0.07f 0.09f -0.21 [-0.36 to -0.06]g 

Ocean mass  -- -- -- 2.23 [2.07 to 2.39]h 

Total contributions 
 

--  -- 2.76 [2.21 to 3.31]i 3.00 [2.62 to 3.38]i 

Observed GMSL rise 
from tide gauges and 
Altimetry 
 

1.38 [0.81 to 1.95] 2.06 [1.77 to 2.34]j 3.16 [2.79 to 3.53]k 3.58 [3.10 to 4.06]k 

     

Modeled contributions to GMSL rise 

Thermal expansion 0.32 [0.04 to 0.60] 0.97 [0.45 to 1.48] 1.48 [0.86 to 2.11] 1.52 [0.96 to 2.09] 
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Glaciers 0.53 [0.38 to 0.68] 0.73 [0.50 to 0.95] 0.99 [0.60 to 1.38] 1.10 [0.64 to 1.56] 

Greenland SMB 
 

-0.02 [-0.05 to 0.02] 0.03 [-0.01 to 0.07] 0.08 [-0.01 to 0.16] 0.12 [-0.02 to 0.26] 

Total including land 
water storage and ice 
discharge l 

0.71 [0.39 to 1.03] 1.88 [1.31 to 2.45] 3.13 [2.38 to 3.88] 3.54 [2.79 to 4.29] 

Residual wrt to 
observed GMSL risem 

0.67 [0.02 to 1.32] 0.18 [-0.46 to 0.82] 0.03 [-0.81 to 0.87] 0.04 [-0.85 to 0.93] 

Notes:  
(a) The number is built from WCRP Global Sea Level Budget Group (2018) estimate of the 0–700 m depth thermal 

expansion, assuming no trend below 2000 m depth before 1992 and the mean value from Purkey and Johnson 
(2010), and Desbruyères et al. (2017) afterwards. 

(b) The number is calculated as the mean between the estimate from a reconstruction of glacier mass balance based on 
glacier length (update of Leclercq et al. (2011)) and the estimate from a mass balance model forced with 
atmospheric observations (Marzeion et al., 2015). The uncertainty is assumed to be a gaussian with a standard 
deviation of half the difference between the two estimates 

(c) The number is calculated as the sum of the Greenland ice sheet contribution from Kjeldsen et al. (2015) and the 
peripheral glaciers’ contribution. The peripheral glaciers’ contribution and the associated uncertainty are computed 
from a mass balance model forced with atmospheric observations (Marzeion et al., 2015).. The total uncertainty is 
computed assuming that both uncertainties from the Greenland ice sheet contribution and from the peripheral 
glaciers’ contribution are independent. 

(d) Numbers from Bamber et al. (2018). See Section 3.3.1 for more details.  
(e) These numbers are the weighted average of the numbers from Bamber et al. (2018) and from The Imbie team 

(2018). The weights in the average are based on the uncertainty associated to each estimate. See section 3.3.1 for 
more details. 

(f) Only direct anthropogenic contribution from Wada et al. (2016). 
(g) Land water storage estimated from GRACE excluding glaciers, from WCRP Global Sea Level Budget Group 

(2018). 
(h) Direct estimate of ocean mass from GRACE from WCRP Global Sea Level Budget Group (2018). 
(i) Sum of the thermal expansion and the contributions from glaciers, Greenland ice sheet, Antarctica ice sheet and 

land water storage. Uncertainties in the different contributions are assumed as independent 
(j) Sea level reconstructions that end before 2015 have been extended to 2015 with the satellite altimetry record from 

Legeais et al. (2018). The uncertainty is derived from the uncertainty of individual sea level reconstructions over 
the longest period available that start in 1970. The uncertainty from different sea level reconstructions are assumed 
as independent.  

(k) The mean estimate is from the satellite altimetry estimate in WCRP Global Sea Level Budget Group (2018) 
corrected for GIA and for the elastic response of the ocean crust to present day mass redistribution (Frederikse et 
al., 2017; Lickley et al., 2018). The uncertainty is computed using the updated error budget of Ablain et al. (2015). 

(l) Land water storage is estimated from Wada et al. (2016) and ice discharge is deduced from Shepherd et al. (2012). 
The ice discharge contribution is assumed to be zero before 1992. The uncertainties in the different contributions 
from coupled climate models are assumed independent 

(m) The uncertainties in the observed GMSL and the coupled climate models’ estimate of GMSL are assumed 
independent for the computation of the uncertainties in the residuals.  

(n) Numbers taken from Appendix 2.A. 
(o) Numbers taken from Zemp et al. (2019), see Section 2.2.3 and 3.3.2 for more details.  
(p) The Number is calculated as the mean of the estimates of Zemp et al. (2019) and Bamber et al. (2018). The 

uncertainties of the two estimates are assumed to be independent of each other to obtain the uncertainty estimate of 
the mean. 

 
 
4.2.2.2.1 Thermal expansion contribution 
The ocean thermal expansion is caused by excess heat being absorbed by the ocean, as the climate warms. 
Thermal expansion is estimated from in situ ocean observations and ocean heat content reanalyses that rely 
on assimilation of data into numerical models (Storto et al., 2017; Sections 1.8.1.1 and 1.8.1.4; WCRP 
Global Sea Level Budget Group, 2018). Full-depth, high-quality and unbiased ocean temperature profile data 
with adequate metadata and spatio-temporal coverage are required to estimate thermal expansion and to 
understand drivers of variability and long-term change (Pfeffer et al., 2018; Section 5.2.2.2.2). 
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Historically, however, observational gaps exist and some ocean regions remain under-sampled to date 
(Sections 1.8.1.1 and 5.2.2.2.2; Figure 1.3; Appendix 1.A, Figure 1.1). Other factors also introduce 
uncertainty in estimates of thermal expansion like changes in instrumentation, systematic instrumental errors, 
changes in the quality control of the data and the mapping method used to produce regular grids (Section 
5.2.2.2.2) (Palmer et al., 2010). In the upper 700 m, the largest sources of uncertainty for estimates of global 
mean thermal expansion from 1970 to 2004 are the choice of mapping methods (Boyer et al., 2016), 
followed by the choice of bias correction for the bathythermographic observations (Cheng et al., 2016) 
(Section 5.2.2.2.2). From 2006 onwards, the uncertainty is considerably reduced (Roemmich et al., 2015; 
von Schuckmann et al., 2016; Wijffels et al., 2016), because the Argo array reached its targeted near-global 
(up to ±60° latitude) coverage for the upper 2000 m in November 2007 (Riser et al., 2016; Section 5.2.2.2.2). 
 
Since AR5, in a community effort, the (WCRP Global Sea Level Budget Group, 2018) revisited the global 
mean thermal expansion estimates based on observations only. On the basis of a full-depth 13-member 
ensemble of global mean thermal expansion time series developed with the latest data and corrections 
available, they estimated that the global thermal expansion was 1.40 [1.08 to 1.72] mm yr–1 for 2006–2015, 
1.36 [0.96 to 1.76] mm yr–1 for 1993–2015 (see Table 4.1). While the relative contribution of the upper 300 
m did not change (~70%) between 2006–2015 and 1993–2015, the 700–2000 m contribution increased 
around 10% over the Argo decade (2006–2015), when observations for that depth interval soared (Figure 
1.3; Appendix 1.A, Figure 1.1). This suggests that observed changes for 700–2000 m may have been 
underestimated for 1993 to 2005. Before 1993, estimates are based on a smaller ensemble of 4 datasets in 
which we assume no thermal expansion below 2000 m because of lack of data (see Section 5.2.2.2.2 for 
more details). This ensemble shows a thermal expansion linear rate of 0.89 [0.84 to 0.94] mm yr–1 for 1970–
2015 (see Table 4.1). 
 
Coupled climate models simulate the historical thermal expansion (see Table 4.1). However, for models that 
omit the volcanic forcing in their control experiment, the imposition of the historical volcanic forcing during 
the 20th century results in a spurious time mean negative forcing and a spurious persistent ocean cooling 
related to the control climate (Gregory, 2010; Gregory et al., 2013). Since AR5, the magnitude of this effect 
has been estimated from historical simulations forced by only natural radiative forcing. Then it has been used 
to correct the historical simulations forced with the full 20th century forcing (Slangen et al., 2016; Slangen et 
al., 2017b). The resulting ensemble mean of simulated thermal expansion provides a good fit to the 
observations within the uncertainty ranges of both models and observations (Slangen et al., 2017b; Cheng et 
al., 2019; Table 4.1) . The spread, which is essentially due to uncertainty in radiative forcing and uncertainty 
in the modelled climate sensitivity and ocean heat uptake efficiency (Melet and Meyssignac, 2015), is still 
larger than the observational uncertainties (Gleckler et al., 2016; Cheng et al., 2017; Table 4.1). Compared to 
AR5, the availability of improved observed and modelled estimates of thermal expansion and the good 
agreement between both confirm the high confidence level in the simulated thermal expansion using climate 
models and the high confidence level in their ability to project future thermal expansion. 
 
4.2.2.2.2 Ocean mass observations from GRACE and GRACE Follow-On 
The ocean mass changes correspond to the sum of land ice and terrestrial water storage changes. Since 2002, 
the GRACE and GRACE follow-on missions provide direct estimates of the ocean mass changes and thus they 
provide an independent estimate of the sum of land ice and terrestrial water storage contributions to sea level. 
Since AR5, GRACE-based estimates of the ocean mass rates are increasingly consistent (WCRP Global Sea 
Level Budget Group, 2018) because of the extended length of GRACE missions’ observations (over 15 years), 
the improved understanding of data and methods for addressing GRACE limitations (e.g., noise filtering, 
leakage correction and low-degree spherical harmonics estimates), and the improved knowledge of 
geophysical corrections applied to GRACE data (e.g., GIA). The most recent estimates (Dieng et al., 2015b; 
Reager et al., 2016; Rietbroek et al., 2016; Chambers et al., 2017; Blazquez et al., 2018; Uebbing et al., 2019) 
report a global ocean mass increase of 1.7 [1.4 to 2.0] mm yr–1 over 2003–2015 (see also Table 4.1). The 
uncertainty arises essentially from differences in the inversion method to compute the ocean mass (Chen et al., 
2013; Jensen et al., 2013; Johnson and Chambers, 2013; Rietbroek et al., 2016), uncertainties in the geocenter 
motion and uncertainty in the GIA correction (Blazquez et al., 2018; Uebbing et al., 2019). The consistency 
between estimates of the global mean ocean mass on a monthly time scale has also increased since AR5. 
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4.2.2.2.3 Glaciers 
To assess the mass contribution of glaciers to sea-level change, global estimates are required. Recent updates 
and temporal extensions of estimates obtained by different methods continue to provide very high confidence 
in continuing glacier mass loss on the global scale during the past decade (Bamber et al., 2018; Wouters et 
al., 2019; Zemp et al., 2019), see Section 2.2.3 and Appendix 2.A for a detailed discussion also on regional 
scales). Updates of the reconstructions of Cogley (2009), Leclercq et al. (2011) and Marzeion et al. (2012), 
presented and compared in Marzeion et al. (2015), show increased agreement on rates of mass loss during 
the entire 20th century (Marzeion et al., 2015), compared to earlier estimates reported by AR5. The 
contribution of glaciers that may be missing in inventories or have already melted during the 20th century is 
hard to constrain (Parkes and Marzeion, 2018), and there is low confidence in their estimated contribution. It 
is thus neglected in the assessment of the sea-level budget (Table 4.1) 
 
While the agreement between the observational estimates of glaciers’ mass changes and the modelled 
estimates from glacier models forced with climate model simulations has increased since AR5 (Slangen et 
al., 2017b), we have only medium confidence in the use of glacier models to reconstruct sea level change 
because of the limited number of well-observed glaciers available to evaluate models on long time scales, 
and because of the small number of model-based global glacier reconstructions. 
 
4.2.2.2.4 Greenland and Antarctic ice sheets 
Frequent observations of ice sheet mass changes have only been available since the advent of space 
observations (see Section 3.3.1). In the pre-satellite era, mass balance was geodetically reconstructed only 
for the Greenland ice sheet (Kjeldsen et al., 2015). These geodetic reconstructions empirically constrain the 
contribution of the Greenland ice sheet to sea level rise between 1900 and 1983 to 17.2 [10.7 to 23.2] 
(Kjeldsen et al., 2015). During the satellite era, three approaches have been developed to estimate ice sheet 
mass balance. 1) Mass loss is estimated by direct measurements of ice sheet height changes with satellite 
laser or radar altimetry in combination with climatological/glaciological models for firn density and 
compaction, 2) the input–output method combines measurements of ice flow velocities estimated from 
satellite (synthetic aperture radar or optical imagery) across key outlets with estimates of net surface balance 
derived from ice thickness data, 3) space gravimetry data yields direct estimate of the mass changes by 
inversion of the anomalies in the gravity field (see Section 3.3.1 for more details). AR5 concluded that the 
three space-based methods give consistent results. They agree in showing that the rate of sea level rise due to 
the Greenland and Antarctic ice sheets’ contributions has increased since the early 1990s. Since AR5, up-to-
date observations confirm this statement with increased confidence for both ice sheets (Rignot et al., 2019; 
see Section 3.3.1). The assessment of the literature since AR5 made in Section 3.3.1 shows that the 
contribution from Greenland to sea level rise over 2012–2016 (0.68 [0.64 to 0.72] mm yr–1) was similar to 
the contribution over 2002–2011 (0.73 [0.67 to 0.79] mm yr–1) and extremely likely greater than over 1992–
2001 (0.02 [0.21 to 0.25] mm yr–1). The contribution from Antarctica over 2012–2016 (0.55 [0.48 to 0.62] 
mm yr–1) was extremely likely greater than over the 2002–2011 period (0.23 [0.16 to 0.30] mm yr–1) and 
likely greater than over the period 1992–2001 (0.14 [0.12 to 0.16]; see Section 3.3.1 for more details).  
 
Here we follow the approach of Section 3.3.1 and use the two multi-method assessments from Bamber et al. 
(2018) and the The Imbie team (2018) to evaluate the contribution of ice sheets’ mass loss to sea level rise 
over 1993–2015 and 2006–2015 (see Table 4.1). These two studies agree with results from the WCRP 
Global Sea Level Budget Group (2018). For the estimation of the Antarctic ice sheet contribution, Bamber et 
al. (2018) and the The Imbie team (2018) use similar but not identical data sources and processing. Both 
studies find consistent results within uncertainties over both periods. In Table 4.1 we have averaged the 
results of these two studies, and weighted the average on the basis of their uncertainties, because there is no 
apparent reason to discount either study. For the estimation of the Greenland ice sheet contribution we use 
only the Bamber et al. (2018) estimate, as there is no other multi-method assessment available. 
 
4.2.2.2.5 Contributions from water storage on land 
Water is stored on land not only in the form of ice but snow, surface water, soil moisture and groundwater. 
Temporal changes in land water storage, defined as all forms of water stored on land excluding land ice, 
contribute to observed changes in ocean mass and thus sea level on annual to centennial timescales (Döll et 
al., 2016; Reager et al., 2016; Hamlington et al., 2017; Wada et al., 2017). They are caused by both climate 
variability and direct human interventions, at the multi-decadal to centennial time scales. Over the past 
century, the main cause for land water storage changes are the groundwater depletion and impoundment of 
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water behind dams in reservoirs (Döll et al., 2016; Wada et al., 2016). While the rate of groundwater 
depletion and thus its contribution to sea level rise increased during the 20th century and up to today (Wada 
et al., 2016), its effect on sea level was more than balanced by the increase in land water storage due to dam 
construction between 1950 and 2000 (Wada et al., 2016). Since about 2000, the combined effect of both 
processes is a positive contribution to sea level rise (Wada et al., 2016). Decreased water storage in lakes, 
wetlands and soils due to human activities are less important for ocean mass changes (Wada et al., 2016). 
Overall, the integrated effects of the direct human intervention on land hydrology have reduced land water 
storage during the last decade, increasing the rate of sea level rise by 0.15–0.24 mm yr–1 (Wada et al., 2016; 
Wada et al., 2017; Scanlon et al., 2018; WCRP Global Sea Level Budget Group, 2018). Over periods of a 
few decades, land water storage was affected significantly by climate variability (Dieng et al., 2015a; Reager 
et al., 2016; Dieng et al., 2017). Net land water storage change driven by both climate and direct human 
interventions can be determined based on GRACE observations and global hydrological modeling. They 
indicate different estimates of rate of sea level rise. Over the period 2002–2014 GRACE based estimate of 
the net land water storage (i.e., not including glaciers) show a negative contribution to sea level (e.g., 
Scanlon et al., 2018) while hydrological models determined a slightly positive one. The reasons for this 
difference between estimates are not elucidated. There is scientific consensus that uncertainties of both net 
land water storage contribution to sea level and its individual contributions remain high (WCRP Global Sea 
Level Budget Group, 2018). The differences in estimates and the lack of multiple consistent studies give low 
confidence in the net land water storage contribution to current sea level rise. 
 
4.2.2.2.6 Budget of global mean sea level change 
Drawing on previous sections, the budget of GMSL rise (Table 4.1, Figure 4.5) is assessed with observations 
over 4 periods: 1901–1990 (which corresponds to the period in the 20th century that is prior to the increase 
in ice-sheet contributions to GMSL rise), 1970–2015 (when ocean observations are sufficiently accurate to 
estimate the global ocean thermal expansion and when glacier mass balance reconstructions start), 1993–
2015 (when precise satellite altimetry is available) and 2006–2015 (when GRACE data is available in 
addition to satellite altimetry and when the Argo network reaches a near-global coverage). We also assess 
the budget of GMSL rise with sea level contributions simulated by climate models over the same periods 
(Table 4.1, Figure 4.5). The periods 1993–2015 and 2006–2015 are only 23 and 10 years long respectively, 
short enough so that they can be affected by internal climate variability. Therefore, we do not expect 
observations over these periods to be precisely reproduced by climate model historical experiments. For the 
contribution from land water storage, we use the estimated effect of direct human intervention and we 
neglect climate-related variations until 2002 (Ngo-Duc et al., 2005). From 2002 to 2015, we use the total 
land water storage estimated with GRACE. In general, historical simulations of climate models end in 2005. 
Historical simulations were extended here to 2015 using the RCP8.5 scenario. This choice of RCP scenario 
is not critical for the simulated sea level, as the different scenarios only start to diverge significantly after the 
year 2030 (Church et al., 2013). 
  
For 1993–2015 and 2006–2015, the observed GMSL rise is consistent within uncertainties with the sum of 
the estimated observed contributions (Table 4.1). Over the period 1993–2015 the two largest terms are the 
ocean thermal expansion (accounting for 43% of the observed GMSL rise) and the glacier mass loss 
(accounting for a further 20%). Compared to AR5, the extended observations corrected for the TOPEX-A 
drift (see Section 4.2.2.1.2) allow us now to identify an acceleration in the observed sea level rise over 1993–
2015 and to attribute this acceleration mainly to Greenland ice loss along with an acceleration in Antarctic 
ice loss (Velicogna et al., 2014; Harig and Simons, 2015; Chen et al., 2017; Dieng et al., 2017; Yi et al., 
2017; see also Sections 4.2.2.2.2, 4.2.2.3.4, 3.3.1). Since 2006, land ice, collectively from glaciers and the 
ice sheets has become the most important contributor to GMSL rise over the thermal expansion with 
mountain glaciers contributing 20% and ice sheets 33% (see Table 4.1). Over the periods 1993–2015, the 
sum of the observed sea level contributions is consistent with the total observed sea level within uncertainties 
at monthly-scales (not shown, e.g., Dieng et al., 2017). This is also true for the period 2006–2015, when 
uncertainties are significantly smaller. This agreement at monthly time scales represents a significant 
advance since the AR5 in physical understanding of the causes of past GMSL change. It provides an 
improved basis for the evaluation of models. Given these elements we have high confidence that the current 
observing system is capable of resolving decadal to multidecadal changes in GMSL and its components 
(with an uncertainty of <0.7 mm yr–1 at decadal and longer time scales, see Table 4.1 and e.g., WCRP 
Global Sea Level Budget Group, 2018). However, despite this advance since AR5 there are still no 
comprehensive observations of ocean thermal expansion below 2000 m, in regions covered by sea ice and in 
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marginal seas. The understanding of glacier mass loss can be improved at regional scale and the 
understanding of the land water storage contribution is still limited. Thus, for smaller changes in sea level of 
the order of a few tenths of a mm yr–1 at decadal time scales and shorter time scales we have medium 
confidence in the capability of the current observing system to resolve them (e.g., WCRP Global Sea Level 
Budget Group, 2018). 
 
Before 1992, observations are not sufficient to confidently estimate the ice sheet mass balance and before 
1970, the space and time sampling of ocean observations are not sufficient to estimate the global ocean 
thermal expansion. For these reasons, it is difficult to assess the closure of the GMSL rise budget over 1901–
1990 and 1970–2015 (Church et al., 2013; Gregory et al., 2013; Jevrejeva et al., 2017; Meyssignac et al., 
2017c; Slangen et al., 2017b; Parkes and Marzeion, 2018). For the period 1970–2015, the thermal expansion 
of the ocean represents 43% of the observed GMSL rise while the glaciers’ contribution represents 22% (see 
Table 4.1). This result indicates a slightly smaller contribution from glaciers than reported by AR5. If we add 
the Greenland ice sheet contribution and the Antarctic surface mass balance then the sum of the contributors 
to sea level is in agreement with the low end observed sea level rise estimates over 1970–2015 (Frederikse et 
al., 2018). This result suggests that the contribution of Antarctica ice sheet dynamics to sea level rise has 
been small, if any, before the 1990s. 
 
Since AR5, extended simulations along with recent findings in observations and improved model estimates 
allow for a new more robust, consistent and comprehensive comparison between sea level estimates based on 
observations and climate model simulations e.g., (Meyssignac et al., 2017c; Slangen et al., 2017b; Parkes 
and Marzeion, 2018). Compared to AR5, the simulated thermal expansion from climate models has 
improved with a new correction for the volcanic activity (see Section 4.2.2.2.1). The glacier contribution 
from glacier models forced with inputs from climate models is updated with a new glacier inventory and 
improvements to the glacier mass balance model (Marzeion et al., 2015). The simulated Greenland SMB is 
estimated with a new regional SMB-component downscaling technique, which accounts for the regional 
variations in components of the Greenland SMB (Noël et al., 2015; Meyssignac et al., 2017a). In addition, an 
updated groundwater extraction contribution from Döll et al. (2014) is now used for the land water storage 
contribution.  
 
For the periods 1970–2015, 1993–2015 and 2006–2015 the simulated contributions from thermal expansion, 
glaciers mass loss and Greenland SMB explain respectively 84%, 81% and 77% of the observed GMSL (see 
Table 4.1). For all these periods the residual is consistent within uncertainty with the sum of the contribution 
from land water storage and ice discharge from Greenland and Antarctica. For each period the consistency is 
improved compared to AR5 (see Table 4.1) although the uncertainty on the residual is slightly larger because 
of a larger uncertainty in simulated Glaciers and Greenland SMB contributions.  
 
For the period 1901–1990 the simulated contributions from thermal expansion, glaciers mass loss and 
Greenland SMB explain only 60% of the observed GMSL and the residual is too large to be explained by the 
sum of the contribution from land water storage and ice discharge from Greenland and Antarctica. The gap 
can be explained by a bias in the simulated Greenland SMB and glacier ice loss around Greenland in the 
early 20th century (Slangen et al., 2017b). When the glacier model and the Greenland SMB downscaling 
technique are forced with observed climate from atmospheric reanalyses, rather than the simulated climate 
from coupled climate models, simulated sea level rise becomes consistent with the observed sea level rise 
(see the dashed blue line on Figure 4.5). This is because atmospheric reanalyses show an increase in air 
temperatures in and around Greenland over the period 1900–1940, which lead to increased melt in Greenland 
(Bjørk et al., 2012; Fettweis et al., 2017) and surrounding glaciers in the first half of the 20th century. This 
increase in air temperature over 1900–1940 is not reproduced by climate models (Slangen et al., 2017b). It 
may be because this increase in air temperature was due to internal climate variability on temporal and 
spatial scales that cannot be precisely reproduced by climate models. It may also be due to a bias in 
atmospheric circulation in climate models (Fettweis et al., 2017), or an issue with the spatial pattern of the 
historical aerosol forcing. 
 
In summary, the agreement between climate model simulations and observations of the global thermal 
expansion, glacier mass loss and Greenland surface mass balance has improved compared to AR5 for periods 
starting after 1970. However, for periods prior to 1970, significant discrepancies between climate models 
and observations arise from the inability of climate models to reproduce some observed regional changes in 
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glacier and Greenland ice sheet SMB around the southern tip of Greenland. It is not clear whether this bias in 
climate models is due to the internal variability of the climate system or deficiencies in climate models. For 
this reason, there is still medium confidence in the ability of climate models to simulate past and future 
changes in glaciers mass loss and Greenland SMB.  
 
 

 
Figure 4.5: Comparison of simulated (by coupled climate models as in Section 4.4.2.6) and observed global mean sea 
level change since 1901 (a) and since 1993 (b). The average estimate of 12 CMIP5 climate model simulations is shown 
in blue with the 5–95% uncertainty range shaded in blue and calculated according to the procedures in Church et al. 
(2013). The average of the 12 model estimates corrected for the bias in glaciers mass loss and Greenland surface mass 
balance over 1900–1940 (see Section 4.2.2.2.6) is shown in dashed blue. The estimates from tide gauge reconstructions 
is shown in other colours in panel a), with the 5–95% uncertainty range shaded in grey. The satellite altimetry 
observations from Legeais et al. (2018) is shown in black in panel b). GMSL from altimetry corrected for the TOPEX-
A drift (Watson et al., 2015) in orange as well as the tide gauge reconstruction. The 5-95% uncertainty range is shaded 
in orange (Ablain et al., 2015). All curves in (a) represent anomalies in sea level with respect to the period 1986–2005 
(i.e., with zero time-mean over the period 1986–2005) in order to be consistent with sea level projections in Section 
4.2.3. Vertical lines indicate the occurrence of major volcanic eruptions, which cause temporary drops in GMSL. 
Updated from Slangen et al. (2017b). 
 
 
4.2.2.3 Regional Sea Level Changes During the Instrumental Period 
 
Sea level does not rise uniformly. Observations from tide gauges and satellite altimetry (Figure 4.6) indicate 
that sea level shows substantial regional variability at decadal to multi-decadal time scales (e.g., Carson et 
al., 2017; Hamlington et al., 2018). These regional changes are essentially due to changing winds, air-sea 
heat and freshwater fluxes, atmospheric pressure loading and the addition of melting ice into the ocean, 
which alters the ocean circulation (Stammer et al., 2013; Forget and Ponte, 2015; Meyssignac et al., 2017b). 
The addition of water into the ocean also change the geoid, alter the rotation of the Earth and deform the 
ocean floor which in turn change sea level (e.g., Tamisiea, 2011; Stammer et al., 2013). 
  
In the open ocean, the spatial variability and trends in sea level observed during the recent altimetry era or 
reconstructed over the previous decades are dominated by the thermal expansion of the ocean. In shallow 
shelf seas and at high latitudes (>60°N and <55°S), the effect of dynamic mass redistribution becomes 
important. At local scale, salinity changes can also generate sizeable changes in the ocean density similar to 
thermal expansion and lead to significant variability in sea level (Forget and Ponte, 2015; Meyssignac et al., 
2017b). On global average, the heat and freshwater fluxes from the atmosphere into the ocean are 
responsible for the total heat that enters the ocean and for the associated global mean sea level rise. At 
regional scale and local scale, both the ocean transport divergences caused by wind stress anomalies and the 
spatial variability in atmospheric heat fluxes are responsible for the spatial variability in thermal expansion 
and thus for most of the regional sea level departures around the GMSL rise (e.g., Stammer et al., 2013; 
Forget and Ponte, 2015). 
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Over the Pacific, the surface wind anomalies responsible for the sea level spatio-temporal variability are 
associated with the ENSO, PDO and North Pacific Gyre Oscillation modes (Hamlington et al., 2013; Moon 
et al., 2013; Palanisamy et al., 2015; Han et al., 2017). In the Indian Ocean they are associated with the 
ENSO and IOD modes (Nidheesh et al., 2013; Han et al., 2014; Thompson et al., 2016; Han et al., 2017). In 
particular, the PDO is responsible for most of the intensified sea level rise that has been observed in the 
western tropical Pacific Ocean since the 1990s (Moon et al., 2013; Han et al., 2014; Thompson and 
Mitchum, 2014). Several studies suggested that in addition to the PDO signal, warming of the tropical Indian 
and Atlantic Oceans enhanced surface easterly trade winds and thus also contributes to the intensified sea 
level rise in the western tropical Pacific (England et al., 2014; Hamlington et al., 2014; McGregor et al., 
2014). 
 
Over the Atlantic, the regional sea level variability at interannual to multi-decadal time scales, is generated 
by surface wind anomalies and heat fluxes associated with the NAO (Han et al., 2017) and also by ocean 
heat transport due to changes in the Atlantic meridional overturning circulation (McCarthy et al., 2015). Both 
mechanisms are not independent as heat fluxes and wind stress anomalies associated with NAO can induce 
changes in the AMOC (Schloesser et al., 2014; Yeager and Danabasoglu, 2014). In the Southern Ocean, the 
sea level variability is dominated by the SAM influence in particular in the Indian and Pacific sectors. The 
SAM influence becomes weaker equatorwards in these sectors while the influence of PDO, ENSO and IOD 
increases (Frankcombe et al., 2015). In the southern ocean, the zonal asymmetry in westerly winds 
associated to the SAM, generates convergent and divergent transport in the Antarctic Circumpolar Current 
which may have contributed to the regional asymmetry of decadal sea level variations during most of the 
twentieth century (Thompson and Mitchum, 2014). 
 
As for GMSL, net regional sea level changes can be estimated from a combination of the various 
contributions to sea level change. The contributions from dynamic sea level, atmospheric loading, glacier 
mass changes and ice sheet SMB can be derived from CMIP5 climate model outputs either directly or 
through downscaling techniques (Perrette et al., 2013; Kopp et al., 2014; Slangen et al., 2014a; Bilbao et al., 
2015; Carson et al., 2016; Meyssignac et al., 2017a). The contributions from groundwater depletion, 
reservoir storage and dynamic ice sheet mass changes are not simulated by coupled climate models over the 
20th century and have to be estimated from observations. The sum of all contributions, including the GIA 
contribution, provides a modelled estimate of the 20th century net regional sea level changes that can be 
compared with observations from satellite altimetry and tide-gauge records (see Figure 4.6). 
 
In terms of inter-annual to multi-decadal variability, there is a general agreement between the simulated 
regional sea level and tide gauge records, over the period 1900–2015 (see inset figures in Figure 4.6). The 
relatively large, short-term oscillations in observed sea level (black lines in insets in Figure 4.6), which are 
due to the natural internal climate variability, are included in general within the modeled internal variability 
of the climate system represented by the blue shaded area (5–95% uncertainty). But, as for GMSL, climate 
models tend to systematically underestimate the observed sea level trends from tide gauge records, 
particularly in the first half of the 20th century. This underestimation is explained by a bias identified in 
modelled Greenland SMB, and glacier ice loss around Greenland in the early 20th century (see Section 
4.2.2.2.6) (Slangen et al., 2017b). The correction of this bias improves the agreement between the spatial 
variability in sea level trends from observations and from climate models (see Figure 4.6). Climate models 
indicate that the spatial variability in sea level trends observed by tide-gauge records over the 20th century is 
dominated by the GIA contribution and the thermal expansion contribution over 1900–2015. Locally all 
contributions to sea level changes are important as any contribution can cause significant local deviations. 
Around India for example, groundwater depletion is responsible for the low 20th century sea level rise 
(because the removal of groundwater mass generated a local decrease in geoid that made local sea level rise 
slower; Meyssignac et al., 2017c). 
  
These results show the ability of models to reproduce the major 20th century regional sea level changes due 
to GIA, thermal expansion, glacier mass loss and ice sheet surface mass balance. This is tangible progress 
since AR5. But some doubts remain regarding the ability of climate models to reproduce local variations 
such as the glaciers and the Greenland SMB contributions to sea level in the region around the southern tip 
of Greenland (Slangen et al., 2017b) or such as the thermal expansion in some eddy active regions (Sérazin 
et al., 2016). Because of these doubts there is still medium confidence in climate models to project future 
regional sea level changes associated with thermal expansion, glacier mass loss and ice sheet surface mass 
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balance. Coupled climate models have not simulated the other contributions to 20th century sea level, 
including the growing ice sheet dynamical contribution and land water storage changes.  
 
 

 
Figure 4.6: 20th century simulated regional sea level changes by coupled climate models and comparison with a 
selection of local tide gauge time series. In the upper left corner: map of changes in simulated relative sea level for 
the period 1901–1920 to 1996–2015 estimated from climate model outputs. Insets: Observed relative sea level changes 
(black lines) from selected tide gauge stations for the period 1900–2015. For comparison, the estimate of the simulated 
relative sea level change at the tide gauge station is also shown (blue plain line for the model estimates and blue dashed 
line for the model estimates corrected for the bias in glaciers mass loss and Greenland surface mass balance over 1900–
1940, see Section 4.2.2.2.6). The relatively large, short-term oscillations in observed local sea level (black lines) are due 
to the natural internal climate variability. For mediterranean tide gauges, i.e. Venice and Alexandria, the local simulated 
sea level has been computed with the simulated sea level in the Atlantic ocean at the entrance of the strait of Gibraltar 
following (Adloff et al., 2018). Tide gauge records have been corrected for vertical land motion not associated with 
GIA where available, i.e., for New York, Balboa and Lusi. Updated from Meyssignac et al. (2017b) to mimic RSL as 
good as possible. 
 
 
4.2.2.4 Local Coastal Sea Level 
 
Since the local coastal sea level (scale ~10 km) is affected by global, regional (scale ~100 km) and coastal 
scale features and processes like anthropogenic subsidence, it may differ substantially from the regional sea 
level. At the coast, the sea level change is additionally affected by wave run up, tidal level, wind forcing, sea 
level pressure (SLP), the dominant modes of climate variability, seasonal climatic periodicities, mesoscale 
eddies, changes in river flow, as well as anthropogenic subsidence (see also Box 4.1). These local 
contributions, combined with sea level events generated by storm surges and tides result in anomalous 
conditions termed extreme sea level events (ESL) which last for a short time in contrast to the gradual 
increase over time from for instance ice mass loss. Flood risk due to ESL is exacerbated due to its interaction 
with relative sea level (RSL) and hence physical vulnerability assessments combine uncertainties around 
ESL and RSL, both in terms of contemporary assessments and future projections (Little et al., 2015b; 
Vousdoukas, 2016; Vousdoukas et al., 2016; Wahl et al., 2017). Changes in mean sea level have been dealt 
with in previous sections (e.g., Section 4.2.2.2.6). Here we focus on some of the components of ESL that 
have been assessed in combination with changes in RSL. Church et al. (2013) concluded that change in sea 
level extremes is very likely to be caused by a RSL increase, and that storminess and surges will contribute 
towards these extremes; however, it was noted that there was low confidence in region-specific projections as 
there was only a limited number of studies with a poor geographical coverage available. 
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Recent advances in statistical and dynamical modelling of wave effects at the coast, storm surges, and 
inundation risk have reduced the uncertainties around the inundation risks at the coast (Vousdoukas et al., 
2016; Vitousek et al., 2017; Melet et al., 2018; Vousdoukas et al., 2018c) and assessments of the resulting 
highly resolved coastal sea levels are now emerging (Cid et al., 2017; Muis et al., 2017; Wahl et al., 2017). 
This progress was facilitated due to the availability of, for example, the Global Extreme Sea Level Analysis 
(GESLA-2; Woodworth et al., 2016) high-frequency (hourly) datasets, advances in the Coordinated Ocean 
Wave Climate Project (COWCLIP; Hemer et al., 2013), coastal altimetry datasets (Cipollini et al., 2017), 
and the Global Tide and Surge Reanalysis (GTSR; Muis et al., 2016), while new analyses of datasets that 
have been available since before the publication of AR5 have continued (e.g., PSML; Holgate et al., 2012) 
 
Although ESL is experienced episodically by definition, Marcos et al. (2015) examined the long-term 
behavior of storm surge using state space models and detected decadal and multidecadal variations in storm 
surge that are not related to changes in RSL. They found that, although 82% of their observed time series 
showed synchronous patterns at regional scales, the pattern tended to be non-linear, implying that it would be 
difficult to infer future behaviour unless the physical basis for the responses was understood. An analysis of 
the relative contributions of SLR and ESL due to storminess showed that in the US Pacific North West since 
the early 1980s, increases in wave height and period have had a larger effect on coastal flooding and erosion 
than RSL (Ruggiero, 2012) since the early 1980s. This is also true in other regions distributed over the entire 
globe (Melet et al., 2016; Melet et al., 2018). Changes since 1990 in the sea level harmonics and seasonal 
phases and amplitudes of the wave period and significant wave height were found for the Gulf of Mexico 
coast and along the US east coast (Wahl et al., 2014; Wahl and Plant, 2015). These authors found that high 
waters have increased twice as much as one would expect from long-term SLR alone, because of additional 
changes in the seasonal cycle, yielding a 30% increase in risk of flooding. Such effects are likely to be highly 
dependent on the local conditions. For example, using WAVEWATCH III, TOPEX/Poseidon altimetry tide 
model data and atmospheric forcing physically downscaled using Delft3D-WAVE and Delft3D-FLOW in 
what they call the Coastal Storm Modeling System (CoSMoS), Vitousek et al. (2017) were able to detect 
local inundation hazards (at a scale of hundreds of meters) across regions along the Californian coast. 
Similarly, Castrucci and Tahvildari (2018) simulated the impact of sea-level rise along the Mid-Atlantic 
region in the US. A study for the Maldives shows that the contribution of wave set-up is essential to estimate 
flood risks (Wadey et al., 2017). 
 
In deltas, the local sea level can be dominated by anthropogenic subsidence more than by the processes 
outlined above. It is often a primary driver of elevated local sea level rise and increased flood hazards in 
those regions. This is particularly true for deltaic systems, where fertile soils, low-relief topography, 
freshwater access, and strategic ports have encouraged the development of many of the world’s most densely 
populated coastlines and urban centers. For example, globally, one in fourteen humans resides in mid-to-low 
latitude deltas (Day et al., 2016). Although in these areas RSL is dominated by anthropogenic subsidence, 
climate effects need to be included for estimating risks associated with RSL (Syvitski et al., 2009). 
 
Deltas are formed by the accumulation of unconsolidated river born sediments and porous organic material, 
both of which are particularly prone to compaction. It is the compaction which causes a drop in land 
elevation that increases the rate of local sea level rise above what would be observed along a static coastline 
or one where only climatological forced processes control the RSL. Under stable deltaic conditions, the 
accumulation of fluvially-sourced surficial sediment and organic matter offsets this natural subsidence 
(Syvitski and Saito, 2007); however, in many cases this natural process of delta construction has been 
disturbed by reductions in fluvial sediment supply via upstream dams and fluvial channelization 
(Vörösmarty et al., 2003; Syvitski and Saito, 2007; Syvitski et al., 2009; Luo et al., 2017). Further, the 
extraction of fluids and gas that fill the pore space of deltaic sediments and provide support for overlying 
material has significantly increased the rate of compaction and resultant anthropogenic subsidence along 
many populated deltas (Higgins, 2016). In addition, Nicholls (2011) pointed to anthropogenic subsidence by 
the weight of buildings in megacities in South-East Asia. 
 
Average natural and anthropogenic subsidence rates of 6–9 mm yr–1 are reported for the highly populated 
areas of Ganges-Brahmaputra-Meghna delta in the urban centers of Kolkata and Dhaka (Brown and 
Nicholls, 2015). A fraction of these subsidence rates might be caused by long-term processes of increased 
sediment loading during the Holocene resulting from changes in the monsoon system (Karpytchev et al., 
2018). Subsidence rates will likely decrease in the Ganges-Brahmaputra-Meghna delta in the near future due 



FINAL DRAFT Chapter 4 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 4-30 Total pages: 169 

to planned dam projects and an estimated 21% drop in resulting sediment supply (Tessler et al., 2018). 
Observations of enhanced natural and anthropogenic subsidence on the Ganges-Brahmaputra-Meghna are 
common to most heavily populated deltaic systems. Coastal mega-cities that have been particularly prone to 
human-enhanced subsidence include Bangkok, Ho Chi Minh city (Vachaud et al., 2018), Jakarta, Manila, 
New Orleans, West Netherlands and Shanghai (Yin et al., 2013; Cheng et al., 2018). On a global scale, 
observed rates of modern deltaic anthropogenic subsidence range from 6–100 mm yr–1 (Bucx et al., 2015; 
Higgins, 2016). Rates of recent deltaic subsidence over the last few decades have been at least twice the 3 
mm yr–1 rate of global mean sea level rise observed over this same interval (Higgins, 2016; Tessler et al., 
2018). Numerical models that have reproduced these observed rates of anthropogenic deltaic subsidence by 
considering human-induced compaction and reduced sediment supply, support anthropogenic causes for 
elevated rates of subsidence (Tessler et al., 2018). 
 
In summary, ESL interacts with RSL rise including anthropogenic subsidence in many vulnerable areas (see 
Box 4.1). Therefore, we conclude with high confidence that the inclusion of local processes (wave effects, 
storm surges, tides, erosion, sedimentation and compaction) is essential to estimate local, relative and 
changes in extreme sea level events. Although the effect of anthropogenic subsidence may be very large 
locally, it is not accounted for in the projection sections of this chapter as no global data sets are available 
which are consistent with RCP scenarios, and because the scale at which these processes take place is often 
smaller than the spatial scale used in climate models. 
 
4.2.2.5 Attribution of Sea-Level Change to Anthropogenic Forcing 
 
Bindoff et al. (2013) concluded that it is very likely that there has been a substantial contribution to ocean 
heat content from anthropogenic forcing (i.e., anthropogenic greenhouse gases, anthropogenic aerosols and 
land-use change) since the 1970s, that it is likely that loss of land ice is partly caused by anthropogenic 
forcing, and that as a result, it is very likely that there is an anthropogenic contribution to the observed trend 
in global mean sea level rise since 1970. However, these conclusions were based on the understanding of the 
responsible physical processes, since formal attribution studies dedicated to quantifying the effect of 
individual external forcings were not available for GMSLR. Since AR5, such formal studies have attributed 
changes in individual components of sea level change (i.e., thermosteric sea level change and glacier mass 
loss), and in the total global mean sea level, to anthropogenic forcing. 
 
4.2.2.5.1 Attribution of individual components of sea level change to anthropogenic forcing 
Marcos and Amores (2014) found that during the period 1970–2005, 87% (95% confidence interval: 72–
100%) of the observed thermosteric sea level rise in the upper 700 m of the ocean was anthropogenic. 
Slangen et al. (2014b) included the full ocean depth in their analysis. They concluded that a combination of 
anthropogenic and natural forcing is necessary to explain the temporal evolution of observed global mean 
thermosteric sea level change during the period 1957 to 2005. Anthropogenic forcing was responsible for the 
amplitude of observed thermosteric sea level change, while natural forcing caused the forced variability of 
observations. Observations could best be reproduced by scaling the patterns from ‘natural-only’ forcing 
experiments by using a factor of 0.70 ± 0.30 (2 standard deviations of the CMIP5 ensemble subset used), 
indicating a potential overestimation of forced variability in the CMIP5 ensemble. Patterns from the 
‘anthropogenic-only’ forcing experiments needed to be scaled by a factor of 1.08 ± 0.13 (2 standard 
deviations of the CMIP5 ensemble subset used), indicating a realistic response of the CMIP5 ensemble to 
anthropogenic forcing. 
 
For the glacier contribution to GMSLR, Marzeion et al. (2014) concluded that while natural climate forcing 
and long-term adjustment of the glaciers to the end of the preceding Little Ice Age lead to continuous glacier 
mass loss throughout the simulation period of 1851–2010, the observed rates of glacier mass loss since 1990 
can only be explained by including anthropogenic forcing. During the period 1851 to 2010, only 25 ± 35% of 
global glacier mass loss can be attributed to anthropogenic forcing, but 69 ± 24% during the period 1991–
2010 (see Section 2.2.3 for a more detailed discussion of attribution of glacier mass change on regional 
scales). 
 
There is medium confidence in evidence linking Greenland ice sheet mass loss to anthropogenic climate 
change, and low confidence in the evidence that Antarctic ice sheet mass balance can be attributed to 
anthropogenic forcing (see Section 3.3.1.6 for a detailed discussion).  
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The effects of groundwater depletion and reservoir impoundment on sea level change are anthropogenic by 
definition (e.g., Wada et al., 2012). 
 
4.2.2.5.2 Attribution of global mean sea level change to anthropogenic forcing 
By estimating a probabilistic upper range of long-term persistent natural sea level variability, Dangendorf et 
al. (2015) detected a fraction of observed sea level change that is unexplained by natural variability and 
concluded by inference that it is virtually certain that at least 45% of the observed increase in global mean 
sea level since 1900 is attributable to anthropogenic forcing. Similarly, Becker et al. (2014) provided 
statistical evidence that the observed sea level trend, both in the global mean and at selected tide gauge 
locations, is not consistent with unforced, internal variability. They inferred that more than half of the 
observed global mean sea level trend during the 20th century is attributable to anthropogenic forcing. 
 
Slangen et al. (2016) reconstructed global mean sea level from 1900 to 2005 based on CMIP5 model 
simulations separating individual components of radiative climate forcing and combining the contributions 
of thermosteric sea level change with glacier and ice sheet mass loss. They found that the naturally caused 
sea level change, including the long-term adjustment of sea level to climate change preceding 1900, caused 
67 ± 23% of observed change from 1900 to 1950, but only 9 ± 18% between 1970 and 2005. Anthropogenic 
forcing was found to have caused 15 ± 55% of observed sea level change during 1900–1950, but 69 ± 31% 
during 1970 to 2005. The sum of all contributions explains only 74 ± 22% of observed global mean sea level 
change during the period 1900–2005 considering the mean of the reconstructions of Church and White 
(2011), Ray and Douglas (2011), Jevrejeva et al. (2014b) and Hay et al. (2015). However, the budget could 
be closed taking into contribution of glaciers that are missing from the global glacier inventory or have 
already melted (Parkes and Marzeion, 2018) which were not considered in Slangen et al. (2016). 
 
Based on these multiple lines of evidence, there is high confidence that anthropogenic forcing very likely is 
the dominant cause of observed global mean sea level rise since 1970. 
 
4.2.3 Projections of Sea Level Change 
 
As a consequence of climate change, the global and regional mean sea level will change. Coupled climate 
models are used to make projections of the climate changes and the associated sea level rise. Results from 
the CMIP5 model archive used for AR5 provide information on expected changes in the oceans and on the 
evolution of climate glaciers and ice sheets. New estimates from CMIP6 are not yet available and will be 
discussed in AR6, hence only a partly updated projection can be presented here 
 
Coupled climate models can be applied on century time scales, to provide estimates of the steric 
(temperature and salinity effects on sea water density) and ocean dynamical (ocean circulation) components 
of sea level change, both globally and regionally. However, the glacier and ice sheet component are 
calculated off-line based on temperature and precipitation changes. In the AR5 report, changes in the surface 
mass balance of glaciers and ice sheet were calculated from the global surface air temperature. In addition, 
GCMs also resolve climate variability related to changes in precipitation and evaporation. These changes are 
used to calculate short duration sea level changes (Cazenave and Cozannet, 2014; Hamlington et al., 2017). 
With various degrees of success those models capture El Niño-Southern Oscillation (ENSO), the Pacific 
Decadal Oscillation (PDO) and other modes of variability (e.g., Yin et al., 2009; Zhang and Church, 2012), 
which affect sea level through redistributions of energy and salt in the ocean on slightly longer time scales. 
Off-line temperature and precipitation fields can be dynamically or statistically downscaled to match the 
high spatial resolution required for ice sheets and glaciers, but serious limitations remain. This deficiency 
limits adequate representation of potentially important feedbacks between changes in ice sheet geometry and 
climate, for example through fresh water and iceberg production that impact on ocean circulation and sea ice, 
which can have global consequences (Lenaerts et al., 2016; Donat-Magnin et al., 2017). Another limitation is 
the lack of coupling with the solid Earth which controls the ice sheet evolution (Whitehouse et al., 2019). 
Dynamics of the interaction of ice streams with bedrock and till at the ice base remain difficult to model due 
to lack of direct observations. Nevertheless, several new ice sheet models have been generated over the last 
few years, particularly for Antarctica (Section 4.2.3.1) focusing on the dynamic contribution of the ice sheet 
to sea level change, which remains the key uncertainty in future projections (Church et al., 2013), 
particularly beyond 2050 (Kopp et al., 2014; Nauels et al., 2017b; Slangen et al., 2017a; Horton et al., 2018).  
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Information beyond that provided by climate models is needed to describe local and RSL changes. 
Geodynamic models are used to calculate relative sea level changes due to mass changes in past and future. 
This includes solid Earth deformation, gravitational and rotational changes, as ice and water are redistributed 
around the globe. Input for those models is provided by the mass changes following from the off-line ice 
models, time series of terrestrial water mass changes which typically require climate input, and 
reconstruction of past ice sheet changes over the last glacial cycle and more recently also fully coupled ice-
Earth models (de Boer et al., 2017). Combining different models leads to projections of RSL (Section 
4.2.3.2). 
 
At the local spatial scales of specific cities, islands, and stretches of coastlines, hydrodynamical models 
(Section 4.2.3.3) and knowledge about anthropogenic subsidence are necessary to analyse the impacts of 
highly variable processes leading to ESL, such as tropical cyclone-driven storm surges. These 
hydrodynamical models are capable of providing statistics on the variability or the change in variability of 
the water level required for flood risk calculations at specific locations and at spatial scales of less than 1 km. 
The models also rely on input from climate models, like temperature, precipitation, wind regime, and storm 
tracks (Colbert et al., 2013; Garner et al., 2017).  
  
In summary, climate models play an important role at the various stages of projections in providing, together 
with emission scenarios, geodynamic, ice-dynamic and hydrodynamic models, the required information for 
hazard estimation for coasts and low-lying islands. In this report we rely on results of the CMIP5 model runs. 
 
4.2.3.1 Contribution of Ice Sheets to GMSL 
 
4.2.3.1.1 Greenland 
The Greenland Ice Sheet (GIS) is currently losing mass at roughly twice the pace of the Antarctic Ice Sheet 
(see Chapter 3 and Table 4.1). About 60% of the mass loss between 1991 and 2015 has been attributed to 
increasingly negative surface mass balance (SMB) from surface melt and runoff on the lower elevations of 
the ice-sheet margin. Ice dynamical changes and increased discharge of marine-terminating glaciers account 
for the remaining 40% of mass loss (Csatho et al., 2014; Enderlin, 2014; van den Broeke et al., 2016). The 
ability of firn on Greenland to retain meltwater until it refreezes has diminished markedly since the late 
1990s, especially in lower elevations and on peripheral ice caps (Noël et al., 2017). Patterns of surface melt 
on Greenland are highly dependent on regional atmospheric patterns (Bevis et al., 2019), adding uncertainty 
to future projections of SMB. Melt-albedo feedbacks associated with darkening of the ice surface from 
ponded water, changes in snow and firn properties, and accumulation of impurities are also important, 
because they can strongly enhance surface melt (Tedesco et al., 2016; Ryan et al., 2018; Trusel et al., 2018; 
Ryan et al., 2019). These processes are not fully captured by most Greenland-scale models which is an 
important deficiency, because surface processes tend to dominate uncertainty in future GIS model 
projections (e.g., Edwards et al., 2014; Aschwanden, In press). Increases in meltwater and changes in the 
basal hydrologic regime, once thought to have a possible destabilizing effect on the ice sheet (Zwally et al., 
2002), have been linked with recent reductions in ice velocity in western Greenland. On decadal time scales 
the effect of meltwater on ice dynamics are now assessed to be small (van de Wal et al., 2015; Flowers, 
2018), which is supported by ice sheet model experiments (Shannon et al., 2013). In sum, uncertain climate 
projections (Edwards et al., 2014), albedo evolution, uncertainties around meltwater buffering by firn, 
complex processes linking surface, englacial, and basal hydrology with ice dynamics (Goelzer et al., 2013; 
Stevens et al., 2016; Noël et al., 2017; Hempelmann et al., 2018) and meltwater induced melting at marine-
terminating ice fronts (Chauché et al., 2014), and coarse spatial model resolution (Pattyn et al., 2018), all 
continue to provide substantial challenges for ice sheet and SMB models. 
 
Greenland-scale ice sheet modelling since AR5 (Edwards et al., 2014; Fürst et al., 2015; Vizcaino et al., 
2015; Calov et al., 2018; Golledge et al., 2019; Aschwanden, In press). has built upon earlier work by 
coupling the ice models with regional climate models and using multiple climate and ice sheet models within 
single studies (Edwards et al., 2014), using higher-order representations of ice flow (Fürst et al., 2015), 
adding more explicit representations of ice-sheet processes including subglacial hydrology (Calov et al., 
2018), running the models at higher resolution and with updated boundary conditions (Aschwanden, In 
press), and accounting for two-way coupling between the ice sheet and the global ocean (Vizcaino et al., 
2015; Golledge et al., 2019). Among these studies Fürst et al. (2015), Vizcaino et al. (2015), and 
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Aschwanden (In press) provide projections following RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. 
Calov et al. (2018) and Golledge et al. (2019) did not consider RCP2.6. Edwards et al. (2014) used the SRES 
A1B scenario which isn’t directly comparable to the other studies assessed here, but they do provide a 
rigorous analysis of uncertainty contributed by different climate forcings, varying simplifications of ice flow 
equations, and height-surface mass balance feedbacks.  
 
Fürst et al. (2015) used ten different CMIP5 AOGCM simulations to provide offline SMB and ocean forcing 
for their Greenland-wide ice sheet model, accounting for influences of warming subsurface ocean 
temperatures and basal lubrication on ice dynamics. In their RCP8.5 ensemble, they found a GIS 
contribution to GMSL in 2100 of 10.15 cm ± 3.24 cm. Similarly, Calov et al. (2018) found a range of GMSL 
contributions between 4.6 cm and 13 cm, depending on which CMIP5 GCM is used to force their regional 
climate model to produce SMB forcing. The wide range of RCP8.5 results in these studies highlights the 
substantial climate-driven uncertainty in 21st century projections of the GIS as emphasized by Edwards et al. 
(2014). We find that central estimates and ranges for RCP8.5 simulated by Fürst et al. (2015), Calov et al. 
(2018), and Golledge et al. (2019) are in reasonable agreement with previous multi-model results 
(Bindschadler et al., 2013) and the assessment of AR5 (Church et al., 2013), which reported a likely RCP8.5 
range of Greenland’s contribution to GMSL between 7 cm and 21 cm by 2100 (Table 4.2.). In contrast, the 
GIS simulations provided by Vizcaino et al. (2015), using a relatively course-resolution ice model (10 km) 
with SMB forcing provided by a single GCM, estimate much less ice loss than other recent studies. Their 
GMSL projections (Vizcaino et al., 2015) also fall below the likely range of AR5 estimates. In contrast, the 
study by Aschwanden (In press) shows a significantly higher contribution to GMSL than the other studies, 
especially under RCP8.5 and beyond 2100 (see 4.2.3.5). This may be due to their SMB forcing, which is 
based on spatially uniform warming derived from future CMIP5 GCM climatologies averaged over the entire 
Greenland region. As noted by earlier work (e.g., Van de Wal and Wild, 2001; Gregory and Huybrechts, 
2006), this approach can overestimate melt rates in the ablation zone, which could account for their higher 
projected ice loss. We note that the process-based estimates of future GMSL rise from Greenland found in 
Aschwanden (In press) are closest to those from an updated, structured judgement of glaciological and 
modelling experts (Bamber et al., 2019). Calculations from the expert elicitation (Bamber et al., 2019) result 
in higher estimates Greenland ice loss than any of the process-based studies, with a mean and standard 
deviation of 33 ± 30 cm and a 17%-83% range of 10-60 cm by 2100, following a climate scenario 
comparable to RCP8.5. The combination of the new process-based studies produces central estimates (Table 
4.2) consistent with the likely ranges for Greenland’s contribution to GMSL in 2100 assessed by AR5. 
 
 
Table 4.2: Estimates of the GIS contribution to GMSL (cm) in 2100 reported by process-based modelling studies 
including the effects of both SMB and ice dynamics and published since AR5. Only model results including elevation-
SMB feedback are shown. All values are reported as the contribution to GMSL in 2100 relative to 2000, with the 
exception of Aschwanden (In press) who report values relative to 2008. The median estimate for comparison with AR5 
is based on the average of the three simulations in Calov et al. (2018) using different GCMs, combined with the central 
estimates from the other studies. RMSD (Fürst et al., 2015) is the Root Mean Squared Deviation from their ensemble 
median. The range reported by Aschwanden (In press) refers to the 16-84% interval of a 500-member ensemble with 
varying model physical parameters.  

Study RCP2.6 RCP4.5 RCP8.5 Reported uncertainty 
Aschwanden (In press) 5-19 8-23 14-33 16-84% range 
Calov et al. (2018) ---- 1.9-5.6 4.6-13.0 Range of three GCMs 
Fürst et al. (2015) 4.2±1.8  5.5±1.86  10.2±3.24  RMSD from ensemble 

median  
Golledge et al. (2019) ---- 10.9 11.2 ---- 
Vizcaino et al. (2015) 2.7 3.4 5.8 ---- 
Process based median 6.3 7.8 11.9 ---- 
IPCC AR5 Table 13.5 4-10 4-13 7-21 likely range 

 
 
Complimentary to the ice-sheet scale simulations discussed above, Nick et al. (2013) used detailed flowline 
models of four Greenland outlet glaciers (Petermann, Kangerdlugssuaq, Jakobshavn Isbræ, and Helheim) to 
estimate a dynamical contribution to sea level in an RCP8.5 scenario of 11.3–17.5 mm by 2100, and 29–49 
mm, by 2200. This demonstrates the limited potential of Greenland outlet glaciers alone to drive GMSL rise. 
Nonetheless, Greenland-wide modelling studies (Table 4.2) consistently find a dominant role of runoff 
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relative to dynamic discharge of ice loss, and a long-term reduction in the rate of dynamic ice discharge to 
the ocean as the ice-sheet margin thins and the termini of outlet glaciers retreat from the coast (Goelzer et al., 
2013; Lipscomb et al., 2013). Greenland’s bedrock geography and the limited, direct access of thick interior 
ice to the ocean ultimately limits the potential pace of GMSL rise from the GIS. Figure 4.7 illustrates a 
fundamental difference between Greenland and Antarctica. In Greenland, most of the bedrock at the ice-
sheet margin is above sea level (land terminating), with relatively narrow (generally <10 km wide) outlet 
glaciers reaching the ocean. In contrast, Antarctica has extensive areas with subglacial bedrock below sea 
level, and thick marine-terminating ice in direct contact with the open ocean. Recent subglacial mapping and 
mass conservation calculations since AR5 (Morlighem et al., 2014; Morlighem et al., 2017) revise earlier 
bathymetric maps under and around the ice sheet, and reveal deeper and more extensive valley networks 
extending into the GIS interior than previously known. Accurate subglacial topography is important for 
modelling individual Greenland outlet glaciers (Aschwanden et al., 2016; Morlighem et al., 2016); however, 
the importance of these revised bedrock boundary conditions for the broader ice sheet has yet to be fully 
tested. Based on the limited cross-sectional area of subglacial valleys and outlet glaciers on Greenland 
(Figure 4.7) and the results of Nick et al. (2013), the effects of uncertain bathymetric boundary conditions 
are assessed to be small relative to the uncertainties in future SMB forcing (medium confidence). 
 
 

 
Figure 4.7: Bedrock topography below the existing ice sheets in Greenland (Morlighem et al., 2017) and Antarctica 
(right) (Fretwell et al., 2013). Horizontal scales are not the same in both panels. Note the deep subglacial basins in West 
Antarctica and the East Antarctic margin. The ice above floatation in these areas is equivalent to >20m of GMSL.  
 
 
In summary, new modelling since AR5 is consistent with previous studies suggesting future Greenland ice 
loss over the 21st century will be dominated by surface processes, rather than dynamic ice discharge to the 
ocean, regardless of which emissions scenario is followed (high confidence). Based on these modelling 
studies, the GIS is not expected to contribute more than 20 cm of GMSL rise by 2100 in a RCP8.5 scenario, 
similar to the upper end of the likely range reported by AR5 (Church et al., 2013). Greenland ice-sheet 
simulations are most sensitive to uncertainties in the applied climate forcing, especially over this century 
(Edwards et al., 2014), but updated climate projections since AR5 are not yet available. Because of the 
consistency of recent modeling studies with the assessment of Church et al. (2013), we use Greenland’s 
contribution to future sea level reported in AR5 in our projections of GMSL. 
 
4.2.3.1.2 Antarctica 
Unlike Greenland, most of the Antarctic Ice Sheet (AIS) margin terminates in the ocean. The AIS also 
contains almost eight times more glacial ice above flotation than Greenland, and nearly half of this ice is 
marine, that is, based on bedrock hundreds of meters (or more) below sea level (Figure 4.7) (Fretwell et al., 
2013). In places where the subglacial bedrock slopes downward away from the coast (reverse-sloped), the 
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marine-based glacial ice is susceptible to dynamical instabilities (Weertman, 1974; Schoof, 2007b; Pollard et 
al., 2015) that can contribute rapid ice loss (Cross-Chapter Box 8 in Chapter 3). The instabilities can be 
triggered by the loss or thinning of ice shelves through changes in the surrounding ocean and increased sub-
ice melt rates and changes in the overlying atmosphere affecting SMB and surface meltwater production. 
Much progress has been made since AR5 in the understanding of these processes, but their representation in 
continental-scale models continue to be heavily parameterized in most cases. Complex interactions between 
the ice sheet, ocean, atmosphere, and underlying bedrock also remain difficult to simulate collectively.  
 
In contrast to Greenland, Antarctica’s recent contribution to sea-level rise has been dominated by ice-
dynamical processes rather than changes in surface mass balance (Mouginot et al., 2014; Rignot et al., 2014; 
Scheuchl et al., 2016; Shen et al., 2018; The Imbie team, 2018). Since AR5, it has become increasingly 
evident that this ice loss is being driven by sub-ice oceanic melt (thinning) of ice shelves (Paolo et al., 2015; 
Wouters et al., 2015) and the resulting loss of back stress (buttressing) that impedes the seaward flow of 
grounded ice upstream. Elevated melt rates are generally associated with the increased presence of warm 
Circumpolar Deep Water on the continental shelf (Khazendar et al., 2016). Dynamic ice loss driven by ocean 
changes have also been observed on the East Antarctic margin (Li et al., 2016; Shen et al., 2018). This is an 
important development, because East Antarctica contains much more ice than West Antarctica, so even 
minor changes there could make major contributions to sea level in the future.  
 
Several of West Antarctica’s major outlet glaciers, including Pine Island Glacier, and Thwaites Glacier in the 
Amundsen Sea (Figure 4.8) have grounding lines currently retreating on retrograde bedrock (Rignot et al., 
2014). Thwaites Glacier is particularly important (Figure 4.8), because it extends into the interior of the 
WAIS, where the bed is >2000 m below sea level in places. By itself, the Thwaites drainage area contains 
the equivalent of ~0.4 m GMSL (Holt et al., 2006; Millan et al., 2017), but loss of the glacier could have a 
destabilizing impact on the entire WAIS (Feldmann and Levermann, 2015). The WAIS contains enough ice 
to raise GMSL by ~3.4 m (Fretwell et al., 2013). Since AR5, a number of ice sheet modelling studies have 
focussed on limited fractions of Antarctica and so are not included in estimating the SROCC Antarctic 
contribution to GMSL which is done in the next paragraph. However, these studies do allow an assessment 
of the potential for persistent and increasing ice loss, and the role of MISI.  
 
Joughin et al. (2014) modelled the response of the Thwaites Glacier to a combination of elevated sub-ice 
melt rates and increased precipitation and found persistent future retreat, despite either the partial 
compensation of increased accumulation or a future reduction in melt. Sub-ice melt rates sustained at current 
levels were found to generate >1 mm yr–1 equivalent GMSL rise within a millennium. Higher melt rates and 
an assumed weak ice shelf triggered rapid retreat within a few centuries. Similarly, Waibel et al. (2018) used 
the BISICLES ice sheet model (Cornford et al., 2015) to investigate the potential for self-sustained retreat of 
Thwaites Glacier, by incrementally increasing sub-ice melt rates until retreat is triggered, and then returning 
to pre-retreat melt rates. Consistent with Joughin et al. (2014), they found self-sustained retreat of Thwaites 
Glacier through MISI. Most uncertainty in their future WAIS simulations arises from uncertainties in the 
long-term response of Thwaites Glacier (Figure 4.8). Nias et al. (2016) demonstrated model sensitivity of 
Thwaites Glacier to poorly resolved bedrock boundary conditions (small scale topography), pointing to the 
need for better geophysical information to reduce model uncertainty (Schlegel et al., 2018). Arthern and 
Williams (2017) also used adaptive mesh techniques, but with a different formulation than (Cornford et al., 
2015) to simulate the future response of Amundsen Sea outlet glaciers. They demonstrate a sustained, but 
slow future retreat when sub-ice melt is maintained at current rates, and a direct relationship between the 
strength of ocean forcing and the pace of MISI-driven ice loss. Yu et al. (2018) simulate future Thwaites 
retreat using a range of model formulations with varying approximations of ice stress balance, different 
ocean melt schemes, and different basal friction laws. Like Arthern and Williams (2017) they find model-
specific dependencies in the rate of ice loss, but all of their simulations demonstrate sustained ice loss and a 
bathymetrically controlled future acceleration. 
 
Like Thwaites, the neighbouring Pine Island Glacier (PIG) has also been thinning and retreating at an 
accelerating rate in recent decades, in response to incursions of warm CDW, although sea floor bathymetry, 
and climatic variability have also played important roles (Dutrieux et al., 2014). Favier et al. (2014) used 
three models with differing formulations to simulate PIG’s response to elevated sub-ice melt. Consistent 
with modelling of Thwaites Glacier (Joughin et al., 2014), all three models demonstrate sustained future 
retreat at an increasing rate, as the glacier backs onto its retrograde bed. Only one of the three models used 
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by Favier et al. (2014) demonstrates the possibility that the glacier can recover if sub-ice melt rates are 
reduced enough to allow the ice-shelf to thicken and pin on bathymetric features to provide buttressing. 
These results highlight the long-term commitment to marine-based ice loss. 
 
While limited to 50-yr simulations, Seroussi et al. (2017) provide the first interactively coupled ice-ocean 
model simulations of Thwaites Glacier at a high spatial resolution. Their model demonstrates MISI-like 
grounding line retreat at a rate of ~1 km yr–1, comparable to observations between 1992 and 2011 (Rignot et 
al., 2014). The retreat is interrupted when the main trunk of the glacier stabilizes on a bathymetric ridge, ~20 
km upstream of the present-day grounding line (Figure 4.8), but due to the short duration of the simulation, 
the long-term potential for additional retreat into the interior of the ice sheet is not captured.  
 
The overall agreement among these highly-resolved regional modelling studies, despite the use of 
independent model formulations, forcings, and different geographic settings, combined with the ability of the 
models to capture current rates of retreat increases confidence since AR5 that observed retreat of Amundsen 
Sea outlet glaciers will continue (medium confidence), could accelerate (medium confidence), and is driven 
by processes consistent with MISI theory (medium confidence). 
 
Observations of rapid bedrock uplift in the Amundsen Sea, low viscosity of the underlying mantle, and short 
GIA response times to glacial unloading suggest ice-Earth interactions could be important there (Barletta et 
al., 2018). Bedrock uplift and reduced gravitational attraction between the ice sheet and ocean as an ice 
margin loses mass reduces relative sea level at the grounding line, promoting stability and providing a 
negative feedback on retreat (Adhikari et al., 2014; Gomez et al., 2015). Using a high-resolution ice sheet-
Earth model, Larour et al. (2018) showed that long-term future retreat of Amundsen Sea grounding lines are 
slowed by these processes, but the effect is found to be minimal until after ~2250. This agrees with other 
recent modelling accounting for ice-Earth interactions, including the viscoelastic Earth response to changing 
ice loads and self-gravitation (Gomez et al., 2015; Konrad et al., 2015; Pollard et al., 2017). These studies 
also show a small negative feedback on future retreat over the next several centuries, particularly under 
strong climate forcing. However, the viscosity structure of the Earth under the AIS is not well resolved, and 
lateral variations in Earth structure could impact these results (Hay et al., 2017). Based on these consistent 
model results, and new observational evidence that PIG has been retreating on reverse-sloped bedrock for a 
half-century or more (Smith et al., 2017), ice-Earth interactions are not expected to substantially slow GMSL 
rise from marine-based ice in Antarctica over the 21st century (medium confidence). However, these 
processes could become important for GMSL rise on multi-century and longer timescales. 
 
 

 
Figure 4.8: Processes affecting the Thwaites Glacier in the Amundsen Sea sector of Antarctica. The grounding line is 
currently retreating on reverse-sloped bedrock at a water depth of ~600 m (Joughin et al., 2014; Mouginot et al., 2014). 
The glacier terminus is ~120 km wide, widens upstream, and is minimally buttressed by a laterally discontinuous ~40 
km long ice shelf. The remaining shelf is thinning in response to warm, sub-shelf incursions of circumpolar deep water 
(CDW), with melt rates up 200 m yr–1 near the groundling line in some places (Milillo et al., 2019). The bathymetry 
upstream of the grounding zone is complex, but it generally slopes downward into a deep basin, up to 2,000 m below 
sea level under the center of the WAIS (far left), making the glacier vulnerable to marine ice sheet instabilities (Cross-
Chapter Box 8 in Chapter 3). 
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Atmospheric forcing is also become increasingly recognized to be an important factor for the future of the 
AIS. A sustained (15 days) melt event over the Ross Sea sector of the WAIS in 2016 illustrated both the 
connectivity of Antarctica to the tropics and El Niño, and the possibility that future meltwater production on 
ice-shelf surfaces could change in the near future (Nicolas et al., 2017). This was highlighted by Trusel et al. 
(2015), who evaluated the future expansion of surface meltwater using the snow component in the RACMO2 
regional atmospheric model (Kuipers Munneke et al., 2012) and output from CMIP5 GCMs. Under RCP8.5, 
they find a substantial expansion of surface meltwater production on ice shelves late in the 21st century that 
exceed melt rates observed before the 2002 collapse of the Larsen B Ice Shelf. Surface meltwater is 
important for both ice dynamics and SMB due to its potential to reduce albedo, saturate the firn layer, deepen 
surface crevasses, and to cause flexural stresses that can contribute to ice-shelf break-up (hydrofracturing) 
(Banwell et al., 2013; Kuipers Munneke et al., 2014). The presence of surface meltwater does not necessarily 
lead to immediate ice shelf collapse (Bell et al., 2017b; Kingslake et al., 2017), although surface meltwater 
was a precursor on ice shelves which have collapsed (Scambos et al., 2004; Banwell et al., 2013). This 
dichotomy illustrates the uncertain role of meltwater and the need for additional study. When and if melt 
rates will be sufficiently high in future warming scenarios to trigger widespread hydrofracturing is a key 
question, because the loss of ice shelves is associated with the onset of marine ice sheet instabilities (Cross-
chapter Box 8 in Chapter 3). Based on the single modelling study by Trusel et al. (2015), we do not expect 
that widespread ice shelf loss will occur before the end of the 21st century, but due to limited observations 
and modelling to date, we have low confidence in this assessment. 
 
Continental-scale ice sheet simulations are ultimately required to provide projections of future GMSL rise 
from Antarctica. At this spatial scale, most models rely on simplifying approximations of the equations 
representing three-dimensional ice flow, and in some cases they parameterize ice flow at the grounding line 
(Schoof, 2007b) to improve computational efficiency. Such simplifications are necessary to allow long 
simulations that can be validated against geological information, in addition to modern observations (Briggs 
et al., 2013; Pollard et al., 2015). Processes related to MISI are best represented at high spatial resolution and 
without simplifications of the underlying physics (Pattyn et al., 2013; Reese et al., 2018c). 
 
Various ice-sheet model formulations, including the choice of grounding line parameterizations and basal 
sliding schemes can strongly affect model response to a given forcing (Brondex et al., 2017; Pattyn, 2017) 
although sophisticated statistical methodologies have been increasingly used since AR5 to quantitatively 
gauge model uncertainty (Bulthuis et al., 2019; Edwards et al., 2019). Accurate atmospheric forcing (SMB) 
and sub-ice melt are also prerequisite to resolving the time-evolving dynamics of the system, with sub-ice 
melt rates being particularly important (Schlegel et al., 2018). An important ongoing deficiency is the lack of 
ice-ocean coupling in most continental-scale studies, which remains too computationally expensive to 
simulate at the spatial scales necessary to capture circulation in ice shelf cavities and time-evolving ice-
ocean interactions (Donat-Magnin et al., 2017; Hellmer et al., 2017). Instead, melt rates are often 
parameterized as a depth-dependent function of nearby ocean temperature derived from offline ocean 
models, but the lack of ice-ocean interaction can seriously overestimate melt rates in some settings (De Rydt 
et al., 2015; Seroussi et al., 2017). Approaches that link offline ocean temperatures with efficient box models 
of the circulation in ice-shelf cavities have been developed (Lazeroms et al., 2018; Reese et al., 2018a) and 
used in long-term future simulations (Bulthuis et al., 2019), although they still require uncoupled ocean 
models to provide time-evolving ocean conditions outside the cavities. 
 
Ritz et al. (2015) used a hybrid physical-statistical modelling approach, whereby the timing of MISI onset is 
determined statistically rather than physically. They estimated probabilities of MISI onset in eleven different 
sectors around the ice-sheet margin based on observations of continent-wide retreat and thinning over the 
last few decades, and expected future climate change following an IPCC SRES A1B emission scenario only. 
In places where MISI is projected to begin, the persistence and rate of grounding-line retreat is 
parameterized as a function of the local bedrock topography (slope), ice thickness at grounding lines 
following Schoof (2007b), and a formulation of basal friction. This study represents a statistically rigorous 
approach in which model parameters are based on a synthesis of observations and projected surface and sub-
shelf forcing, rather than coming directly from climate and ocean models. However, the model calibrations 
rely on recent observations, which may not provide adequate future guidance under warmer future 
conditions. 
 



FINAL DRAFT Chapter 4 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 4-38 Total pages: 169 

Levermann et al. (2014) use simplified emulations of temperature increase in order to estimate both SMB 
and sub-ice melt (including a parameterized delay for ocean warming) to determine the linearized response 
of five ice-sheet models calibrated against recent rates of retreat. Substantial uncertainty arises from the 
different model treatments of grounding line dynamics and ice shelves. However, they conclude that the 
single greatest source of uncertainty stems from the external forcing. 
 
Golledge et al. (2015) used PISM (Parallel Ice Sheet Model; Winkelmann et al. (2011)) to simulate the 
future response of the AIS to RCP emission scenarios. PISM links grounded, streaming, and shelf flow, and 
has freely evolving grounding lines required to capture MISI. PISM’s parameterized treatment of sub-ice 
melt applies melt under partially grounded grid cells (Feldmann and Levermann, 2015), making the model 
sensitive to subsurface ocean warming, although the validity of this approach is contested (Arthern and 
Williams, 2017; Seroussi and Morlighem, 2018; Yu et al., 2018). While providing alternative outcomes with 
the two basal melt rate parameterizations, the model is not calibrated to observations and doesn’t provide a 
probability distribution. In a subsequent study Golledge et al. (2019) used PISM, but with updated RCP 
climate forcing based on CMIP5 GCMs, and with sub-ice ocean melt calibrated to observations. An offline, 
intermediate-complexity climate model was used to capture global ice-climate feedbacks ignored in most 
other studies, but the simulations only include RCP4.5 and RCP8.5 and do not extend beyond 2100. 
Accounting for the climatic effects of meltwater input from Greenland and Antarctica nearly doubled their 
estimates of Antarctic’s contribution to GMSL in 2100 from 2.4 cm to 4.6 cm in RCP4.5, and from 7.7 cm to 
14 cm in RCP8.5. The increase is caused by a combination of SMB decrease over the WAIS, combined with 
subsurface ocean warming that increases sub-ice melt. However, the climate model used to diagnose the 
spatial patterns of the atmospheric and oceanic response to the meltwater input is simplistic. Bronselaer et al. 
(2018) tested the global climatic response to future meltwater input from Antarctica using an ensemble of 
GCM simulations, but without an interactive ice sheet. They simulated an RCP8.5 scenario with and without 
a massive input of meltwater into the Southern Ocean and demonstrate that the addition of Antarctic 
meltwater expands sea ice in the Southern Ocean, delays the trajectory of global warming, and moderates 
atmospheric warming around the Antarctic coastline. Consistent with Golledge et al. (2019), they found 
meltwater-induced stratification around Antarctica warms subsurface ocean temperatures, indicating the 
potential for a positive meltwater feedback on ice-shelf melt. These studies reinforce the need for 
continental-scale studies to consider two-way ice-climate coupling, but with limited published studies to 
draw from, and no simulations run beyond 2100, firm conclusions regarding the net importance of 
atmospheric versus ocean melt feedbacks on the long-term future of Antarctica can not be made. 
 
Bulthuis et al. (2019) used a different continental-scale ice-sheet model (Pattyn, 2017) with the same 
simplified atmospheric and ocean forcing used by Golledge et al. (2015) to simulate RCP2.6, RCP4.5, and 
RCP8.5 scenarios. Simulations with varying model parameters were used to quantify uncertainties related to 
the atmospheric forcing, various ice-model physics, and bedrock response to changing ice loads. A key 
finding is that irrespective of model parametric uncertainty, the strongly mitigated RCP2.6 scenario prevents 
catastrophic WAIS collapse over the coming centuries. The probabilistic projections of Antarctic GMSL 
contributions (Bulthuis et al., 2019) represent a rigorous blending of physical ice-sheet modelling and 
uncertainty quantification (UQ) techniques, albeit with a simplistic representation of future climate and using 
a relatively coarse-resolution ice sheet model. These results are well-supported by Schlegel et al. (2018), 
who blend UQ with a higher resolution ice sheet model than used by Bulthuis et al. (2019), but using an 
idealized climate forcing scheme not directly linked to time-evolving future climate trajectories. Their 800 
simulations, run to 2100 provide not only probabilistic constraints on future GMSL-rise from Antarctica, but 
an assessment of key drivers of uncertainty, including uniform and regional dependencies on model physical 
parameters, climate forcing, and boundary conditions. Sub-ice shelf melt rates provide the greatest source of 
uncertainty in their projections, although the source region dominating the GMSL contribution is found to be 
dependent on the climate forcing applied, and different from those found by Golledge et al. (2015). 
 
DeConto and Pollard (2016) used an ice sheet model with a formulation similar to that used by Golledge et 
al. (2015) and Bulthuis et al. (2019) but they include glaciological processes not accounted for in other 
continental-scale models: 1) surface melt and rain water influence on hydrofracturing of ice shelves; and 2) 
brittle failure of thick, marine-terminating ice fronts that have lost their buttressing ice shelves. Where the ice 
fronts are thick enough to form tall ice cliffs above the waterline, they can produce stresses exceeding the 
strength of the ice, causing calving (Bassis and Walker, 2012). Once initiated, ice-cliff calving has been 
hypothesized to produce a self-sustaining Marine Ice Cliff Instability (MICI; Cross-chapter Box 8, Chapter 
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3). The validity of MICI remains unproven (Edwards et al., 2019) and is considered to be characterized by 
deep uncertainty, but it has the potential to raise GMSL faster than MISI. DeConto and Pollard (2016) 
represent hydrofracturing and ice-cliff calving with simple parameterizations, but the glaciological processes 
themselves are supported by more detailed modelling and observations (Scambos et al., 2009; Banwell et al., 
2013; Ma et al., 2017; Wise et al., 2017; Parizek et al., 2019). DeConto and Pollard (2016) provide four 
ensembles for RCP2.6, RCP4.5, and RCP8.5 scenarios, representing two alternative ocean model treatments 
and two alternative paleo sea-level targets used to tune their model physical parameters. However, their 
ensembles do not explore the full range of model parameter space or provide a probabilistic assessment 
(Kopp et al., 2017; Edwards et al., 2018). Under RCP2.6, DeConto and Pollard (2016) find very little GMSL 
rise from Antarctica by 2100 (0.02–0.16 m), consistent with the findings of Golledge et al. (2015) and 
Bulthuis et al. (2019). In contrast, their four ensemble means range between 0.26–0.58 m for RCP4.5, and 
0.64–1.14 m for RCP8.5. In RCP8.5, rates of GMSL rise from Antarctica exceed 5 cm yr-1 in the 22nd 
century and contribute as much as 15 m of GMSL rise by 2500, largely due to the ice-cliff calving process. 
The climate forcing used by DeConto and Pollard (2016) simulates the appearance of extensive surface 
meltwater several decades earlier than indicated by other CMIP5 climate simulations (Trusel et al., 2015). 
Because their model physics are sensitive to melt water through hydrofracturing, this makes the timing and 
magnitude of their simulated ice loss too uncertain to include in SROCC sea-level projections. However, 
their results do demonstrate the potential for brittle ice-sheet processes not considered by AR5 to exert a 
strong influence on future rates of GMSL rise and the possibility that GMSL beyond 2100 could be 
considerably higher than the likely range projected by models that do not include these processes. 
 
4.2.3.2 Global and Regional Projections of Sea Level Rise 
 
In addition to the model including MICI from DeConto and Pollard (2016), only a subset of studies 
Levermann et al. (2014); (Golledge et al., 2015; Ritz et al., 2015; Bulthuis et al., 2019); Golledge et al. 
(2019), and statistical emulation of DeConto and Pollard (2016) by Edwards et al. (2018) provide 
continental-scale estimates of future Antarctic ice loss, under a range of greenhouse gas emissions scenarios. 
They all provide probabilistic information, but vary considerably, both in their physical approaches and their 
resulting projections of Antarctica’s future contribution to GMSL. Such variations facilitate the first 
quantitative uncertainty assessment of the full dynamical contribution of Antarctica, which could not be 
made by Church et al. (2013) in AR5. The assessment by Church et al. (2013), based on a single statistical-
physical model, reported median values (and likely ranges) of 0.05 m (-0.04–0.13) and 0.04 m (-0.06–0.12), 
for RCP4.5 and RCP8.5, respectively, for the total Antarctic contribution in 2081–2100 relative to 1986–
2005, and added the following: ‘Based on current understanding, only the collapse of marine-based sectors 
of the Antarctic ice sheet, if initiated, could cause global mean sea level to rise substantially above the likely 
range during the 21st century. This potential additional contribution cannot be precisely quantified but there 
is medium confidence that it would not exceed several tenths of a meter of sea level rise during the 21st 
century (Church et al., 2013). Given the above-mentioned publications after AR5 we reassess Antarctica’s 
contribution to sea level change and now include the possibility of marine ice sheet instability allowing for a 
more complete assessment of the likely range of the projections for three RCP scenarios. Our assessment is 
based on process-based numerical models of the Antarctic ice sheet, driven by diverse climate scenarios. 
Results are discussed in the context of an expert elicitation study (Bamber et al., 2019), probabilistic studies 
(Perrette et al., 2013; Slangen et al., 2014a; Grinsted et al., 2015; Jackson and Jevrejeva, 2016) and a 
sensitivity study (Schlegel et al., 2018) assessing the uncertainty in snow accumulation, ocean-induced 
melting, ice viscosity, basal friction, bedrock elevation and the effect of ice shelves on ice mass loss in 2100, 
Figure 4.4. 
 
Ritz et al. (2015) is difficult to contextualize as they only provided estimates for the A1B scenario and not 
for the RCP scenarios. Despite this limitation their results, which are close to the other studies, are included 
as if they represent RCP8.5 and as such supports the assessment. The results by DeConto and Pollard (2016) 
indicate significantly higher mass loss even for RCP4.5, potentially related to their high surface melt rates on 
the ice shelves as contested by Trusel et al. (2015). This early onset of high surface melt rates in DeConto 
and Pollard (2016) leads to extensive hydrofracturing of ice shelves before the end of the 21st century and 
therefore to rapid ice mass loss. For this reason, we do not use either these results or probabilistic e.g. (Kopp 
et al., 2017; Le Bars et al., 2017) and statistical emulation estimates (Edwards et al., 2018), that build on 
DeConto and Pollard (2016). Consequently, the process-based studies by Golledge et al. (2015), Ritz et al. 
(2015), Levermann et al. (2014), Golledge et al. (2019), and Bulthuis et al. (2019) are used to assess the 



FINAL DRAFT Chapter 4 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 4-40 Total pages: 169 

Antarctic contribution for the different RCP scenarios. The study by Schlegel et al. (2018) does not provide 
RCP based scenarios, but is considered as an extensive sensitivity estimate providing a high-end estimate 
based on physical process understanding of the Antarctic contribution.  
 
Each study expresses an uncertainty in the Antarctic contribution which is, in part, dependent on a common 
driver, namely regional warming. We therefore interpret the uncertainties as being dependent and propagate 
the total uncertainty accordingly. As a result, the total uncertainty exceeds that of the individual studies, 
which reflects that the individual studies only sample a fraction of the total uncertainty. The uncertainty 
estimates of Levermann et al. (2014) concentrate on the basal melt rates including a time delay between 
atmosphere and ocean temperature, but do not consider other sources of uncertainty. Ritz et al. (2015) is 
constrained by observations and provides an asymmetric distribution of the rate of mass loss. The ice sheet 
simulations by Golledge et al. (2015) and Golledge et al. (2019) only provide two alternative subgrid 
parameterizations for sub-ice melt, rather than a statistical estimate of the uncertainty. The more sensitive of 
these two parameterizations which induces more ice loss is challenged by Seroussi and Morlighem (2018). In 
order to assess a realistic uncertainty for the total Antarctic contribution, we first assumed that Golledge et 
al. (2015) and Golledge et al. (2019) are dependent, because they use similar parameterizations. For each 
study, a probabilistic distribution is used, assuming a normal distribution with a likely range bounded by the 
high and low estimate from those studies. Levermann et al. (2014) also provides two alternatives, one with 
and one without a time delay between oceanic temperatures below the Antarctic ice shelves and global mean 
atmospheric temperature. As it is unclear which version best matches the updated record of ice loss 
presented by (The Imbie team, 2018), results are combined assuming full probabalistic dependence as for the 
two Golledge studies. Bulthuis et al. (2019) uses a simplified ice sheet model to study the uncertainty caused 
by the atmospheric forcing, ice dynamics, ice and bed rheology, calving and sub-shelf melting. Finally, the 
studies by Ritz et al. (2015), Bulthuis et al. (2019) and the averages for Golledge and Levermann are 
combined to identify a best estimate for the Antarctic contribution under RCP8.5. This results in a median 
contribution of 16 cm in 2100 under RCP8.5. A Monte Carlo technique is used to combine the uncertainties 
in the aforementioned studies, assuming mutual dependence. The resulting 5–95 percentile range, 2–37 cm 
in 2100 under RCP8.5, is assessed as the likely range. This assessment is used in order to reflect ongoing 
limited understanding of the physics and the fact that the individual studies only reflect part of the total 
uncertainty. The distribution is slightly skewed to higher values, because of an underlying skewness in the 
studies of Levermann et al. (2014) and Ritz et al. (2015). This skewed distribution is supported by an expert 
elicitation study (Bamber et al., 2009). The expert elicitation approach (Bamber et al., 2018) suggests 
considerably higher values for total SLR for RCP2.6, RCP4.5 and RCP8.5 than provided in Table 4.3. 
 
As the importance of MISI and MICI is difficult to assess on longer time scales, there remains deep 
uncertainty for the Antarctic contribution to GMSL after 2100 (Cross-Chapter Box 4 in Chapter 1). Results 
on these long-time scales are discussed in 4.2.3.5. 
 
 
Table 4.3: An overview of different studies estimating the future Antarctic contribution to sea level rise, listed here are 
median values. Estimates from Golledge et al. (2015) are based on the average contribution to GMSL over the full 
21st century, based on two alternative ensembles using different sub-ice melt schemes. This average is not explicitly 
reported in the original paper where the individual values of 0.1 and 0.39 m are reported. SMB is the surface mass 
balance, BMB the basal melt balance.  

 Levermann et 
al. (2014) Ritz et al. (2015)  Golledge et al. 

(2015)  
Golledge et al. 
(2019) 

DeConto and 
Pollard (2016) 

Bulthuis et al. 
(2019) 

 

RCP2.6/ 
RCP4.5/ 
A1B/ 
RCP8.5 

RCP2.6/ 
RCP4.5/ 
A1B/ 
RCP8.5 

RCP2.6/ 
RCP4.5/ 
A1B/ 
RCP8.5 

RCP2.6/ 
RCP4.5/ 
A1B/ 
RCP8.5 

RCP2.6/ 
RCP4.5/ 
A1B/ 
RCP8.5 

RCP2.6/ 
RCP4.5/ 
A1B/ 
RCP8.5 

 
Antarctica 2050 
(m) 

 
0.03/0.03/-
/0.03 

-/-/0.03/- 0.00/0.01/-/0.02 
 
-/0.0/-/0.02 

 
0.02/0.03/-/0.04 0.01/0.01/-/0.03 

 
Antarctica 2100 
(m) 

 
0.07/0.09/-
/0.11 

-/-/0.12/- 0.02/0.05/-/0.18 
 
-/0.04/-/0.11 

 
0.14/0.41/-/0.79 0.03/0.05/-/0.11 

  -/-/0.41/- 0.10/0.32/-/1.15   0.08/0.15/-/0.45 
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Antarctica 2200 
(m) 

0.16/0.25/-
/0.54 

-/-/-/- 0.35/1.67/-/5.39/ 

Uncertainties 
 
Ensembles Quantiles High-average 

 
High-average 

 
Ensemble 
selections 

 
Stochastic 
sensitivities 

Tuning targets 

 
 
variable 

Present-day 
rates from 
observations 

None 

 
 
None 

 
Last Interglacial 
and Pliocene 
 

Present-day 
rates from 
observations 

Grounding Line 

 
Poor 

 
Conditional on 
bed slope and 
Schoof flux 

 
Sub-grid 
parameterization 

 
Sub-grid 
parameterization 

 
Pollard and 
DeConto (2012)  

 
Schoof (2007a); 
Tsai et al. 
(2015) 

Dynamics 

 
Traditional Several basal 

friction laws 

Hybrid, 10-20 
km grid 
Till friction 
angle 

Hybrid, 10-20 
km grid 
Till friction 
angle 

 
Hybrid, 10 km 
grid 

Hybrid, 20 km 
grid 

Hydrofracturing No No No No Yes No 
Marine Cliff 
Instability 

No No No No Yes No 

Initialization variable Observed rates Focus on long 
time scales 

Focus on long 
time scales 

1950 Close to steady 
state 

SMB No Parameterized PDD scheme PDD scheme Regional 
Climate Model 

Van Wessem et 
al. (2014) 

BMB Linear 
perturbation Parameterized Slab Ocean 

GCM 
Slab Ocean 
GCM 

NCAR CCSM4 Reese et al. 
(2018a)  

Driving 
mechanism for 
retreat 

 
Ocean only Observations, 

statistics Ocean (2/3) 
Intermediate 
complexity 

Atmospheric 
forcing 
dominates 

Atmospheric 
and ocean 
forcing 

 
 
There is limited evidence for major changes since AR5 in the non-Antarctic components. Recent projections 
of the glacier contribution are nearly identical to AR5 results used here (see Cross-Chapter Box 6 in Chapter 
2). Greenland, thermal expansion and land water storage are also not updated, mainly due to a lack of 
updated CMIP simulations. Hence, our revised projections replace only the AR5 estimate for Antarctica by a 
new assessment as outlined in the previous paragraph based on post-AR5 literature and maintaining identical 
contributions for the non-Antarctic components. As no general dependence between the Antarctic 
contribution and the non-Antarctic components can be derived from the four studies, independent 
uncertainties are assumed, which is close to the uncertainty propagation by Church et al. (2013). 
 
Time series for the different RCP scenarios are shown in Figure 4.9 indicating a divergence in median and 
upper likely range for RCP8.5 during the second half of the century between this report and the AR5 
projections (Church et al., 2013). The value of the Antarctic contribution in 2081–2100 under RCP8.5 is the 
individual component with the largest uncertainty. As a consequence, the uncertainty in the GMSL 
projections is slightly increased compared to Church et al. (2013). Nevertheless, results can also be 
considered to be consistent with Church et al. (2013). In AR5, the potential additional contribution by ice 
dynamics, was estimated to be not more than several tenths of a meter but excluded from projections; here 
we assess this value to be 16 cm (5–95 percentile; 2–37 cm) and include it in the projections. As the 
projections build on the CMIP5 work presented in AR5, and also given the limited exploration of uncertainty 
in estimates from each individual study, the results of the 5–95 percentile are interpreted to represent the 
likely range, i.e. the 17–83 percentile, as done by Church et al. (2013) and as done in AR5 for other CMIP5-
derived results. 
 
 
Table 4.4: Median values and likely ranges for projections of global mean sea level (GMSL) rise in meters in 2081–
2100 relative to 1986–2005 for three scenarios. In addition, values for 2046–2065 are given for GMSL rise in 2100 and 
the rate of GMSL rise in 2100. Values between parentheses reflect the likely range. SMB is surface mass balance, DYN 
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the dynamical contribution, LWS land water storage. Total AR5 minus Antarctica AR5 is the GMSL rise contribution 
in Church et al. (2013) without the Antarctic contribution of Church et al. (2013). The newly derived Antarctic 
contribution is added to this to arrive at the GMSL rise. 
 RCP2.6 RCP4.5 RCP8.5 Comments 
Thermal expansion 0.14 (0.10–0 .18) 0.19 (0.14–0.23) 0.27 (0.21–0.33) AR5 
Glaciers 0.10 (0.04–0.16) 0.12 (0.06–0.18) 0.16 (0.09–0.23) AR5 
Greenland SMB 0.03 (0.01–0.07) 0.04 (0.02–0.09) 0.07 (0.03–0.17) AR5 
Greenland DYN 0.04 (0.01–0.06) 0.04 (0.01–0.06) 0.05 (0.02–0.07) AR5 
LWS 0.04 (-0.01–0.09) 0.04 (-0.01–0.09) 0.04 (-0.01–0.09) AR5 
Total AR5 - Antarctica 
AR5*; 2081–2100 

0.35 (0.23–0.48) 0.43 (0.30–0.57) 0.60 (0.43–0.78) SROCC implicit 
in AR5 

Total AR5 - Antarctica 
AR5; 2046–2065 

0.22 (0.15–0.29) 0.24 (0.17–0.31) 0.28 (0.20–0.36) SROCC implicit 
in AR5 

Antarctica 2031-2050 0.01(0.00-0.03) 0.01(0.00-0.03) 0.02(0.00-0.05) SROCC 
Antarctica 2046–2065 0.02 (0.00–0.05) 0.02 (0.01–0.05) 0.03 (0.00–0.08) SROCC 
Antarctica 2081–2100 0.04 (0.01–0.10) 0.05 (0.01–0.13) 0.10 (0.02–0.23) SROCC 
Antarctica 2100 0.04 (0.01-0.11) 0.06 (0.01-0.15) 0.12 (0.03-0.28) SROCC 
GMSL 2031-2050 0.17(0.12-0.22) 0.18(0.13-0.23) 0.20(0.15-0.26) SROCC 
GMSL 2046–2065 0.24 (0.17–0.32) 0.26 (0.19–0.34) 0.32 (0.23–0.40) SROCC 
GMSL 2081–2100 0.39 (0.26–0.53) 0.49 (0.34–0.64) 0.71 (0.51–0.92) SROCC 
GMSL in 2100 0.43 (0.29-0.59) 0.55 (0.39–0.72) 0.84 (0.61–1.10) SROCC 
Rate (mm yr-1) 4(2–6) 7(4–9) 15(10–20) SROCC 
Notes: 
*The uncertainty in this value is calculated as in Church et al. (2013). 
 
 

 
Figure 4.9: Time series of GMSL for RCP2.6, RCP4.5 and RCP8.5 as used in this report and, for reference the AR5 
results (Church et al., 2013). Results are based on AR5 results for all components except the Antarctic contribution. 
Results for the Antarctic contribution in 2081–2100 are provided in Table 4.4. The shaded region should be considered 
as the likely range. 
 
 
Projections as presented in Table 4.4 are used to calculate the regional RSL projections as outlined in AR5 
by including gravitational and rotational patterns as shown in Figure 4.10 and subsequently used in 4.2.3.4 to 
calculate extreme sea level projections. Including the updated results in terms of magnitude and uncertainty 
for the Antarctic component also changes the regional patterns in sea level projections. Results of the 
regional patterns in Figure 4.10 show an increased sea level rise with respect to the results presented in AR5 
nearly everywhere for RCP8.5 because of the increased Antarctic contribution.  
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Figure 4.10: Regional sea level change for RCP2.6, RCP4.5 and RCP8.5 in meters as used in this report for extreme 
sea level events. Results are median values based on the values in Table 4.4 for Antarctica including GIA and the 
gravitational and rotational effects, and results by Church et al. (2013) for glaciers, LWS and Greenland. The left 
column is for the time slice 2046–2065 and the right column for 2081–2100. 
 
 
4.2.3.3 Probabilistic Sea Level Projections 
 
Since AR5, several studies have produced sea level rise projections in coherent frameworks that link together 
global-mean and RSL rise projections. The approaches are generally similar to those adopted by AR5 for its 
global-mean sea level projections: a bottom-up accounting of different contributing processes (e.g., land-ice 
mass loss, thermal expansion, dynamic sea level), of which many are ‘probabilistic’, in that they attempt to 
describe more comprehensive probability distributions of sea level change than the likely ranges presented by 
Church et al. (2013). An overview of probabilistic approaches is presented in Garner et al. (2017), indicating 
higher values for post AR5 studies mainly reflecting increased uncertainty based on a single contested study 
for the Antarctic contribution (DeConto and Pollard, 2016). As such many of these probabilistic studies 
present full probability density function conditional not only on an RCP scenario, but with additional and 
equally important a priori assumptions concerning for instance the Antarctic contribution over which a 
consensus has yet to solidify. An example is the study by Le Bars et al. (2017) who expand the projection by 
Church et al. (2013) in a probabilistic way with the Antarctic projections by DeConto and Pollard (2016) to 
obtain a full probability density function for sea level rise for RCP8.5. Other probabilistic approaches are 
provided by Kopp et al. (2014) and Jackson and Jevrejeva (2016) using different ice sheet representations 
drawing on expert elicitation (Bamber and Aspinall, 2013). Probabilistic estimates are useful for a 
quantitative risk management perspective (see Section 4.3.3). An even more general approach than the 
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probabilistic estimates has been taken by Le Cozannet et al. (2017) who frame a possibilistic framework of 
sea level rise including existing probabilistic estimates and combining them.  
 
This section first briefly reviews key sources of information for probabilistic projections (Section 4.2.3.3.1), 
with a focus on new results since AR5, then summarizes the different global and regional projections 
(Section 4.2.3.3.2). Eventually, we distinguish bottom-up projections which explicitly describe the different 
components of sea level rise (Section 4.2.3.3.3) from semi-empirical projections (Section 4.2.3.3.4). 
 
4.2.3.3.1 Components of probabilistic global mean sea level projections 
Thermal expansion: Global mean thermal expansion projections rely on coupled climate models projections 
(Kopp et al., 2014; Slangen et al., 2014a; Jackson and Jevrejeva, 2016) or simple climate model projections 
(Perrette et al., 2013; Nauels et al., 2017b; Wong et al., 2017), and are substantively unchanged since AR5. 
For those studies relying on the CMIP5 GCM ensemble, interpretations of the model output differ mainly 
with regard to how the range is understood. For example, Kopp et al. (2014), interprets the 5th–95th 
percentile of CMIP5 values as a likely range of thermal expansion. The differences among the studies yield 
discrepancies smaller than 10 cm, e.g., Slangen et al. (2014a) use 20–36 cm in 2081–2100 with respect to 
1986–2005, while (Kopp et al., 2014) project a likely range of 28–46 cm in 2081–2099 with respect to 1991–
2009.  
 
Glaciers: Projections of glacier mass change rely either on models of glacier surface mass balance and 
geometry, forced by temperature and precipitation fields (Slangen and Van de Wal, 2011; Marzeion et al., 
2012; Hirabayashi et al., 2013; Radić et al., 2014; Huss and Hock, 2015), or simple scaling relationships 
with global mean temperature (Perrette et al., 2013; Bakker et al., 2017; Nauels et al., 2017a). Glacier mass 
change projections published since AR5, based on newly developed glacier models, confirm the overall 
assessment of AR5 (see also Section 4.2.3.2). 
 
Land water storage: Projections of the GMSL rise contributions due to dam impoundment and groundwater 
withdrawal are generally either calibrated to hydrological models (e.g., Wada et al., 2012) or neglected. 
Recent coupled climate-hydrological modelling suggests that a significant minority of pumped groundwater 
remains on land, which may reduce total GMSL rise relative to studies assuming full drainage to the ocean 
(Wada et al., 2016). Kopp et al. (2014) estimated land water storage based on population projections. 
However, there are no substantive updates to projections of the future land-water storage contribution to 
GMSL rise since AR5. 
 
Ice sheets: GMSL projections in previous IPCC assessments were based on results from physical models of 
varying degree of complexity interpreted using expert judgment of the assessment authors (Meehl et al., 
2007; Church et al., 2013). AR5 (Church et al., 2013) used this approach and is partly based on the 
assessment of statistical-physical modelling of the Antarctic contribution (Little et al., 2013). As an 
alternative to the model-based approach, several studies have applied structured expert elicitation to the 
GMSL contribution of ice sheets. This approach is based on a more formal expert elicitation protocol 
(Cooke, 1991; Bamber and Aspinall, 2013; Bamber et al., 2019) instead of physically based models. 
Combining the Antarctic contribution from the expert elicitation with the non-Antarctic components from 
AR5 as done for Table 4.4 leads to an estimated sea level rise of 0.95 m (median) for the high scenario and 
an upper likely range of 1.32 m (Figure 4.2), which is slightly higher than the process based results. Results 
by Bamber and Aspinall (2013) were criticized because of their procedure for post-processing the expert data 
of individual ice sheets to a total sea level contribution from the ice sheets (de Vries and van de Wal, 2015; 
Bamber et al., 2016; de Vries and van de Wal, 2016). Bamber et al. (2019) avoids this issue by eliciting 
expert judgments about ice sheet dependence. Alternatively, Horton et al. (2014) used a simpler elicitation 
protocol focusing on the total sea level rise rather than the ice sheet contribution alone. Finally, several 
probabilistic studies (e.g., Bakker et al., 2017; Kopp et al., 2017; Le Bars et al., 2017) used the results of a 
single ice sheet model study from DeConto and Pollard (2016) as the Antarctic contribution to GMSL. 
 
Beside the total contribution of ice sheets several studies address the individual contribution of either 
Greenland or Antarctica (see Section 4.2.3.1.1 and 4.2.3.1.2) based on ice dynamical studies. Critical for 
GMSL projections is the low confidence in the dynamic contribution of the Antarctic ice sheet beyond 2050 
in previous assessments, as discussed in Section 4.2.3.1.2. 
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4.2.3.3.2 From probabilistic global mean sea level projections to regional RSL change 
Differences between GMSL and relative sea level change are driven by three main factors: (1) changes in the 
ocean, for instance, the thermal expansion component and the circulation driven changes, (2) gravitational 
and rotational effects caused by redistribution of mass within cryosphere and hydrosphere, leading to spatial 
patterns, and (3) long term processes caused by GIA that lead to horizontal and vertical land motion. Finally, 
the inverse barometer effect caused by changes in the atmospheric pressure, sometimes neglected in 
projections, can also make a small contribution, particularly on shorter time scales. For the 21st century as a 
whole estimates of the latter are smaller than 5 cm at local scales (Church et al., 2013; Carson et al., 2016). 
 
Ocean Dynamic sea level: Projections of dynamic sea level change are necessarily derived through 
interpretations of coupled climate model projections. As with thermal expansion projections, interpretations 
of the CMIP5 ensemble differ with regard to how the model range is understood and the manner of drift 
correction, if any (Jackson and Jevrejeva, 2016). However, relative to tide-gauge observations, coupled 
climate models tend to overestimate the memory in dynamic sea level; thus, they may underestimate the 
emergence of the externally forced signal of DSL change above scenario uncertainty (Becker et al., 2016). 
ODSL from coupled climate models does not include the changes resulting from ice melt because ice melt is 
calculated off-line. 
 
Gravitational-rotational and deformational effects (GRD) (Gregory, In press): All projections of RSL change 
include spatial patterns in sea level for cryospheric changes, which however may differ in the details with 
which these are represented. Some studies also include a spatial pattern for land-water storage change 
(Slangen et al., 2014a), anthropogenic subsidence is not included. Recent work indicates that, for some 
regions with low mantle viscosity, spatial patterns cannot be treated as fixed on multi-century timescales 
(Hay et al., 2017). This effect has not yet been incorporated into comprehensive RSL projections, but is 
probably only of relevance near ice sheets. For adaptation purposes, Larour et al. (2017) developed a 
mapping method to indicate which areas of ice mass loss are important for which major port city. We have 
high confidence in the patterns caused by GRD, as in AR5. 
 
Vertical land motion (VLM): These processes can be an important driver of relative sea level change, 
particularly in the near- to intermediate-field of the large ice-sheets of the Last Glacial Maximum (e.g., 
North America and northern Europe). This process is incorporated either by physical modelling (Slangen et 
al., 2014a) or by estimation of a long-term trend from tide-gauge data (e.g., Kopp et al., 2014), which is then 
spatially extrapolated. In the former case, only the long-term GIA process is included in the projections, but 
it excludes other important local factors contributing to vertical land motion (e.g., tectonic uplift/subsidence 
and groundwater/hydrocarbon withdrawal); by using only tide gauge measurements, projections may assume 
that these other processes proceed at a steady rate and thus do not allow for management changes that affect 
groundwater extraction. 
 
4.2.3.3.3 Semi-empirical projections 
Semi-empirical models provide an alternative approach to process-based models aiming to close the budget 
between the observed sea level rise and the sum of the different components contributing to sea level rise. In 
general, motivated by a mechanistic understanding, semi-empirical models use statistical correlations from 
time series analysis of observations to generate projections (Rahmstorf, 2007; Vermeer and Rahmstorf, 
2009; Grinsted et al., 2010; Kemp et al., 2011; Kopp et al., 2016). They implicitly assume that the processes 
driving the observations and feedback mechanisms remain similar over past and future. In the past, 
differences between semi-empirical projections and process-based models were significant but for more 
recent studies the differences are vanishing small. Ongoing advances in closing the sea level budget and in 
the process understanding of the dynamics of ice have reduced the salience of estimates from semi-empirical 
models. Moreover, the results from semi-empirical models (Kopp et al., 2016; Mengel et al., 2016) are in 
general agreement with Church et al. (2013), except when those results reflect the combined hydrofracturing 
and ice cliff instability mechanism as presented by DeConto and Pollard (2016). At the same time, semi-
empirical models based on past observations capture poorly or miss altogether the recent observed changes 
in Antarctica. MISI may lend a very different character to ice sheet evolution in the near future than in the 
recent past and hydrofracturing remains impossible to quantify on observational records only. For this 
reason, a new generation of semi-empirical models and emulators has been developed that estimate 
individual components of sea level rise, which the former models do not (Mengel et al., 2018). These newer 
models aim to emulate the response of more complex models providing more detailed information for 
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different climate scenarios or probability estimates than process-based models (Bakker et al., 2017; Nauels et 
al., 2017a; Wong et al., 2017; Edwards et al., 2019). 
 
4.2.3.3.4 Recent probabilistic and semi-empirical projections 
A wide range of probabilistic sea level projections exist, ranging from simple scaling relations to partly 
process-based components combined with scaling relations. Table 4.5 illustrates the overlap between many 
of the studies, a complete overview is presented by Garner et al. (2017), and differences between different 
classes of models are discussed in Horton et al. (2018). Many studies rely for an important part of their 
components on CMIP simulations. The largest difference can be found in the treatment of the ice dynamics, 
particularly for Antarctica, which are usually not CMIP5 based. Instead, each derives from one of several 
estimates of the Antarctic contribution. These results are useful for the purposes of elucidating sensitivities 
of process-based studies and effects of changing components to the total projection. In this report, we rely on 
the Antarctic component from Section 4.2.3.2 for calculating the likely range of RSL. Hence the values in 
Table 4.5 are not used for the final assessment of RSL including the SROCC specific Antarctic contribution 
presented in Section 4.2.3.2. Comparing the probabilistic projections (Table 4.6) is difficult because of the 
subtle differences between their assumptions. Nevertheless, values range much more for 2100 than for 2050. 
 
 
Table 4.5: Sources of Information Underlying Probabilistic Projections of Sea level Rise Projections. 
(CMIP5=Climate Modelling Intercomparison Experiment. GRD=Gravitational Rotational and Deformation effects. 
Study Thermal 

expansion 
Glaciers Land water 

storage 
Ice Sheets Dynamic 

sea level 
GRD VLM 

Perrette et al. 
(2013)  

CMIP5 Global surface 
mass balance 
sensitivity and 
exponent from 
AR4; total 
glacier volume 
from Radić and 
Hock (2010)  

Not included Greenland’s 
surface mass 
balance from 
AR4; semi-
empirical 
model using 
historical 
observations.  

CMIP5 Bamber et al. 
(2009)  

Not included 

Grinsted et al. 
(2015)  

CMIP5 Church et al. 
(2013) 

Wada et al. 
(2012) 

Church et al. 
(2013); Expert 
elicitation from 
Bamber and 
Aspinall (2013)  

CMIP5 Bamber et al. 
(2009) 

GIA 
projections 
from Hill et al. 
(2010) using 
observations  

Slangen et al. 
(2014a) 

CMIP5 CMIP5; glacier 
area inventory 
Radić and 
Hock (2010) in 
a glacier mass 
loss model 

Wada et al. 
(2012) 

SMB Meehl et 
al. (2007), ice 
dynamics 
Meehl et al. 
(2007) and 
Katsman et al. 
(2011)  

CMIP5 Slangen et al. 
(2014a) 

GIA resulting 
of ice sheet 
melt from 
glacier mass 
loss model 

Kopp et al. 
(2014)  

CMIP5 CMIP5; 
Marzeion et al. 
(2012)  

Chambers et al. 
(2017); 
Konikow 
(2011)  

Church et al. 
(2013); Expert 
elicitation from 
Bamber and 
Aspinall (2013)  

CMIP5 Mitrovica et al. 
(2011)  

GIA, tectonics, 
and subsidence 
from Kopp et 
al. (2013)  

Kopp et al. 
(2017) 

CMIP5 CMIP5; 
Marzeion et al. 
(2012) 

Chambers et al. 
(2017); 
Konikow 
(2011) 

DeConto and 
Pollard (2016) 

CMIP5 Mitrovica et al. 
(2011)  

GIA, tectonics, 
and subsidence 
from Kopp et 
al. (2013)  

Le Bars et al. 
(2017) 

CMIP5 Four glacier 
models 
Giesen and 
Oerlemans 
(2013) 
Marzeion et al. 
(2012),  

Wada et al. 
(2012) 

DeConto and 
Pollard (2016); 
Fettweis et al. 
(2013) 
Church et al. 
(2013) 

CMIP5 - - 
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Radić et al. 
(2014) 
Slangen and 
Van de Wal 
(2011) 

Jackson and 
Jevrejeva 
(2016)  

CMIP5 Marzeion et al. 
(2012) 

Wada et al. 
(2012) 

Church et al. 
(2013); Expert 
elicitation from 
Bamber and 
Aspinall (2013)  

CMIP5 Bamber et al. 
(2009) 

GIA resulting 
of ice sheet 
melt from 
glacier mass 
loss model 
Peltier et al. 
(2015)  
 

De Winter et 
al. (2017)  

CMIP5 CMIP5; glacier 
area inventory 
Radić and 
Hock (2010) in 
a glacier mass 
loss model 

Wada et al. 
(2012) 

Church et al. 
(2013); Expert 
elicitation de 
Vries and van 
de Wal (2015); 
Ritz et al. 
(2015)  

CMIP5 Mitrovica et al. 
(2001) 

GIA resulting 
of ice sheet 
melt from 
glacier mass 
loss model 

 
 
Table 4.6: Median and likely GMSL rise projections (m). Values between brackets are likely range, if no values are 
given the likely range is not available. The table shows result from the probabilistic and semi-empirical results. A is 
2000 as base line year up to 2100; B is the average of 1986-2005 as base line for the projection up to 2081-2100, C 
1980-1999 as baseline up to 2090-2099. 
  2050 2100 
 

Period 
RCP2.6 RCP4.5 RCP8.5  RCP2.6 RCP4.5 RCP8.5  

Perrette et al. (2013) C 
--- 

0.28 
(0.23–
0.32) 

0.28 
(0.23–
0.34) 

--- 
0.86 
(0.66–
1.11) 

1.06 
(0.78–
1.43) 

Grinsted et al. (2015)  A 
--- --- --- --- --- 

0.8 
(0.58–
1.20) 

Slangen et al. (2014a)  B AB B 
--- --- --- --- 

0.54 
(0.35–
0.73) 

0.71 
(0.43–
0.99) 

Kopp et al. (2014) A 0.25 
(0.21–0.29) 

0.26 
(0.21–
0.31) 

0.29 
(0.24–
0.34) 

0.50 
(0.37–
0.65) 

0.59 
(0.45–
0.77) 

0.79 
(0.62–
1.00) 

Kopp et al. (2017) A 0.23 
(0.16–0.33) 

0.26 
(0.18–
0.36) 

0.31 
(0.22–
0.40) 

0.56 
(0.37–
0.78) 

0.91 
(0.66–
1.25) 

1.46 
(1.09–
2.09) 

De Winter et al. (2017)  B --- --- --- --- --- 0.68/0.86 

Jackson and Jevrejeva (2016) B 
--- --- --- --- 

 

0.54 
(0.36–
0.72) 

0.75 
(0.54–
0.98) 

Le Bars et al. (2017) B 
--- --- --- --- 

 

1.06 
(0.65-
1.47) 

1.84 
(1.24-
2.46) 

Nauels et al. (2017b) B 0.24 
(0.19–0.30) 

0.25 
(0.21–
0.30) 

0.27 
(0.23–
0.33) 

0.45 
(0.35–
0.56) 

0.55 
(0.45–
0.67) 

0.79 
(0.65–
0.97) 

Bakker et al. (2017) A 0.20 0.23 0.25 0.53 0.72 1.16 
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Wong et al. (2017) A 0.26 0.28 0.30 0.55 0.77 1.50 

Jevrejeva et al. (2014a) A --- --- --- --- --- 0.80 
(0.6-1.2) 

Schaeffer et al. (2012) A --- --- --- --- 0.90 1.02 

Mengel et al. (2016)  B 0.18 0.18 0.21 0.39 0.53 0.85 

        

 
 
4.2.3.4 Changes in Extreme Sea Level events 
 
Extreme sea levels (ESL) events are water level heights that consist of contributions from mean sea level, 
storm surges and tides. Compound effects of surges and tides are drivers of the ESL events. Section 4.2.3.4.1 
discusses the combination of mean sea level change with a characterization of the ESL events derived from 
tide gauges over the historical period and the sections 4.2.3.4.2 and 4.2.3.4.3 evaluate possible changes in 
these characteristics caused by cyclones and waves. In this section, we discuss the importance of ESL and 
different modelling strategies to improve our understanding of ESL projections. 
 
Even a small increase in mean sea level can significantly augment the frequency and intensity of flooding. 
This is because SLR elevates the platform for storm surges, tides, and waves, and because there is a log-
linear relationship between a flood’s height and its occurrence interval. Changes are most pronounced in 
shelf seas. Roughly 1.3% of the global population is exposed to a 1 100-year-1 flood (Muis et al., 2016). This 
exposure to ESL and resulting damage could increase significantly with SLR, potentially amounting to 10% 
of the global gross domestic product by the end of the century in the absence of adaptation (Hinkel et al., 
2014). 
 
The frequency and intensity of ESL events can be estimated with statistical models or hydrodynamical 
models constrained by observations. Hydrodynamic models simulate a series of ESL over time, which can 
then be fitted by extreme value distributions to estimate the frequency and intensity (e.g. the return level of 
an event occurring with a period of 100 years or frequency of 0.01 yr-1, also called the 100-year event). A 
tide model is sometimes included and sometimes added offline to estimate the extreme sea level events. 
Statistical models fit tide gauge observations to extreme value distributions to directly estimate extreme sea 
level events or combine probabilistic RSL scenarios with storm surge modelling. This can be done on global 
scale or local scale. For example, Lin et al. (2016) and Garner et al. (2017) estimate the increase in flood 
frequency along the US East coast. Both of these modelling approaches can account for projections of SLR. 
Rasmussen et al. (2018) used a combination of a global network of tide gauges and a probabilistic localized 
SLR to estimate expected ESL events showing inundation reductions for different temperature stabilization 
targets as shown in the SR1.5 report. 
 
An advantage of the use of hydrodynamic models is that they can quantify interactions between the different 
components of ESL (Arns et al., 2013). Hydrodynamical models can be executed over the entire ocean with 
flexible grids at a high resolution (up to 1 20°-1 or ~5 km) where necessary, appropriate for local estimates 
(Kernkamp et al., 2011). Input for these models are wind speed and direction, and atmospheric pressure. 
Results of those models show that the Root Mean Squared Error between modelled and observed sea level is 
less than 0.2 m for 80% of a data set of 472 stations covering the global coastline (Muis et al., 2016) at 10-
minute temporal resolution over a reference period from 1980–2011. This implies that for most locations it 
can be used to describe the variability in ESL. However, the areas where ESL is dominated by tropical 
storms are problematic for hydrodynamical models. Another difficulty arises when these models are forced 
with climate models: they inherit the limitations (resolution, precision, accuracy) of wind and pressure in 
climate projections, which is often insufficient to describe the role of waves. 
 
Statistical models have shown that the estimation of ESL is highly sensitive to the characterization of SLR 
and flood frequency distributions (Buchanan et al., 2017). This is confirmed by Wahl et al. (2017) who 
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estimate that the 5–95 percentile uncertainty range, attained through the application of different statistical 
extreme value methods and record lengths, of the current 100-year event is on average 40 cm, whereas the 
corresponding range in projected GMSL of AR5 under RCP8.5 is 37 cm. For ESL events with a higher 
return period, differences will be larger. Capturing changes in the ESL return periods in the future is even 
more complicated because both the changing variability over time and the uncertainty in the mean projection 
must be combined. A statistical framework to combine RSL and ESL, based on historical tide gauge data 
was applied to the U.S. coastlines (Buchanan et al., 2016). Hunter (2012) and the AR5 (Church et al., 2013) 
projected changes in flood frequency worldwide; however, these analyses used the Gumbel distribution for 
high water return periods, which implies that the frequency of all ESLs (e.g., whether the 1 10-year-1 or 1 
500-year-1) will change by the same magnitude for a given RSL, an approximation that can underestimate or 
overestimate ESL (Buchanan et al., 2017). Hence, the amplification factors of future storm return frequency 
in AR5 WGI Figure 13.25 may underestimate flood hazards in some areas, while overestimating them in 
others. By using the Gumbel distribution, Muis et al. (2016) may also inadequately estimate flood 
frequencies. 
 
4.2.3.4.1 Relative sea level and extreme sea level events based on tide gauge records 
Here we present changes in ESL based on the projections as presented in 4.2.3.2 at the tide gauge locations 
in the GESLA2 database (Woodworth et al., 2016). Results include GIA effects, but anthropogenic 
subsidence is not prescribed. These calculations serve as a signal to guide adaption to SLR (Stephens et al., 
2018). Return periods are calculated as a combination of regional RSL projections and a probabilistic 
characterization of the variability in sea level as derived from the GESLA2 data set which contains a quasi-
global set of tide gauges. By doing so, it is assumed that the variability in the tide gauge record does not 
change over time. Models are not accurate enough to address whether this is correct or not. 
 
To quantify the average return period of extreme sea level events, a peak-over-threshold method is applied 
following Arns et al. (2013) and Wahl et al. (2017). Tide gauge records are detrended by subtracting a 
running mean of one year. Peaks above the 99th percentile of hourly water levels are extracted and 
declustered by applying a minimum time between peaks of 72 hours. This threshold of 99% was 
recommended by Wahl et al. (2017) for global applications. Using a maximum likelihood estimator, a 
Generalized Pareto Distribution (GPD) is fitted to these peaks, allowing for an extrapolation to return periods 
beyond the available period of observations. Changes in extreme sea level events due to regional mean sea 
level rise are quantified following Hunter (2010). Uncertainties in the GPD parameters and projections are 
propagated using a Monte Carlo approach, from which a best estimate is derived (see SM4.2). Only tide 
gauge records of 20 years of longer, which are at least 70% complete, are used. However, as can be seen for 
Guam (Fig 4.9), this does not ensure a good fit of the GPD to all peaks, as rare events may have been 
captured in this relatively short record.  
 
Projected changes in extreme sea level events are shown for 12 selected tide gauges in Figure 4.11. The 
magnitude of these changes depends on the relation between extreme sea level events and the associated 
return periods, as well as regional sea level projections, and the uncertainty therein (see inset Figure 4.11). 
The change in extreme sea level events is commonly expressed in terms of the amplification factor and the 
allowance. The amplification factor denotes the amplification in the average occurrence frequency of a 
certain extreme event, often referenced to the water level with a 100 year return period during the historic 
period. The allowance denotes the increased height of the water level with a given return period. This 
allowance equals the regional projection of sea level rise with an additional height related to the uncertainty 
in the projection (Hunter, 2012). 
 
Amplification factors are strongly determined by the local variability in extreme sea level events. Locations 
where this variability is large due to large storm surges and astronomical tides (e.g., Cuxhaven, see Figure 
4.9) will experience a relatively moderate amplification of the occurrence frequency of extremes. In 
comparison, locations with small variability in extreme sea level events (e.g., Lautoka and Papeete) will 
experience large amplifications even for a moderate rise in mean sea level (Vitousek et al., 2017). Globally, 
this contrast between regions with large and small amplification factors becomes clear for projections by 
mid-century (Fig 4.11, left panels). Although regional differences in projected mean sea level rise are small 
for the coming centuries, regional contrasts in amplification factors are considerable. In particular, many 
coastal areas in the lower latitudes may expect amplification factors of 100 or larger by mid-century, 
regardless of the scenario as also shown in SR15 and Rasmussen et al. (2018). This indicates that, at these 
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locations, water levels with return periods of 100 years during recent past will become annual or more 
frequent events by mid-century. By end-century and in particular under RCP8.5, such amplification factors 
are widespread along the global coastlines (Vousdoukas et al., 2018a). 
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Figure 4.11: The relation between expected extreme sea level events and return period at a set of characteristic tide 
gauge locations (see upper left for their location), referenced to recent past mean sea level, based on observations in the 
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GESLA-2 data base (grey lines) and 2081–2100 conditions for three different RCP scenarios as presented in Section 
4.2.3.2. The grey bands represent the 5-95% uncertainty range in the fit of the extreme value distribution to 
observations. The upper right hand panel provides an example illustrating the relationship between extreme sea level 
events and return period for historical and future conditions; the blue line in this panel shows the best estimate extreme 
sea level event above the 1986–2005 reference mean sea level. The coloured lines for the different locations show this 
expected extreme sea level events for different RCP scenarios. The horizontal line denoting the amplification 
factor expresses the increase in frequency of events which historically have a return period of once every 100 years. In 
the example, a water level of 2.5 m above mean sea level, recurring in the recent climate approximately every 100 years 
in recent past climate, will occur every 2-3 years under future climate conditions. The allowance expresses the increase 
in extreme sea level for events that historically have a return period of 100 years.  
 
 

 
Figure 4.12: The colors of the dots express the factor by which the frequency of extreme sea level events increase in 
the future for events which historically have a return period of 100 years. Hence a value of 50 means that what is 
currently a once in a hundred year event will happen every 2 years due to a rise in mean sea level. Results are shown for 
three RCP scenarios and two future time slices as median values. Results are shown for tide gauges in the GESLA2 
database. The accompanying confidence interval can be found in SM4.2 as well as a list of all locations. The data 
underlying the graph are identical to those presented in Figure 4.11. The amplification factor is schematically explained 
in the upper right panel of figure 4.11. Storm climatology is constant in these projections. 
 
 
In summary, extreme sea level events estimates as presented in this subsection, clearly show that as a 
consequence of sea level rise, events which are currently rare (e.g., with an average return period of 100 
years), will occur annually or more frequently at most available locations for RCP8.5 by the end of the 
century (high confidence). For some locations, this change will occur as soon as mid-century for RCP8.5 and 
by 2100 for all emission scenarios. The affected locations are particularly located in low-latitude regions, 
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away from the tropical cyclone tracks. In these locations, historical sea level variability due to tides and 
storm surges is small compared to projected mean sea level rise. Therefore, even limited changes in mean 
sea level will have a noticeable effect on ESLs, and for some locations, even RCP2.6 will lead to the annual 
occurrence of historically rare events by mid-century. Results should be treated with caution in regions 
where tropical cyclones are important as they are underrepresented in the observations (Haigh et al., 2014a). 
 
4.2.3.4.2 Waves 
A warming climate is expected to affect wind patterns and storm characteristics, which in turn will impact 
wind waves that contribute to high coastal water levels. Wind-wave projections are commonly based on 
dynamical and statistical wave models forced by projected surface winds from General Circulation Models 
(GCMs), notably those participating in the Coupled Model Intercomparison Project (CMIP). In the 
framework of the Coordinated Ocean Wave Climate Project (COWCLIP), an ensemble of CMIP3-based 
global wave projections (Hemer et al., 2013) was produced and the results were summarized in the AR5 
(WGI Chapter 13). Casas-Prat et al. (2018) expanded the geographic domain to include the Arctic Ocean, 
highlighting the vulnerability of high-latitude coastlines to wave action as ice retreats. Reduced sea ice 
allows larger waves and stronger cyclones in the Arctic Ocean, which can further disrupt and break up sea 
ice (e.g., Thomson and Rogers, 2014; Day and Hodges, 2018). A review and consensus-based analysis of 
regional and global scale wave projections, including CMIP5-based projections, has been provided by 
Morim et al. (2018) as part of COWCLIP. Projections of annual and seasonal mean significant wave height 
changes agree on an increase in the Southern Ocean, tropical eastern Pacific and Baltic Sea; and on a 
decrease over the North Atlantic, northwestern Pacific and Mediterranean Sea. Projections of mean 
significant wave height lack consensus over the eastern North Pacific and southern Indian and Atlantic 
Oceans. Projections of future extreme significant wave height are consistent in projecting an increase over 
the Southern Ocean and a decrease over the northeastern Atlantic and Mediterranean Sea. Regional 
projections of wind-waves have mostly been applied to Europe so far, while highly vulnerable regions have 
been largely overlooked. This is the case for low-lying islands where impacts of sea-level rise and wave-
induced flooding are expected to be severe and adaptive capacity is reduced (Hoeke et al., 2013; Albert et al., 
2016). 
 
A number of studies have included waves, in addition to tides and sea level anomalies, to assess coastal 
vulnerability to sea-level rise using dynamical and statistical approaches. The Coastal Storm Modeling 
System (CoSMoS) (Barnard et al., 2014) includes a series of embedded wave models to estimate high 
resolution projections of total water levels along the Southern California coast for different extreme 
scenarios (O'Neill et al., 2017). Arns et al. (2017) find that an increase in sea level may reduce the depth-
limitation of waves, thereby resulting in waves with greater energy approaching the coast. Including wave 
effects is crucial for coastal adaptation and planning (e.g., Isobe, 2013). For example Arns et al. (2017) 
report that coastal protection design heights need to be increased by 48–56% in the German Bight region 
relative to a design height based on the effect of sea level rise on ESL only. Combining sea level rise with 
extreme value theory applied to past observations of tides, storm surges and waves, Vitousek et al. (2017) 
found that a 10–20 cm sea level rise could result in a doubling of coastal flooding frequency in the Tropics. 
For the southern North Sea region, Weisse et al. (2012) argue that increasing storm activity also increases 
hazards from extreme sea level events. Global-scale projections of extreme sea level event changes including 
wave setup indicate a very likely increase of the global average 100-year ESL of 58–172 cm under RCP8.5 
(Vousdoukas et al., 2018c). Changes in storm surges and waves enhance the effects of relative sea level rise 
along the majority of northern European coasts, with contributions up to 40% in the North Sea (Vousdoukas 
et al., 2017). 
 
A stationarity of the wave climate is often assumed for projections of extreme sea level events (Vitousek et 
al., 2017). Yet, wave contributions to coastal sea level changes (setup and swash) depend on several factors 
that can vary in response to internal climate variability and climate change, including deep-water wave field, 
water-depth, and geomorphology. Melet et al. (2018) reported that over recent decades, wave setup and 
swash interannual-to-decadal changes induced by deep-water wave height and period changes alone were 
sizeable compared to steric and land-ice mass loss coastal sea level changes.  
 
Comprehensive broad-scale projections of sea level at the coast including regional sea level changes, tides, 
waves, storm surges, interactions between these processes and accounting for changes in period and height 
of waves and frequency and intensity of storm surges are yet to be performed. 
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4.2.3.4.3 Effects of cyclones 
Tropical and extratropical cyclones (TCs and ETCs) tend to determine extreme sea level events, such as 
coastal storm surges, high water events, coastal floods, and their associated impacts on coastal communities 
around the world. The projected potential future changes in TCs and ETCs frequency, track and intensity is 
therefore of great importance. After AR5, it was realized that the modelled global frequency of TCs is 
underestimated and that the geographical pattern is poorly resolved in case of TC tracks, very intense TCs 
(i.e., category 4/5) and TC formation by using low resolution climate models (Camargo, 2013). Over recent 
years, multiple methods including downscaling CMIP5 climate models (Knutson et al., 2015; Yamada et al., 
2017), high-resolution simulations (Camargo, 2013; Yamada et al., 2017), TC–ocean interaction (Knutson et 
al., 2015; Yamada et al., 2017), statistical models (Ellingwood and Lee, 2016) and statistical-deterministic 
models (Emanuel et al., 2008) have been developed, and the ability to simulate tropical cyclones (TCs) has 
been substantially improved. Most models still project a decrease or constant global frequency of TCs, but a 
robust increase in the lifetimes, precipitation, landfalls and ratio of intense TCs under global warming. This 
is similar to IPCC AR5 and many studies (Emanuel et al., 2008; Holland et al., 2008; Knutson et al., 2015; 
Kanada et al., 2017; Nakamura et al., 2017; Scoccimarro et al., 2017; Zheng et al., 2017). It is expected that 
these projected increases are intensified by favourable marine environmental conditions, expansion of the 
tropical belt, or ocean warming in the northwest Pacific and north Atlantic, and increasing water vapour in 
the atmosphere (Kossin et al., 2014; Moon et al., 2015; Cai et al., 2016; Mei and Xie, 2016; Cai et al., 2017; 
Kossin, 2017; Scoccimarro et al., 2017; Kossin, 2018). However, it is noted that, in contrast to most models, 
some models do predict an increase in global TC frequency during the 21st century (Emanuel, 2013; Bhatia 
et al., 2018). 
 
Previous extensive studies indicated the important role of warming oceans in the TC activity (Emanuel, 
2005; Mann and Emanuel, 2006; Trenberth and Fasullo, 2007; Trenberth and Fasullo, 2008; Villarini and 
Vecchi, 2011; Trenberth et al., 2018) and also revealed TCs stir the ocean and mix the subsurface cold water 
to the surface (Shay et al., 1992; Lin et al., 2009). The resulting increased thermal stratification of the upper 
ocean under global warming will reduce the projected intensification of TCs (Emanuel, 2015; Huang et al., 
2015; Tuleya et al., 2016). A recent study suggests a strengthening effect of ocean freshening in TC 
intensification, opposing the thermal effect (Balaguru et al., 2016). We conclude that it is likely that the 
intensity of severe TCs will increase in a warmer climate, but there is still low confidence in the frequency 
change of TCs in the future.  
 
Recent projection studies indicate that trends in regional ETCs vary from region to region, e.g., a projected 
increase in the frequency of ETCs in the South and the northeast North Atlantic, the South Indian Ocean, and 
the Pacific (Colle et al., 2013; Zappa et al., 2013; Cheng et al., 2017; Michaelis et al., 2017) and a decrease 
in the numbers of ETCs in the North Atlantic basin and the Mediterranean (Zappa et al., 2013; Michaelis et 
al., 2017). Note that the projected frequency in ETCs still remains uncertain due to different definitions of 
cyclone, model biases or climate variability (Chang, 2014; Cheng et al., 2016). Considering these processes 
implies that changes in TC and ETC characteristics will vary locally and therefore we have low confidence in 
the regional storm changes, which is in agreement with AR5 WGI Chapter 14 (Christensen et al., 2013). 
 
Observed damages from ETCs/TCs to coastal regions has increased over the past 30 years and will continue 
in the future (Ranson et al., 2014). The global population exposed to ETCs/TCs hazards is expected to 
continue to increase in a warming climate (Peduzzi et al., 2012; Blöschl et al., 2017; Emanuel, 2017a; 
Michaelis et al., 2017). The probabilities of sea level extreme events induced by TC storm surge are very 
likely to increase significantly over the 21st century. Risk from TCs increases in highly vulnerable coastal 
regions (Hallegatte et al., 2013), e.g., on coasts of China (Feng and Tsimplis, 2014), west Florida, north of 
Queensland, the Persian Gulf, and even in well protected area such as the Greater Tokyo area (Tebaldi et al., 
2012; Lin and Emanuel, 2015; Ellingwood and Lee, 2016; Hoshino et al., 2016; Dinan, 2017; Emanuel, 
2017b; Lin and Shullman, 2017). The ESL return period has greatly decreased over recent decades and is 
also expected to decrease greatly in the near future, e.g., in New York City (by 2030-2045)(Garner et al., 
2017). It is very likely that the ESL return period in low-lying areas such as coastal megacities decreased 
over the 20th century and frequencies of still unusual ESL events are expected to increase in frequency in the 
future. In addition, the compound effects of sea level rise, storm surge and waves on extreme sea level events 
and the associated flood hazard are assessed in Chapter 6 (Section 6.3.3.3 and 6.3.4, to be checked through 
FGD). 
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4.2.3.5 Long-Term Scenarios, Beyond 2100 
 
Sea level at the end of the century will be higher than present-day and continuing to rise in all cases even if 
the Paris Agreement is followed (Nicholls, 2018). The reasons for this are mainly related to the slow 
response of glacier melt, thermal expansion and ice sheet mass loss (Solomon et al., 2009).These processes 
operate on long time scales, implying that even if the rise in global temperature slows or the trend reverses, 
sea level will continue to rise (SR1.5 report, AR5). A study by Levermann et al. (2013) based on paleo-
evidence and physical models formed the basis of the assessment by Church et al. (2013) indicating that 
committed sea level rise is approximately 2.3 m per degree warming for the next 2000 years w.r.t. 
preindustrial temperatures. This rate is based on a relation between ocean warming and basal melt as used by 
Levermann et al. (2013), without accounting for surface melt followed by hydrofracturing and ice cliff 
failure after the collapse of ice shelves, suggested to be the dominant long term mechanism for ice mass loss 
(DeConto and Pollard, 2016). Nevertheless, deep uncertainty (Cross-Chapter Box 5 in Chapter 1) remains on 
the ice dynamical contribution from Antarctica after 2100. 
 
If we consider the long-term contribution of the various components of SLR we observe considerable 
differences to the contribution for the 21st century. For glaciers, the long-term is of limited importance, 
because the sea level equivalent of all glaciers is restricted to 0.32 ± 0.08 m when taking account ice mass 
above present-day sea level (Farinotti et al., 2019) and hence there is high confidence that the contribution of 
glaciers to sea level rise expressed as a rate will decrease over the 22nd century under RCP8.5 (Marzeion et 
al., 2012). For thermal expansion the gradual rate of heat absorption in the ocean will lead to a further sea 
level rise for several centuries (Zickfeld et al., 2017). By far, the most important uncertainty on long 
timescales arises from the contribution of the major ice sheets. The time scale of response of ice sheets is 
thousands of years. Hence, if ice sheets contribute significantly to sea level in 2100, they will necessarily 
also contribute to sea level in the centuries to follow. Only for low emission scenarios, like RCP2.6, can 
substantial ice loss be prevented, according to ice-dynamical models (Levermann et al., 2014; Golledge et 
al., 2015; DeConto and Pollard, 2016; Bulthuis et al., 2019). For Greenland, surface warming may lead to 
ablation becoming larger than accumulation, and the associated surface lowering increases ablation further 
(positive feedback). As a consequence, the ice sheet will significantly retreat. Church et al. (2013) concluded 
that the threshold for perpetual negative mass balance based on modelling studies lies between 1ºC 
(Robinson et al., 2012) (low confidence) and 4ºC (medium confidence) above preindustrial temperatures. 
Pattyn et al. (2018) demonstrated that with more than 2.0 of summer warming, it becomes more likely than 
not that the Greenland ice sheet crosses a tipping point, and the ice sheet will enter a long-term state of 
decline with the potential loss of most or all of the ice sheet, unfolding over thousands of years. If the 
warming is sustained, ice loss could become irreversible due to the initiation of positive feedbacks associated 
with elevation-SMB feedback (reinforced surface melt as the ice sheet surface lowers into warmer 
elevations), and albedo-melt feedback associated with darkening of the ice surface due to the presence of 
liquid water, loss of snow, changes in firn, and biological processes (Tedesco et al., 2016; Ryan et al., 2018). 
The precise temperature threshold and duration of warming required to trigger such irreversible retreat 
remains very uncertain, and more research is still needed. 
 
The mechanisms for decay of the Antarctic ice sheet are related to ice shelf melt by the ocean, followed by 
accelerated loss of grounded ice and marine ice sheet instability, possibly exacerbated by hydrofracturing of 
the ice shelves and ice cliff failure (Cross-Chapter Box 8 in Chapter 3). The latter processes have the 
potential to drive faster rates of ice mass loss than the surface mass balance processes that are likely to 
dominate the future loss of ice on Greenland. Furthermore, the loss of marine-based Antarctic ice represents 
a long-term (millennial) commitment to elevated sea level rise, due to the long thermal memory of the ocean. 
Once marine based Antarctic ice is lost, local ocean temperatures will have to cool sufficiently for 
buttressing ice shelves to reform, allowing retreated grounding lines to readvance (DeConto and Pollard, 
2016). A minimum time scale, whereby the majority of West Antarctica decays, was derived from a 
schematic experiment with an ice flow model by Golledge et al. (2017), where ice shelves were removed 
instantaneously and prohibited from regrowing. Results of this experiment indicate that most of West 
Antarctica’s ice is lost in about a century. 
Gradual melt of ice shelves accompanied by partial retreat of East Antarctic ice would yield greater ice melt 
but on a time scale of millennial or longer (Cross-Chapter Box 8 in Chapter 3). Prescribing a uniform 
warming of 2°C–3°C in the Southern Ocean triggers an accelerated decay of West Antarctica in a coarse 
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resolution model with a temperature-driven basal melt formulation yielding 1 to 2 m sea level rise by the 
year 3000 and up to 4 m by the year 5000 (Sutter et al., 2016). Forcing an ice sheet model with Coulomb 
friction in the grounding line zone yields a sea level rise of 2 m after 500 year for a sub-ice shelf melt of 20 
m a–1 (Pattyn, 2017). On decadal to millennial time scales the interaction between ice and the solid Earth 
indicates the possibility of a negative feedback slowing retreat by viscoelastic uplift and gravitational effects 
that reduce the water depth at the grounding line (Gomez et al., 2010; de Boer et al., 2014; Gomez et al., 
2015; Konrad et al., 2015; Pollard et al., 2017; Barletta et al., 2018) (Section 4.2.3.1.2). 
 
A blended statistical and physical model, calibrated by observed recent ice loss in a few basins (Ritz et al., 
2015) projects an Antarctic contribution to sea level of 30 cm by 2100 and 72 cm by 2200, following the 
SRES A1B scenario, roughly comparable to RCP6.0. The projected contributions of WAIS are found to be 
limited to 48 cm in 2200 following the A1B scenario. The key uncertainty in these calculations was found to 
come from the dependency on the relation between the sliding velocity and the friction at the ice-bedrock 
interface. Several parameterizations are used to describe this process. Golledge et al. (2015) present values 
between 0.6 m and 3 m by 2300 for the RCP8.5 scenario. In contrast to the previous studies, Cornford et al. 
(2015) used an adaptive grid model, which can describe more accurately grounding line migration (Cross-
Chapter Box 8 in Chapter 3). Due to the computational complexity of their model, simulations are limited to 
West Antarctica. Starting from present-day observations, they find that the results are critically dependent on 
initial conditions, sub ice-shelf melt rates, and grid resolution. The glacier with the most uncertain 
vulnerability is the 120 km-wide Thwaites Glacier, in the Amundsen Sea sector of West Antarctica. 
Thwaites Glacier is currently retreating in a reverse-sloped trough extending into the central West Antarctic 
Ice Sheet (Figure 4.8), where the bed is up to 2 km below sea level. In addition to Thwaites, several smaller 
outlet glaciers and ice streams may contribute to sea level on long time scales, but in the study by Cornford 
et al. (2015), a full West Antarctic retreat does not occur due to limited oceanic heating under the two major 
ice shelves (Filchner-Ronne and Ross) keeping ice streams flowing into the Ross and Weddell Seas in place. 
However, the representation of these processes remains simplistic at the continental ice sheet scale (Cross-
Chapter Box 8 in Chapter 3). 
 
Nonetheless, recent studies using independently developed Antarctic ice-dynamical models (Golledge et al., 
2015; DeConto and Pollard, 2016; Bulthuis et al., 2019) agree that low emission scenarios, are required to 
prevent substantial future ice loss (medium confidence). However, observations (Rignot et al., 2014) and 
modelling of the Thwaites Glacier in West Antarctica (Joughin et al., 2014), suggest grounding line retreat 
on the glacier’s reverse sloped bedrock is already underway and possibly capable of driving major WAIS 
retreat on century timescales. Whether the retreat is driven by ocean changes driven by climate change or by 
climate variability (Jenkins et al., 2018) is still under debate. Hence it is not possible to determine whether a 
low emission scenario would prevent substantial future ice loss (medium confidence). This is a further 
elaboration on the SR15 assertion that the chance for passing a threshold is larger for 2 degrees warming 
than for 1.5°C warming. 
 
A study by Clark et al. (2016) addresses the evolution of the ice sheets over the next 10,000 years and 
concludes that given a climate model with an equilibrium climate sensitivity of 3.5°C, the estimated 
combined loss of Greenland and Antarctica ranges from 25 to 52 m of equivalent sea level, depending on the 
emission scenario considered, with rates of GMSL as high as 2–4 m per century. A worst-case scenario was 
explored with an intermediate complexity climate model coupled to a dynamical ice model (Winkelmann et 
al., 2015), in which all readily available fossil fuels are combusted at present-day rates until they are 
exhausted. The associated climate warming leads to the disappearance of the entire Antarctic Ice Sheet with 
rates of sea level rise up to around 3 m per century. A follow up study by Clark et al. (2018) addressing the 
long-term commitment of sea-level rise based on cumulative carbon dioxide emissions points to sea-level 
rise as an additional measure for setting emission targets. It shows that a two- degree scenario would result in 
0.9 m in 2300 and around 7.4 m in the year 9000 CE. 
 
Similar to the strategy for the 21st century, we assess the long-term projection of sea level. Since no new 
CMIP runs are available there are no major new insights in the thermal expansion and glacier component 
which deviate from the AR5 assessment for the long-term contribution of these components. Some studies 
updated the contribution of the Greenland ice sheet on long time scales. Vizcaino et al. (2015) used a GCM 
coupled to an ice sheet model to calculate the Greenland contribution which is within the range of estimates 
presented by Church et al. (2013). This is also true for the ice sheet simulations by Calov et al. (2018) which 
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are based on off line simulations with a regional climate model forced by RCP4.5 and RCP8.5 scenarios of 
three different CMIP5 models. On the other hand, Aschwanden (In press) used temperatures to calculate 
SMB which was used to force an ice sheet model to arrive at much higher values for SLR. However, they 
used a spatially uniform temperature forcing, which is in conflict with earlier work and overestimated 
temperatures in the ablation zone (e.g., Van de Wal and Wild, 2001; Gregory and Huybrechts, 2006). Given 
this limited and contrasting evidence, we therefore also used for Greenland the assessed values presented in 
Table 13.8 of Church et al. (2013), but again replacing the Antarctic component by the assessed value from 
the process and climate scenario-based studies published after 2013. The low scenario in Table 13.8 of 
Church et al. (2013) without the Antarctic contribution was combined with the RCP2.6 estimates for 
Antarctica of Golledge et al. (2015), the mean of the RCP2.6 simulations with and without time delay 
between global mean atmosphere and ocean temperature around Antarctica of Levermann et al. (2014), and 
the results of Bulthuis et al. (2019). The medium scenario from Church et al. (2013) is combined with 
RCP4.5 results and the high scenario with RCP8.5. Results are shown in Figure 4.2, Section 4.1 and show a 
strong divergence of RSL rise over time whereby the estimates in 2300 range from about 1–2 m under 
RCP2.6 up to 2–5.5 m for RCP8.5. 
 
The specific trajectories that will be followed may depend critically on if and when certain tipping points are 
reached. Most critical in that respect are presumably the tipping points corresponding (1) to the threshold 
where the ablation in Greenland becomes larger than the accumulation, causing an irreversible and nearly 
full retreat of the ice sheet; and (2) to the thresholds for ice shelf stability in West Antarctica, which depend 
on surface melt and sub-ice melt, combined with uncertainties surrounding MISI and/or MICI. There is deep 
uncertainty about whether and when a tipping point will be passed. For RCP8.5 chances to pass a tipping-
point are considered to be substantially higher than for RCP2.6. 
 
In summary, there is high confidence in continued thermal expansion and the loss of ice from both the 
Greenland and Antarctic ice sheets beyond 2100. A complete loss of Greenland ice contributing about 7 m to 
sea level over a millennium or more would occur for sustained GMST between 1°C (low confidence) and 
4°C (medium confidence) above preindustrial levels. Due to deep uncertainties regarding the dominant 
processes that could trigger a major retreat, there is low confidence in the estimates of the contribution of the 
Antarctic ice sheet beyond 2100, but our estimates (2.3–5.4 m in 2300) for RCP8.5 are considerably higher 
than presented in AR5. High-emission scenarios or exhaustion of fossil fuels over a multi-century period 
lead to rates of sea level rise as high as several meters per century in the long term (low confidence). Low-
emission scenarios lead to a limited contribution over multi-century time scales (high confidence). 
Discriminating between 1.5 and 2 degrees scenarios in term of long-term sea level change is not possible 
with the limited evidence. Hence, we conclude that the sea level rise on millennial time scales is strongly 
dependent on the emission scenario indicating, in combination with the lack in predictability of the tipping 
points, the importance of emissions mitigation for minimizing the risk to low-lying coastlines and islands 
(high confidence), even if no tipping-points are passed. 
 
 
[START BOX 4.1 HERE]  
 
Box 4.1: Case Studies of Coastal Hazard and Response 
 
This Box illustrates current coastal flood risk management and adaptation practices through four case studies 
from around the world, showing how current approaches could be refined using the new SLR projections of 
this report, as well as findings on adaptation options, decision making approaches and governance (called 
Practice Consistent with SROCC Assessment in Tables 1-3). In an effort to illustrate some of the diverse 
social-ecological settings in this report, the locations are Nadi in Fiji, the Nile delta in Egypt, New York and 
Shanghai. We frame the latter two studies as a comparison. For each case, Current Practice reflects 
understanding, policy planning, and implementation that existed prior to SROCC. Recent improvements in 
understanding documented in this chapter suggest that significant, beneficial changes in the basis for design 
and planning are feasible in each case for addressing future risk.  
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Box 4.1, Figure 1: Historical and projected extreme sea levels at four stations discussed in this Box. The heights of 
extreme sea level events are shown as a function of their return period. Observations (crosses) are derived from tide-
gauge records. The historical return height (grey) is the best fit through these observations, and the 5–95% confidence 
intervals (grey band) are shown. Note that the confidence interval for Lautoka is too narrow to be visible. Future 
extreme sea level events represent the effect of regional sea level change for the period 2081–2100 for scenarios 
RCP2.6 (blue) and RCP8.5 (red). The increased height of the 100-year event for scenario RCP2.6/8.5 is 0.43/0.80 m for 
Burullus; 0.55/1.03 m for Lautoka; 0.63/1.04 m for New York; and 0.44/0.79 m for Lusi. The increased frequency of 
the historical 100-year event for scenario RCP2.6/RCP8.5 is a factor of 15/777 for Burullus; >1200/>1200 for Lautoka; 
67/541 for New York; and 6/26 for Lusi. The notation >1200 indicates that the methodology allows for estimation of 
only a lower bound on the increased frequency. 
 
 
Responding to Coastal Flooding and Inundation, Nadi, Fiji  
Hazards that contribute to riverine flooding and coastal inundation for Nadi Town and the wider Nadi Basin 
are heavy rainfall, elevated sea levels and subsidence of the delta. People and built assets in the Nadi River 
flood plain are already being affected by climate change. Observed sea level shows an increase of 4 mm yr–1 
over the period 1992–2018. Over the past 75 years, extreme rainfall events have become more frequent. Of 
the 84 floods which occurred in the Nadi River Basin since 1870, 54 were post 1980, with 26 major floods 
since 1991 (Hay, 2017). In January 2009, large areas of Fiji were inundated by devastating floods which 
claimed at least 11 lives, left 12,000 people temporarily homeless and caused 54 million USD in damage. 
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Worst hit was the Nadi area, with total damage estimated at 39 USD million (Hay, 2017). The increased 
frequency of flooding is not all attributable to increases in sea level and extreme rainfall events. River 
channels have become filled with sediment over time, largely owing to deforestation of the hinterland. Much 
of the mangrove fringe has been sacrificed for development of various kinds. The Nadi River Delta is 
subsiding, exacerbating the effects of SLR (Chandra and Gaganis, 2016). Various initiatives to help alleviate 
flooding and inundation in the Nadi Basin have been proposed. These include both hard protection and 
engineering (e.g., ring dikes, river widening, bridge rebuilding, retarding basins, shortcutting tributaries, 
dams and diversion channels) and accommodation (e.g., early flood warnings, improved land management 
practices in upper basin) measures (Box 4.1, Table 1).  
 
 
Box 4.1, Table 1: Current coastal flood risk management and adaptation practices in the Nadi Basin and possible 
refinements using the new SLR and ESL projections of this report, as well as findings on adaptation options, decision 
making approaches and governance (Practice Consistent with SROCC Assessment). See Hay (2017) for background on 
current practice and practice consistent with SROCC assessment; see Box 4.1, Figure 1 for ESL event values.  
 Current practise  Practise consistent with SROCC Assessment 

Hazards Design storm tide and design two-day rainfall 
used for existing flood control works: 1.2 m 
and 436 mm, respectively. Subsidence: Not 
considered. 

Design storm tide in 2081–2100 (100-yr ESL): 
1.9/2.4 m (RCP2.6/8.5); Two-day design rainfall, 
(100-yr event): 670 mm (RCP8.5); Subsidence and 
other vertical land motion considered.  

Exposure and 
Vulnerability 

Exposure and vulnerability assessed for present 
day only—thus static, with no reference to 
drivers. 

Exposure and vulnerability assessed for the present 
day and future time periods, with the projections 
taking into account both biophysical and human 
drivers, drawing on community based assessments 
(Sections 4.3, 4.4.4.2). 

Levels of Risk Reflect current levels of risk, with no 
allowance for changes in climatic-, 
biophysical- or socio-economic conditions. 

Use risk scenarios reflecting the full suite of 
biophysical and socio-economic changes over the life 
of the planned investment project, including their 
interactions (Section 4.4.4.3). 

Response 
Options 

Interventions based entirely on reducing 
current levels of risk, with the primary focus 
on hard protection measures to reduce flood 
hazard. 

Consider locally appropriate, sequenced mix of hard, 
soft and ecosystem-based measures to reduce risks 
expected to occur over the lifetime of the investment 
(Sections 4.4.2, 4.4.4.3). 

Planning  
and  
Decision- 
Making 

Responses take a narrow ‘flood control’ 
approach aimed at ‘controlling’ single hazards, 
rather than managing the multiple and 
interacting risks in their broader contexts. 

Take into account vulnerability and equity 
implications, and use community-based approaches 
(Section 4.4.5). Responses reflect a risk-based, 
flexible design approach that addresses the tension 
between a fixed design standard on the one hand and, 
on the other hand, increasing flood risk over time due 
to further floodplain development, climate change 
leading to higher peak flows and inundation, and 
river channel bed aggradation.  

Governance and 
Institutional 
Dimensions 

Nadi Town Drainage Plan completed in 
August 2000. Aimed to address drainage 
problems and reduce flood damage. However, 
the Plan was developed without distinction 
between inland water and river water, without 
hydraulic analysis and verification, and 
without a scientific basis. Retention dams were 
constructed, but other initiatives in the plan 
have not seen substantive implementation. 

A comprehensive “Flood Management Strategy and 
Plan" for the Nadi River Basin would be one way to 
achieve the desired complementarity between hard, 
soft and accommodation measures. Strengthening of 
policies on water and land management, as well as 
addressing related legal and institutional issues, 
could be undertaken at the national, basin, local 
levels. Government, civil society, indigenous iTaukei 
Fijians, and the private sector, have valuable 
contributions to make in preparing an integrated 
approach to flood and coastal hazard risk reduction 
(Section 4.4.5). 

 
 
A Comparison of New York City and Shanghai Coastal Flood Adaptation Measures  
Hurricane Sandy (2012) and Typhoon Winnie (1997) are considered the largest recorded historical flood 
events for NYC and Shanghai, respectively (Xian et al., 2018). Hurricane Sandy killed 55 people in NYC 
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and neighboring states and caused over 19 billion USD losses to NYC (Rosenzweig and Solecki, 2014). 
Typhoon Winnie killed more than 310 people and caused damage exceeding 3.2 billion USD in China. Many 
dikes and floodwalls along coastal Shanghai and Zhejiang were breached by surge-driven floodwaters (Gu, 
2005). 
 
Past updates of the flood defenses in Shanghai occurred after extreme flood events (i.e., typhoons in 1962, 
1974, and 1981) (Xian et al., 2018). In contrast, the flood tide of Hurricane Sandy stands out in the record at 
the Battery tide gauge. Unlike the numerous episodes of severe inundation experienced by Shanghai, NYC 
suffered relatively moderate consequences from individual events before Hurricane Sandy. This and others 
factors led to higher-standard flood protection measures in Shanghai, such as sea walls designed to protect its 
coastlines and critical infrastructure in developed areas against a 200-year (0.005 annual chance) flood level, 
and flood walls with 1000-year (0.001 annual chance) riverine flood return level along the Huangpu River. 
New York City, on the other hand, has relatively low protection, consisting of sandy dunes (e.g., on Staten 
Island), vegetation (e.g., in Queens) and low-rise sea walls or bulkheads in lower Manhattan. Another reason 
why Shanghai has repeatedly updated its flood protection while New York City failed to do so lies in their 
differing governance structures (Wei and Leung, 2005; Yin et al., 2011; Rosenzweig and Solecki, 2014), as 
well as rapid economic growth in China, providing funding for large-scale infrastructure (Zhang, 2003). 
 
Since Hurricane Sandy in 2012, implementation of the ‘Big U’ project, a coastal protection system for lower 
Manhattan, has begun, and a variety of measures are planned, and some undertaken, to protect the subway 
system to a flood level of 4.3 m above street level (Jacob Balter, 2017; MTA, 2017). Newly built critical 
facilities will be located outside the flood zone and siting guidelines for publicly financed projects in the 
current and future flood zones have been tightened (NYC Mayor’s Office of Recovery and Resiliency, 
2019). The degree to which these protection projects will be completed and the guidelines enforced remains 
uncertain. Home buyouts have enabled some permanent relocation away from hazardous areas, but 
relocation impacts on social networks and place-based ties hamper long-term recovery (Binder et al., 2019; 
Buchanan et al., 2019). 
 
 
Box 4.1, Table 2: Current coastal flood risk management and adaptation practices in New York City and Shanghai and 
possible refinements using the new SLR and ESL projections of this report, as well as findings on adaptation options, 
decision-making approaches and governance (Practice Consistent with SROCC Assessment). See Xian et al. (2018) for 
background on current practice and practice consistent with SROCC assessment. See Box 4.1, Figure 1 for ESL event 
values. 

 Current Practice Practice Consistent with SROCC Assessment 
Hazards  Design storm tide: 4.6 m (200-yr ESL) 

Shanghai vs 2.1m (100-yr event) NYC;  
Subsidence + GIA ~5–7 mm yr–1 
Shanghai vs 1–1.5 mm yr–1 NYC 

Design storm tide in 2081–2100: 5.1/5.5 m 
(200-yr ESL) Shanghai vs 2.8/3.2 m (100-yr 
ESL) NYC (RCP2.6/8.5); Subsidence could 
significantly increase these values for 
Shanghai.  

 Exposure and 
Vulnerability 

Current exposure and vulnerability 
considers topographic elevation and 
human drivers. 

Exposure and vulnerability for current and 
future time periods would take into account 
projections that consider both biophysical and 
human drivers (Section 4.3.3). 

Levels of Risk Reflect current hazard plus various 
freeboard for NYC; 0.5+ m for 
Shanghai, with no consideration of 
changes to date in storm characteristics 
and socioeconomic factors. 

Use risk scenarios to reflect the full suite of 
climate change and socio-economic changes 
and their interdependency for the planned 
coastal projects (Section 4.4.4.3); use freeboard 
that accounts for ESL uncertainty, such as ESL 
with probability >5% during planning horizon. 

Response Options Protection measures: fixed-height sea 
wall for both NYC and Shanghai; for 
NYC: building retrofit, ecosystem-based 
measures such as dune enhancement. 
Accommodation measures for NYC: 
insurance, building codes. 

Consider locally appropriate, sequenced mix of 
hard protection, ecosystem-based adaptation, 
accommodation and retreat measures to 
minimize combined total costs; more flexible 
design that reflects the dynamic risk (Section 
4.4.2). 

Planning and 
Decision Making 

Funding and governance issues slow 
down long-term planning and 

Flexible adaptation responses to uncertain long-
term risk facilitate SLR planning and 
implementation (Section 4.4.4.3). Take into 
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implementation process, especially for 
NYC. 

account vulnerability and equity implications, 
and continuously involve stakeholders in 
locally appropriate ways. 

Governance and 
Institutional 
Dimensions 

Shanghai has relatively high autonomy 
in China context and alignment of 
central and local Governments’ 
objectives; NYC’s decision-making 
occurs in context of city-to-national 
multi-level governance.  
 

More effective coordination of planning, 
finance, and transparency among local, 
regional, and national government agencies, 
and between government, civil society, and the 
private sector, enables response to increasing 
risks (Section 4.4.5). 

 
 
Climate Change Adaptation in Nile Delta Regions of Egypt 
Coastal hazard for the Nile delta arises because large portions lie only +/-1.5 m above sea level (Shaltout et 
al., 2015) and while the Delta includes only 2% of Egypt’s total area, it held 41% of its population as of 2006 
(Hereher, 2010; World Bank, 2017) and is key to Egypt’s economy (Bucx et al., 2010). The delta is an 
important resource for Egypt’s fish farms (Hereher, 2009; El-Sayed, 2016) and contains more than 63% of 
Egypt’s cultivated lands (Hereher, 2010). The Nile Delta’s coastal lagoons are internationally renowned for 
abundant bird life, account for one fourth of Mediterranean wetlands and 60% of Egypt’s fish catch 
(Government of Egypt, 2016). Coastal flooding and salinization of freshwater lagoons would negatively 
affect fisheries and biodiversity (UNDP, 2017).  
 
The Nile Delta’s low elevation translates into high exposure to sea level rise (Shaltout et al., 2015), and the 
level of protection varies greatly from place to place (Frihy et al., 2010). Box 4.1, Figure 1 indicates that 
episodic flooding will increase substantially without effective adaptation measures. An estimated 2,660 km2 
in the northern delta will be inundated by 2100 for GMSL of 0.44 m (Gebremichael et al., 2018) (low 
confidence), which is comparable to the RCP2.6 emission scenario. In addition, subsidence due to sediment 
diversion by the Aswan High Dam, water and natural gas extraction (Gebremichael et al., 2018) and some 
other critical natural aspects (Frihy et al., 2010) heightens vulnerability to coastal flooding (Box 4.1, Table 3) 
and reduces fresh water supply to the Delta. Subsidence rates range from 0.4 mm yr–1 in the West Delta to 
1.1 mm yr–1 in the Mid Delta and 3.4 mm yr–1 in the East Delta (Elshinnawy et al., 2010), although rates as 
high as 10 mm yr–1 near natural gas extraction operations are also reported (Gebremichael et al., 2018). 
While there is low confidence in reported values, these indicate that subsidence makes locally a substantial 
contribution to RSL. Future construction of Ethiopia’s Grand Renaissance Dam (GERD) (Stanley and 
Clemente, 2017) may heighten problems of fresh water availability and reduce hydropower production.  
 
The low-lying northern coast and Nile Delta region are a high priority for adaptation to climate change 
(UNDP, 2017). The Egyptian government has committed $200 million to hard coastal protection at 
Alexandria and adopted integrated coastal zone management for the northern coast. Recent activities include 
integrating sea-level rise risks within adaptation planning for social-ecological systems, with special focus on 
coastal urban areas, agriculture, migration and other human security dimensions (Government of Egypt, 
2016; UNDP, 2017). 
 
 
Box 4.1, Table 3: Current coastal flood risk management and adaptation practices in the Nile Delta and possible 
refinements using the new SLR and ESL projections of this report, as well as findings on adaptation options, decision 
making approaches and governance (Practice Consistent with SROCC Assessment). See Elshinnawy et al. (2010) and 
text above for data sources for current practice. See Box 4.1, Figure 1 for ESL event values. 

 Current Practice Practice Consistent with SROCC Assessment 

Hazards 

Design storm tide unclear; 0.9m 
corresponds to current 100-yr ESL. 
Tide gauge trends: 1.6–5.3 mm yr–1 
Subsidence: 0.4–10 mm yr–1 

Design storm tide in 2081–2100: 1.4/1.7 m (100–
yr ESL) (RCP2.6/8.5); Subsidence: 0.4–10 mm 
yr–1  

Exposure and 
Vulnerability 

High coastal flood risk, especially 
affecting coastal cities, fisheries, farming 
and ecosystems (UNDP, 2017). 
Frameworks under development to assess 
future risk.  

Full assessment of current and future exposure 
and vulnerability scenarios to account for 
interactions of changing demographic, industrial, 
and ecological characteristics of the Delta, 
especially with respect to agricultural land, 
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fisheries, and coastal cities (UNDP, 2017) 
(Section 4.3). 

Levels of Risk 

Risk is high and has increased due to 
regional sea level rise and subsidence. 
(UNDP, 2017). Highly variable 
protection against current risk. 

Use plausible risk scenarios, including regional 
sea level trends and possibly subsidence that 
could lead to higher flood levels (UNDP, 2017) 
for potentially exposed and vulnerable 
communities.  
 

Response Options 

Unconnected and small incremental steps 
toward increasing management capability 
in Egypt to confront coastal flood risks 
associated with sea-level rise, including 
enhancing planning paradigms, 
interventions that account for climate 
change threats, community-based 
measures, and adaptation and improving 
resilience (UNDP, 2017). 

Consideration and deployment of a sequenced 
mix of tailor-made options, including hard 
protection, ecosystem-based measures, advance, 
and retreat. Comprehensive monitoring and 
evaluation of effectiveness of measures. Timing 
of suitable options a key aspect (Section 4.4.4.3). 

Planning and 
Decision Making 

“One of the most prominent obstacles to 
integrated coastal zone management in 
Egypt is the complex and sometimes 
unclear institutional framework for 
addressing development activities; the 
limited and often ad-hoc approach 
between different agencies” (UNDP, 
2017). 

An adaptation based coastal planning approach 
able to manage the range of climatic risks on 
both natural and built environments that will 
cover both hard protection (Ghoneim et al., 
2015) and accommodation and ecosystem-based 
measures (UNDP, 2017), involving potentially 
transformational approaches that take dynamic 
long term risk into account (UNDP, 2017) 
(Sections 4.4.2, 4.4.4). 

Governance and 
Institutional 
Dimensions 

Some recent projects and proposals aim 
to “integrate the management of SLR 
risks into the development of Egypt’s 
LECZ in the Nile Delta” (UNDP, 2017). 

Mainstream long-term sea level rise risk into all 
elements of decision making that directly or 
indirectly affect the Nile Delta (4.4.5). 
Strengthen coordination of SLR-relevant 
provisions across scales, sectors and policy 
domains, including arrangements to involve 
government, civil society, science and the private 
sector (Section 4.4.5). 

 
 
[END BOX 4.1 HERE]  
 
 
4.3 Exposure, Vulnerability, Impacts and Risk Related to Sea Level Rise 
 
4.3.1 Introduction  
 
Section 4.2 demonstrates that sea level is rising and accelerating over time, and that it will continue to rise 
throughout the 21st century and for centuries beyond. It also shows that extreme sea level events that are 
historically rare, will become common by 2100 under all emission scenarios, leading to severe flooding in 
the absence of ambitious adaptation efforts (high confidence). In both RCP2.6 and RCP8.5 emission 
scenarios, many low-lying coastal areas at all latitudes will experience such events annually by 2050. In this 
context, Section 4.3 updates knowledge on the recent methodological advances in exposure and vulnerability 
assessments (Box 4.2), dimensions of exposure and vulnerability (Section 4.3.2) and observed and projected 
impacts (Section 4.3.3). It concludes with a synthesis on future risks to illustrative low-lying coastal 
geographies (megacities, urban atoll island, large tropical agricultural deltas, Arctic communities), and 
according to various adaptation scenarios (Section 4.3.4).  
 
 
[START BOX 4.2 HERE]  
 
Box 4.2: Methodological Advances in Exposure and Vulnerability Assessments  
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This box highlights recent advances in methodologies in assessing exposure and vulnerability to sea level 
rise and its physical impacts, such as coastal flooding since AR5. In few cases it also leverages on 
methodological advances, which have not been yet applied in the coastal context but bear great potential to 
inform coastal assessments. 
 
Improved spatial-temporal exposure assessments 
Exposure assessment is frequently based on census data, which is available at coarse resolutions. However, 
new technologies (e.g., drones, mobile phone data) and more available satellite products provide new tools 
for exposure analysis. Exposure assessment is increasingly based on the combination of high resolution 
satellite imagery and spatio-temporal population modelling as well as improved quality of digital elevation 
models (DEM) (Kulp and Strauss, 2017). This is used to understand better exposure to coastal flooding 
(Kulp and Strauss, 2017), diurnal differences in flood risk exposure (Smith et al., 2016), dynamic gridded 
population information for daily and seasonal differences in exposure (Renner et al., 2017), a combination of 
remotely-sensed and geospatial data with modelling for a gridded prediction of population density at ~100 m 
spatial resolution (Stevens et al., 2015), or open building data using building locations, footprint areas and 
heights (Figueiredo and Martina, 2016). In addition, methods based on mobile phone data (Deville et al., 
2014; Ahas et al., 2015), and social media-based participation are increasingly available for population 
distribution mapping (Steiger et al., 2015). Some of these methodologies have been already applied in 
coastal assessments (Smith et al., 2016). Integrating daily and seasonal changes with the distribution of 
population improves population exposure information for risk assessments especially in areas with highly 
dynamic population distributions, as shown in high tourism areas in mountain region (e.g., Renner et al., 
2017), which would have advantages at touristic coastal areas as well. 
  
Projections of future exposure 
Recent studies assess exposure considering not only projected sea levels but also expected changes in 
population size (Jongman et al., 2012; Hauer et al., 2016). It involves different socio-economic scenarios 
together with changing growth rates for coastal areas and the hinterland (Neumann et al., 2015) and using 
spatially explicit simulation models for urban, residential, and rural areas (Sleeter et al., 2017). Migration-
based changes in population distribution (Merkens et al., 2016; Hauer, 2017) are also considered, as well as 
simulated future land use (specifically urban growth) to investigate future exposure to sea level rise (Song et 
al., 2017). Other studies assess future exposure trends by accounting for the role of varying patterns of 
topography and development projections leading to different rates of anticipated future exposure (Kulp and 
Strauss, 2017), which influence how effectively coastal communities can adapt. Recent studies aim to 
account for the socio-demographic characteristics of potentially exposed future populations (Shepherd and 
Binita, 2015), and anticipate future risk by projecting the evolution of the exposure of vulnerable populations 
groups (Hardy and Hauer, 2018). Using social heterogeneity modelling when developing future exposure 
scenarios enhances the quality of risk assessments in coastal areas (Rao et al., 2017; Hardy and Hauer, 
2018). Subnational population dynamics combined with an extended coastal narrative-based version of the 
five shared socioeconomic pathways (SSP) for global coastal population distribution was used for assessing 
global climate impacts at the coast, highlighting regions where high coastal population growth is expected 
and which therefore face increased exposure to coastal flooding (Merkens et al., 2016). SSPs have been also 
used to estimate future population in regional coastal-hazard risk exposure studies (Vousdoukas et al., 
2018b). 
 
Advances in vulnerability assessment 
Since the IPCC SREX report, vulnerability has been more consistently considered in climate risk 
assessments (medium confidence). It is recognised that climate risk is not only hazard-driven, but also a 
socio-political and economic phenomenon that evolves with changing societal and institutional conditions 
(high confidence). Many studies related to climate risk and adaptation include vulnerability assessments, 
most of them considering vulnerability as a pre-existing condition while some interpret vulnerability as an 
outcome (Jurgilevich et al., 2017).  
  
Increasing importance of dynamic assessments 
The dynamic nature of vulnerability, and the need to align climate forecasts with socio-economic scenarios, 
was a key message of IPCC SREX. Challenges in methodology and data availability, particularly of future 
socio-economic data is overcome by extrapolating empirical information of past trends in vulnerability to 
flooding (Jongman et al., 2015; Mechler and Bouwer, 2015; Kreibich et al., 2017), downscaling global 
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scenarios, for example, the shared socioeconomic pathways (SSPs) (Van Ruijven et al., 2014; Viguié et al., 
2014; Absar and Preston, 2015), or by using participatory methods, surveys and interviews to develop future 
scenarios (Ordóñez and Duinker, 2015; Tellman et al., 2016). The uncertainty of the downscaled projections 
needs to be considered along with the limitation that, even if population data projections are available, the 
future level of education, poverty, etc. is hard to predict (Jurgilevich et al., 2017). Suggestions to overcome 
these shortcomings entail the use of a combination of different data sources for triangulation and inclusion of 
uncertainties (Hewitson et al., 2014), or the meaningful involvement of stakeholders to project plausible 
future socioeconomic conditions through co-production (Jurgilevich et al., 2017). Recent innovations in 
(flood) risk assessment include the integration of behavioure into risk assessments (Aerts et al., 2018b) as 
well as vulnerabilities related to cascading events (Serre and Heinzlef, 2018).  
  
Social-ecological vulnerability assessments 
Especially in rural, natural resource-dependent settings, where the population directly rely on the services 
provided by ecosystems, the vulnerability of the ecosystems (e.g., fragmented, degraded ecosystems with 
low biodiversity) directly influence that of the population. Since AR5, several methods have been developed 
and piloted to assess and map social-ecological vulnerability. Examples include the use of i) the sustainable 
livelihood approach and resource dependence metrics for Australian coastal communities (Metcalf et al., 
2015), ii) integration of local climate forecasts for coral reef fisheries in Papua New Guinea (Maina et al., 
2016), iii) ecosystem supply-demand model for an integrated vulnerability assessment in Rostock, Germany 
(Beichler, 2015), iv) participatory indicator development for multiple hazards in river deltas (Hagenlocher et 
al., 2018), and v) human-nature dependencies and ecosystem services for small-scale fisheries in French 
Polynesia (Thiault et al., 2018). Areas, where social vulnerability prevail may be, but are not necessarily 
associated with hotspots of ecosystem vulnerability, highlighting the need to specifically adapt management 
interventions to local social-ecological settings and to adaptation goals (Hagenlocher et al., 2018; Thiault et 
al., 2018). The number of assessments considering both the social and the ecological part of the system are 
increasingly used (Sebesvari et al., 2016). 
  
Assessment of vulnerability to multiple hazards simultaneously 
Increasingly, multi-hazard risk assessments are undertaken at the coast (e.g., flooding and inundation of 
coastal lands in India; Kunte et al., 2014), to understand the inter-relationships between hazards (e.g., Gill 
and Malamud, 2014), and by focusing on hazard interactions where one hazard triggers another or increases 
the probability of others occurring. Liu et al. (2016a) provide a systematic hazard interaction classification 
based on the geophysical environment that allows for the consideration of all possible interactions 
(independent, mutex, parallel, series) between different hazards, and for the calculation of the probability and 
magnitude of multiple interacting natural hazards occurring together. Advances have been reported since 
AR5 by using, for example, modular sets of vulnerability indicators, flexibly adapting to the hazard situation 
(Hagenlocher et al., 2018). 
  
Using vulnerability functions, thresholds, innovative ways of aggregation in indicator-based assessment, 
improved data sources 
The use of vulnerability functions has been shown to be helpful in assessing the damage response of 
buildings to tsunamis (Tarbotton et al., 2015), to coastal surge and wave hazards (Hatzikyriakou and Lin, 
2017) and accounting for non-linear relationships between mortality and temperature above a ‘comfort 
temperature’ (El-Zein and Tonmoy, 2017). Acknowledging the non-compensatory nature of different 
vulnerability indicators (e.g., proximity to the sea cannot always be fully compensated by being wealthy), the 
concepts of preference, indifference and dominance thresholds have been applied as a form of data 
aggregation (Tonmoy and El-Zein, 2018). Similar to advances in exposure assessments, freely available data 
and mobile technologies hold promise for enabling better input data for vulnerability assessments. Examples 
include using a combination of mobile phone and satellite data to determine and monitor vulnerability 
indicators such as poverty (Steele et al., 2017), and using data on subnational dependency ratios and high 
resolution gridded age/sex group datasets (Pezzulo et al., 2017).  
 
[END BOX 4.2 HERE] 
 
 
4.3.2 Dimensions of Exposure and Vulnerability to Sea Level Rise 
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4.3.2.1 Environmental Dimension of Exposure and Vulnerability 
 
Exposure of coastal natural ecosystems to RSL and related coastal hazards change by two means: alterations 
in the spatial coverage and distribution of ecosystems within the potentially exposed area; and changes in the 
size of the exposed area caused by relative sea level rise. The vulnerability of coastal ecosystems to sea level 
rise and related coastal hazards differs strongly across ecosystem types and depends on human interventions 
(e.g., land use change and fragmentation, coastal squeeze, anthropogenic subsidence) and degradation (e.g., 
pollution), as well as climate change, including changes in temperature and precipitation patterns. Sea level 
rise and its physical impacts, such as flooding or salinization, also increase ecosystems’ vulnerability and 
decrease the ecosystems’ ability to support livelihoods and provide ecosystem services such as coastal 
protection. Healthy, diverse, connected coastal ecosystems support local adaptation to sea level rise and its 
consequences (high evidence). This section explores new knowledge since AR5 regarding changes in 
ecosystem’s exposure and vulnerability as well as processes affecting the ability of ecosystems to adapt to 
SLR, and associated impacts, such as flooding or salinization on coastal social-ecological systems and coast-
dependent livelihoods. 
 
Changes in the exposure of coastal ecosystems 
The effects of coastal habitat loss on ecosystem exposure are well documented (Lavery et al., 2013; Serrano 
et al., 2014; Short et al., 2014; Yaakub et al., 2014; Cullen-Unsworth and Unsworth, 2016; Breininger et al., 
2017), and depend on the type of ecosystem, its conservation status, and interactions with SLR and human 
interventions such as coastal squeeze, which prevents inland migration (Kirwan and Megonigal, 2013; Schile 
et al., 2014; Hopper and Meixler, 2016). For instance, coastal habitat loss due to human growth and 
encroachment due to development, and human structures that restrict tides and, thus, interrupt mass flow 
processes (water, nutrients, sediments) impact tidal ecosystems depending on the type of restriction, its 
severity and the geomorphology of the system (Burdick and Roman, 2012). Coastal dunes, for example, 
although threatened, are well maintained by protected areas in some localities, like Italy, but climate change 
could cause a drastic drop in their protection (Prisco et al., 2013). In addition, seagrass and other benthic 
ecosystems, for example, are declining across their range at unprecedented rates (Telesca et al., 2015; 
Unsworth et al., 2015; Samper-Villarreal et al., 2016; Balestri et al., 2017), due to degrading water quality 
(i.e., increased nutrient and sediment or DOC loads) from upland-based activities, which include 
deforestation, agriculture, aquaculture, fishing, and urbanization, port development, channel deepening, 
dredging and anchoring of boats (Saunders et al., 2013; Ray et al., 2014; Deudero et al., 2015; Abrams et al., 
2016; Benham et al., 2016; Mayer-Pinto et al., 2016; Thorhaug et al., 2017). The exact magnitude of area 
loss is still uncertain, especially at smaller scales (Yaakub et al., 2014; Telesca et al., 2015) and the 
implications of habitat shifts for ecosystem attributes and processes, and the services they deliver, remain 
poorly understood (Ray et al., 2014; Tuya et al., 2014).  
 
Changes in the vulnerability of coastal ecosystems 
Global and local-scale processes influence the stability of coastal ecosystems and can interact to restrict 
ecosystem responses to SLR, and thus increase their vulnerability. At the global scale, changes in 
precipitation and air temperature represent a potentially significant risk that increases the vulnerability of 
ecosystems to sea-level rise and related hazards (Garner et al., 2015; Osland et al., 2017). Maximum 
temperature and mean precipitation change over the last 100 years are main drivers of global ecosystem 
instability (Mantyka-Pringle et al., 2013), with marked regional and local variations. In addition, seawater 
warming may affect marine communities and ecosystems but research remains sparse and results are 
contradictory (Crespo et al., 2017; Hernán et al., 2017). The synergistic effects between climate change and 
habitat loss due to human impact and urban development are increasingly well-documented but the effects 
are still not well-known at larger spatial and temporal scales (Kaniewski et al., 2014; Sherwood and 
Greening, 2014). Although evidence is limited, recurrent disturbances may lead to losses in ecosystem 
adaptive capacity (Villnäs et al., 2013).  
  
At smaller scales, conversion of coastal areas to urban, agricultural, and industrial uses exacerbates pressure 
on ecosystems, increases their vulnerability to natural hazards, including sea-level rise, and decreases their 
ability to support coastal livelihoods, and deliver ecosystem services, such as coastal protection, fisheries, 
wildlife habitat, recreational use, and tourism (high confidence) (Foster et al., 2017). The vulnerability of 
exposed ecosystems is highly variable, as shown in intertidal rocky reef habitats in Australia (high 
confidence) (Thorner et al., 2014). Even without SLR, the transition zone between two coastal ecosystems 
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and adjacent uplands responds dynamically and rapidly to inter-annual changes in inundation, with local 
factors, such as management of water control structures, outweighing regional ones (Wasson et al., 2013). 
The resulting interaction of these variables and dynamics with fragmentation, land use planning and 
management (Richards and Friess, 2017) has only recently been investigated. 
  
Research to date has focused on identifying synergisms among stressors (Campbell and Fourqurean, 2014; 
Lefcheck et al., 2017; Moftakhari et al., 2017; Noto and Shurin, 2017), but antagonisms and other feedbacks 
may be just as common (Brown et al., 2013; Conlisk et al., 2013; Maxwell et al., 2015; Crotty et al., 2017), 
and are seldom investigated, as is also true for thresholds and tipping points in coastal ecosystem stability 
and vulnerability (Connell et al., 2017; O'Meara et al., 2017; Wu et al., 2017). This precludes complete 
understanding of their complex responses, which may be greater than additive responses alone (Crotty et al., 
2017), their adequate management, or restoration regimes (Maxwell et al., 2015; Unsworth et al., 2015). 
Furthermore, although local management efforts cannot prevent severe climate change impacts on 
ecosystems, they can attempt to slow down adverse impacts, and allow the degree of evolutionary adaptation 
that is feasible given the trajectory of global GHG emission reductions (Brown et al., 2013).  
 
In contrast, ecosystems with strong physical influences controlling elevation (sediment accretion and 
subsidence), even where mangrove replacement of salt marsh is expected, do not show changes in their 
vulnerability to SLR (McKee and Vervaeke, 2018), suggesting strong resilience of some coastal ecosystems. 
In areas such as South Florida, the wider Caribbean and the India-Pacific mangrove region (Lovelock et al., 
2015), however, mangroves cannot outpace current SLR rates, and are at risk of disappearing. These regional 
and local effects are highly variable (even contradictory between studies; e.g., Smoak et al., 2013; Koch et 
al., 2015) and are related to local conditions shaping vulnerability such as topography and controls over 
salinity from freshwater and inputs (Flower et al., 2017), but further research on the mass and surface energy 
balance is needed (Barr et al., 2013). In addition, the responses and behavior of private landowners, who 
could impede landward migration of ecosystems, is incipient, but needs to be taken into account in assessing 
the ability of coastal ecosystems to respond to climate change (Field et al., 2017). Overall, the long-term 
resilience of some coastal vegetation communities, and their ability to respond to rapid changes in sea level, 
is not well developed (Foster et al., 2017). 
  
In summary, coastal ecosystems’ with responses to sea level rise around the globe are complex and variable, 
with many specific responses at the ecosystem level or from keystone (foundation) species remaining poorly 
understood (Thompson et al., 2015). Moreover, responses are studied independently when holistic 
approaches may be required to understand how multiple threats affect ecosystem components, structure and 
functions (Giakoumi et al., 2015), and how human behaviour enables or constrains ecosystem responses to 
climate change (Field et al., 2017). In addition to the intrinsic coastal ecosystem values at stake, increasing 
exposure and vulnerability of these ecosystems contributes to increasing human exposure and vulnerability 
to sea level rise (medium evidence, high agreement) (Arkema et al., 2013). 
 
4.3.2.1.1 Point of departure on the human dimensions  
The 2012 SREX acknowledged that patterns of human development create and compound exposure and 
vulnerability to climate-related hazards, including SLR (high confidence). The recent IPBES report also 
discusses the role of anthropogenic drivers in biodiversity loss (Díaz et al., 2019). Climate change-focussed 
studies have progressively moved from the analysis of various parameters’ influence taken individually 
(education, poverty, etc.) to a more systemic approach that describes combinations of parameters, e.g., 
coastal urbanization and settlement patterns (see Section 4.3.2.2) resulting from urban-rural discrepancies 
and trends in socio-political and economic inequalities. The AR5 also started differentiating between 
contemporary and historically-rooted drivers (e.g., trends in social systems over recent decades; Marino, 
2012; Duvat et al., 2017; Fawcett et al., 2017), and reported some progress in the development of context-
specific studies, especially on coastal megacities, major deltas and small islands (Cross-Chapter Box 9, Box 
4.1).  
 
AR5 also concluded with very high confidence that both RSL rise and related impacts are influenced by a 
variety of local social and/or environmental processes unrelated to climate (e.g., anthropogenic subsidence, 
glacial isostatic adjustment, sediment supply, coastal squeeze). Some of these processes are partly 
attributable as anthropogenic drivers, and although they may or may not be directly related to RSL rise, they 
do cause changes in coastal ecosystem habitat connectivity and ecosystem health conditions, for instance, 
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and consequently influence the ability of coastal social-ecological systems as a whole to cope with and adapt 
to SLR and its impacts.  
 
However, the scientific literature still barely deals with the exposure and vulnerability of social-ecological 
systems to SLR specifically. Papers predominantly analyse the immediate and delayed consequences of 
extreme events such as tropical cyclones, storms and distant swells (see Section 6.3.3), for instance, and the 
resulting exposure and vulnerability ‘in the context of SLR’ (Woodruff et al., 2013). One reason for this 
touches on the difficulty for society to fully comprehend and for science to fully analyse long-term gradual 
changes like SLR (Fincher et al., 2014; Oppenheimer and Alley, 2016; Elrick-Barr et al., 2017). 
Consequently, Sections 4.3.2.2 to 4.3.2.5 concentrate on highlighting the anthropogenic or systemic drivers 
that have the potential to influence exposure and vulnerability to slow-onset sea level-related hazards. 
 
4.3.2.2 Settlement Trends  
 
Major changes in coastal settlement patterns have occurred in the course of the 20th century, and are 
continuing to take place due to various complex interacting processes (Moser et al., 2012; Bennett et al., 
2016) that together configure and concentrate exposure and vulnerability to climate change and SLR along 
the coast (Newton et al., 2012; Bennett et al., 2016). These processes include population growth and 
demographic changes (Smith, 2011; Neumann et al., 2015), urbanization and a rural exodus, tourism 
development, and displacement or (re)settlement of some indigenous communities (Ford et al., 2015). This 
has resulted in a growing number of people living in the Low Elevation Coastal Zones (LECZ, coastal areas 
below 10 m of elevation; around 11% of the world's population in 2010) (Neumann et al., 2015; Jones and 
O’Neill, 2016; Merkens et al., 2016) and in significant infrastructure and assets being located in risk-prone 
areas (high confidence). High density coastal urban development is commonplace in both developed and 
developing countries, as documented in recent case studies, for example in Canada (Fawcett et al., 2017), 
China (Yin et al., 2015; Lilai et al., 2016; Yan et al., 2016), Fiji (Hay, 2017), France (Genovese and 
Przyluski, 2013; Chadenas et al., 2014; Magnan and Duvat, 2018), Israël (Felsenstein and Lichter, 2014), 
Kiribati (Storey and Hunter, 2010; Duvat et al., 2013), New Zealand (Hart, 2011) and the USA (Heberger, 
2012; Grifman et al., 2013; Liu et al., 2016b). This has implications for levels of SLR risk at regional and 
local scales (medium evidence, high agreement). In Latin America and the Caribbean regions, for example, it 
is estimated that 6–8% of the population live in areas that are at high or very high risk of being affected by 
coastal hazards (Reguero et al., 2015; Calil et al., 2017; Villamizar et al., 2017), with higher percentages in 
Caribbean islands (Mycoo, 2018). In the Pacific, ~57% of Pacific Island countries’ built infrastructure are 
located in risk-prone coastal areas (Kumar and Taylor, 2015). In Kiribati, due to the flow of outer, rural 
populations to limited, low-elevated capital islands, together with constraints inherent in the socio-cultural 
land tenure system, the built area located <20 m from the shoreline quadrupled between 1969 and 2007–
2008 (Duvat et al., 2013). Other examples of rural exodus are reported in the recent literature, for example in 
the Maldives (Speelman et al., 2017).  
 
Population densification also affects rural areas’ exposure and vulnerability, and interacts with other factors 
shaping settlement patterns, such as the fact that ‘indigenous peoples in multiple geographical contexts have 
been pushed into marginalized territories that are more sensitive to climate impacts, in turn limiting their 
access to food, cultural resources, traditional livelihoods and place-based knowledge (…) [and therefore 
undermining] aspects of social-cultural resilience’ (Ford et al., 2016b, p. 350). In the Pacific, for example, 
‘while traditional settlements on high islands (…) were often located inland, the move to coastal locations 
was encouraged by colonial and religious authorities and more recently through the development of tourism’ 
(Ballu et al., 2011; Nurse et al., 2014, p. 1623; Duvat et al., 2017). Although these population movements are 
orders of magnitude smaller than the global trends described above, they play a critical role at the very local 
scale in explaining the emergence of, or changes in exposure and vulnerability. In atoll contexts, for 
example, the growing pressure on freshwater resources together with a loss in local knowledge (e.g., how to 
collect water from palm trees), result in increased exposure of communities to brackish, polluted 
groundwater, inducing water insecurity and health problems (Storey and Hunter, 2010; Lazrus, 2015).  
 
4.3.2.3 Terrestrial Processes Shaping Coastal Exposure and Vulnerability 
 
Coastal areas, including deltas, are highly dynamic as they are affected by natural and/or human-induced 
processes locally or originating from both the land and the sea. Changes within the catchment can therefore 
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have severe consequences for coastal areas in terms of sediment supply, pollution, and/or land subsidence. 
Sediment supply reaching the coast is a critical factor for delta sustainability (Tessler et al., 2018) and has 
declined drastically in the last few decades due to dam construction, land use changes and sand mining 
(Ouillon, 2018; high confidence, high agreement). For instance, Anthony et al. (2015) reported large-scale 
erosion affecting over 50% of the delta shoreline in the Mekong delta between 2003 and 2012, which was 
attributed in part to a reduction in surface-suspended sediments in the Mekong river potentially linked to 
dam construction within the river basin, sand mining in the river channels, and land subsidence linked to 
groundwater over-abstraction locally. Schmitt et al. (2017) demonstrated that these and other drivers in 
sediment budget changes can have severe effects on the very physical existence of the Mekong delta by the 
end of this century, with the most important single driver leading to inundation of large portions of the delta 
being ground-water pumping induced land subsidence. Thi Ha et al. (2018) estimated the decline in sediment 
supply to the Mekong delta to be around 75% between the 1970s and the period 2009–2016. In the Red 
River, the construction of the Hoa Binh Dam in the 1980s led to a 65% drop in sediment supply to the sea 
(Vinh et al., 2014). Based on projections of historical and 21st century sediment delivery to the Ganges-
Brahmaputra-Meghna, Mahanadi, and Volta deltas, Dunn et al. (2018) showed that these deltas fall short in 
sediment and may not be able to maintain their current elevation relative to sea level, suggesting increasing 
salinization, erosion, flood hazards, and adaptation demands.  
 
Another rarely considered factor is the shift in tropical cyclone climatology which also plays a critical role in 
explaining changes in fluvial suspended sediment loads to deltas as demonstrated by Darby et al. (2016), 
again for the Mekong delta. More generally, most conventional engineering strategies that are commonly 
employed to reduce flood risk (including levees, sea-walls, and dams) disrupt a delta’s natural mechanisms 
for building land. These approaches are rather short-term solutions which overall reduce the long-term 
resilience of deltas (Tessler et al., 2015; Welch et al., 2017). Systems particularly prone to flood risk due to 
anthropogenic activities include North America’s Mississippi River delta, Europe’s Rhine River delta, and 
deltas in East Asia (Renaud et al., 2013; Day et al., 2016). In regions where suspended sediments are still 
available in relatively large quantities, rates of sedimentation can vary depending on multiple factors, 
including the type of infrastructure present locally, as was shown by Rogers and Overeem (2017) for the 
Ganges-Brahmaputra-Meghna (Bengal) Delta in Bangladesh as well as seasonal differences in sediment 
supply and place of deposition. For example, in meso-tidal and macro-tidal estuaries, during floods most of 
the sediments are depositing in the coastal zones and a large part of these sediments are brought back to the 
estuary during the low flow season by tidal pumping. This can lead to significantly higher deposition rates in 
the dry season as shown by Lefebvre et al. (2012) in the lower Red River estuary and by Gugliotta et al. 
(2018) in the Mekong delta. Enhanced sedimentation further upstream in estuaries and a silting-up of 
estuarine navigation channels can have high economic consequences for cities with a large estuarine harbour. 
In Haiphong city, in North Vietnam, the authorities decided to build a new harbour further downstream, for a 
cost estimated at 2 billion USD (Duy Vinh et al., 2018). 
 
Overall, reduced freshwater and sediment inputs from the river basins are critical factors determining delta 
sustainability (Renaud et al., 2013; Day et al., 2016). In some contexts, this can be addressed through basin-
scale management which allow more natural flows of water and sediments through the system, including 
methods for long-term flood mitigation such as improved river-floodplain connectivity, the controlled 
redirection of a river (i.e., avulsions) during times of elevated sediment loads, the removal of levees, and the 
redirection of future development to lands less prone to extreme flooding (Renaud et al., 2013; Day et al., 
2016; Brakenridge et al., 2017). These actions could potentially increase the persistence of coastal landforms 
in the context of sea level rise. Next to decreasing sediment inputs to the coast, river bed and beach sand 
mining has been shown to contribute to shoreline erosion, for example, for shorelines of Crete (Foteinis and 
Synolakis, 2015), and several sub-Saharan countries such Kenya, Madagascar, Mozambique, South Africa, 
and Tanzania (UNEP, 2015). At the global scale, 24% of the world’s sandy beaches are eroding at rates 
exceeding 0.5 m yr–1, while 28% are accreting for the period 1984–2016. The largest and longest eroding 
sandy coastal stretches are in North-America (Texas; Luijendijk et al., 2018). 
 
Shoreline erosion leads to coastal squeeze if the eroding coastline approaches fixed and hard built or natural 
structures as noted in AR5 (Pontee, 2013; Wong et al., 2014), a process to which sea level rise also 
contributes (Doody, 2013; Pontee, 2013). The AR5 further noted that coastal squeeze is expected to 
accelerate due to rising sea levels (Wong et al., 2014). Doody (2013) characterized coastal squeeze as coastal 
habitats being pushed landward through the effects of sea level rise and other coastal processes on the one 
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hand and, on the other hand, the presence of static natural or artificial barriers effectively blocking this 
migration, thereby squeezing habitats into an ever narrowing space. There are distinctions being made 
between coastal squeeze being limited to (1) the consequences of sea level rise vs. other environmental 
changes on the coastline and (2) the presence of only coastal defence structures vs. natural sloping land or 
other artificial infrastructure (Pontee, 2013). Recent publications have emphasised coastal squeeze related to 
sea level rise, although inland infrastructure blocking habitat migration is not necessarily limited to defence 
structures (Torio and Chmura, 2015; McDougall, 2017). Coastal ecosystem degradation by human activities 
leading to coastal erosion is also an important consideration (McDougall, 2017). Taking into consideration 
the current challenges to attribute coastal impacts to sea level rise (Section 4.3.3.1), it can be hypothesized 
here that as long as SLR impacts remain moderate, the dominant driving factor of coastal squeeze will be 
anthropogenic land-based development (e.g., Section 4.3.2.2). With higher SLR scenarios and in case of no 
further development at the coast, SLR may become the dominant driver before the end of this century. 
 
Preserved coastal habitats can play important roles in reducing risks related to some coastal hazards and 
initiatives are being put in place to reduce coastal squeeze, such as managed realignment (Sections 4.1, 
4.4.3.1) which includes removing inland barriers (Doody, 2013). Coastal squeeze can lead to degradation of 
coastal ecosystems and species (Martínez et al., 2014), but if inland migration is unencumbered, observation 
data and modelling have shown that net area of coastal ecosystems could increase under various scenarios of 
sea level rise, depending on ecosystems considered (Torio and Chmura, 2015; Kirwan et al., 2016; Mills et 
al., 2016). However, recent modelling research has shown that rapid sea level rise in a context of coastal 
squeeze could be detrimental to the areal extent and functionality of coastal ecosystems (Mills et al., 2016) 
and, for marshes, could lead to a reduction of habitat complexity and loss of connectivity, thus affecting both 
aquatic and terrestrial organisms (Torio and Chmura, 2015). Contraction of marsh extent is also identified by 
Kirwan et al. (2016) when artificial barriers to landward migration are in place. Adaptation to sea level rise 
therefore needs to account for both development and conservation objectives so that trade-offs between 
protection and realignment that satisfy both objectives can be identified (Mills et al., 2016). 
 
In summary, catchment-scale changes have very direct impacts on the coastline, particularly in terms of 
water and sediment budgets (high confidence). The changes can be rapid and modify coastlines over short 
periods of time, outpacing the effects of SLR and leading to increased exposure and vulnerability of social-
ecological systems (high confidence). Without losing sight of this fact, management of catchment-level 
processes contribute to limit rapid increases in exposure and vulnerability. Further to hinterland influences, 
coastal squeeze increases coastal exposure as well as vulnerability by the loss of a buffer zone between the 
sea and infrastructure behind the habitat undergoing coastal squeeze. The clear implication is that coastal 
ecosystems progressively lose their ability to provide regulating services with respect to coastal hazards, 
including as a defence against sea level rise driven inundation and salinization (high confidence). 
Vulnerability is also increased if freshwater resources become salinized, particularly if these resources are 
already scarce. The exposure and vulnerability of human communities is exacerbated by the loss of other 
provisioning, supporting and cultural services generated by coastal ecosystems, which is especially 
problematic for coast-dependent communities (high confidence).  
 
4.3.2.4 Other Human Dimensions  
 
The development of local scale case studies from a social science perspective, for example, in the Arctic 
(Ford et al., 2012; Ford et al., 2014), small islands (Petzold, 2016; Duvat et al., 2017) and within cities 
(Rosenzweig and Solecki, 2014; Paterson et al., 2017; Texier-Teixeira and Edelblutte, 2017) or at the 
household level (Koerth et al., 2014) support a better understanding of the anthropogenic drivers of exposure 
and vulnerability. Four examples of drivers that were only emerging at the time of the AR5 are discussed 
below. Very importantly, another major emerging dimension that is not discussed here but rather in Section 
4.4.4, relates to power asymmetries, politics, and the prevailing political economy, are important drivers of 
exposure and vulnerability to SLR-related coastal hazards, and consequently adaptation prospects (Eriksen et 
al., 2015; Dolšak and Prakash, 2018). Recent literature provides examples in coastal megacities like Jakarta, 
Indonesia (Shatkin, 2019) as well as in smaller cities, like Maputo, Mozambique (Broto et al., 2015) and 
Surat, India (Chu, 2016a; Chu, 2016b), and many other coastal cities and settlements around the world (high 
confidence) (Jones et al., 2015; Allen et al., 2018; Hughes et al., 2018; Sovacool, 2018). 
 



FINAL DRAFT Chapter 4 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 4-70 Total pages: 169 

4.3.2.4.1 Gender inequality  
Gender inequality came to prominence only recently in climate change studies (~15 years ago; see Pearse, 
2017). In light of sea-related hazards and SLR specifically, the issue is still mainly investigated in the 
context of developing countries, although growing attention is paid to the issue in developed countries (e.g., 
Lee et al., 2015; Pearse, 2017). Recent studies in southern coastal Bangladesh, for example, show that 
women get less access than men to climate- and disaster-related information (both emergency information 
and training programmes), to decision-making processes at the household and community levels, to 
economic resources including financial means such as micro-credit, to land ownership, and to mobility 
within and outside the villages (Rahman, 2013; Alam and Rahman, 2014; Garai, 2016). Gender inequity may 
be inherent in unfavourable background conditions (higher illiteracy rates, deficiencies in food and calories 
intake, and poorer health conditions) as a result of, among other things, traditions, social norms and 
patriarchy. Together, these barriers disadvantage women more than men in developing effective responses to 
anticipate gradual environmental changes such as persistent coastal erosion, flooding and soil salinization 
(medium evidence, high agreement). Such conclusions are in line with the literature on gender inequality and 
climate change at large (Alston, 2013; Pearse, 2017), thus suggesting no major SLR-inherent specificities. 
 
4.3.2.4.2 Loss of indigenous knowledge and local knowledge  
Despite the identification of this issue in AR4, its treatment in AR5 remained limited. Recent literature partly 
focussing on SLR reaffirms that indigenous knowledge and local knowledge (IK and LK; Cross-Chapter Box 
4 in Chapter 1 and Glossary) are key to determining how people recognize and respond to environmental risk 
(Bridges and McClatchey, 2009; Lefale, 2010; Leonard et al., 2013; Lazrus, 2015), and therefore to 
increasing adaptive capacity and reducing long-term vulnerability (Ignatowski and Rosales, 2013; McMillen 
et al., 2014; Hesed and Paolisso, 2015; Janif et al., 2016; Morrison, 2017).  
 
IK and LK contribute both as a foundation for and an outcome of customary resource management systems 
aimed at regulating resource use and securing critical ecosystem protection (examples in Indonesia; 
Hiwasaki et al., 2015), structuring the relationship between people and authorities, and framing and 
maintaining a strong sense of place in the community (examples in Timor Leste; Hiwasaki et al., 2015). In 
turn, this allows local communities to predict and prepare for both sudden shock events that have historical 
precedent and, when IK and LK are embedded in day-to-day rituals and decision-making processes, to also 
anticipate the consequences of gradual changes, as in sea level (examples in Indonesia; Hiwasaki et al., 
2015). Customary resource management systems based on IK and elders’ leadership—for instance, Rahui in 
French Polynesia (Gharasian, 2016), or Mo in the Marshall Islands (Bridges and McClatchey, 2009)—also 
allow communities to diversify access to marine and terrestrial resources using seasonal calendars, to ensure 
collective food and water security, and to maintain ecological integrity (McMillen et al., 2014). In rural 
Pacific atolls, traditional food preservation and storage (e.g., storing germinated coconuts or drying fish) still 
play a role in anticipating disruptions in natural resource availability (Campbell, 2015; Lazrus, 2015). Such 
practices have enabled the survival of isolated communities from the Arctic to tropical islands in 
constraining sea environments for centuries to millennia (McMillen et al., 2014; Nunn et al., 2017a). 
Morrison (2017) argues that IK and LK can also play a role in supporting internal migration in response to 
SLR, by avoiding social and cultural uprooting (Cross-Chapter Box 4 in Chapter 1). 
 
In some specific contexts, climate change will also imply no-analogue changes, such as rapid ice-melt and 
changing conditions in the Arctic that have no precedent in the modern era, and could thus limit the 
relevance of IK and LK in efforts to address significantly different circumstances. Except in these specific 
situations, the literature suggests that the loss of IK and LK, and related social norms and mechanisms, will 
increase populations’ exposure and vulnerability to SLR impacts (Nakashima et al., 2012). The literature 
notably points out that modern, externally-driven socio-economic dynamics, such as the introduction of 
imported food (noodles, rice, canned meat and fish, etc.), diminish the cultural importance of IK-based 
practices and diets locally, together with introducing dependency on monetization and external markets 
(Hay, 2013; Campbell, 2015).  
 
As a result, the loss of IK and LK may increase long-term vulnerability to SLR (medium evidence, high 
agreement). Given that IK and LK are largely based on observing and ‘making sense’ of the surrounding 
environment (moon, waves, winds, animal behaviors, topography, etc.), such a loss reflects a more general 
concern about the weakening of environmental connectedness in contemporary societies, which is not 
limited to remote, rural and developing communities (medium confidence). In developed contexts too, the 
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loss of LK has played a critical role in recent coastal disasters (e.g., Katrina in 2005 in the USA, Kates et al., 
2006) and increasing vulnerability to SLR (e.g., Newton and Weichselgartner, 2014; Wong et al., 2014).  
 
4.3.2.4.3 Social capital  
Coastal communities draw on social structures and capabilities that can reduce risk and increase adaptive 
capacity in the face of coastal hazards (Aldrich, 2017; Petzold, 2018). Although the term is subject to debate 
(Meyer, 2018), social capital—i.e., the level of cohesion between individuals, between groups of individuals, 
and between people and institutions, within and between communities—is considered to be a key enabler for 
collective action to reduce risk and build adaptive capacity (Adger, 2010; Aldrich and Meyer, 2015; Petzold 
and Ratter, 2015). Levels of social capital can be influenced by underlying social processes, such as 
socioeconomic (in)equalities, gender issues, health, social networks and social media. It applies to both 
developing and developed countries, for example in densely populated deltas (Jordan, 2015), European 
coasts (Jones and Clark, 2014; Petzold, 2016), Asian urban or semi-urban coastal areas (Lo et al., 2015; 
Triyanti et al., 2017) and Pacific islands (Neef et al., 2018). Social capital framed as an enabler for reducing 
vulnerability has been studied in the context of extreme events (risk prevention mechanisms, emergency 
responses, post-crisis actions) and collective environmental management (e.g., replanting mangroves, beach 
cleaning, etc.). Social capital also enables adaptation prospects. For example, its role has been explored in 
public acceptability of long-term coastal adaptation policies in the UK (Jones and Clark, 2014; Jones et al., 
2015). The role of social capital in building resilience to climate stress in coastal Bangladesh was explored 
by Jordan (2015), who found complex and even contradictory interactions between social capital and 
resilience to climate stress. Among others, Jordan (2015) also advises caution about uncritical importation of 
such Westernised concepts in seeking to understand and address coastal vulnerability in developing 
countries.  
 
4.3.2.4.4 Risk perception  
Risk perception, which is context-specific and varies from one individual to another, may influence 
communities’ exposure and vulnerability as it shapes authorities’ and people’s attitudes towards sudden and 
slow onset hazards—as shown by Terpstra (2011), Lazrus (2015), Elrick-Barr et al. (2017) and O'Neill et al. 
(2016) in the Netherlands, Tuvalu, Australia and Ireland, respectively. The progressive discounting of 
coastal hazard risks and subsequent loss of risk memory also played a role in coastal disasters such as 
Hurricane Katrina in 2005 in the USA (Burby, 2006; Kates et al., 2006) and Storm Xynthia in 2010 in 
France (Vinet et al., 2012; Genovese and Przyluski, 2013; Chadenas et al., 2014).  
 
Risk perceptions stem from intertwined predictors such as ‘gender, political party identification, cause-
knowledge, impact-knowledge, response-knowledge, holistic affect, personal experience with extreme 
weather events, [social norms] and biospheric value orientations’ (Kellens et al., 2011; Carlton and Jacobson, 
2013; Lujala et al., 2015; van der Linden, 2015, p. 112; Weber, 2016; Elrick-Barr et al., 2017; Goeldner-
Gianella et al., 2019). In general, there is a lack of education, training, and thus knowledge and literacy on 
recent and projected trends in sea level, which compromises ownership of science facts and projections at all 
levels, from individuals and institutions to society at large. 
 
While some studies have begun to highlight the influence of the distance from the sea on risk perceptions 
(Milfont et al., 2014; Lujala et al., 2015; O'Neill et al., 2016), there is still little knowledge about how risk 
perceptions vary across different geographical and social contexts, and how this influences exposure and 
vulnerability to coastal hazards (e.g., Terpstra, 2011; van der Linden, 2015). There is a critical lack of studies 
specifically addressing SLR. Some recent works conducted in coastal Australia suggest that while people are 
confident about their ability to cope with an already experienced event, when it comes to SLR, the dominant 
narrative is articulated around the barriers related to the ‘uncertainty in the nature and scale of the impacts as 
well as the response options available’ (Elrick-Barr et al., 2017, p. 1147). Similar conclusions have been 
highlighted in the Caribbean islands of St. Vincent (Smith, 2018) and the Bahamas (Thomas and Benjamin, 
2018). SLR is rarely addressed separately from sea-related extreme events, which masks a crucial difference 
between already-observed and delayed impacts. Climate change is considered a “distant psychological risk” 
(Spence et al., 2012), making it and SLR per se ‘markedly different from the way that our ancestors have 
traditionally perceived threats in their local environment’ (Milfont et al., 2014; Lujala et al., 2015; van der 
Linden, 2015, p. 112; O'Neill et al., 2016). 
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4.3.2.5 Towards a Synthetic Understanding of the Drivers of Exposure and Vulnerability 
 
Recent literature confirms that anthropogenic drivers played an important role, over the last century, in 
increasing exposure and vulnerability worldwide, and indicates that they will continue to do so in the 
absence of adaptation (medium evidence, high agreement). Some scholars argue that ‘(…) even with 
pervasive and extensive environmental change associated with ~2°C warming, it is non-climatic factors that 
primarily determine impacts, response options and barriers to adapting’ (Ford et al., 2015, p. 1046). 
Although it is the interaction of climate and non-climate factors that eventually determine the level of 
impacts, acknowledging the role of a range of purely anthropogenic drivers has important implications for 
action. It suggests that major action can be taken now to enhance long-term adaptation prospects, 
notwithstanding uncertainty about local RSL rise and resultant impacts in the distant future (medium 
evidence, high agreement) (Magnan et al., 2016). Acting on the human-driven drivers and root causes of 
vulnerability could yield co-benefits, for example by improving the state and condition of coastal 
ecosystems—and hence the capacity to cope with or adapt to SLR impacts—or, in deltaic regions, lowering 
the rates of anthropogenic subsidence and, in turn, minimizing changes in sea level.  
 
In addition, coastal ecosystem degradation is acknowledged as another major non-climatic driver of exposure 
and vulnerability (high confidence). The ability of coastal ecosystems to serve as a buffer zone between the 
sea and human assets (settlements and infrastructure), and to provide regulating services with respect to 
SLR-related coastal hazards (including inundation and salinization), is progressively being lost due to coastal 
squeeze, pollution, habitat degradation and degradation due especially to land use conversion.  
 
We now better understand the diversity and interactions of the climate and non-climate drivers of exposure 
and vulnerability, as well as their dynamics over time (Bennett et al., 2016; Duvat et al., 2017). As a result, 
we realize how many context-specificities interact (including geography, economic development, social 
inequity, power and politics, and risk perceptions) and play a critical role in shaping the direction and 
influence of individual drivers and of their possible combinations on the ground (medium evidence, high 
agreement) (Eriksen et al., 2015; Hesed and Paolisso, 2015; McCubbin et al., 2015). This also provides a 
stronger foundation to identify the range of possible responses (Sections 1.6.1, 1.6.2 and 4.4.3) to observed 
impacts and projected risks, as well as critical areas of action to enhance adaptation pathways (Section 
4.4.4).  
 
Recent studies (e.g., cited in sections 4.3.2.1.1, 4.3.2.2, 4.3.2.4.2 and 4.3.2.4.4) also confirm AR5 
conclusions that both developing and developed countries are exposed and vulnerable to SLR (high 
confidence). 
 
4.3.3 Observed Impacts, and Current and Future Risk of Sea Level Rise  
 
Sea level rise leads to hazards and impacts that are also partly inherent in other processes such as starvation 
of sediments provided by rivers (Kondolf et al., 2014); permafrost thaw and ice retreat; or the disruption of 
natural dynamics by land reclamation or sediment mining. Six main concerns for low-lying coasts (Figure 
4.13) are: (i) permanent submergence of land by mean sea-levels or mean high tides; (ii) more frequent or 
intense flooding; (iii) enhanced erosion; (iv) loss and change of ecosystems; (v) salinization of soils, ground 
and surface water; and (vi) impeded drainage. This section discusses some of these hazards (flooding, 
erosion, salinization) as well as observed and projected impacts on some critical marine ecosystems 
(marshes, mangroves, lagoons, coral reefs and seagrasses), ecosystem services (coastal protection) and 
human societies (people, assets, infrastructures, economic and subsistence activities, inequity and well-being, 
etc.). In many cases, the Chapter 4 assessment of impacts and responses uses results from literature based on 
values of sea level rise and extreme sea level events prior to SROCC. However, the general findings we 
report here also carry forward with the new SROCC SLR and ESL values. Except in the case of 
submergence and flooding of coastal areas (Section 4.3.3.2), this section assumes no major additional 
adaptation efforts compared to today (i.e., neither significant intensification of ongoing action nor new types 
of action), thus reflecting the state of knowledge in the literature. 
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Figure 4.13: Overview of the main cascading effects of sea-level rise. Styles and colours of lines (left hand side: 
light/dark blue; right hand side: dotted/non dotted and orange/green/dark yellow/purple/turquoise) and boxes are used 
only for the readability of the figure. Sea-level hazards are discussed in section 4.2. The various impacts listed in this 
figure are discussed in the sections below: Submergence of land and enhanced flooding (section 4.3.3.2); Erosion of 
land and beaches (4.3.3.3); Salinisation (4.3.3.4); Loss of and changes in ecosystems (4.3.3.5); Loss of land and land 
uses (4.3.3.2); Loss of ecosystems services (4.3.3.5); Damage to people and to the built environment (4.3.3.2, 4.3.3.3, 
4.3.3.4 and 4.3.3.6); Damages to human activities (4.3.3.6). Non-climate anthropogenic drivers are discussed in section 
4.3.2 and other climate-related drivers are notably discussed in 5.2.1 and 5.2.2. 
 
 
4.3.3.1 Attribution of Observed Physical Changes to Sea Level Rise  
 
The AR5 concludes that attribution of coastal changes to SLR is difficult because ‘the coastal sea level 
change signal is often small when compared to other processes’ (Wong et al., 2014: 375). New literature, 
however, shows that extreme water levels at the coast are rising due to mean SLR (4.2.2.4 for observations, 
and 4.3.5 for projections), with observable impacts on chronic flooding in some regions (Sweet and Park, 
2014; Strauss et al., 2016). 
 
On coastal morphological changes for example, contemporary SLR currently acts as a “background driver”, 
with extreme events, changes in wave patterns, tides and human intervention often described as the 
prevailing drivers of observed changes (Grady et al., 2013; Albert et al., 2016). Morphological changes are 
also interacting with other impacts of SLR, such as coastal flooding (Pollard et al., 2018). Despite the 
complexity of the attribution issue (Romine et al., 2013; Le Cozannet et al., 2014), recent literature suggests 
possibly emerging signs of the direct influence of recent SLR on shoreline behaviour, for example on small 
highly-sensitive reef islands in New Caledonia (Garcin et al., 2016) and in the Solomon Islands (Albert et al., 
2016). Early signs of the direct influence of SLR on estuaries’ water salinity are also emerging, for example, 
in the Delaware, USA, where Ross et al. (2015) estimate a rate of salinity increase by as much as 4.4 psu 
(Practical Salinity Unit) per meter of SLR since the 1950s. 
 
Overall, while the literature suggests that it is still too early to attribute coastal impacts to SLR in most of the 
world’s coastal areas, there is very high confidence that as sea level continues to rise (Sections 4.2.3.2, 

Non-climate anthropogenic drivers
Settlement patterns, loss of indigenous knowledge and

local knowledge, low risk perception, etc.
&

Human-induced ecosystem degradation due to changes in catchment
connectivity, mass flows (water, sediment, nutrients) as well as coastal squeeze

Other climate-related drivers
E.g., ocean warming, acidification

and deoxygenation

Local mean
sea-level

rise

Global and
regional mean
sea-level rise

Local
extreme
sea-level

Climate
change

SEA-LEVEL
HAZARDS

COASTAL
HAZARDS

DIRECT
IMPACTS

Submergence of land

Enhanced flooding

Impeded drainage

Loss of land and land uses

Loss of coastal & marine
ecosystem services

Loss of & change in marine
and coastal ecosystems

Damage to people

Damage to the built
environment

Damage to human activities

Salinisation of soils,
groundwater and surface waters

Erosion of land and beaches

N.B.: Colours and styles of
lines (dotted/continuous) and
boxes are used only for the
readability of the figure.



FINAL DRAFT Chapter 4 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 4-74 Total pages: 169 

4.2.3.3), the frequency, severity and duration of hazards and related impacts increases (Woodruff et al., 
2013; Lilai et al., 2016; Vitousek et al., 2017) (Sections 4.2.3.4, 6.3.1.3). Detectable impacts and attributable 
impacts on shoreline behaviour are expected as soon as the second half of the 21st century (Nicholls and 
Cazenave, 2010; Storlazzi et al., 2018). 
 
4.3.3.2 Submergence and Flooding of Coastal Areas  
 
Since AR5, a number of continental and global scale coastal exposure studies have accounted for sub-
national human dynamics such as coast-ward migration or coastal urbanization. These studies project a 
population increase in the LECZ (coastal areas below 10 m of elevation) by 2100 of 85 to 239 million people 
as compared to only considering national dynamics (Merkens et al., 2016)(Section 4.3.2). Under the five 
Shared Socio-economic Pathways (SSP) and without SLR, the population living in the LECZ increases from 
640–700 million in 2000 to over one billion in 2050 under all SSPs, and then declines to 500–900 million in 
2100 under all SSPs, except for SSP3 (i.e., a world in which countries will increasingly focus on domestic 
issues, or at best regional ones), for which coastal population reaches 1.1–1.2 billion (Jones and O’Neill, 
2016; Merkens et al., 2016).  
 
The population exposed to mean and extreme sea level events will grow significantly during the 21st century 
(high confidence) with socio-economic development and SLR contributing roughly equally (medium 
confidence). Considering an average relative SLR of 0.7–0.9m but no population growth, the number of 
people living below the hundred-year ESL in Latin America and the Caribbean will increase from 7.5 
million in 2011 to 9 million by the end of the century (Reguero et al., 2015). Considering population growth 
and urbanisation, only 21 cm of global mean SLR by 2060 would increase the global population living below 
the hundred-year ESL from about 189 million in 2000 to 316–411 million in 2060, with the largest absolute 
changes in South and South-east Asia and the largest relative changes in Africa (Neumann et al., 2015). 
Considering population growth, Hauer et al. (2016) estimate that 4.3 and 13.1 million people in the US 
would live below the levels of 0.9 and 1.8 m SLR by 2100. 
 
New coastal flood risk studies conducted since AR4 at global, continental and city scale, reinforce AR5 
findings that if coastal societies do not adapt, flood risks will increase by 2–3 orders of magnitude reaching 
catastrophic levels by the end of the century, even under the lower end sea-level rise expected under RCP2.6 
(high confidence) (Hinkel et al., 2014; Abadie et al., 2016; Diaz, 2016; Hunter et al., 2017; Lincke and 
Hinkel, 2017; Abadie, 2018; Brown et al., 2018a; Nicholls, 2018). In combination, these studies take into 
account a SLR scenario range wider than the likely range of AR5 but consistent with the range of projections 
assessed in this report (Section 4.2.3.2). For example, considering 25–123 cm of SLR in 2100, all SSPs and 
no adaptation, Hinkel et al. (2014) find that 0.2–4.6% of global population is expected to be flooded annually 
in 2100, with expected annual damages (EAD) amounting to 0.3–9.3% of global GDP. Assessing 120 cities 
globally, Abadie (2018) find that under a weighted combination of the probabilistic scenarios of Kopp et al. 
(2014), New Orleans and Guangzhou Guangdong rank highest with EAD above 1 trillion USD (not 
discounted) in each city. For Europe, EAD are expected to rise from € 1.25 billion today to € 93–960 billion 
by the end of the century (Vousdoukas et al., 2018b). Already today, many small islands face large flood 
damages relative to their GDP specifically through tropical cyclones (Cashman and Nagdee, 2017) and under 
sea-level rise EAD can reach up to several percent of GDP in 2100, as highlighted in AR5 (Wong et al., 
2014). Similar to the exposure studies, estimates of future flood risk without considering adaptation, as 
presented in this paragraph, do not provide a meaningful characterization of coastal flood risks, because 
adaptation and specifically hard protection is expected to be widespread during the 21st century in urban 
areas and cities (high confidence) (Section 4.4.3.2.2). Rather, these estimates need to be seen as illustrations 
of the scale of adaptation needed to offset risk. 
 
Flood risk studies that have included adaptation find that hard coastal protection is generally very effective in 
reducing flood risks during the 21st century even under high SLR scenarios (high confidence) (Hinkel et al., 
2014; Diaz, 2016; Brown et al., 2018a; Hinkel et al., 2018; Lincke and Hinkel, 2018; Tamura et al., 2019) 
(Section 4.4.2.2.2). For example, Hinkel et al. (2014) find that under 25–123 cm of SLR in 2100 and all 
SSPs, hard coastal protection reduces the annual number of people affected by coastal floods and EAD by 2 
to 3 orders of magnitude. Under high-end SLR and beyond the 21st century effectiveness of coastal 
adaptation is expected to decline rapidly, but there is a lack of studies addressing this issue. Furthermore, 
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there is a lack of studies taking into account responses beyond hard protection such as ecosystem-based 
adaptation, accommodation, advance and retreat (Sections 4.4.2).  
 
Studies also confirm AR5 findings that the relative costs and benefits of coastal adaptation are distributed 
unequally across countries and regions (high confidence) (Wong et al., 2014; Diaz, 2016; Lincke and Hinkel, 
2018; Tamura et al., 2019). For example, while the median national cost of protection and retreat under 
RCP8.5 in 2050 has been estimated 0.09%, large relative costs are found for small island states such as the 
Marshall Islands (7.6 %), the Maldives (7.5 %), Tuvalu (4.6 %) and Kiribati (4.1 %) (Diaz, 2016). 
Furthermore, on a global average and for urban and densely populated regions, hard protection is highly cost 
efficient with benefit cost ratios up to 104, but for poorer and less densely populated areas benefit-cost ratios 
are generally smaller than one (Lincke and Hinkel, 2018). Hence, without substantial transfer payments 
supporting poor areas, coastal flood risks will evolve unequally during this century, with richer and densely 
populated areas well protected behind hard structures and poorer less densely populated areas suffering 
losses & damages, and eventually retreating from the coast. 
 
While continental to global scale flood exposure and risk studies have also explored a wider range of 
uncertainty as compared to AR5, much remains to be done. All of these studies rely on global elevation data, 
but few studies have explored the underlying bias. For example, for the Po delta in Italy, it was found that 
elevation data based on the widely used Shuttle Radar Topography Mission (SRTM), Reuter et al. (2007) 
overestimates the 100-year floodplain by about 50% as compared to local Lidar data (Wolff et al., 2016), 
while in the Ria Formosa region in Portugal SRTM underestimates EAD by up to 50% depending on the 
resampled resolution of the Lidar data (Vousdoukas et al., 2018a). For the US, SRTM data systemically 
underestimates population exposure below 3 m by more than 60% as compared to coastal Lidar data (Kulp 
and Strauss, 2016). A global scale comparison of major contributors to flood risk uncertainty finds that 
uncertainty in digital elevation data is roughly at equal footing with uncertainties in socio-economic 
development, emission scenarios, and sea-level rise in determining the magnitude of flood risks in the 21st 
century (Hinkel et al., 2014). At a European level, the number of people living in the 100-year coastal 
floodplain can vary between 20% and 70% depending on the different inundation models used and the 
inclusion or exclusion of wave set up (Vousdoukas, 2016). Comparing damage functions attained in different 
studies for European cities, Prahl et al. (2018) find up to four-fold differences in damages for floods above 3 
m. Another major source of uncertainty relates to uncertainties in present-day extreme sea level events due to 
the application of different extreme value methods (Wahl et al., 2017; Section 4.2.3.4). While all of the 
uncertainties reported above affected the actual size of exposure and flood risk figures, they don't affect the 
overall conclusions drawn above.  
 
4.3.3.3 Coastal Erosion and Projected Global Impacts of Enhanced Erosion on Human Systems  
 
Recent global assessments of coastal erosion indicate that land losses currently dominate over land gains and 
that human interventions are a major driver of shoreline changes (Cazenave and Cozannet, 2014; Luijendijk 
et al., 2018; Mentaschi et al., 2018). Luijendijk et al. (2018) estimate that over the 1984–2016 period, about a 
quarter of the world’s sandy beaches eroded at rates exceeding 0.5 m yr–1 while about 28% accreted. While 
such global results can be challenged due to the relatively large detection threshold used (+/-0.5 m yr–1), 
there is growing literature indicating that coastal erosion is occurring or increasing, e.g. in the Arctic 
(Barnhart et al., 2014a; Farquharson et al., 2018; Irrgang et al., 2019), Brazil (Amaro et al., 2015), China 
(Yang et al., 2017), Colombia (Rangel-Buitrago et al., 2015), India (Kankara et al., 2018), and along a large 
number of deltaic systems worldwide (e.g., Section 4.2.2.4). 
 
Since AR5, however, there is growing appreciation and understanding of the ability of coastal systems to 
respond dynamically to SLR (Passeri et al., 2015; Lentz et al., 2016; Deng et al., 2017). Most low-lying 
coastal systems exhibit important feedbacks between biological and physical processes (e.g., Wright and 
Nichols, 2018), that have allowed them to maintain a relatively stable morphology under moderate rates of 
SLR (< 0.3 cm yr–1) over the past few millennia (Woodruff et al., 2013; Cross-Chapter Box 5 in Chapter 1). 
In a global review on multi-decadal changes in the land area of 709 atoll islands, Duvat (2019) shows that in 
a context of more rapid SLR than the global mean (Becker et al., 2012; Palanisamy et al., 2014), 73.1% of 
islands were stable in area, while respectively 15.5% and 11.4% increased and decreased in size. While 
anthropogenic drivers played a major role, especially in urban islands (e.g., shoreline stabilization by coastal 
defences, increase in island size as a result of reclamation works), this study and others (e.g., McLean and 
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Kench, 2015) suggest that these islands have had the capacity to maintain their land area by naturally 
adjusting to SLR over the past decades (robust evidence, high agreement). However, it has been argued that 
this capacity could be reduced in the coming decades, due to the combination of higher rates of SLR, 
increased wave energy (Albert et al., 2016), changes in run-up (Shope et al., 2017) and storm wave direction 
(Harley et al., 2017), effects of ocean warming and acidification on critical ecosystems such as coral reefs 
(Section 4.3.3.5.2), and a continued increase in anthropogenic pressure. 
 
From a global scale perspective, based on AR4 SLR scenarios and without considering the potential benefits 
of adaptation, Hinkel et al. (2013b) estimate that about 6,000 to 17,000 km2 of land is expected to be lost 
during the 21st century due to enhanced coastal erosion associated with SLR, in combination with other 
drivers. This could lead to a displacement of 1.6 to 5.3 million people and associated cumulative costs of 300 
to 1000 billion USD (Sections 4.4.3.5). Importantly, these global figures mask the wide diversity of local 
situations; and some literature is emerging on the non-physical and non-quantifiable impacts of coastal 
erosion, e.g. on the loss of recreational grounds and the induced risks to the associated social dimensions 
(e.g., individuals’ relationships; Karlsson et al., 2015). 
 
4.3.3.4 Salinization  
 
With rising sea levels, saline water intrusion into coastal aquifers and surface waters and soils is expected to 
be more frequent and enter farther landwards. Salinization of groundwater, surface water and soil resources 
also increases with land-based drought events, decreasing river discharges in combination with water 
extraction and sea level rise (high confidence). 
 
4.3.3.4.1 Coastal aquifers and groundwater lenses  
Groundwater volumes will primarily be affected by variations in precipitation patterns (Taylor et al., 2013; 
Jiménez Cisneros et al., 2014), which are expected to increase water stress in small islands (Holding et al., 
2016). While SLR will mostly impact groundwater quality (Bailey et al., 2016) and in turn exacerbate 
salinization induced by marine flooding events (Gingerich et al., 2017), it will also affect the water-table 
height (Rotzoll and Fletcher, 2013; Jiménez Cisneros et al., 2014; Masterson et al., 2014; Werner et al., 
2017). In addition, the natural migration of groundwater lenses inland in response to SLR can also be 
severely constrained by urbanization, for example, in semi-arid South Texas, USA (Uddameri et al., 2014). 
 
These changes will affect both freshwater availability (for drinking water supply and agriculture) and 
vegetation dynamics. At many locations, however, direct anthropogenic influences, such as groundwater 
pumping for agricultural or urban uses, already impact salinization of coastal aquifers more strongly than 
what is expected from SLR in the 21st century (Ferguson and Gleeson, 2012; Jiménez Cisneros et al., 2014; 
Uddameri et al., 2014), with trade-offs in terms of groundwater depletion that may contribute to 
anthropogenic subsidence and thus increase coastal flood risk. Recent studies also suggest that the influence 
of land-surface inundation on seawater intrusion and resulting salinization of groundwater lenses on small 
islands has been underestimated until now (Ataie-Ashtiani et al., 2013; Ketabchi et al., 2014). Such impacts 
will potentially also combine with a projected drying of most of the tropical-to-temperate islands by mid-
century (Karnauskas et al., 2016). 
 
4.3.3.4.2 Surface waters  
The quality of surface water resources (in estuaries, rivers, reservoirs, etc.) can be affected by the intrusion 
of saline water, both in a direct (increased salinity) and indirect way (altered environmental conditions which 
change the behavior of pollutants and microbes). In terms of direct impacts, statistical models and long-term 
(1950-present) records of salinity show significant upward trends in salinity and a positive correlation 
between rising sea levels and increasing residual salinity, for example in the Delaware Estuary, USA (Ross 
et al., 2015). Higher salinity levels, further inland, have also been reported in the Gorai river basin, 
Southwestern Bangladesh (Bhuiyan and Dutta, 2012), and in the Mekong Delta, Vietnam. In the Mekong 
Delta for instance, salinity intrusion extends around 15 km inland during the rainy season and typically 
around 50 km during dry season (Gugliotta et al., 2017). Importantly, salinity intrusion in these deltas is 
caused by a variety of factors such as changes in discharge and water abstraction along with relative sea-
level rise. More broadly, the impact of salinity intrusion can be significant in river deltas or low-lying 
wetlands, especially during low-flow periods such as in the dry season (Dessu et al., 2018). In Bangladesh, 
for instance, some freshwater fish species are expected to lose their habitat with increasing salinity, with 
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profound consequences on fish-dependent communities (Dasgupta et al., 2017). In the Florida Coastal 
Everglades, sea level increasingly exceeds ground surface elevation at the most downstream freshwater sites, 
affecting marine-to-freshwater hydrologic connectivity and transport of salinity and phosphorous upstream 
from the Gulf of Mexico. The impact of SLR is higher in the dry season when there is practically no 
freshwater inflow (Dessu et al., 2018). Salinity intrusion was shown to cause shifts in the diatom 
assemblages, with expected cascading effects through the food web (Mazzei and Gaiser, 2018). Salinization 
of surface water may lead to limitations in drinking water supply (Wilbers et al., 2014), as well as to future 
fresh water shortage in reservoirs, for example in Shanghai (Li et al., 2015). Salinity changes the partitioning 
and mobility of some metals, and hence their concentration or speciation in the water bodies (Noh et al., 
2013; Wong et al., 2015; de Souza Machado et al., 2018). Varying levels of salinity also influence the 
abundance and toxicity of Vibrio cholerae in the Ganges Delta (Batabyal et al., 2016). 
 
4.3.3.4.3 Soils  
Salinization is one of the major drivers of soil degradation, with sea water intrusion being one of the 
common causes (Daliakopoulos et al., 2016). In a study in the Ebro Delta, Spain, for instance, soil salinity 
was shown to be directly related to distances to the river, to the delta inner border, and to the old river mouth 
(Genua-Olmedo et al., 2016). Land elevation was the most important variable in explaining soil salinity.  
SLR was also shown to decrease organic carbon (Corg) concentrations and stocks in sediments of salt 
marshes as reworked marine particles contribute with a lower amount of Corg than terrigenous sediments. Corg 
accumulation in tropical salt marshes can be as high as in mangroves and the reduction of Corg stocks by 
ongoing SLR might cause high CO2 releases (Ruiz-Fernández et al., 2018). In many cases attribution to SLR 
is missing, but independent from clear attribution, sea water intrusion leads to a salinization of exposed soils 
with changes in carbon dynamics (Ruiz-Fernández et al., 2018) and microbial communities (Sánchez-
Rodríguez et al., 2017), soil enzyme activity and metal toxicity (Zheng et al., 2017). Water salinity levels in 
the pores of coastal marsh soils can become significantly elevated in just one week of flooding by sea water, 
which can potentially negatively impact associated microbial communities for significantly longer time 
periods (McKee et al., 2016). SLR will also alter the frequency and magnitude of wet/dry periods and 
salinity levels in coastal ecosystems, with consequences for the formation of climate-relevant greenhouse 
gases (Liu et al., 2017b) and therefore feedbacks to the climate. 
 
Soil salinization affects agriculture directly with impacts on plant germination (Sánchez-García et al., 2017), 
plant biomass (rice and cotton) production (Yao et al., 2015), and yield (Genua-Olmedo et al., 2016). Impact 
on agriculture is especially relevant in low-lying coastal areas where agricultural production is a mayor land 
use, such as river deltas.  
 
4.3.3.5 Ecosystems and Ecosystem Services 
 
4.3.3.5.1 Tidal wetlands  
Global coastal wetlands have been reduced by a half since the pre-industrial period due to the impacts of 
both climatic and non-climatic drivers such as flooding, coastal urbanisation, alterations in drainage and 
sediment supply, etc. (Sections 4.3.2.3, 5.3.2). Potentially one of the most important of the eco-
morphodynamic feedbacks allowing for relatively stable morphology under SLR is the ability of marsh and 
mangrove systems to enhance the trapping of sediment, which in turn allows tidal wetlands to grow and 
increase the production and accumulation of organic material (Kirwan and Megonigal, 2013). When 
ecosystem health is maintained and sufficient sediment exists to support their growth, this particular 
feedback has generally allowed marshes and mangrove systems to build vertically at rates equal to or greater 
than SLR up to present day (Kirwan et al., 2016; Woodroffe et al., 2016).  
 
While recent reviews suggest that mangroves’ surface accretion rate will keep pace with high SLR scenario 
(RCP8.5) up to years 2055 and 2070 in fringe and basin mangrove settings, respectively (Sasmito et al., 
2016), process-based models of vertical marsh growth that incorporate biological and physical feedbacks 
support survival under rates of SLR as high as 1-to-5 cm yr–1 before drowning (Kirwan et al., 2016). 
Threshold rates of SLR before marsh drowning however vary significantly from site-to-site and can be 
substantially lower than 1 cm yr–1 in micro-tidal regions where the tidal trapping of sediment is reduced 
and/or in areas with low sediment availability (Lovelock et al., 2015; Ganju et al., 2017; Jankowski et al., 
2017; Watson et al., 2017). Global environmental change may also to lead to changes in growth rates, 
productivity and geographic distribution of different mangrove and marsh species, including the replacement 
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of environmentally sensitive species by those possessing greater climatic tolerance (Krauss et al., 2014; Reef 
and Lovelock, 2014; Coldren et al., 2019). Processes impacting lateral changes at the marsh boundary 
including wave erosion are just as important, if not more, than vertical accretion rates in determining coastal 
wetland survival (e.g., Mariotti and Carr, 2014). For most low-lying coastlines, a seaward loss of wetland 
area due to marsh retreat could be offset by a similar landward migration of coastal wetlands (Kirwan and 
Megonigal, 2013; Schile et al., 2014), this landward migration having the potential to maintain and even 
increase the extent of coastal wetlands globally (Morris et al., 2012; Kirwan et al., 2016; Schuerch et al., 
2018). This natural process will however be constrained in areas with steep topography or hard engineering 
structures (i.e., coastal squeeze, Section 4.3.2.4). Seawalls, levees and dams can also prevent the fluvial and 
marine transport of sediment to wetland areas and reduce their resilience further (Giosan, 2014; Tessler et 
al., 2015; Day et al., 2016; Spencer et al., 2016). 
 
4.3.3.5.2 Coral reefs  
Coral reefs are considered to be the marine ecosystem most threatened by climate-related ocean change, 
especially ocean warming and acidification, even under an RCP2.6 scenario (Gattuso et al., 2015; Albright et 
al., 2018; Hoegh-Guldberg et al., 2018; Díaz et al., 2019) (Section 5.3.4). AR5 concluded that ‘a number of 
coral reefs could (...) keep up with the maximum rate of sea-level rise of 15.1 mm yr–1 projected for the end 
of the century (medium confidence) [but a future net accretion rate lower] than during the Holocene (Perry et 
al., 2013) and increased turbidity (Storlazzi et al., 2011) will weaken this capability (very high confidence)’ 
(Wong et al., 2014: 379). Subsequently, some studies suggested that SLR may have negligible impacts on 
coral reefs' vertical growth because the projected rate and magnitude of SLR by 2100 are within the potential 
accretion rates of most coral reefs (van Woesik et al., 2015). Other studies, however, stressed that the overall 
net vertical accretion of reefs may decrease after the first 30 years of rise in a 1.2 m SLR-scenario (Hamylton 
et al., 2014), and that most reefs will not be able to keep up with SLR under RCP4.5 and beyond (Perry et 
al., 2018). The IPCC Special report on 1.5°C also concludes that coral reefs ‘are projected to decline by a 
further 70–90% at 1.5°C (high confidence) with larger losses (>99%) at 2°C (very high confidence)’ (Hoegh-
Guldberg et al., 2018: 10). A key point is that SLR will not act in isolation of other drivers. Cumulative 
impacts, including anthropogenic drivers, are estimated to reduce the ability of coral reefs to keep pace with 
future SLR (Hughes et al., 2017; Yates et al., 2017) and thereby reduce the capacity of reefs to provide 
sediments and protection to coastal areas. For example, the combination of reef erosion due to acidification 
and human-induced mechanical destruction is altering seafloor topography, increasing risks from SLR in 
carbonate-sediment-dominated regions (Yates et al., 2017). Both ocean acidification (Albright et al., 2018; 
Eyre et al., 2018) and ocean warming (Perry and Morgan, 2017) have been considered to slow future growth 
rates and reef accretion (Section 5.3.4). Recent literature also shows that alterations of coral reef 3D structure 
from changes in growth, breakage, disease, or acidification can profoundly affect their ability to buffer 
waves impacts (through wave-breaking and wave-energy-damping), and therefore keep-up with SLR (Yates 
et al., 2017; Harris et al., 2018). Such prospects contribute to raise concerns about the future ability of atoll 
islands to adjust naturally to SLR and persist (Section 4.3.3.3, Cross-Chapter Box 9). Another concern is that 
locally, even small SLR can increase turbidity on fringing reefs, reducing light and, therefore, photosynthesis 
and calcification. SLR-induced turbidity can be caused by increased coastal erosion and the transfer of 
sediment to nearby reefs and enhanced sediment resuspension (Field et al., 2011). 
 
4.3.3.5.3 Seagrasses  
Due to their natural capacity to enhance accretion and in the absence of mechanical or chemical destruction 
by human activities, seagrasses are not expected to be severely affected by SLR, except indirectly through 
the increase of the impacts of extreme weather events and waves on coastal morphology (i.e., erosion) as 
well as through changes in light levels and through effects on adjacent ecosystems (Saunders et al., 2013). 
Extreme flooding events have also been shown to cause large-scale losses of seagrass habitats (Bandeira and 
Gell, 2003), and seagrasses in Queensland, Australia, were lost in a disastrous flooding event (Campbell and 
McKenzie, 2004). Changes in ocean currents can have either positive or negative effects on seagrasses—
creating new space for seagrasses to grow or eroding seagrass beds (Bjork et al., 2008). But overall, seagrass 
will primarily be negatively affected by the direct effects of increased sea temperature on growth rates and 
the occurrence of disease (Marba and Duarte, 2010; Burge et al., 2013; Koch et al., 2013; Thompson et al., 
2015; Chefaoui et al., 2018; Gattuso et al., 2018; Section 5.3.2) as well as by heavy rains that may dilute the 
seawater to a lower salinity. Such impacts will be exacerbated by major causes of seagrass decline including 
coastal eutrophication, siltation, and coastal development (Waycott et al., 2009). Noteworthy is that some 
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positive impacts are expected, as ocean acidification is expected to benefit photosynthesis and growth rates 
of seagrass (Repolho et al., 2017). 
 
4.3.3.5.4 Coastal protection by coastal and marine ecosystems 
Major ‘protection’ benefits derived from the above-mentioned coastal ecosystems include wave attenuation 
and shoreline stabilization, for example, by coral reefs (Elliff and Silva, 2017; Siegle and Costa, 2017), 
mangroves (Zhang et al., 2012; Barbier, 2016; Menéndez et al., 2018), or salt marshes (Möller et al., 2014; 
Hu et al., 2015). Recently, a global meta-analysis of 69 studies demonstrated that, on average, these 
ecosystems together reduced wave heights between 35–71% at the limited locations considered (Narayan et 
al., 2016), with coral reefs, salt-marshes, mangroves and seagrass/kelp beds reducing wave heights by 54–
81%, 62–79%, 25–37% and 25–45%, respectively (see Narayan et al. (2016) for map of locations 
considered). Additional studies suggest greater wave attenuation in mangrove systems (Horstman et al., 
2014), and highlight broader complexities in wave attenuation related to total tidal wetland extent, water 
depth, and species. Global analyses show that natural and artificial seagrasses can attenuate wave height and 
energy by as much as 40% and 50%, respectively (Fonseca and Cahalan, 1992; John et al., 2015), while 
coral reefs have been observed to reduce total wave energy by 94–98% (n = 13) (Ferrario et al., 2014) and 
wave-driven flooding volume by 72% (Beetham et al., 2017). In addition, storm surge attenuation based on a 
recent literature review by Stark et al. (2015) range from -2 to 25 cm km–1 length of marsh, where the 
negative value denotes actual amplification. Other ecosystems provide coastal protection, including 
macroalgae, oyster and mussel beds, and also beaches, dunes and barrier islands, but there is less 
understanding of the level of protection conferred by these other organisms and habitats (Spalding et al., 
2014). 
 
While there is little literature on the extent to which SLR specifically will affect coastal protection by coastal 
and marine ecosystems, it is estimated that SLR may reduce this ecosystem service (limited evidence, high 
agreement) through the above-described impacts on the ecosystems themselves, and in combination with the 
impacts of other climate-related changes to the ocean (e.g., ocean warming and acidification; Sections 5.3.1 
to 5.3.6, 5.4.1). Wave attenuation by coral reefs, for example, is estimated to be negatively affected in the 
near future by changes in coral reefs’ structural complexity more than by SLR (Harris et al., 2018); changes 
in mean and extreme sea level events will rather add a layer of stress. Beck et al. (2018) estimate that under 
RCP8.5 by 2100, a 1 m loss in coral reefs’ height will increase the global area flooded under a 100-year 
storm event by 116% compared to today, against +66% with no reef loss. 
 
4.3.3.6 Human Activities 
 
4.3.3.6.1 Coastal agriculture  
SLR will affect agriculture mainly through land submergence, soil and fresh groundwater resources 
salinization, and land loss due to permanent coastal erosion, with consequences on production, livelihood 
diversification and food security, especially in heavily coastal agriculture-dependent countries such as 
Bangladesh (Khanom, 2016). Recent literature confirms that salinization is already a major problem for 
traditional agriculture in deltas (Wong et al., 2014; Khai et al., 2018) and low-lying island nations where 
some edible cultivated plants such as taro patches are threatened (Nunn et al., 2017b). Taking the case of rice 
cultivation, recent works emphasize the prevailing role of combined surface elevation and soil salinity, such 
as in the Mekong delta (Vietnam; Smajgl et al., 2015) and in the Ebro delta (Spain; Genua-Olmedo et al., 
2016), estimating for the latter a decrease in the rice production index from 61.2% in 2010 to 33.8% by 2100 
in a 1.8 m SLR scenario. For seven wetland species occurring in coastal freshwater marshes in central 
Veracruz on the Gulf of Mexico, an increase in salinity was shown to affect the germination process under 
wetland salt intrusion (Sánchez-García et al., 2017). In coastal Bangladesh, oilseed, sugarcane and jute 
cultivation was reported to be already discontinued due to challenges to cope with current salinity levels 
(Khanom, 2016), and salinity is projected to have an unambiguously negative influence on all dry-season 
crops over the next 15–45 years (especially in the southwest; Clarke et al., 2018; Kabir et al., 2018). Salinity 
intrusion and salinization can trigger land use changes towards brackish or saline aquaculture such as shrimp 
or rice-shrimp systems with impacts on environment, livelihoods and income stability (Renaud et al., 2015). 
However, increasing salinity is only one of the land use change drivers along with, for example, policy 
changes and market prices at the household level (Renaud et al., 2015). 
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4.3.3.6.2 Coastal tourism and recreation 
SLR may significantly affect tourism and recreation through impacts on landscapes (e.g., beaches), cultural 
features (e.g., Marzeion and Levermann, 2014; Fang et al., 2016), and critical transportation infrastructures 
such as harbours and airports (Monioudi et al., 2018). Future tourism and recreation coastal areas’ 
attractiveness will however also depend on changes in air temperature, seasonality and sea surface 
temperature (including induced effects such as invasive species, e.g., jellyfishes, and disease spreading; 
Burge et al., 2014; Section 5.4.2; Weatherdon et al., 2016; Hoegh-Guldberg et al., 2018). Future changes in 
climatic conditions in tourists’ areas of origin will also play a role in reshaping tourism flows (Bujosa and 
Rosselló, 2013; Amelung and Nicholls, 2014), in addition to mitigation policies on air transportation, non-
climatic features (e.g., accommodation and travel prices) and tourists’ and tourism developers’ perceptions 
of climate-related changes (Shakeela and Becken, 2015). Since AR5, forecasting the consequences of 
climate change effects on global-to-local tourism flows remains challenging (Rosselló-Nadal, 2014; Wong et 
al., 2014; Hoegh-Guldberg et al., 2018). There are also concerns about the effect of SLR on tourism 
facilities, for example hotels in Ghana (Sagoe-Addy and Addo, 2013), in a context where tourism 
infrastructures themselves often contribute to the degradation of natural buffering environments through, for 
example, coastal squeeze (e.g., Section 4.3.2.4) and human-driven coastal erosion. Again, forecasting is 
constrained by the lack of scientific studies on tourism stakeholders’ long-term strategies and adaptive 
capacity (Hoogendoorn and Fitchett, 2018). 
 
4.3.3.6.3 Coastal fisheries and aquaculture  
Recent studies support the AR5 conclusion that ocean warming and acidification are considered more 
influential drivers of change in fisheries and aquaculture than SLR (Larsen et al., 2014; Nurse et al., 2014; 
Wong et al., 2014). The negative effects of SLR on fisheries and aquaculture are indirect, through adverse 
impacts on habitats (e.g., coral reef degradation, reduced water quality in deltas and estuarine environments, 
soil salinization, etc.), as well as on facilities (e.g., damage to small and large harbours). This makes future 
projections on SLR implications for coastal and marine fisheries and aquaculture an understudied field of 
research. Conclusions only state that future impacts will be highly context-specific due to local 
manifestations of SLR and local fishery-dependent communities’ ability to adapt to alterations in fish and 
aquaculture conditions and productivity (Hollowed et al., 2013; Weatherdon et al., 2016). Salinity intrusion 
also contributed to conversion of land or freshwater ponds to brackish or saline aquaculture in many low-
lying coastal areas of South-East Asia such as in the Mekong delta in Vietnam (Renaud et al., 2015). 
 
4.3.3.6.4 Social values 
Social values refer to what people consider of critical importance about the places in which they live, and 
that range across a broad diversity from material to immaterial things (assets, beliefs, etc.; Hurlimann et al., 
2014; Rouse et al., 2017). Consideration of social values offers an opportunity to address a wider perspective 
on impacts on human systems, e.g., complementary to quantitative assessments of health impacts (e.g., loss 
of source of calories, food insecurity; Keim, 2010). This also encompasses immaterial dimensions, such as 
threats to cultural heritage (Marzeion and Levermann, 2014; Fatorić and Seekamp, 2017a), socializing 
activities (Karlsson et al., 2015), integration of marginalized groups (Maldonado, 2015) and cultural 
ecosystem services (Fish et al., 2016), and provides an opportunity to better capture context-specificities in 
valuing the physical/ecological/human/cultural impacts’ importance for and distribution within a given 
society (Fatorić and Seekamp, 2017b). This field of research (no detailed mention found in AR5) is just 
emerging due to the transdisciplinary and qualitative nature of the topic. Graham et al. (2013) advance a 5-
category framing of social values specifically at risk from SLR: health (i.e., the social determinants of 
survival such as environmental and housing quality and healthy lifestyles), feeling of safety (e.g., financial 
and job security), belongingness (i.e., attachment to places and people), self-esteem (e.g., social status or 
pride that can be affected by coastal retreat), and self-actualisation (i.e., people's efforts to define their own 
identity). Another growing issue relates to social values at risk due to land submergence in low-lying islands 
(Yamamoto and Esteban, 2014) and parts of countries and individual properties (Marino, 2012; Maldonado 
et al., 2013; Aerts, 2017; Allgood and McNamara, 2017). Recent studies also highlight the potential 
additional risks to social values in areas where displaced people locate (Davis et al., 2018). 
 
4.3.4 Conclusion on Coastal Risk: Reasons for Concern and Future Risks  
 
SLR projections for the 21st century, together with other ocean-related changes (e.g., acidification and 
warming) and the possible increase in human-driven pressures at the coast (e.g., demographic and settlement 
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patterns), make low-lying islands, coasts and communities relevant illustrations of some of the five Reasons 
for Concern (RFCs) developed by the IPCC since the Third Assessment Report (McCarthy et al., 2001; 
Smith et al., 2001) to assess risks from a global perspective. The AR5 Synthesis Report (IPCC, 2014) as well 
as the more recent 1.5°C Special Report (Hoegh-Guldberg et al., 2018) refined the RFC approach. The AR5 
Synthesis Report (IPCC, 2014) developed two additional RFCs related to the coasts, subsequently updated 
along with the other RFCs (O'Neill et al., 2017). One refers to risks to marine species arising from ocean 
acidification, and the other one refers to risks to human and natural systems from SLR. Despite the difficulty 
in attributing observed impacts to SLR per se (Section 4.3.3.1), O'Neill et al. (2017) estimate that risks 
related to SLR are already detectable globally and would increase rapidly, so that high risk may occur before 
a 1m rise level is reached. O'Neill et al. (2017) also suggest that limits to coastal protection and ecosystem-
based adaptation by 2100 could occur in a +1 m SLR rise scenario. Previous assessments however left gaps 
including quantifying the benefits from adaptation in terms of risk reduction.  
 
4.3.4.1 Methodological Advances 
 
Rather than revisiting the AR5 and O'Neill et al. (2017) assessments from the particular perspective of risk 
related to SLR and for the global scale, this section provides a complementary perspective by assessing risks 
for specific geographies (megacities, urban atoll islands, large tropical agricultural deltas and selected Arctic 
communities), based on the methodological advances below. 
 
Scale of analysis and geographical scope – To date, the RFCs and associated burning embers have been 
developed at a global scale (Oppenheimer et al., 2014; Gattuso et al., 2015; O'Neill et al., 2017) and do not 
address the spatial variability of risk highlighted in this report (Sections 4.3.2.7, 4.3.4, 5.3.7, Cross-Chapter 
Box 9, Box 4.1). In addition, assessments usually identify risks either for global human dimensions (e.g., to 
people, livelihood, breakdown of infrastructures, biodiversity, global economy, etc.; IPCC, 2014; 
Oppenheimer et al., 2014; O'Neill et al., 2017) or for ecosystems and ecosystem services (Gattuso et al., 
2015; Hoegh-Guldberg et al., 2018) (Section 5.3.7). This section moves the focus from the global to more 
local scales by considering four generic categories of low-lying coastal areas (Figure 4.3, Panel B): selected 
Arctic communities remote from regions of rapid glacial-isostatic adjustment, large tropical agricultural 
deltas, urban atoll islands, and megacities. Each of these categories is informed by several real-world case 
studies. 

 
Risks considered – In line with the AR5 (IPCC, 2014), current and future risks result from the interaction of 
SLR-related hazards with the vulnerability of exposed ecosystems and societies. According to the specific 
scope of the chapter, this assessment focusses on the additional risks due to SLR and does not account for 
changes in extreme event climatology. Hazards considered are coastal flooding (Section 4.3.4.2), erosion 
(Section 4.3.4.3) and salinization (Section 4.3.4.4). The proxies used to describe exposure and vulnerability 
are the density of assets at the coast (Section 4.3.2.2) and the level of degradation of natural buffering by 
marine and terrestrial ecosystems (Sections 4.3.2.3, 4.3.3.5.4, and 5.3.2 to 5.3.4). The assessment especially 
addresses risks to human assets at the coast, including populations, infrastructures and livelihoods. We 
developed specific metrics (see SM4.3 for details), and their contribution to present-day observed impacts 
and to end-century risk have been assessed based on the authors’ expert judgment and a methodological grid 
presented in SM4.3 (SM4.3.1 to SM4.3.6). The author’s expert judgment draws on Sections 4.3.3.2 to 
4.3.3.5 as well as additional literature for local scale perspectives (SM4.3.9).  
 
Sea-level rise scenarios – Based on the updates for ranges and mean values developed in this chapter 
(Section 4.2, Table 4.3), this assessment considers the end-century GMSL (2100) relative to 1986–2005 
levels for two scenarios, SROCC RCP2.6 and SROCC RCP8.5. Both mean values and the SROCC RCP8.5 
upper end of the likely range are used to assess risk transitions (Figure 4.3, Panel A). For the sake 
of readability, we used the following values: +43 cm (mean SROCC RCP2.6), +84 cm (mean SROCC 
RCP8.5) and +110 cm (SROCC RCP8.5 upper end of likely range). While GMSL serves as 
a representation of different possible climate change scenarios (see Panel A in Figure 4.3, Section 4.1.2), the 
assessment of additional risks due to SLR on specific geographies is developed against end-century relative 
sea level rise (RSL) in order to allow a geographically accurate approach (Panel B, Figure 
4.3). Accordingly, we assess risk to archetypal geographies based on RSLs for each of the two SROCC RCP 
scenarios and each of the real-world case studies to (SM4.3.6 and Table SM4.3.2; see dotted lines in Panel B 
of Figure 4.3). RSL observations include some or all of the following vertical land movements: both uplift 
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(e.g., due to tectonics) and subsidence due to natural (e.g., tectonics, sediment compaction) and human 
(e.g., oil/gas/water extraction, mining activities) factors, as well as to glacio-isostatic adjustment (GIA). 
However, in SROCC, numerical RSL projections only include GIA and the regional gravitational, rotational, 
and deformational responses (GRD, see 4.2.1.5) to ice mass loss. The main reason is 
the difficulty of projecting the influence on some factors such as human interventions to the end of the 
century. 
 
Adaptation scenarios – Risk will also depend on the effectiveness of coastal societies’ responses to both 
extreme events and slow onset changes. To capture the response dimension, four metrics have been 
considered that refer to the implementation of adequately calibrated hard, engineered coastal defences 
(Section 4.4.2.2), the restoration of the degraded ecosystems or the creation of new natural buffers areas 
(Section 4.4.2.2 and 4.4.2.3), coastal retreat and inland relocation (Section 4.4.2.6), and measures to limit 
human-induced subsidence (Sections 4.4.2.2, 4.4.2.5). On these bases, we considered two archetypal 
adaptation scenarios. The first one is called “No-to-moderate adaptation” (see (A) bars in Panel B, Figure 
4.3) and represents a business-as-usual scenario where no major additional adaptation efforts compared to 
today are implemented. That is, neither substantial intensification of current actions nor new types of actions, 
e.g., only moderate raising of existing protections in high-density areas or sporadic episodes of coastal retreat 
or beach nourishment where largescale efforts are not already underway. The second one, called “High 
adaptation” (bars (B) in Figure 4.3), refers to an ambitious combination of both incremental and 
transformational adaptation (i.e., significantly upscaled effort); e.g., relocation of entire districts or raised 
protections in some megacities, or creation/restoration at a significant scale of beach-dune systems including 
indigenous vegetation.  
 
4.3.4.2 Key Findings on Future Fisks and Adaptation Benefits 
 
4.3.4.2.1 Future risks  
The findings suggest that risks from SLR are already detectable for all of the geographies considered (Panel 
B in Figure 4.3), and that risk is expected to increase over this century in virtually all low-lying coastal areas 
whatever their context-specificities or nature (island/continental, developed/developing county) (Cross-
Chapter Box 9). In the absence of high adaptation (bars (A)), risk is expected to significantly increase in 
urban atoll islands and the selected Arctic coastal communities even in a SROCC RCP2.6 scenario, and all 
geographies are expected to experience high to very high risks at the upper likely range of SROCC RCP8.5. 
These results allow refining AR5 conclusions by showing, first, that high risk can indeed occur before the 
1m rise benchmark (Oppenheimer et al., 2014; O'Neill et al., 2017) and, second, that risk as a function of 
SLR is highly variable from one geography to another. Some rationale is provided below for our assessment 
of archetypal geographies, summarizing the more detailed description provided in SM4.3 (SM4.3.6 to 
SM4.3.8). Note however that the text below is not intended to be fully comprehensive and does not 
necessarily include all elements for which there is a substantive body of literature, nor does it necessarily 
include all elements which are of particular interest to decision-makers. 
 
Megacities (SM4.3.8.1, Panel B in Figure 4.3) – Coastal megacities considered in this analysis are Shanghai, 
New York (see Box 4.1 for further details and references on Shanghai and NYC), and Rotterdam (Brinke et 
al., 2010; Hinkel et al., 2018). High, and in many cases, growing population density and total population, and 
high exposure of people and infrastructure to global mean sea level rise and extreme sea level events (ESLs) 
characterize coastal megacities (Hanson et al., 2011). These are high concentrations of income and wealth in 
geographic terms but within relatively small area exhibit large distributional differences of both with 
important implications for emergency response and adaptation. Concentration translates into high exposure 
of monetary value to coastal hazards and the cities noted here have both historical and recent experience with 
damaging extreme sea level events, such as Typhoon Winnie which struck Shanghai in 1997 (Xian et al., 
2018), Hurricane Sandy in New York in 2012 (Rosenzweig and Solecki, 2014), and the North Sea storm of 
1953 which impacted the Rotterdam area (Gerritsen, 2005; Jonkman et al., 2008). However, high density, 
limited space and high cost of land leads to development of below-ground space for transportation (e.g., 
subways, road tunnels) (MTA, 2017) and storage, and even habitation, creating vulnerabilities not seen in 
low-density areas. Natural ecosystems within the megacity boundaries and nearby have been exploited for 
centuries and in some cases decimated or even extirpated (Hartig et al., 2002). Accordingly, they provide 
limited benefits in terms of coastal protection for the densest part of these cities but can be critically 
important for protection of lower-density areas, e.g., wetlands and sandy beaches in the Jamaica 
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Bay/Rockaway sector of New York that protect nearby residential communities (Hartig et al., 2002). Space 
limitations also constrain the potential benefits of ecosystem-based adaptation measures. Instead, megacities 
depend largely on hard defences like sea walls and surge barriers for coastal protection (Section 4.4.2.2). 
Such defences are costly but generally cost effective due to the aforementioned concentration of population 
and value. However, barriers to planning and implementing adaptation include governance challenges 
(Section 4.4.2) such as limited control over finances and the intermittent nature of ESLs which inhibit 
focused attention over the long timescales needed to plan and implement hard defences (Section 4.4.2.2). As 
a result, coastal adaptation for megacities is uneven and we selected the three presented here with a view 
toward exhibiting a range of current and potential future effectiveness. 
 
Urban atoll islands (SM4.3.8.2, Panel B in Figure 4.3) – The capital islands (or groups of islands) of three 
atoll nations in the Pacific and Indian Oceans are considered here: Fongafale (Funafuti Atoll, Tuvalu), the 
South Tarawa Urban District (Tarawa Atoll, Kiribati) and Male’ (North Kaafu Atoll, Maldives). Urban atoll 
islands have low elevation (<4 m above mean sea level; in South Tarawa, e.g., lagoon sides where settlement 
concentrates are <1.80 m in elevation) (Duvat, 2013) and are mainly composed of reef-derived 
unconsolidated material. Their future is of nation-wide importance as they often concentrate populations, 
economic activities and critical infrastructure (airports, main harbours). On the other hand, they illustrate the 
prominence of anthropogenic-driven disturbances to marine and terrestrial ecosystems (e.g., mangrove 
clearing in South Tarawa or human-induced coral reef degradation through land reclamation in Male’) 
(Duvat et al., 2013; Naylor, 2015) and therefore to services such as coastal protection delivered by the coral 
reef (i.e., wave energy attenuation that reduces flooding and erosion, and sediment provision that contributes 
to island persistence over time) (McLean and Kench, 2015; Quataert et al., 2015; Elliff and Silva, 2017; 
Storlazzi et al., 2018). 
 
The controlling factors of urban atoll islands’ future habitability are the density of assets exposed to marine 
flooding and coastal erosion (SM4.3.8.2), future trends in these hazards, and ecosystem response to both 
ocean-climate related pressures and human activities. Urban atoll islands already experience coastal 
flooding, e.g. in Male’ (Wadey et al., 2017) and Funafuti (Yamano et al., 2007; McCubbin et al., 2015). 
Coastal erosion is also a major concern along non-armoured shoreline in South Tarawa (Duvat et al., 2013) 
and Fongafale (Onaka et al., 2017), but not in Male’ where surrounding fortifications have extended along 
almost the entire shoreline from several decades (Naylor, 2015). Salinization already affects groundwater 
lenses, but its contribution to risk varies from one case to another, from low in Male’ (relying on desalinized 
seawater) to important for human consumption and agriculture in South Tarawa (Bailey et al., 2014; Post et 
al., 2018).  
 
Together, high population densities (from ~3,200 people per km2 in South Tarawa to ~65,700 people per km2 
in Male’) (Government of the Maldives, 2014; McIver et al., 2015) and the concentration of critical 
infrastructure and settlements in naturally low-lying flood-prone areas already substantially contribute to 
coastal risk (Duvat et al., 2013; Field et al., 2017). Even stabilized densities in the future would translate into 
a substantial increase of risk under a +43cm GMSL rise. Risk will also be exacerbated by the negative 
effects of ocean warming and acidification, especially on coral reef and mangrove capacity to cope with SLR 
(Pendleton et al., 2016; Van Hooidonk et al., 2016; Perry and Morgan, 2017; Perry et al., 2018) (Sections 
4.3.3.5, 5.3). In addition, even small values of SLR will significantly increase risk to atoll islands’ aquifers 
(Bailey et al., 2016; Storlazzi et al., 2018). Finally, land scarcity in atoll environments will exacerbate the 
importance of SLR-induced damages (on housing, agriculture and infrastructure especially) and cascading 
impacts (on livelihoods, for example as a result of groundwater and soil salinization).  
 
Large tropical agricultural deltas (SM4.3.8.3, Panel B in Figure 4.3) – River deltas considered in this 
analysis are the Mekong delta and the Ganges-Brahmaputra-Meghna delta (GBM). Both deltas are large, 
low-lying and dominated by agricultural production. The risk assessment to SLR considered the entire delta 
area (not only the coastal fringe; see SM4.3.6 for explanation). High population densities (1,280 people per 
km2 and 433 people per km2 in the GBM and Mekong deltas, respectively) (Ericson et al., 2006; Government 
of the Maldives, 2014) and the removal of natural vegetation buffers contribute to high exposure rates to 
coastal flooding, erosion, and salinization. Agricultural production contributes to GDP strongly (Smajgl et 
al., 2015; Hossain et al., 2018), making agricultural fields important assets. In both deltas, mangroves are 
partially degraded (Ghosh et al., 2018; Veettil et al., 2018) as well as other wetlands at the coast and further 
inland (Quan et al., 2018a; Rahman et al., 2018). Currently, riverine flooding dominates in both deltas 
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(Auerbach et al., 2015; Rahman and Rahman, 2015; Ngan et al., 2018). However, high tides and cyclones 
can generate large coastal flooding events, especially in the GBM delta (Auerbach et al., 2015; Rahman and 
Rahman, 2015). Human-induced subsidence increases the likelihood of flooding in both deltas (Brown et al., 
2018b). Coastal and river bank erosion is already a problem in both delta (Anthony et al., 2015; Brown and 
Nicholls, 2015; Li et al., 2017) as well as salinity intrusion, which is impacting coastal aquifers, soils and 
surface waters (Anthony et al., 2015; Brown and Nicholls, 2015; Li et al., 2017). Salinization of water and 
soil resources remains a coastal phenomenon (Smajgl et al., 2015), but salinity intrusion can reach far inland 
in some extreme years and significantly contribute to risk at the delta scale (Section 4.3.3.4.2). Both deltas 
are partly protected with hard engineered defences such as dykes and sluice gates to prevent riverine 
flooding, and polders and dykes in some coastal strethches to prevent salinity intrusion and storm surges 
(Smajgl et al., 2015; Rogers and Overeem, 2017; Warner et al., 2018a). Today, in both deltas, the measures 
implemented to restore natural buffers are still limited to mangroves ecosystems (Quan et al., 2018a; 
Rahman et al., 2018), and the measures aiming at reducing subsidence are underdeveloped (Schmidt, 2015; 
Schmitt et al., 2017). Assuming stable population densities in the future, coastal flooding will contribute 
increasingly to risk at the delta level (Brown and Nicholls, 2015; Brown et al., 2018a; Dang et al., 2018). 
Coastal erosion will increase (Anthony et al., 2015; Liu et al., 2017a; Uddin et al., 2019) and salinization of 
coastal waters and soils will be more significant (Tran Anh et al., 2018; Vu et al., 2018; Rakib et al., 2019) 
and will strongly impact agriculture and water supply at the entire delta (Jiang et al., 2018; Timsina et al., 
2018; Nhung et al., 2019). Without increased adaptation, coastal ecosystems will be largely destroyed at 
+110 cm of SLR (Schmitt et al., 2017; Mehvar et al., 2019; Mukul et al., 2019). Given the size of these 
deltas, it is only under high emission scenarios, that flooding, erosion and salinization lead to high risk at the 
entire delta scale. 
 
Arctic communities (SM4.3.8.4, Panel B in Figure 4.3) – Five small indigenous settlements located on the 
Arctic Coastal Plain are considered in this analysis: Bykovsky (Lena Delta, Russian Federation), Shishmaref 
and Kivalina (Alaska, USA), and Shingle Point and Tuktoyaktuk (Mackenzie Delta, Canada). They lie on 
exposed coasts composed of unlithified ice-rich sediments in permafrost, in areas with seasonal sea ice and 
slow to moderate SLR. These communities have populations ranging from 380 to 900 (fewer and seasonal at 
Shingle Point), heavily dependent on marine subsistence resources (Forbes, 2011; Ford et al., 2016a). 
Shishmaref and Kivalina are located on low-lying barrier islands highly susceptible to rising sea level 
(Marino, 2012; Bronen and Chapin, 2013; Fang et al., 2018; Rolph et al., 2018). Shingle Point is situated on 
an active gravel spit; Tuktoyaktuk is built on low ground with high concentrations of massive ice; and 
Bykovsky is mostly situated on an ice-rich eroding terrace about 20 m above sea level. All the selected 
communities are remote from regions of rapid positive glacial-isostatic adjustment (GIA)—many other areas 
in the Arctic experience rapid GIA uplift (James et al., 2015; Forbes et al., 2018) and have very low 
sensitivity to SLR, which may in fact help to reduce shoaling. 
 
Especially in the Arctic, anthropogenic drivers of recent decades resulted in the induced settlement of 
indigenous peoples in marginalized climate-sensitive communities (Ford et al., 2016b) and the construction 
of infrastructure in nearshore areas, with the assumption of stable coastlines. This resulted in an increased 
exposure to coastal hazards. Coastal erosion is already a major problem in all of the case studies, where 
space for building is usually limited. Accelerating permafrost thaw is promoting rapid erosion of ice-rich 
sediments, e.g. at Bykovsky (Myers, 2005; Lantuit et al., 2011; Vanderlinden et al., 2018) and Tuktoyaktuk 
(Lamoureux et al., 2015; Ford et al., 2016a). Related to this, Kivalina, Shishmaref, Shingle Point, 
Tuktoyaktuk, and parts of the Lena delta (less so for Bykovsky) are already facing high risk of flooding. 
Shishmaref, for example, experienced 10 flooding events between 1973 and 2015 that resulted in emergency 
declarations (Bronen and Chapin, 2013; Lamoureux et al., 2015; Irrgang et al., 2019). There is however no 
evidence of salinisation in the selected communities, but brackish water flooding of the outer Mackenzie 
Delta caused by a 1999 storm surge (a rare event due to upwelling ahead of the storm) led to widespread die-
off of vegetation with negative ecosystem impacts (Pisaric et al., 2011; Kokelj et al., 2012). 
 
Permafrost thaw is already accelerating due to increasing ground temperatures that weaken the mechanical 
stability of frozen ground (Section 3.4.2.2). Arctic SLR and sea-surface warming have the potential to 
substantially contribute to this (Forbes, 2011; Barnhart et al., 2014b; Lamoureux et al., 2015; Fritz et al., 
2017). An additional factor unique to the polar regions is the decrease in seasonal sea ice extent in the Arctic 
(Sections 3.2.1 and 3.2.2), which together with a lengthening open-water season, provides less protection 
from storm impacts, particularly later in the year when storms are prevalent (Forbes, 2011; Lantuit et al., 
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2011; Barnhart et al., 2014a; Melvin et al., 2017; Fang et al., 2018; Forbes, 2019) and therefore reduces the 
physical protection of the land (Section 6.3.1.3).  
 
4.3.4.2.2 Adaptation benefits 
The assessment also shows that benefits in terms of risk reduction over this century are to be expected from 
ambitious adaptation efforts (bars (B), Sections 4.4.2, 4.4.3 and 4.4.3). In the case of megacities especially, 
adequately engineered coastal defences can play a decisive role in reducing risk (Section 4.4.2.2, Box 4.1), 
for example from high to moderate at the SROCC RCP8.5 upper likely range. In other contexts, such as atoll 
islands for example, while engineered protection structures will reduce risk of flooding, they will not 
necessarily prevent seawater infiltration due to the permeable nature of the island substratum. So even 
adequate coastal protection would not eliminate risk (SM4.3.8.3). In urban atoll islands, large tropical 
agricultural deltas and the selected Arctic communities, ambitious adaptation efforts mixing adequate coastal 
defences, the restoration and creation of buffering ecosystems (e.g., coral reefs), and a moderate amount of 
retreat are expected to reduce risk. For megacities, adequately engineered hard protection can virtually 
eliminate risk of flooding up to +85 cm except for residual risk of structural failure (Sections 4.4.2 to 4.4.5). 
Benefits are relatively important in a +85 cm SLR scenario, as they reduce risk from high to moderate-to-
high (atolls, Arctic) and from moderate-to-high to moderate (deltas). These benefits become more modest 
when approaching the upper likely range of SROCC RCP8.5, and risk tends to return to high (Arctic) and 
high-to-very-high (atolls) levels once the +110 cm rise in sea level is reached. Noteworthy in urban atoll 
islands, intensified proactive coastal retreat (e.g., relocation of buildings and infrastructures that are very 
close to the shoreline) is expected to play a substantial role in risk reduction under all SLR scenarios. 
Proactive retreat can indeed compensate for the increasing extent of coastal flooding and associated damages 
(SM4.3.8.3). When taken to the extreme, retreat could lead to the elimination of risk in situ, for example in 
the case of the relocation of the full population of urban atoll islands either elsewhere in the country (e.g., on 
another island) or abroad (i.e., international migration). This is an extreme situation where it is hard to 
distinguish whether the measure is an impact of SLR (and ocean change more broadly), for example, 
displacement, or an adaptation solution. In addition, relocation of people displaces pressure to destination 
areas, with a potential increase of risk for the latter. In other words, “retreat” raises the issue of the “limits to 
adaptation”, which is not represented in Figure 4.3.  
 
These conclusions must be nuanced, first, by the fact that our assessment does not consider either financial 
or social aspects that can act as limiting factors to the development of adaptation options (Sections 4.4.3 and 
4.4.5), for instance, hard engineering coastal defences (Hurlimann et al., 2014; Jones et al., 2014; Elrick-Barr 
et al., 2017; Hinkel et al., 2018). However, from a general perspective, these findings suggest that although 
ambitious adaptation will not necessarily eradicate end-century risk from SLR across all low-lying coastal 
areas around the world, it will help to buy time in many locations and therefore contribute to developing a 
robust foundation for adaptation beyond 2100. Second, the future of other climate-related drivers of risk 
(such as extreme sea level, waves and cyclones; sections 4.2.3.4.1 to 4.2.3.4.3, 6.3.1.1 to 6.3.1.3) is not fully 
and systematically included in each risk assessment above, so that much larger risks than assessed here are to 
be expected. 
 
 
4.4. Responding to Sea-Level Rise 
 
4.4.1 Introduction 
 
SLR responses refer to legislation, plans and actions undertaken to reduce risk and build resilience in the 
face of SLR (see Cross-Chapter Box 3 in Chapter 1). These responses range from protecting the coast, 
accommodating SLR impacts, retreating from the coast, advancing into the ocean by building seawards and 
ecosystem-based adaptation (Box 4.3). Identifying the most appropriate way to respond to SLR is not 
straightforward and is politically and socially contested with a range of governance challenges (also called 
barriers) arising. This section first assesses the post-AR5 literature on the different types of SLR responses 
(i.e., protection, accommodation, advance, retreat and ecosystem-based adaptation) in terms of their 
effectiveness, technical limits, costs, benefits, co-benefits, drawbacks, economic efficiency and barriers, and 
the specific governance challenges associated with each type of response (Section 4.4.2). It then identifies a 
set of overarching governance challenges that arise from the nature of SLR, such as its long-term 
commitment and uncertainty, and the associated politically and socially contested choices that need to be 
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made (Section 4.4.3). Next, we assess planning, public participation, conflict resolution and decision analysis 
approaches and tools that, when applied in combination, can help to address the governance challenges 
identified, facilitating social choices about SLR responses (Section 4.4.4). Finally, we assess enablers and 
lessons learned from practical efforts to implement SLR responses (Section 4.4.5), and conclude with a 
synthesis emphasising the utility of climate resilient development pathways (Section 4.4.6). 
 
 
[START BOX 4.3 HERE] 
 
Box 4.3: Responses to Sea-Level Rise 
 
Protection reduces coastal risk and impacts by blocking the inland propagation and other effects of mean or 
extreme sea-levels. This includes i) hard protection such as dikes, seawalls, breakwaters, barriers and 
barrages to protect against flooding, erosion and salt water intrusion (Nicholls, 2018), ii) sediment-based 
protection such as beach and shore nourishment, dunes (also referred to as soft structures), and iii) 
ecosystem-based adaptation (see below). The three subcategories are often applied in combination as so-
called hybrid measures. Examples are a marsh green-belt in front of a seawall, or a seawall especially 
designed to include niches for habitat formation (Coombes et al., 2015). 
 
Accommodation includes diverse biophysical and institutional responses that mitigate coastal risk and 
impacts by reducing the vulnerability of coastal residents, human activities, ecosystems and the built 
environment, thus enabling the habitability of coastal zones despite increasing levels of hazard occurrence. 
Accommodation measures for erosion and flooding include building codes, raising house elevation (e.g., on 
stilts), lifting valuables to higher floors, and floating houses and gardens (Trang, 2016). Accommodation 
measures for salinity intrusion include changes in land use (e.g., rice to brackish/salt shrimp aquaculture) or 
changes to salt tolerant crop varieties. Institutional accommodation responses include early warning systems, 
emergency planning, insurance schemes, and setback zones (Nurse et al., 2014; Wong et al., 2014). 
 
Advance creates new land by building seaward, reducing coastal risks for the hinterland and the newly 
elevated land. This includes land reclamation above sea levels by land filling with pumped sand or other fill 
material, planting vegetation with the specific intention to support natural accretion of land and surrounding 
low areas with dikes, termed polderisation, which also requires drainage and often pumping systems (Wang 
et al., 2014; Donchyts et al., 2016). 
 
Retreat reduces coastal risk by moving exposed people, assets and human activities out of the coastal hazard 
zone. This includes the following three forms: i) Migration, which is the voluntary permanent or semi-
permanent movement by a person at least for one year (Adger et al., 2014). ii) Displacement, which refers to 
the involuntary and unforeseen movement of people due to environment-related impacts or political or 
military unrest (Black et al., 2013; Islam and Khan, 2018; McLeman, 2018; Mortreux et al., 2018). iii) 
Relocation, also termed resettlement, managed retreat or managed realignment, which is typically initiated, 
supervised and implemented by governments from national to local levels and usually involves small sites 
and/or communities (Wong et al., 2014; Hino et al., 2017; Mortreux et al., 2018). Managed realignment may 
also be conducted for the purpose of creating new habitat. These three sub-categories are not neatly 
separable– any household’s decision to retreat may be “voluntary” in theory, but in practice, may result from 
very limited choices. Displacement certainly occurs in response to extreme events but some of those 
retreating may have other options. Relocation programs may rely on incentives such as land buyouts that 
households adopt voluntarily. The need for retreat and other response measures can be reduced by avoiding 
new development commitments in areas prone to severe SLR hazards (Section 4.4.4.2) 
 
Ecosystem-based adaptation (EbA) responses provide a combination of protect and advance benefits based 
on the sustainable management, conservation, and restoration of ecosystems (Van Wesenbeeck et al., 2017). 
Examples include the conservation or restoration of coastal ecosystems such as wetlands and reefs. EbA 
measures protect the coastline by (i) attenuating waves, and, in the case of wetlands storm surge flows, by 
acting as obstacles and providing retention space (Krauss et al., 2009; Zhang et al., 2012; Vuik et al., 2015; 
Rupprecht et al., 2017); and (ii) by raising elevation and reducing rates of erosion through trapping and 
stabilizing coastal sediments (Shepard et al., 2011), as well as building-up of organic matter and detritus 
(Shepard et al., 2011; McIvor et al., 2012a; McIvor et al., 2012b; Cheong et al., 2013; McIvor et al., 2013; 
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Spalding et al., 2014). EbA are also referred to by various other names, including Natural and Nature-based 
Features, Nature-based Solutions, Ecological Engineering, Ecosystem-based Disaster Risk Reduction or 
Green Infrastructure (Bridges, 2015; Pontee et al., 2016). 
 

 
 
Box 4.3, Figure 1: Different types of responses to coastal risk and SLR 
 
 
[END BOX 4.3 HERE] 
 
 
4.4.2 Observed and Projected Responses, their Costs, Benefits, Co-benefits, Drawbacks, Efficiency and 

Governance 
 
4.4.2.1 Types of Responses and Framework for Assessment 
 
Following earlier IPCC Reports we distinguish between Protection, Retreat and Accommodation responses 
to sea-level rise and its impacts (Nicholls et al., 2007; Wong et al., 2014), but add Advance as a fourth type 
of response that consists in building seaward and upward (Box 4.3). Advance had not received much 
attention in the climate change literature but plays an important role in coastal development across the world 
(e.g., Institution of Civil Engineers, 2010; Lee, 2014; Donchyts et al., 2016). The broader term response is 
used here instead of adaptation, because some responses such as retreat may or may not be meaningfully 
considered to be adaptation (Hinkel et al., 2018). Responses that address the causes of climate change, such 
as mitigating greenhouse gases or geoengineering temperature and sea-level responses to emissions fall 
beyond the scope of this chapter, and are addressed in (Hoegh-Guldberg et al., 2018). In coastal areas where 
anthropogenic subsidence contributes to relative sea-level rise, another important type of response is the 
management of subsidence by, such as, restricting ground fluid abstraction. Although this type of measure is 
considered in the risk assessment developed in Section 4.3.4, it is not assessed here due to a lack of space. 
 
Observed coastal responses are rarely responses to climate-change induced SLR only, but also to relative 
sea-level rise caused by land subsidence as well as current coastal risks and many socio-economic factors 
and related hazards. As a consequence, coastal responses have been practised for centuries, and there are 
many experiences specifically in places that have subsided up to several meters due to earthquakes or human 
ground fluid abstraction in the last century that responding to climate-change induced SLR can draw upon 
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(Esteban et al., 2019). Finally, in practise, many responses are hybrid, applying combinations of protection, 
accommodation, retreat, advance and ecosystem-based adaptation.  
 
Since AR5, the literature on responses has grown significantly. It is assessed in this section for the five above-
described broad types of responses in terms of the following six criteria: 

• Observed responses across geographies, describing where the different types of responses have 
been implemented. 

• Projected responses, which refers to the potential extent of responses in the future, as assessed in 
the literature through modelling or in a more qualitative way. 

• Cost of responses, which refers to the costs of implementing and maintaining responses. Other 
costs that arise due to negative side-effects of implementing a response are captured under the 
criterion “co-benefits and drawbacks”. 

• Effectiveness of responses in terms of reducing SLR risks and impacts. This includes biophysical 
and technical limits beyond which responses cease to be effective. 

• Co-benefits and drawbacks of responses that occur next to the intended benefits of reducing SLR 
risks and impacts. 

• Governance challenges (or barriers), which refers to institutional and organisational factors that 
have been found to hinder the effective, efficient and equitable implementation of responses (See 
also, Section 4.4.3). 

• Economic efficiency of responses, which refers to the overall monetized balance of costs, benefits 
(in terms of the effectiveness of responses), co-benefits and drawbacks. Economic barriers arise 
if responses have a negative net benefit or a benefit-cost ratio smaller than one. While it would be 
desirable to have information on the economic efficiency of integrated responses combining 
different response types, we cannot provide an assessment of this here due to a lack of literature. 

 
4.4.2.2 Hard and Sediment-Based Protection  
 
4.4.2.2.1 Observed hard and sediment-based protection across geographies  
Coastal protection through hard measures is widespread around the world, although it is difficult to provide 
estimates on how many people benefit from them. Currently, at least 20 million people living below normal 
high tides are protected by hard structures (and drainage) in countries such as Belgium, Canada, China, 
Germany, Italy, Japan, the Netherlands, Poland, Thailand, the UK, and the USA (Nicholls, 2010). Many 
more people living above high tides are also protected against ESL by hard structures in major cities around 
the world. There is a concentration of these measures in North West Europe and East Asia, although 
extensive defences are also found in and around many coastal cities and deltas. For example, large scale 
coastal protection exists in Vancouver (Canada), Alexandria (Egypt) and Keta (Ghana; Nairn et al., 1999) 
and 6,000 km of polder dikes in coastal Bangladesh. Gittman et al. (2015) estimate that 14% of the total US 
coastline has been armoured, with New Orleans being an example of an area below sea level dependent on 
extensive engineered protection (Kates et al., 2006; Rosenzweig and Solecki, 2014; Cooper et al., 2016). 
Defences built and raised for tsunami protection, such as post 2011 in Japan (Raby et al., 2015), also provide 
protection against SLR. 
 
The application of sediment-based protection measures also has a long history, offering multiple benefits in 
terms of enhancing safety, recreation and natural systems (JSCE, 2000; Dean, 2002; Hanson et al., 2002; 
Cooke et al., 2012). About 24% of the world’s sandy beaches are currently eroding by rates faster than 0.5 m 
yr–1 (Luijendijk et al., 2018). In the USA, Europe and Australia, these responses are often driven by the 
recreational value of beaches and the high economic benefits associated with beach tourism. More recently, 
sediment-based measures are implemented as effective and yet flexible measures to address SLR (Kabat et 
al., 2009) and experiments are being conducted with innovative decadal scale application of sediments such 
as the sand engine in The Netherlands (Stive et al., 2013).  
 
There is high confidence that most major upgrades in defences happen after coastal disasters (Box 4.1). 
Dikes were raised and re-enforced after the devastating coastal flood of 1953 in the Netherlands and the UK, 
and in 1962 in Germany. In New Orleans, investments in the order of 15 billion USD, including a major 
storm surge barrier, followed Hurricane Katrina in 2005 (Fischetti, 2015), and in New York the Federal 
Government made available 16 billion USD for disaster recovery and adaptation after Superstorm Sandy in 
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2012 (NYC, 2015). Examples in which SLR has been considered proactively in the planning process include 
sea-level rise safety margins in e.g., UK, Germany and France, upgrading defences according to cost-benefit 
analysis in the Netherlands, and SLR guidance in the United States (USACE, 2011). 
 
4.4.2.2.2 Projected hard and sediment-based protection  
There is high confidence that hard coastal protection will continue to be a widespread response to SLR in 
densely populated and urban areas during the 21st century, because this response is widely practised (Section 
4.4.2.2.2), effective in reducing current (Section 4.4.2.2.2) and future flood risk (Section 4.3.3.2) and highly 
cost efficient in urban and densely populated areas during the 21st century (Section 4.4.2.7). There is, 
however, low agreement on the level of hard coastal protections to expect, with projections being based on 
different assumptions. A model assuming that coastal societies upgrade hard protection following scenario-
based cost-benefit analysis finds that 22% of the global coastline will be protected under various SSPs and 1 
m of 21st century global mean SLR (Nicholls et al., 2019). Another model assuming that only areas for 
which benefit-cost ratios are above 1 under SLR scenarios up to 2 m, all SSPs and discount rates up to 6%, 
finds that this would lead to protecting 13% of the global coastline (Lincke and Hinkel, 2018) (Figure 4.14). 
 
4.4.2.2.3 Cost of hard and sediment-based protection  
There is medium evidence and medium agreement on the costs of hard protection. Data on the costs of hard 
defences is only available for few countries and unit costs estimated from this data vary substantially 
depending on building/fill material used, labour cost, urban versus rural settings, hydraulic loads, etc. 
(Jonkman et al., 2013; Lenk et al., 2017; Aerts, 2018; Nicholls et al., 2019). In general there has been limited 
systematic data collection across sites, although useful national guidance does exist in some cases 
(Environment Agency, 2015). Defences depend on good maintenance to remain effective. For some types of 
infrastructure such as surge barriers, maintenance costs are poorly described and hence more uncertain 
(Nicholls et al., 2007). Protection-based adaptation to saltwater intrusion is more complex than adaptation to 
flooding and erosion, and there is less experience to draw upon.  
 
Based on these unit cost estimates, and different assumptions on future protection, global annual protection 
costs have been estimated to be USD 12–71 billion considering coastal dikes only (Hinkel et al., 2014) and 
about USD 40–170 billion per year considering coastal dikes, river dikes and storm surge barriers, under 
RCP2.6, and about US$25-200 billion/year considering coastal dikes only (Tamura et al. 2019) under 
RCP8.5. If protection is widely practised through the 21st century, the bulk of the costs will be maintenance 
rather than capital cost (Nicholls et al., 2019). 
 
 
Table 4.7: Capital and maintenance costs of hard protection measures. 

Measure Capital Cost (in million USD unless 
stated otherwise) 

Annual Maintenance Cost (% of capital cost) 

Sea Wall 0.4–27.5 per km length and meter 
height (Linham et al., 2010) 

1 to 2% per annum (Jonkman et al., 2013) 

Sea Dike 0.9–69.9 per km length and meter 
height (Jonkman et al., 2013; Nicholls 
et al., 2019; Tamura et al., 2019) 

1 to 2% per annum (Jonkman et al., 2013) 

Breakwater 2.5–10.0 per km length (Narayan et al., 
2016) 

1% per annum (Jonkman et al., 2013) 

Storm Surge Barrier 0.9–2.7 (Jonkman et al., 2013) or 2.2 
(Mooyaart and Jonkman, 2017) million 
Euro per meter width  

1% per annum (Mooyaart and Jonkman, 2017) 
or 5 to 10% per annum (Nicholls et al., 2007) 

Saltwater  
Intrusion Barriers 

Limited knowledge Limited knowledge 

 
 
Sediment-based measures are generally costed as the unit cost of sand (or gravel) delivery multiplied by the 
volumetric demand. Unit costs range from USD 3–21 m–³ sand , with some high outlier costs in, e.g., the 
UK, South Africa and New Zealand (Linham et al., 2010; Aerts, 2018). Costs are small where sources of 
sand are plentiful and close to the sites of demand. Costs are further reduced by shoreface nourishment 
approaches. The Netherlands maintains its entire open coast with large-scale shore nourishment (Mulder et 
al., 2011) and the innovative sand engine has been implemented as a full-scale decadal experiment (Stive et 
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al., 2013). The capital costs for dunes are similar to beach nourishment, although placement and planting 
vegetation may raise costs. Maintenance costs vary from almost nothing to several million dollars km–1, 
although costs are usually at the lower end of this range (Environment Agency, 2015). 
 
4.4.2.2.4 Effectiveness of hard and sediment-based protection  
There is high confidence that well designed and maintained hard and sediment-based protection is very 
effective in reducing risk to the impacts of SLR and ESL (Horikawa, 1978; USACE, 2002; CIRIA, 2007). 
This includes situations in which coastal mega-cities in river deltas have experienced, and adapted to, 
relative SLR of several meters caused by land subsidence during the 20th century (Kaneko and Toyota, 
2011; Esteban et al., 2019) (Box 4.1). In principle, there are no technological limits to protect the coast 
during the 21st century even under high-end SLR of 2 m (Section 4.3.3.2), but technological challenges can 
make protection very expensive and hence unaffordable in some areas (Hinkel et al., 2018). Examples are 
South-east Florida because protected areas can be flooded by rising groundwater through underlying porous 
limestone (Bloetscher et al., 2011). Gradually rising water tables behind defences is also an issue, which can 
be managed by increasing pumping and drainage (Aerts, 2018). Maintaining this effectiveness over time 
requires regular monitoring and maintenance, accounting for changing conditions such as SLR and 
widespread erosional trends in front of the defences. There will always be residual risks, which can be 
reduced, but never eliminated, by engineering protection infrastructure to very high standards, such as, so-
called “unbreakable dikes” (De Bruijn et al., 2013).  
 
At what point in time and for which amount of SLR technical limits for coastal protection will be reached is 
difficult to assess. Parts of Tokyo have been protected against five meters of relative SLR during the 21st 
century (Kaneko and Toyota, 2011) and it has been argued that it is possible to preserve territorial integrity 
of the Netherlands even under 5 m SLR, using current engineering technology (Aerts et al., 2008; Olsthoorn 
et al., 2008). This suggests that under RCP2.6, technical limits to adaptation will be rare even under longer-
term SLR. Protecting against high-end SLR will be increasingly technically challenging as we move beyond 
the 21st century. This is not only due to the absolute amount of SLR, but also due to the very high rates of 
annual SLR (e.g., 10–20 mm yr–1 likely range under RCP8.5 in 2100), which challenge the planning and 
implementation of hard protection because major protection infrastructure requires decades to plan and 
implement (Gilbert et al., 1984; Burcharth et al., 2014). In summary, the higher and faster sea-level rise, the 
more challenging coastal protection will be, but putting a number on this difficult. In any case, before 
technical limits are reached economic and social limits will be reached because societies are economically 
not able or socially not willing to invest in coastal protection (Sect 4.3.3.2; Section 4.4.2.2.) (Hinkel et al., 
2018; Esteban et al., 2019). 
 
4.4.2.2.5 Co-benefits and drawbacks of hard and sediment-based protection  
When space is limited (e.g., in an urban setting), co-benefits can be generated through multi-functional hard 
flood defences, which combine flood protection with other urban functions, such as car parks, buildings, 
roads or recreational spaces into one multifunctional structure (Stalenberg, 2013; van Loon-Steensma and 
Vellinga, 2014). An important co-benefit of sediment-based protection, such as beach nourishment and dune 
management, is that it preserves beach and associated environments, as well as tourism (Everard et al., 2010; 
Hinkel et al., 2013a; Stive et al., 2013).  
 
Drawbacks of hard protection include the alteration of hydrodynamic and morphodynamic patterns, which in 
turn may export flooding and erosion problems downdrift (Masselink and Gehrels, 2015; Nicholls et al., 
2015). For example, protection of existing shoreline in estuaries and tidal creeks may increase tidal 
amplification in the upper parts (Lee et al., 2017). Hard protection also hinders or prohibits the onshore 
migration of geomorphic features and ecosystems (called coastal squeeze) (Pontee, 2013; Gittman et al., 
2016), leading to both a loss of habitat as well as of the protection function of ecosystems (See Sections 
4.3.2.4 and 4.4.2.2). Another drawback of raising hard structures, also emphasised in AR5, is the risk of 
lock-in to a development pathway in which development intensifies behind higher and higher defences, with 
escalating severe consequence in the event of protection failure (Wong et al., 2014; Welch et al., 2017), as 
experienced in Hurricane Katrina impacted New Orleans (Burby, 2006; Freudenburg et al., 2009). This lock-
in is results from protection attracting further economic development in the flood zone behind, which again 
leads to further raising defences with sea-level rise and the growing value of exposed assets and affluence.  
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Seabed dredging of sand and gravel can have negative impacts on marine ecosystems such as sea-grass 
meadows and corals (Erftemeijer and Lewis III, 2006; Erftemeijer et al., 2012). Nourishment practices on 
sandy beaches have also been shown to have drawbacks for local ecosystems if local habitat factors are not 
taken into consideration when planning and implementing nourishment and maintenance (Speybroeck et al., 
2006). A further emerging issue is beach material scarcity mainly driven by demand of sand and gravel for 
construction, but also for beach and shore nourishment (Peduzzi, 2014; Torres et al., 2017), which makes 
sourcing the increasing volumes of beach materials required to sustain beaches volumes in the face of sea 
level rise more expensive and challenging (Roelvink, 2015). 
 
4.4.2.2.6 Governance of hard and sediment-based protection 
Reviews and comparative case studies confirm findings of AR5 that governance challenges are amongst the 
most common hindrance to implementing coastal measures (Ekstrom and Moser, 2014; Hinkel et al., 2018). 
One main issue to resolve is conflicting stakeholder interests. This includes conflicts between those 
favouring protection and those being negatively affected by adaptation measures. In Catalonia, for example, 
the tourism sector welcomes beach nourishment because it provides direct benefits, whereas those dependent 
upon natural resources (e.g., fishermen) are increasingly in opposition because they fear that sand-mining 
destroys coastal habitat and livelihood prospects (González-Correa et al., 2008).  
 
There is also conflict related to the distribution of public money between communities receiving public 
support for adaptation and non-coastal communities who pay for this support through taxes (Elrick-Barr et 
al., 2015). Generally, access to financial resources for adaptation, including from public sources, 
development and climate finance or capital markets, frequently constrain adaptation (Ekstrom and Moser, 
2014; Hinkel et al., 2018). For example, homeowners are often not willing to pay taxes or levies for public 
protection or sediment-base measures even if they directly benefit, as found, for example in communities on 
the US east coast where beach nourishment is used to maintain recreational and tourism amenities (Mullin et 
al., 2019). In many parts of the world, coastal adaptation governance is further complicated by existing 
conflicts over resources. For example, illegal coastal sand mining is currently a major driver of coastal 
erosion in many parts of the developing world (Peduzzi, 2014). Examples of this can be found in, for 
example, Ghana (Addo, 2015) and the Comoros (Betzold and Mohamed, 2017). 
 
An associated governance challenge is ensuring the effective maintenance of coastal protection. Ineffective 
maintenance has contributed to many coastal disasters in the past, such as in New Orleans (Andersen, 2007). 
AR5 highlighted that effective maintenance is challenging in a small island context due to a lack of adequate 
funds, policies and technical skills (Nurse et al., 2014). In some countries in which coastal defence systems 
have a long history, effective governance arrangements for maintenance, such as the Water Boards in the 
Netherlands, have emerged. In Bangladesh, where Dutch-like polders were introduced in the 1960s, 
maintenance has been a challenge due to shifts in multi-level governance structures associated with 
independence, national policy priorities and donor involvement (Dewan et al., 2015). 
 
4.4.2.2.7 Economics of coastal adaptation 
At global scales, new economic assessments of responses have mostly focused on the direct costs of hard 
protection and the benefits of reducing coastal extreme event flood risks. These studies confirm AR5 
findings that the benefits of reducing coastal flood risk through hard protection exceed the costs of 
protection, on a global average, and for cities and densely populated areas, during the 21st century even 
under high-end sea level rise (medium evidence, high agreement) (Hallegatte et al., 2013; Wong et al., 2014; 
Diaz, 2016; Lincke and Hinkel, 2018). For example, Lincke and Hinkel (2018) find that, during the 21st 
century, it is economically efficient to protect 13% of the global coastline, which corresponds to 90% of 
global floodplain population, under SLR scenarios from 0.3 to 2.0 m, five Shared Socio-economic Pathways 
(SSPs) and discount rates up to 6% (Figure 4.14). While the above two studies have not considered the 
effects of hard protection in reducing the area of coastal wetlands, it is expected that coastal hard protection 
in densely populated areas and conserving wetlands in sparsely populated areas can go hand in hand. 
Protecting less than 42% of the global coastline would leave coastal wetlands sufficient accommodation 
space to even grow in areas under rising sea-levels during the 21st century (Schuerch et al., 2018). Diaz 
(2016), who includes the cost of wetland loss, using a simpler wetland model, finds that both protection and 
retreat reduces the global net present costs of SLR by a factor of seven as compared to no adaptation 
(applying a discount rate of 4%) under 21st century SLR of 0.3 to 1.3 m and SSP2. There is no global study 
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that has considered social costs and benefits of responses (e.g., health, beach amenity, etc.) or looked at the 
economics of accommodate, retreat and advance responses. 
 
 

 
Figure 4.14: Economic robustness of coastal protection under SLR scenarios from 0.3 m to 2.0 m, the five Shared 
Socio-economic Pathways (SSPs) and discount rates of up to 6%. Coastlines are coloured according to the percentage 
of scenarios under which the benefit-cost ratio of protection (reduced flood risk divided by the cost of protection) are 
above 1. Source: Lincke and Hinkel (2018).  
 
 
At local scales, a large number of economic assessments of response options are available but mostly in the 
grey literature and again with a focus on hard and sediment-based protection. Similar to the global studies, 
hard protection is generally found to be economically efficient for urban and densely populated areas such as 
New York, USA (Aerts et al., 2014) and Ho Chi Minh City, Vietnam (Scussolini et al., 2017). Both global 
and local studies show that sediment-based protection such as beach nourishment is economically efficient in 
areas of intensive tourism development due to the large revenues generated within this sector (Rigall-I-
Torrent et al., 2011; Hinkel et al., 2013a).  
 
4.4.2.3 Ecosystem-Based Adaptation 
 
4.4.2.3.1 Observed ecosystem-based adaptation across geographies  
Relative to hard adaptation measures whose global distribution is not known in detail (Scussolini et al., 
2015), the current global distribution of coastal ecosystems is well-studied (e.g., for saltmarshes and 
mangroves, respectively; Giri et al., 2011; Mcowen et al., 2017). Ecosystem-based adaptation, by definition, 
can only exist and function where the environmental conditions are appropriate for a given ecosystem. 
Mangroves, salt marshes and reefs occur along about 40 to 50% of the world’s coastlines (Wessel and Smith, 
1996; Burke, 2011; Giri et al., 2011; Mcowen et al., 2017). However, there is no clear estimate on the global 
length of coastline covered by ecosystems relevant for ecosystem based adaptation in the face of SLR in part 
because of a mismatch between the spatial resolutions of different estimates available. Mangroves occur on 
tropical and subtropical coasts, and cover 138,000 to 152,000 km2 across about 120 countries (Spalding et 
al., 2010; Giri et al., 2011). At least 150,000 km of coastline in over 100 countries benefit from the presence 
of coral reefs (Burke, 2011) and these are estimated to protect over 100 million people from wave-induced 
flooding globally (Ferrario et al., 2014). The extent of other coastal habitats are less known: salt marshes are 
estimated to occur in 99 countries, especially in temperature to high latitude locations, with nearly 5,500,000 
ha mapped across 43 countries (Mcowen et al., 2017). 
 
Since AR5 there has been growing recognition of the value of conserving existing coastal ecosystems, and 
where possible restoring them, for the flood protection and multiple other benefits they provide 
(Temmerman et al., 2013; Arkema et al., 2015). In parallel, EbA measures are increasingly being 
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incorporated and required within national plans, strategies and targets (Lo, 2016), international adaptation 
funding mechanisms, such as the Adaptation Fund (AF; e.g., Sri Lanka, India; Epple et al., 2016), and 
national natural capital valuations (Beck and Lange, 2016). Given their relative novelty, there is widespread 
interest in building and collecting knowledge of EbA implementation case-studies and examples (Table 4.7). 
Meanwhile, coastal communities around the globe are already implementing EbA responses at local scales, 
with emphasis on community participation and ownership and local priorities, needs and capacities (Reid, 
2016) (see Section 4.4.4.4).   
 
EbA has been used as an integral part of some retreat, advance and accommodation responses. For example, 
on coastlines where high-risk properties are relocated inland, space can be made for ecosystem restoration to 
enhance natural biodiversity and provide coastal protection (French, 2006; Coastal Protection and 
Restoration Authority of Louisiana, 2017). There are also examples of ecosystem restoration to advance 
coastlines and build land elevation (Chung, 2006). EbA can also be an element of accommodation responses 
by, for example, restoring or creating marshes to provide space for flood water (Temmerman et al., 2013).  
 
 
4.4.2.3.2 Projected ecosystem-based adaptation  
While there are projections available of ecosystem responses to climate change and sea-level rise (Section 
4.3.3), to date, there are no large-scale projections available on the future extent of EbA. However, several 
coastal nations, particularly Small Island Developing States explicitly advocate EbA measures as a means to 
address future coastal hazard and SLR concerns. Based on NDCs submitted to the UNFCCC, more than 30 
SIDS cite EbA as a preferred SLR response, with mangrove planting being the most common measure 
(Wong, 2018).  
 
4.4.2.3.3 Cost of ecosystem-based adaptation  
There is limited evidence and low agreement on the costs of ecosystem-based measures to make generally 
valid estimations of the unit costs across large spatial scales. The total cost of an ecosystem-based measure 
includes capital costs, maintenance costs, the cost of land and, in some situations, permitting costs (Bilkovic, 
2017). The costs of restoring and maintaining coastal habitats depend on coastal setting, habitat type and 
project conditions. In general, unit restoration costs are lowest for mangroves, higher for salt marshes and 
oyster reefs, and highest for seagrass beds and coral reefs (Table 4.8). 
 
The conservation of coral reefs and other coastal habitats may also entail substantial opportunity costs 
because alternative uses of this land, such as through agricultural production, industry and settlements, are 
generally of high economic value (Stewart et al., 2003; Balmford et al., 2004; Adams et al., 2011; Hunt, 
2013). The high value of these alternative uses are the reason why globally, coastal ecosystems are amongst 
the ecosystems that face the highest rates of anthropogenic destruction, with estimated annual losses of 1–3% 
of mangroves area, 2–5% seagrass area and 4–9% corals (Duarte et al., 2013). Conserving these areas means 
reversing these trends. 
  
Under the right conditions and to a certain extent, EbA measures are free of maintenance costs, because they 
respond and adapt to changes in their coastal environment. However, maintenance can become important in 
the aftermath of damage by storms or human action, e.g., when wetlands and reefs can be damaged by high 
winds, waves and surges, or affected by dredging operations (Smith III et al., 2009; Puotinen et al., 2016). At 
present, there is limited evidence about the conditions under which EbA measures can self-adapt and when 
they will require human intervention to recover.  
 
 
Table 4.8: Costs of ecosystem-based adaptation 

Type of measure Capital Costs Maintenance Costs 
Wetland Conservation No data available Thinning, clearing debris after storms, etc.: 

Mangrove: 5000 USD ha–1 yr–1 in Florida 
(Lewis, 2001) to 11,000 ha–1 yr–1 (Aerts, 
2018).  
For mangroves globally, 7-85 USD ha–1 yr–

1 (Aerts et al., 2018a);  
For marshes in the Wadden Sea, US 25 m–1 
yr–1 (Vuik et al., 2019). 
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Wetland Restoration 
(Marshes/Mangroves, 
Maritime Forests) 

Wetlands: 85,000-230,000 USD ha–1 

(Aerts et al., 2018a); Mangroves: USD 
9000 ha–1 (median) (Bayraktarov et al., 
2016);  
USD 2000–13,000 ha–1 in American 
Samoa (Gilman and Ellison, 2007); Salt 
Marshes: USD 67,000 ha–1 (Bayraktarov 
et al., 2016); Brushwood dams for marsh 
restoration 150 m–1 (Vuik et al., 2019).  

Similar to maintenance costs for Wetland 
Conservation 

Reef Conservation (Coral/ 
Oyster) 

E.g., start-up costs for Reef MPAs: USD 
96-40,000 km-2 (McCrea-Strub et al., 
2011). 

For MPAs USD 12 M year- for the Great 
Barrier Reef (Balmford et al., 2004). 

Reef Restoration (Coral/ 
Oyster) 

USD 165,600 ha–1 (median) (Bayraktarov 
et al., 2016); Oyster Reefs: USD 66,800 
ha–1 (median) (Bayraktarov et al., 2016); 
Artificial Reefs in the U.K. $ 30,000 - 
90,000 100 m–1 (Aerts et al., 2018a) 

Similar to maintenance costs for Reef 
Conservation  

 
 
4.4.2.3.4 Effectiveness of ecosystem-based adaptation 
While EbA has been able to reduce the impacts of sea-level related hazards, there is still little agreement on 
the size of the effect (Gedan et al., 2011; Doswald et al., 2012; Lo, 2016; Renaud et al., 2016). Dozens of 
independent field, experimental and numerical studies have observed and measured the wave attenuation and 
flood reduction benefits provided by natural habitats, such as marsh and mangrove wetlands (Barbier and 
Enchelmeyer, 2014; Möller et al., 2014; Rupprecht et al., 2017), coral reefs (Ferrario et al., 2014; Storlazzi et 
al., 2017), oyster reefs (Scyphers et al., 2011), and submerged seagrass beds (Infantes et al., 2012). Local and 
global numerical studies indicate that marshes and mangroves can reduce present-day surge-related flood 
damages by >15% annually, and the loss of a metre of living coral reef can double annual wave-related flood 
damages (Narayan et al., 2017; Beck et al., 2018). Artificial reef restoration along tens of meters of coastline 
using Reef Ball™ and other structures has been shown to reduce wave heights and stabilise beach widths 
(Reguero et al., 2018a; Torres-Freyermuth et al., 2018). The effectiveness of EbA measures, however, varies 
considerably depending on storm, wetland, reef and landscape parameters (Koch et al., 2009; Loder et al., 
2009; Wamsley et al., 2010; Pinsky et al., 2013; Quataert et al., 2015), which makes it difficult to extrapolate 
the physical and economic benefits across geographies. Depending on these parameters, rates of surge 
attenuation can vary between 5 and 70 cm per km (Krauss et al., 2009; Vuik et al., 2015).  
 
Critical gaps remain in our understanding about those parameters that together affect the success of 
ecosystem-based measures including choice of species and restoration techniques, lead time, natural 
variability and residual risk, temperature, salinity, wave energy and tidal range (Smith, 2006; Stiles Jr, 2006). 
Among reasons commonly cited for the failure of mangrove restoration projects are poor choice of mangrove 
species, planting in the wrong tidal zones and in areas of excessive wave energy (Primavera and Esteban, 
2008; Bayraktarov et al., 2016; Kodikara et al., 2017). 
 
The effectiveness of ecosystem-based measures also exhibits high seasonal, annual and longer-term 
variability. For example, marsh and seagrass wetlands typically have lower densities in winter which reduces 
their coastal protection capacity (Möller and Spencer, 2002; Paul and Amos, 2011; Schoutens et al., 2019). 
In the long-term, there is limited evidence and low agreement on how changes in sea level, sediment inputs, 
ocean temperature and ocean acidity will influence the extent, distribution and health of marsh and mangrove 
wetlands, coral reefs and oyster reefs (Hoegh-Guldberg et al., 2007; Lovelock et al., 2015; Crosby et al., 
2016; Albert et al., 2017). EbA measures may have differential lead times before they are effective. For 
example, newly planted mangroves provide less wave attenuation until they mature (~3–5 years; Mazda et 
al., 1997). In contrast, a reef restoration project that uses submerged concrete structures performs as a 
breakwater as soon as the sub-structure is in place (Reguero et al., 2018a). 
 
4.4.2.3.5 Co-benefits and drawbacks of ecosystem-based adaptation  
There is high confidence that ecosystem-based measures provide multiple co-benefits such as sequestering 
carbon (Siikamäki et al., 2012; Hamilton and Friess, 2018), income from tourism (Carr and Mendelsohn, 
2003; Spalding et al., 2017), enhancing coastal fishery productivity (Carrasquilla-Henao and Juanes, 2017; 
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Taylor et al., 2018), improving water quality (Coen et al., 2007; Lamb et al., 2017), providing raw material 
for food, medicine, fuel and construction (Hussain and Badola, 2010; Uddin et al., 2013), and a range of 
intangible and cultural benefits (Scyphers et al., 2015) that help improve the resilience of communities 
vulnerable to sea-level hazards (Sutton-Grier et al., 2015). 
 
In comparison to hard structures like seawalls, EbA measures, particularly coastal wetlands, require more 
land (The Royal Society Science Policy Centre, 2014), and competition for land is often why the ecosystems 
have declined in the first place (4.4.2.3.1). On developed coasts, this land is often not available. In such 
cases, hybrid measures that either combine EbA measures with structural measures like mangrove forests in 
front of dykes (Dasgupta et al., 2019), or build ecological enhancements into engineered structures can 
provide an effective solution. Like any other feature that interacts with coastal processes, natural wetlands 
and reefs can increase flooding in some instances, for example, due to the redistribution or acceleration of 
flows in channels within a wetland system (Marsooli et al., 2016), or an increase in infragravity wave (waves 
with frequencies lower than wind waves) energy behind a reef (Roeber and Bricker, 2015). 
 
4.4.2.3.6 Governance of ecosystem-based adaptation  
The coastal protection benefits of natural ecosystems are increasingly being recognized within international 
discourse and national coastal adaptation, resilience and sustainable development plans and strategies 
(Section 4.4.2.3.1). In general, obtaining permits for EbA remains more difficult compared to established 
hard measures, in places like the USA (Bilkovic, 2017). However, there are examples of instruments 
specifically tailored to retain the protective function of EbA (Borges et al., 2009; Government of India, 
2018). The Living Shorelines Regulations of the state government of Maryland in the USA (Maryland DEP, 
2013), for instance, requires that private properties must include marsh creation or other non-structural 
measures when stabilizing their shorelines, unless a waiver is obtained. 
 
There are an increasing number of public and private financial mechanisms and policy instruments to 
encourage the use and implementation of EbA measures (Colgan et al., 2017; Sutton-Grier et al., 2018). For 
example, a regulation by the Federal Emergency Management Agency (FEMA) of the USA, allows 
proponents of hazard mitigation projects, such as state, territorial and local governments, to take into account 
the co-benefits of EbA when assessing benefit-cost ratios of FEMA-funded recovery projects (FEMA, 2015). 
International guidelines are being developed for designing and implementing EbA measures, with the 
intention to support wider implementation of these responses (Hardaway Jr and Duhring, 2010; Van Slobbe 
et al., 2013; Van Wesenbeeck et al., 2017; Bridges et al., 2018). 
  
4.4.2.3.7 Economic efficiency of ecosystem-based adaptation  
There is limited evidence regarding the economic efficiency of EbA, mainly due to the low agreement about 
EbA effectiveness (Section 4.4.2.3.2) and costs (Section 4.4.2.3.2). A study of coastal protection measures 
on the Gulf of Mexico coastline, USA, estimated that EbA measures have average benefit-cost ratios above 
3.5 for 2030 flood risk conditions, assuming a discount rate of 2% (Reguero et al., 2018b)(see Section 
4.4.2.3.2). This study also finds that EbA are nearly four times more cost-efficient along developed 
coastlines as compared to conservation-priority areas because protection benefits are higher in the former 
case due to the level of asset exposure. 
 
4.4.2.4 Advance  
 
4.4.2.4.1 Observed advance across geographies 
Advance has a long history in most areas where there are dense coastal populations and a shortage of land 
(very high confidence). This includes land reclamation through polders around the southern North Sea 
(Germany, the Netherlands, Belgium and England) and China (Wang et al., 2014), which coincides with 
regions where there is extensive hard protection in place (Section 4.4.2.4). Land reclamation has also taken 
place in all major coastal cities to some degree, even if only for the creation of port and harbour areas by 
raising coastal flats above normal tidal levels through sediment infill. On some steep coasts, where there is 
little flat land, such as the Hong Kong Special Administrative Region of China, material from elevated areas 
has been excavated to create fill material to build land out into the sea. 
 
Globally, it is estimated that about 33,700 km2 of land has been gained from the sea during the last 30 years 
(about 50% more than has been lost), with the biggest gains being due to land reclamation in places like 
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Dubai, Singapore and China (Wang et al., 2014; Donchyts et al., 2016). In Shanghai alone, 590 km2 land has 
been reclaimed during the same period (Sengupta et al., 2018). In Lagos, 25 km² of new land is currently 
being reclaimed (https://www.ekoatlantic.com/). Land reclamation is also popular in some small islands 
settings. The Maldives have recently increased the land area of their capital region by constructing a new 
island call Hulhumalé, which has been built 60 cm higher than the normal island elevation of 1.5 m, in order 
to take into account future SLR (Hinkel et al., 2018). 
 
4.4.2.4.2 Projected advance 
Advance was not primarily a response to SLR in the past, but due to a range of drivers, including land 
scarcity, population pressure, and extreme events, future advance measures are expected to become more 
integrated with coastal adaptation and might even be seen as an opportunity to support and fund adaptation 
in some cases (Linham and Nicholls, 2010; RIBA and ICE, 2010; Nicholls, 2018). While there is no 
literature on this topic, significant further advance measures can be expected in land scarce situations, such 
as found in China, Japan and Singapore, in coming decades. 
 
4.4.2.4.3 Costs of advance 
Contrary to protection measures, little systematic monetary information is available about costs of advance 
measures, specifically not in the peer-reviewed literature. The costs of land reclamation are extremely 
variable and depend on the unit cost of fill versus the volumetric requirement to raise the land. Hence, filling 
shallow areas is preferred on a cost basis. 
 
4.4.2.4.4 Effectiveness of advance 
Similar to hard protection, land reclamation is mature and effective technology and can provide predictable 
levels of safety. If the entire land area is raised above the height of extreme sea-levels, residual risks are 
lower as compared to hard protection as there is no risk of catastrophic defence failure.  
 
4.4.2.4.5 Co-benefits and drawbacks of advance 
The major co-benefit of advance is the creation of new land. The major drawbacks include groundwater 
salinisation, enhanced erosion and loss of coastal ecosystems and habitat, and the growth of the coastal 
floodplain (Li et al., 2014; Nadzir et al., 2014; Wang et al., 2014; Chee et al., 2017). In China, for example, 
about 50% of coastal ecosystems have been lost due to land reclamation, leading to a range of impacts such 
as loss of biodiversity, decline of bird species and fisheries resources, reduced water purification, and more 
frequent harmful algal blooms (Wang et al., 2014). For example, the reclamation of about 29,000 ha of land 
in Saemangeum, Republic of Korea, in 2006, has led to a decrease in shorebird numbers by over 30% in two 
years, probably caused by mortality (Moores et al., 2016). Inadvertently, historic land reclamation through 
polderisation may have enhanced exposure and risk to coastal flooding by creating new populated flood 
plains, but this has not been evaluated. 
 
4.4.2.4.6 Governance of advance 
Land reclamation raises equity issues with regards to access and distribution of the new land created, 
specifically due to the political economy associated with high coastal land values, and the involvement of 
private capital and interests (Bisaro and Hinkel, 2018), but this has hardly been explored in the literature. 
 
4.4.2.4.7 Economic efficiency of advance 
There is limited evidence on the efficiency of advance responses in the scientific literature. Benefit-cost 
ratios of land reclamation can be very high in urban areas due to high land and real-estate prices (Bisaro and 
Hinkel, 2018). 
 
4.4.2.5 Accommodation  
 
4.4.2.5.1 Observed accommodation across geographies 
There is a high agreement that accommodation is a core element of adaptation, and it is taking place on various 
scales based on measures such as flood-proofing and raising buildings, implementing drainage systems, land-
use changes as well as early warning systems, emergency planning, setback zones and insurance schemes. 
However, no literature is available that summarizes observed accommodation worldwide. There is low 
evidence of accommodation occurring directly as a consequence of sea level rise but high evidence of 
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accommodation measures being implemented in response to coastal hazards such as coastal flooding, 
salinization and other sea-borne hazards such as cyclones.  
 
Flood-proofing may include the use of building designs and materials which make structures less vulnerable 
to flood damages and/or prevent floodwaters from entering structures. Examples include floating houses in 
Asia, e.g., Vietnam (Trang, 2016), raising the floor of houses in the lower Niger delta (Musa et al., 2016), 
construction of verandas with sandbags and shelves in houses to elevate goods during floods in coastal 
communities in Cameroon (Munji et al., 2013). In Semarang City, Indonesia, residents adapted to coastal 
flooding by elevation of their houses by 50 to 400 cm or by moving their goods to safer places, without making 
structural changes (Buchori et al., 2018). Residents of Can Tho City of the Mekong Delta, Vietnam elevated 
houses in response to tidal flooding (Garschagen, 2015). In urban areas extensive drainage systems contribute 
to accommodation such as Hong Kong and Singapore, which rely on urban drainage systems to handle large 
volumes of surface runoff generated during storm events (Chan et al., 2018). Farming practices have been 
adapted to frequent flooding in the lower Niger delta: farmers raise crops above floodwaters by planting on 
mounds of soil and apply ridging and terracing on farmlands to form barriers (Musa et al., 2016). In floodplains 
of Bangladesh, floating gardens help to maintain food production even if the area is submerged (Irfanullah et 
al., 2011). In floodplains of Bangladesh, the traditional way to build homesteads is on a raised mound, built 
with earth from the excavation of canals and ponds (ADPC, 2005). Coastal infrastructure, such as ports, having 
a functional need to be at the coast, accommodate sea level rise with elevated piers and critical infrastructure. 
One example is Los Angeles, where PierS was raised to an elevation of 6 m (Aerts, 2018). 
 
Communities in The Netherlands are experimenting with floating/amphibious houses capable of adapting to 
different water levels, and similar considerations are also discussed in other geographies, such as in Bangkok 
(Nilubon et al., 2016). Flood-proofing is widely applied in the USA, where wet and dry flood-proofing 
measures are recognised: wet flood-proofing reduces damage from flooding while dry flood-proofing makes 
a building watertight or substantially impermeable to floodwaters up to the expected flood height (FEMA, 
2014). In that sense, dry flood-proofing could also be interpreted as a protection measure on the level of 
individual structures. 
 
Physical accommodation to salinization and saline water intrusion is more poorly documented. It mainly 
entails agricultural adaptation to soil salinity, and saline surface and ground water, as described for the land 
use changes aimed at alternating rice-shrimp systems and shrimp aquaculture in the Mekong delta (Renaud et 
al., 2015) or using methods which decrease soil salinity, such as flushing rice fields with fresh water to wash 
out salinity (Renaud et al., 2015), or applying maize straw in wheat fields (Xie et al., 2017). Coastal 
communities are also experimenting with the use of salt tolerant varieties as a result of breeding programmes, 
for example, in Indonesia (Rumanti et al., 2018), or saline irrigation water in conjunction with fresh water, 
such as for maize in coastal Bangladesh (Murad et al., 2018).  
 
Adaptation planning for sea level rise has been incorporated into land use planning in several states in the US 
(Butler et al., 2016b). In the Yangtze River Delta, landscape planning designs floodplain zones to accept 
floodwaters (Seavitt, 2013). In the Mekong Delta, different land use options, including shifting from 
freshwater agriculture to brackish and saline agriculture, were proposed as seawater intrudes farther inland 
(Smajgl et al., 2015). 
 
Early warning systems (EWS) are frequently incorporated into overall risk reduction strategies and are applied 
for various coastal hazards such as tsunamis in coastal areas of Indonesia (Lauterjung et al., 2017) and hydro-
meteorological coastal hazards in Bangladesh and Uruguay (Leal Filho et al., 2018). They fall under 
“accommodation” as they allow people to remain in the hazard-prone area but provide advance warning or 
evacuation in the face of imminent danger. In contrast to hard protection measures, EWS have shorter 
installation time and lower impact on the environment (Sättele et al., 2015). They can work effectively to 
reduce risk arising from predictable hazardous events but are less well-suited to accommodate slow onset 
change (i.e., events or processes that happen with high certainty under different climate change scenarios).  
 
Climate risk insurance schemes have been recently developed to address sudden, and in rare cases, slow onset 
hazards at the coast, and to increase overall resilience. For coastal risks, insurance is mainly applicable for 
sudden onset hazards, including storm surges and coastal flooding, to buffer against the financial impacts of 
loss events. For slow onset hazards, insurance schemes are not the first-best tool, whereas resilience building 
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and prevention of loss and damage in such instances may be more cost-effective ways to address these risks 
(Warner et al., 2013). In this context, index based insurance products are increasingly offered, particularly in 
low-income countries and have also been included in a number of countries in their Nationally Determined 
Contributions (NDCs) and in some cases in their National Adaptation Plans (NAPs) (Kreft et al., 2017). 
Countries with existing climate risk insurance schemes include, for example, Haiti, Maldives, Seychelles and 
Vietnam. The InsuResilience Global Partnership for Climate and Disaster Risk Finance and Insurance 
Solutions was launched at the 2017 UN Climate Conference (COP 23) in Bonn. InsuResilience aims to enable 
more timely response after a disaster and helps to better prepare for climate and disaster risk through the use 
of climate and disaster risk finance and insurance solutions. So far, climate risk insurance was used mainly in 
the context of agriculture, where it has showed great efficacy in boosting investments for increasing 
productivity (Fernandez and Schäfer, 2018). However, on the global scale, the uptake of index insurance is 
still low (Yuzva et al., 2018).  
 
4.4.2.5.2 Projected accommodation 
While there is no literature on projected accommodation, current trends suggest further uptake of 
accommodation approaches in coming decades, especially where protection approaches are not economically 
viable. Flood proofing of houses and establishment of new building codes to accommodate coastal hazards is 
also expected to become more common in coming decades. Similarly, accommodation measures for salinity 
are under further development, such as rice breeding programs to improve salt tolerance (Linh et al., 2012; 
Quan et al., 2018b). However, the achievements to improve salinity tolerance in rice are rather modest so far 
(Hoang et al., 2016) although efforts are expected to continue or even intensify. Given that index based 
insurance products have been included in NDCs and NAPs in a number of countries (Kreft et al., 2017), uptake 
is expected to grow. Ports can continue elevating hazard-prone facilities and the critical parts of port 
infrastructure can be protected by flood walls. Alternatively, ports can use advance measures to develop port 
facilities seaward (Aerts, 2018). 
 
In summary, due to the large variety of different measures implemented in ad hoc ways worldwide, we have 
low confidence in quantitative projections of accommodation measures in response to sea level rise. 
However, we have high confidence that accommodation measures will continue to be a widespread 
adaptation option especially in combination with protection and retreat measures.  
 
4.4.2.5.3 Cost of accommodation 
The cost of accommodation varies widely with the measures taken as well as the expected flood height. For 
flood proofing of buildings in New York City for instance, Aerts et al. (2014) provided an economic 
rationale for the implementation of improved building codes—such as elevating new buildings and 
protecting critical infrastructure (see also Box 4.1). Flood-proofing can also be undertaken by individuals 
and even small, inexpensive flood-proofing efforts can result in reductions in flood damage (Zhu et al., 
2010). In general, costs for flood-proofing increase as the flood protection elevation increases. Other costs 
include those for maintenance and, if applicable, insurance premiums. For example, deciding for a greater 
elevation of a building in the United States will increase the project’s cost; however, the additional elevation 
may lead to significant savings on flood insurance premiums (FEMA, 2014). 
 
4.4.2.5.4 Effectiveness of accommodation 
Accommodation measures can be very effective for current conditions and small amounts of sea-level rise, 
also buying time to prepare for future SLR. Success stories include the case of Bangladesh where improved 
early warnings, the construction of shelters, and development of evacuation plans, helped to reduce fatalities 
as a result of flooding and cyclones (Haque et al., 2012). Illiteracy, lack of awareness and poor 
communication are, however, still hampering the effectiveness of early warnings (Haque et al., 2012). If well 
designed, and if the premiums reflect individual risks, insurance can effectively discourage further 
investments in risky areas as insurance cost provides information on the nature of locality-specific risks and 
can incentivize investment in risk reduction by requiring that certain minimum standards are met before 
granting insurance coverage (Kunreuther, 2015). Limits to such accommodation occur much earlier as 
compared to protect, advance and retreat measures. While dikes can be raised to 10 m, and retreat can be 
implemented to the 10 m contour or higher, accommodating sea-level rise has practical and economic limits, 
and ultimately a change to retreat or protection will be required. 
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4.4.2.5.5 Co-benefits and drawbacks of accommodation 
The major co-benefit of accommodation is improved resilience of in situ communities without retreat, 
human mobility or the use of land and resources for the construction of protection measures. Flood proofing, 
for example, helps prevent demolition or relocation of structures and it is often an affordable and cost 
effective approach to reducing flood risk (Zhu et al., 2010). Specific accommodation measures have different 
co-benefits such as that stilt houses not only protect from flooding but also from wild animals (Biswas et al., 
2015). Accommodation—depending on the measure implementedha—s the potential to maintain landscape 
connectivity allowing access to the ocean as well as landward migration of ecosystems, at least to some 
degree. It also retains flood dynamics and with that the benefits of flooding such as sediment re-distribution. 
Stilt houses leave space for the floodwater while wet-flood proofing maintains a low hydrostatic pressure on 
the buildings so that structures are less prone to failure during flooding (FEMA, 2014). 
 
The major drawback of accommodation is that it actually does not prevent flooding or salinization, which 
might have consequences not addressed by the accommodation measure itself. Examples include inundation 
of an area where houses are flood proofed but schooling of children and business operations are nevertheless 
disrupted. Significant clean up may also be needed after flood water enters buildings, including the removal 
of sediment, debris or chemical residues (FEMA, 2014). Also, flood-proofing measures require the current 
risk of flooding to be known and communicated to and understood by the public through flood hazard 
mapping studies and flood warning information (Zhu et al., 2010). Small businesses in particular may face 
difficulties to recover from flooding due to lack of forward planning (Hoggart et al., 2014). 
 
Co-benefits of insurance include the possibility that sovereign level insurance may improve the credit ratings 
of vulnerable countries, reducing the cost of capital and allowing them to borrow to invest in resilient 
infrastructure (Buhr et al., 2018). Major natural disasters can weaken sovereign ratings, especially if there is 
no insurance in place (Moritz Kramer, 2015). One much discussed drawback of insurance is the moral 
hazard that may introduce: since someone else bears the costs of a loss, those insured may be less inclined to 
take precautionary measures or may act recklessly (Duus-Otterström and Jagers, 2011). 
 
4.4.2.5.6 Governance of accommodation 
While accommodation measures to coastal hazards are often taking place at the local level, and are decided 
by individual homeowners, farmers or communities, from a governance perspective it is important to provide 
guidance on how and to what extent owners can retrofit their homes to reduce the risk to coastal flooding. In 
New York City, for instance, changes to building codes, require elevating, or flood-proofing of existing and 
new buildings in the 100-year floodplain, and prevent construction of critical infrastructure like hospitals in 
the flood zone (NYC, 2014) (see also Box 4.1). 
 
Effective coastal risk management efforts rely on good governance that includes understanding the 
probability and consequences of hazard impacts like flooding and salinization, and implementing 
mechanisms to prevent or manage all possible events (EEA, 2013). The effectiveness of accommodation 
measures based on institutional measures, such as early warning systems and evacuation plans, largely 
depends on the governance capabilities they are embedded in.  
 
4.4.2.5.7 Economic-efficiency of accommodation 
There is high confidence that many accommodation measures are very cost-efficient. Flood early warning 
systems coupled with precautionary measures have been shown to produce significant economic benefits 
(Parker, 2017). Elevating areas at high risk and retrofitting buildings in Ho Chi Minh City, for example, have 
benefit-cost ratios of 15 under SLR of 180 cm and a discount rate of 5% during the 21st century (Scussolini 
et al., 2017). In the context of the National Flood Insurance Program in the USA, it has been estimated that 
elevating new houses by 60 cm might raise mortgage payments by USD 240 a year, but reduce flood 
insurance by USD 1000 to USD 2000 a year depending on the flood zone (FEMA, 2018), although this only 
addresses present extremes and ignores future sea level rise (Zhu et al., 2010). In Europe, the benefits of 
installing a cross-border continental-scale flood early warning system are estimated at 400 Euro for one Euro 
invested (Pappenberger et al., 2015). 
 
 
4.4.2.6 Retreat  
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4.4.2.6.1 Observed retreat across geographies 
There is limited evidence of migration occurring directly as a consequence of impacts associated with 
environmental change generally and SLR specifically. Research examining the linkages between migration 
and environmental change has been conducted in the Pacific (Connell, 2012; Janif et al., 2016; Perumal, 
2018), South Asia (Szabo et al., 2016; Call et al., 2017; Stojanov et al., 2017), Latin America (Nawrotzki and 
DeWaard, 2016; Nawrotzki et al., 2017), Alaska, in North America (Marino and Lazrus, 2015; Hamilton et 
al., 2016) and Africa (Gray and Wise, 2016). While some limited evidence was found on population 
movement inland associated with shoreline encroachment in Louisiana, United States (Hauer et al., 2018), 
this research emphasizes that the relationship between climate change impacts including sea-level rise and 
migration is more nuanced than suggested by simplified cause-and-effect models (Adger et al., 2015). 
Migration is driven by a large number of individual, social, economic, political, demographic and 
environmental push and pull factors (Black et al., 2011; Koubi et al., 2016), interwoven with mega-trends 
such as urbanisation, land use change and globalisation, and is influenced by development and political 
practices and discourses (Bettini and Gioli, 2016) (Cross-Chapter Box 7). For example, asset endowed 
individuals and households are more able to migrate out from flood-prone areas (Milan and Ruano, 2014; 
Logan et al., 2016), while the poorest households are significantly susceptible to material and human losses 
following an extreme event or disruptive environmental change (Call et al., 2017). Individual and social 
drivers include perceptions of environmental change (Koubi et al., 2016), formed by both direct experience 
of change and indirect information from social networks, mass media and governmental agencies. 
Environmental factors include the longer-term impacts of climate variability and change, which can erode the 
capacity of ecosystems to provide essential services such as availability of freshwater, soil fertility and 
energy production acting as a threat multiplier for other drivers of migration (Hunter et al., 2015; McLeman, 
2018). 
 
There is robust evidence of disasters displacing people worldwide, but limited evidence that climate change 
or sea-level rise is the direct cause. In 2017, 18.8 million people were displaced by disasters, of which 18 
million were displaced by weather-related events including 8.6 million people displaced by floods and 7.5 
million by storms, with hundreds of millions more at risk (IDMC, 2017; Islam and Khan, 2018). The 
majority of resultant population movements tend to occur within the borders of affected countries (Warner 
and Afifi, 2014; Hunter et al., 2015; Nawrotzki et al., 2017).  
  
We find robust evidence of planned relocation taking place worldwide in low-lying zones exposed to the 
impacts of coastal hazards (Hino et al., 2017; Mortreux et al., 2018). While relocation plans are usually 
discussed after an extreme event occurs, they generally target the reduction of long-term environmental risks, 
including those of SLR (McAdam and Ferris, 2015; Hino et al., 2017; Morrison, 2017). For example, in the 
aftermath of Hurricane Katrina, the Louisiana Comprehensive Master Plan for a Sustainable Coast 
recommended the relocation of several communities in the next 50 years due to expected relative RSL rise, 
and relocation of inhabitants from Isle de Jean Charles is already taking place (Barbier, 2015; Coastal 
Protection and Restoration Authority of Louisiana, 2017). In Shismaref, an Iñupiat community in Alaska, 
increased shoreline erosion triggered government-led relocation (Bronen and Chapin, 2013; Maldonado et 
al., 2013). In the Pacific, current coastal risks aggravated by rising sea level are driving the government-led 
relocation of the inhabitants of Taro, the provincial capital of Choiseul Province in the Solomon Islands 
(Albert et al., 2018). In 2014, the government of Kiribati purchased land on Vanua Levu, the second largest 
island of Fiji, with the purpose of economic development and food security, but many i-Kiribati associated 
the acquisition with future relocation to Fiji (Hermann and Kempf, 2017). In southeast Asia, the government 
of Vietnam assists and manages rural populations’ relocation from disaster prone areas exposed to coastal 
risks in the Mekong Delta to large industrial areas with high labour demand, such as Ho Chi Minh City and 
Can Tho City (Collins et al., 2017). Managed realignment carried out for the purposes of habitat creation, 
improved flood risk management and more affordable coastal protection, is increasingly popular in Europe, 
but usually involves small-scale projectsand few people if any (Esteves, 2013). Most of the managed 
realignment projects in the United Kingdom and Germany have been carried out for habitat creation and to 
reduce spending on coastal defences (Hino et al., 2017).  
 
4.4.2.6.2 Projected retreat 
There is high agreement that climate change has the potential to drastically alter the size and direction of 
migration flows (Connell, 2012; Gray and Wise, 2016; Janif et al., 2016; Nawrotzki and DeWaard, 2016; 
Szabo et al., 2016; Call et al., 2017; Nawrotzki et al., 2017), but we have low confidence in quantitative 
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projections of migration in response to sea level rise and extremes of sea level. The number of modelling 
studies of migration in response to environmental drivers has increased rapidly over the past decade Kumari 
et al. (2018), but only a small portion of these model studies address migration in response to sea level rise 
and sea level extremes. Amongst these, a variety of different modelling approaches have been applied, but no 
model currently accounts for all push and pull factors influencing migration decisions (see Section 4.4.2.6.1). 
 
A model projecting future US county-level populations exposed to permanent inundation was combined with 
an empirical model of potential migration destinations to produce the first sea level/migration analysis of 
migrant destinations (Hauer, 2017). Assuming that households with incomes above USD 100,000 per year 
would have resources to stay and adapt, it was found that 1.8m sea level rise by 2100 would displace over 
two million people in South Florida. Projected population gains due to SLR reach several hundred thousand 
for some inland urban areas. A gravity model modified to account for both distance to destinations and their 
attractiveness (deriving from such factors as economic opportunity and environmental amenities) projects a 
net migration into and out of the East African coastal zone, ranging from out-migration of 750,000 people 
between 2020 and 2050 to a small in-migration (Kumari et al., 2018). However, this range includes migration 
stimulated by fresh water availability as well as sea level rise and episodic flooding. A generalized radiation 
or diffusion model predicts 0.9 million people will migrate due to SLR in Bangladesh by 2050 and 2.1 
million by 2100, largely internally, with substantial implications for nutrition, shelter, and employment in 
destination areas (Davis et al., 2018). 
 
A global dynamic general equilibrium framework (Desmet et al., 2018) provides a more comprehensive 
approach to accounting for economic factors including changes to trade, innovation, and agglomeration, and 
political factors, such as policy barriers to mobility, all of which influence the migration response to 
environmental change. Agent-based models attempt to simulate decisions by individuals who face a variety 
of socioeconomic and environmental changes (Kniveton et al., 2012). However, neither general equilibrium 
nor agent-based frameworks have been applied yet to migration responses to sea level rise. Econometric 
models, common in climate/migration studies (Millock, 2015), likewise have yet to be applied to the sea 
level rise context, except for a single case study where an econometric model was used to interpret the 
outcome of a discrete choice experiment (Buchanan et al., 2019). For example, an interesting distinction 
between migration responses to long term temperature and precipitation trends in contrast to extreme events 
like flooding has been noted (Bohra-Mishra et al., 2014; Mueller et al., 2014), but similar econometric 
studies have yet to be done comparing responses to gradual land loss versus flooding during extreme sea 
level events. 
 
4.4.2.6.3 Cost of retreat  
We have limited evidence of estimates on the cost of retreat. There are few cost estimates in the literature and 
these are based on stylized assumptions as little empirical data is available.  
 
The cost of managed relocation, including land acquisition, building of roads and infrastructure and other 
subsidies, was found to vary from 10,000–270,000 £ per home in United Kingdom Coastal Change 
Pathfinder projects (Regeneris Consulting, 2011), and between USD 10,000 in Fiji and USD 100,000 per 
person in Alaska and in the Isle of Jean Charles in the United States (Hino et al., 2017). For people involved 
in planned relocation in Shaanxi Province, Northwest China, households receive subsidies ranging from 
USD 1,200 to USD 5,100 (Lei et al., 2017). The Louisiana’s National Disaster Resilience Competition, 
Phase II Application states that the proposed relocation of 40 households in the Isle de Jean Charles in 
Louisiana is estimated to cost USD 48,379,249, including the cost for land acquisition, infrastructure and 
construction of new dwellings (State of Louisiana, 2015). Generally, maintenance costs do not arise if people 
are moved completely out of the hazard zone (Suppasri et al., 2015; Hino et al., 2017). In cases in which 
people are only moved so that short term but not long term risk is reduced, follow up costs for further 
responses will occur. 
 
The individual costs associated with displacement after an environmental disaster are difficult to obtain. In 
the literature, there are limited estimates of the social costs of residents of Guadeloupe, Saint Croix, St. 
Thomas, Puerto Rico, and the Southeast United States displaced after Hurricanes Hugo (1989) and Katrina 
(2005). A survey conducted across 18 parishes (i.e. counties) in Louisiana in 2006 revealed that non-
displaced households had an average income of USD 36,000 compared to an average income of USD 30,000 
recorded for displaced households (Hori and Schafer, 2010).  
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4.4.2.6.4 Effectiveness of retreat  
There is very high confidence that retreat is effective in reducing the risks and impacts of SLR as retreat 
directly reduces exposure of human settlements and activities (Gioli et al., 2016; Shayegh et al., 2016; 
Hauer, 2017; Morrison, 2017).  
 
4.4.2.6.5 Co-benefits and drawbacks of retreat 
The other outcomes of retreat responses, beyond the one of effectively reducing SLR risks and impacts, are 
complex and affect both origin and destination. Generally, retreat impacts on social networks, access to 
services and economic and social opportunities, and across several well-being indicators (Jones and Clark, 
2014; Adams, 2016; Herath et al., 2017; Kura et al., 2017; McNamara et al., 2018). The socioeconomic 
benefits of migration to individuals and households may include improved access to health and education 
services, as well as labour markets (Wrathall and Suckall, 2016). Destination areas may gain economically as 
populations and capital relocate and provide a new source of labour, capital, and innovation to inland areas 
(see Section 4.4.2.6.2) (De Haas, 2010). Income inequality may be reduced, but only through migration to 
areas with growing industries. Remittances can provide flexibility in livelihood options, supply capital for 
investment and spread risk (Scheffran et al., 2012).  
 
Drawbacks of migration and displacement at the destination can be increased competition for resources and 
within labour markets, pressure on frontline services and on social cohesion as a result of heightened cultural 
or ethnic tension (Werz and Hoffman, 2015), as well as cultural, social and psychological losses related to 
disruptions to sense of place and identity, self-efficacy, and rights to ancestral land and culture (McNamara 
et al., 2018). The unplanned and unassisted voluntary relocation of the inhabitants of Nuatambu and Nusa 
Hope in the Solomon Islands to areas further from the coast poses a series of practical challenges with 
sanitation, access to drinking water and transport (Albert et al., 2018).  
 
The success of planned relocation in terms of the balance of co-benefits and drawbacks varies across 
relocation schemes (Hino et al., 2017) and outcomes are highly uneven (Genovese and Przyluski, 2013; Ford 
et al., 2015; Nordstrom et al., 2015; Bukvic and Owen, 2017; Hino et al., 2017; Jamero et al., 2017). On the 
one hand, well-designed and carefully implemented programmes, such as the ongoing resettlement of 
indigenous communities in Alaska, can improve housing standards and reduce vulnerability (Suppasri et al., 
2015; Albert et al., 2018). On the other hand, relocated communities have often become further 
impoverished (Wilmsen and Webber, 2015), because they are removed from cultural and material resources 
on which they rely, compounded by poor implementation processes that may fail to ensure fairness, social 
and environmental justice and well-being (Herath et al., 2017; Mortreux et al., 2018; Nygren and Wayessa, 
2018). 
 
4.4.2.6.6 Governance of retreat  
Environmentally driven migration and displacement gained major attention over the last decade in the 
international policy community (Goodwin-Gill and McAdam, 2017). Worldwide programmes, such as the 
Nansen Initiative, signed by 110 countries to address the serious legal gap around the protection of cross-
border migrants impacted by natural disasters, have been implemented (Gemenne and Brücker, 2015). In 
2016, the Platform on Disaster Displacement was established to follow up on the work conducted by the 
Nansen Initiative with the objective of implementing the recommendations of the Protection Agenda 
(McAdam and Ferris, 2015). Governments are further encouraged by civil society to relocate people at risk 
and displaced populations out of disaster-prone areas to avoid potential casualties (Lei et al., 2017; Mortreux 
et al., 2018). There have been discussions among members of the Pacific Island countries and territories and 
other nations in the Pacific Rim around new policy mechanisms that would facilitate adaptive migration in 
the region in response to natural hazards including sea level rise (Burson and Bedford, 2015). There have 
been cases presented at the Immigration and Protection Tribunal of New Zealand testing refugee claims 
associated with climate change from Tuvaluan and i-Kiribati applicants, both citing environmental change on 
their home islands as grounds for remaining in New Zealand. One applicant was successful in the quest to 
remain in New Zealand on humanitarian grounds, but not on the grounds of refugee status (Farbotko et al., 
2016). 
 
The is high agreement that outcomes can be improved by upholding the principle of procedural justice and 
respecting the autonomy of individuals and their decisions about where and how they live (Warner et al., 
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2013; Schade et al., 2015; McNamara et al., 2018). However, there are cases where logistical and political 
stances constrain the application of such approach, such as when the government of Sri Lanka prohibited 
rebuilding along the coastline of the country after the 2004 tsunami (Hino et al., 2017). Proactive planning, 
including participation and consultation with those in peril, has the potential to improve outcomes (medium 
confidence) (de Sherbinin et al., 2011 ; Gemenne and Blocher, 2017). Governments can assist migrants 
through policy reforms to enable relocation to fast growing economic regions in the country. An example of 
this approach was adopted in Vietnam by both the National Target Program to Respond to Climate Change 
and the National Strategy for Natural Disaster Prevention, Response and Mitigation targeted at locations 
within the Mekong Delta exposed to the impacts of sea level rise (Nguyen et al., 2015; Collins et al., 2017). 
Outcomes of retreat for both community of origin and destination can also be improved by building the 
human capital of migrants (skills, health, and education), reducing cost of migration and remittance transfer, 
and provision of improved safety nets for migrants at their destinations (high agreement) (Gemenne and 
Blocher, 2017). 
 
4.4.2.6.7 Economic-efficiency of retreat 
There is limited evidence on the efficiency of retreat responses in the scientific literature. 
 
4.4.3 Governance challenges in responding to SLR  
 
4.4.3.1 Introduction 
 
Governance is pivotal to shaping SLR responses. The assessments of SLR responses above has shown that 
each type of response raises specific governance challenges associated with the distribution of costs, benefits 
and negative consequence of responses across societal actors. Hence, SLR responses require governance 
efforts if social conflicts are to be resolved and mutual opportunities amongst all actors realized. Generally, 
responses involve the interaction of diverse public and private actors at different levels of decision making 
with divergent values, interests and goals on coastal activities, lifestyles, livelihoods, risks, resilience and 
sustainability (high confidence) (Dovers and Hezri, 2010; Foerster et al., 2015; Giddens, 2015; Mills et al., 
2016; Dolšak and Prakash, 2018; Hinkel et al., 2018; Hoegh-Guldberg et al., 2018) (AR5). This leads to a 
number of overarching governance challenges that arise from the nature of SLR, which will be assessed in 
this Section.  
 
While there is a substantial literature on coastal governance, little attention has been focused explicitly on 
SLR governance, as was also the case in AR5 (Wong et al., 2014). Furthermore, much of the adaptation 
governance literature has focused on putting forward normative prescriptions on how governance 
arrangements ought to be (e.g., transformative governance) (Chaffin et al., 2016), but with limited empirical 
evidence on the actual effectiveness of these prescriptions (Klostermann et al., 2018; Runhaar et al., 2018). 
Hence, understanding the social mechanisms leading to the emergence of particular governance 
arrangements, and how effective they are in addressing climate change and SLR, is limited (Wong et al., 
2014; Bisaro and Hinkel, 2016; Oberlack, 2017; Bisaro et al., 2018; Roggero et al., 2018a; Roggero et al., 
2018b). An important post-AR5 development has thus been to move beyond descriptions and normative 
prescriptions about ‘good governance’ to explore which factors help (called enablers) or hinder (called 
barriers) how social choices are made and implemented on complex issues like climate change and SLR, as 
elaborated in the next subsection.  
 
4.4.3.2 Understanding Barriers to Adaptation as Governance Challenges 
 
AR5 stated that there are many reasons why adaptation governance is complex (Klein et al., 2014). The first 
generation of studies that investigated this question empirically identified many (lists of) barriers that people 
have experienced in adaptation governance in specific case contexts, including political, institutional, social-
cognitive, economic, financial, biophysical and technical barriers (Klein et al., 2014). Although insightful for 
these specific cases, including sea level rise (Hinkel et al., 2018), accumulation of empirical findings in 
building theory proved to be limited, and it did not result in more evidence-informed advice to policy makers 
on how to deal with barriers (Biesbroek et al., 2013; Eisenack et al., 2014). 
  
In response, in a second generation of studies, several frameworks have been proposed and tested to advance 
scholarship on barriers to adaptation (Eisenack and Stecker, 2012; Barnett et al., 2015; Lehmann et al., 2015; 
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Bisaro and Hinkel, 2016). A frequently used framework was developed by Moser and Ekstrom (2010) who 
identified and linked key barriers to certain stages of the policy process: understanding, planning and 
management stages. Moser and Ekstrom (2010) argue that conditions, such as the scope and scale of 
adaptation, have significant implications for which barriers are activated in the policy process, and how 
persistent and difficult they are to overcome. This and other frameworks have been applied in a diversity of 
contexts, providing valuable insights about the governance challenges involved in adapting to climate change 
and suggestions for improvement (Ekstrom and Moser, 2014; Rosendo et al., 2018; Thaler et al., 2019). 
  
A recent generation of studies takes more theory based approaches and includes contextual factors to analyse 
the key social mechanisms that explain why adaptation processes are often complex, result in deadlocks, 
delays or even failure (Biesbroek et al., 2014; Eisenack et al., 2014; Wellstead et al., 2014; Biesbroek et al., 
2015; Bisaro and Hinkel, 2016; Oberlack and Eisenack, 2018; Sieber et al., 2018; Wellstead et al.). Such 
insights are critical as they can be used by practitioners for policy design (i.e., to prevent certain deadlocks 
from emerging by (re)designing contextual conditions), or provide insights on strategic interventions in 
ongoing processes to revitalize deadlocked adaptation governance (Biesbroek et al., 2017). 
 
4.4.3.3 Governance Challenges in the Face of SLR 
 
There is a wide diversity of governance challenges and opportunities for tackling SLR, with marked 
differences within and between coastal communities in the developed and developing counties. We highlight 
five salient overarching governance challenges that arise due to distinctive features of SLR. We then use this 
typology to assess how planning, participation and conflict resolution (Section 4.4.4.2), decision analysis 
methods (Section 4.4.4.3), and enabling conditions (Section 4.5) can help to address these five challenges. 
 
Time horizon and uncertainty: The long-term commitment to SLR (Section 4.2.3.5) and the large and deep 
uncertainty about the magnitude and timing of SLR beyond 2050 (Section 4.4.4.3.2), challenge standard 
planning and decision making practises for several reasons (high confidence) (Peters et al., 2017; Pot et al., 
2018; Hall et al., 2019; Hinkel et al., 2019). The time horizon of SLR extends beyond usual political, 
electoral and budget cycles. Furthermore, many planning and decision-making practices strive for 
predictability and certainty, which is at odds with the dynamic risk and deep uncertainty characterising SLR 
(Hall et al., 2019). Tensions can arise between established risk based planning that seeks to measure risk, and 
adaptation based responses that embrace uncertainty and complexity (Kuklicke and Demeritt, 2016; Carlsson 
Kanyama et al., 2019). For example, tensions arise because of the mismatch between the relative inflexibility 
of existing law and institutions and the evolving nature of SLR risk and impacts (Cosens et al., 2017; Craig 
et al., 2017; DeCaro et al., 2017). Possible limits of in-situ responses to ongoing SLR (e.g., protection and 
accommodation), bring into question prevailing legal approaches to property rights and land-use regulation 
(Byrne, 2012). In addition, because uncertainty about SLR makes it difficult to decide when to wait and 
when to act, public actors fear being held accountable for misjudgments (Kuklicke and Demeritt, 2016). The 
long time horizon and uncertainty of SLR make it difficult to mobilise political will and the leadership 
required to take visionary action (Cuevas et al., 2016; Gibbs, 2016; Yusuf et al., 2016; Yusuf et al., 2018b). 
 
Cross-scale and cross-domain coordination: SLR creates new coordination problems across jurisdictional 
levels and domains, because impacts cut across scales, sectors and policy domains and responding often 
exceeds the capacities of local governments and communities (medium confidence) (Araos et al., 2017; 
Termeer et al., 2017; Pinto et al., 2018; Clar, 2019; Clar and Steurer, 2019) (Sections 4.3.2 and 4.4.2). Local 
responses are generally nested within a hierarchy of local, regional, national and international governance 
arrangements and cut across sectors (Cuevas, 2018; Chhetri et al., 2019; Clar, 2019). Furthermore 
responding to SLR is only one administrative priority amongst many and the choice of SLR response is 
influenced by multiple co-existing functional responsibilities and perspectives (e.g., planning, emergency 
management, asset management, community development) that compete for legitimacy—further 
complicating the coordination challenge (Klein et al., 2016; Vij et al., 2017; Jones et al., 2019). 
 
Equity and social vulnerability: SLR and responses may affect communities and society in ways that are 
not evenly distributed, which can compound vulnerability and inequity, and undermine societal aspirations, 
such as achieving SDGs (high confidence) (Section 4.3.3.2) (Eriksen et al., 2015; Foerster et al., 2015; 
Sovacool et al., 2015; Clark et al., 2016; Gorddard et al., 2016; Adger et al., 2017; Holland, 2017; Dolšak 
and Prakash, 2018; Lidström, 2018; Matin et al., 2018; Paprocki and Huq, 2018; Sovacool, 2018; Warner et 
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al., 2018a). Costs and benefits of action and inaction are distributed unevenly, with some coastal nations, 
particularly small island states, being confronted with adaptation costs amounting to several percent of GDP 
in the 21st century (Section 4.3.3.2). Land use planning for climate adaptation can exacerbate socio-spatial 
inequalities at the local level, as illustrated in a study of eight cities, namely Boston (USA), New Orleans 
(USA), Medellin (Colombia), Santiago (Chile), Metro Manila (Philippines), Jakarta (Indonesia), Surat 
(India), and Dhaka (Bangladesh) (Anguelovski et al., 2016). Private responses may also exacerbate 
inequalities as, for example, in Miami, USA, where purchase of homes in areas at higher elevation has 
increased property prices displacing poorer communities from these areas (Keenan et al., 2018). In 
Bangladesh, some adaptation practices have enabled land capture by elites, public servants, the military and 
roving gangs, and resulted in various forms of marginalization that compound vulnerability and risk 
(Sovacool, 2018)—a reality also faced by many other coastal communities around the world (Sovacool et al., 
2015). 
 
Social conflict: Ongoing SLR could become a catalyst for possibly intractable social conflict by impacting 
human activities, infrastructure and development along low-lying shorelines (high confidence). Social 
conflict refers here to the non-violent struggle between groups, organisations and communities over values, 
interests, resources, and influence or power, whereby parties seek to achieve their own goals, and may seek 
to prevent others from realizing their goals and possibly harm rivals (Coser, 1967; Oberschall, 1978; Pruitt et 
al., 2003). SLR impacts that could contribute to conflict include: disruptions to critical infrastructure, cultural 
ties to the coast, livelihoods, coastal economies, public health, well-being, security, identity and the 
sovereignty of some low-lying island nations (Sections 4.3.2.4, 4.3.3.2, 4.3.3.6) (Mills et al., 2016; Yusuf et 
al., 2016; Nursey-Bray, 2017; Hinkel et al., 2018). SLR responses inevitably raise difficult trade-offs 
between private and public interests, short- and long-term concerns, and security and conservation goals, 
which are difficult to reconcile due to divergent problem framing, interests, values and ethical positions 
(Eriksen et al., 2015; Foerster et al., 2015; Mills et al., 2016; Termeer et al., 2017; Sovacool, 2018). To some 
countries, SLR presents a security risk due to the scale of potential displacement and migration of people 
(Section 4.4.2.6). Climate change, and rising seas in particular, could compound socio-political stressors 
(Sovacool et al., 2015), challenge the efficacy of prevailing legal processes (Byrne, 2012; Busch, 2018; 
Setzer and Vanhala, 2019), and spark or escalate conflict (Lusthaus, 2010; Nursey-Bray, 2017). 
 
Complexity: SLR introduces novel and complex problems that are difficult to understand and address (high 
confidence) (Moser et al., 2012; Alford and Head, 2017; Wright and Nichols, 2018; Hall et al., 2019). As a 
result of the preceding features of the SLR problem, and the complexity of the nonlinear interactions 
between biogeophysical and human systems, SLR challenges may be difficult to frame, understand and 
respond to. Often, disciplinary science is not sufficient for understanding complex problems like SLR and 
traditional technical problem-solving may not be well-suited for crafting enduring SLR responses (Lawrence 
et al., 2015; Termeer et al., 2015). SLR poses a challenge for bridging gaps between science, policy and 
practice (Hall et al., 2019). The complexity and rapid pace of SLR in some localities is also challenging 
traditional community decision-making practices, e.g., in some Pacific Island communities (Nunn et al., 
2014). 
 
4.4.4 Planning, Engagement and Decision Tools for Choosing Responses 
 
4.4.4.1 Introduction 
 
A range of established and emerging planning, public participation and conflict resolution practices can help 
in making social choices and addressing governance challenges in responding to SLR (Section 4.4.4.2). 
Social choice and decision making processes may also involve the application of formal decision analysis 
methods for appraising and choosing responses (Section 4.4.4.3). Making social choices involves deciding 
which combination of decision methods, modes of participation, conflict resolution strategies, and planning 
processes to use when and how, and then implementing the resultant decisions, monitoring and reviewing 
progress over time, and making appropriate adjustments in the light of experience, change and emerging 
knowledge and needs. We do not assess the legal literature on roles played by law (Byrne, 2012; Vidas, 
2014; Reiblich et al., 2019; Setzer and Vanhala, 2019), or informal approaches such as indigenous decision-
making practices (Carter, 2018).  
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4.4.4.2 Planning, Public Participation and Conflict Resolution in the Face of SLR 
 
Land-use or spatial planning has the potential to help communities prepare for the future and decide how 
to manage coastal activities and land use taking into account the uncertainty, complexity and contestation 
that characterise SLR (high confidence) (Hurlimann and March, 2012; Hurlimann et al., 2014; Berke and 
Stevens, 2016; King et al., 2016; Reiblich et al., 2017) Planners work with governing authorities, the private 
sector, and local communities to integrate and apply tailor-made decision analysis, public participation, and 
conflict resolution approaches that can be institutionalised in statutory provisions, and aligned with informal 
institutional structures and processes carried out at various scales (Hurlimann and March, 2012; Smith and 
Glavovic, 2014; Berke and Stevens, 2016).  
 
Planning can play an important role in crafting SLR responses, addressing several of the governance 
challenges identified above (Section 4.4.3). Planning is future focused and can assist communities to develop 
and pursue a shared vision, and understand and address SLR concerns in locality-specific ways (Hurlimann 
and March, 2012; Berke and Stevens, 2016). Planning can help articulate and clarify roles and 
responsibilities through statutory planning provisions, complemented by non-statutory processes (Vella et 
al., 2016). It can build social and administrative networks that mobilise cross-scale SLR responses, and 
facilitate integration of diverse mitigation and adaptation goals alongside other public aspirations and policy 
imperatives (Hurlimann and March, 2012; Vella et al., 2016). Planning can also facilitate the establishment 
of collaborative regional forums that cross jurisdictional boundaries and assist local governments and other 
stakeholders to pool resources and coordinate roles and responsibilities across multiple governance levels, 
such as the Southeast Florida Regional Climate Change Compact, USA (Shi et al., 2015; Vella et al., 2016). 
Regulatory planning can be used by governing authorities to steer future infrastructure, housing, industry and 
related development away from areas exposed to SLR (Hurlimann and March, 2012; Hurlimann et al., 2014; 
Smith and Glavovic, 2014; Berke and Stevens, 2016).  
 
The extent to which planning is effective in reducing coastal risk, however, varies widely between and 
within coastal nations (Glavovic and Smith, 2014; Shi et al., 2015; Cuevas et al., 2016; King et al., 2016; 
Woodruff and Stults, 2016). Planning can fail to prevent development in at-risk locations, and may even 
accelerate such development, as experienced in settings as diverse as Java, Indonesia (Suroso and Firman, 
2018), the Philippines (Cuevas, 2018), Australia (Hurlimann et al., 2014), and the USA (Vella et al., 2016; 
Woodruff and Stults, 2016). Planning has exacerbated socio-spatial inequalities in cities like Boston, USA, 
Santiago, Chile, and Jakarta, Indonesia (Anguelovski et al., 2016). A study of vulnerability dynamics in 
Houston, New Orleans and Tampa, USA shows that vulnerability can be reinforced or ameliorated through 
adaptation planning and decision-making processes (Kashem et al., 2016). Regulatory planning may be non-
existent in some settings, such as informal settlements, or when used can paradoxically entrench 
vulnerability and compound risk (Berquist et al., 2015; Amoako, 2016; Ziervogel et al., 2016b). Planning 
practice is thus both a contributor to and an outcome of local politics and power. Recognising and navigating 
these challenges is key to realising the promise of planning for reducing SLR risk; and participatory planning 
processes that reconcile divergent interests are central to this endeavour (Forester, 2006; Smith and 
Glavovic, 2014; Anguelovski et al., 2016; Cuevas et al., 2016). 
 
Public participation refers to directly involving citizens in decision-making processes rather than only 
indirectly via voting. Citizen participation is commonplace in public decision-making that addresses 
important societal concerns like SLR (Sarzynski, 2015; Berke and Stevens, 2016; Gorddard et al., 2016; 
Baker and Chapin III, 2018; Yusuf et al., 2018b). Practices sit along a continuum from manipulation to 
minimal involvement and more empowering and self-determining practices (Arnstein, 1969; International 
Association for Public Participation, 2018). Public participation draws on a wide variety of tailored 
engagement processes and practices, from ‘serious games’ (Wu and Lee, 2015) to role-play simulations 
(Rumore et al., 2016), and deliberative-analytical engagement (Webler et al., 2016).  
 
There has been a proliferation of public engagement approaches and practices applied to adaptation in recent 
decades (Webler et al., 2016; Kirshen et al., 2018; Mehring et al., 2018; Nkoana et al., 2018; Yusuf et al., 
2018a; Uittenbroek et al., 2019). Increasing citizen participation in adaptation and other public decision-
making processes shifts the role of government from a chiefly steering and regulating role towards more 
responsive and enabling roles, sometimes referred to as co-design, co-production, and co-delivery of 
adaptation responses (Ziervogel et al., 2016a; Mees et al., 2019). Engagement strategies grounded in 
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community deliberation can help to improve understanding about SLR and response options, reducing the 
polarizing effect of alternative political allegiances and worldviews (Akerlof et al., 2016; Uittenbroek et al., 
2019). Public participation has also the potential to successfully include vulnerable groups in multi-level 
adaptation processes (Kirshen et al., 2018), promote justice and enable transformative change (Broto et al., 
2015; Schlosberg et al., 2017).  
 
It is widely recognized that authentic and meaningful public participation is important and can 
help in crafting effective and enduring adaptation responses – but is invariably difficult to achieve in practice 
(Barton et al., 2015; Cloutier et al., 2015; Sarzynski, 2015; Serrao-Neumann et al., 2015; Berke and Stevens, 
2016; Chu et al., 2016; Schlosberg et al., 2017; Baker and Chapin III, 2018; Kirshen et al., 2018; Lawrence 
et al., 2018; Mehring et al., 2018; Lawrence et al., 2019; Uittenbroek et al., 2019). There is limited empirical 
evidence that public participation per se improves environmental outcomes (Callahan, 2007; Reed, 2008; 
Newig and Fritsch, 2009). Major factors determining outcomes are tacit, including trust, environmental 
preferences, power relationships, and the true motivations of sponsor and participants (Reed, 2008; Newig 
and Fritsch, 2009). Difficulties in realising the anticipated benefits of public participation have been shown 
in coastal settings including Queensland, Australia (Burton and Mustelin, 2013), Germany’s Baltic Sea 
(Schernewski et al., 2018), England (Mehring et al., 2018), Sweden (Brink and Wamsler, 2019), and South 
Africa (Ziervogel, 2019). Research by Uittenbroek et al. (2019) in the Netherlands, for example, shows that 
public participation objectives are more probable if participation objectives and process design principles 
and practices are co-produced by community and government stakeholders. In some cities in the Global 
South, experience shows that a focus on building effective multi-sector governance institutions can facilitate 
ongoing public involvement in adaptation planning and implementation, and enhance long-term adaptation 
prospects (Chu, 2016b). 
 
Conflict resolution refers to formal and informal processes that enable parties to create peaceful solutions 
for their disputes (Bercovitch et al., 2008). They range from litigation and adjudication to more collaborative 
processes based on facilitation, mediation and negotiation (Susskind et al., 1999; Bercovitch et al., 2008). 
Such processes can be used in the public domain to make difficult social choices. Whilst it may be 
impossible to eliminate controversy and disputes due to SLR, conflict resolution can be foundational for 
achieving effective, fair and just outcomes for coastal communities (Susskind et al., 2015; Nursey-Bray, 
2017). Whereas some responses to social conflict (see definition in Section 4.4.3.3) can be destructive (e.g., 
resorting to violence), constructive approaches to conflict resolution (e.g., negotiation and mediation) can 
help disputants satisfy their interests and even have transformational adaptation potential (Laws et al., 2014; 
Nursey-Bray, 2017). Laws et al. (2014), for example, use the term “hot adaptation” to describe adaptation 
efforts that harness the energy and engagement that conflict provokes; and create opportunities for public 
deliberation and social learning about complex problems like SLR. Such an approach has particular 
relevance in settings most at risk to SLR. Realising this potential is, however, challenging in the face of local 
politics and the differential power and influence of disputants. These realities have been accounted for in 
public conflict resolution scholarship and practice for many decades (Forester, 1987; Dukes, 1993; Forester, 
2006), and lessons learned are beginning to be applied to adaptation (Laws et al., 2014; Nursey-Bray, 2017; 
Sultana and Thompson, 2017) and SLR response planning (Susskind et al., 2015). Conflict was turned into 
cooperation in some villages in floodplains in Bangladesh, for example, by facilitated dialogue and 
incentivized cooperation between local communities and government, with external facilitator assistance, 
leading to improved water security in a climate stressed environment (Sultana and Thompson, 2017). At a 
larger scale, the Mekong River Commission, with its water diplomacy framework, provides an institutional 
structure and processes, with technical support, and legal and strategic mechanisms, that help to negotiate 
solutions for complex delta problems and, in so doing, help avert widespread destruction of livelihoods and 
conflict (Kittikhoun and Staubli, 2018).  
 
Many of the techniques used in planning, public participation and conflict resolution, at times together with 
decision-analysis and -support tools, are being applied in combination. In New Zealand, for example, a 
participatory approach was used to combine dynamic adaptive pathways planning with multi-criteria and real 
options analysis (Section 4.4.4.3.4) to develop a 100-year strategy to manage coastal hazard risk (Lawrence 
et al., 2019) (see Box 4.1). Public participation thereby helped to shift communities towards a longer-term 
view and towards considering a wider range of adaptation options and pathways. Such combined approaches 
are also sometimes referred to as Community Based Adaptation, which involve local people directly in 
understanding and addressing the climate change risks they face (Box 4.4). These processes and practices are 
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used in many settings, from small, isolated indigenous communities to large-scale coastal infrastructure 
projects in both the Global North and South. See Table 4.9 in Section 4.4.5 for illustrative examples.  
 
4.4.4.3 Decision Analysis Methods 
 
4.4.4.3.1 Introduction 
Decision analysis methods are formal methods that help to identify alternatives that perform best or well 
with regard to given objectives. An alternative (also called response option or, as a sequence of options over 
time: adaptation pathway) is a specific combination of SLR responses (See Section 4.4.3). Each alternative is 
characterised for each possible future state-of-the world (e.g., levels of SLR or socio-economic development) 
by one or several attributes, which may measure any relevant social, ecological, or economic effect 
associated with choosing and implementing the alternative (Kleindorfer et al., 1993). Attributes commonly 
used include cost of adaptation alternatives, monetary and non-monetary benefits of the SLR impacts 
avoided, or net present value (NPV), which is the difference between discounted monetised benefits over 
time and discounted costs over time. Formal decision analysis is one way to support social choices that is 
generally suggested for decision-support if decisions are complex and involve large investments, as is 
frequently the case in coastal contexts in the face of SLR.  
 
In order to be effective, decision analysis needs to be embedded in a governance process that accounts for 
societal needs and objectives (Sections 4.4.4.2 and 4.4.5). This is because decision analysis entails a number 
of normative choices about the objectives chosen, the criteria used, the specific methods and data applied, 
the set of alternatives considered, and the attributes used to characterize alternatives. These choices need to 
reflect the diversity of values, preference and goals of all stakeholders involved in and affected by a decision. 
Furthermore, decision analysis needs to consider all available knowledge, including all major uncertainties in 
both climate and non-climate factors, ambiguities in expert opinions, and differences in approaches, because 
a partial consideration of uncertainty and ambiguity could misguide the choice of adaptation alternatives 
(high confidence) (Renn, 2008; Jones et al., 2014; Hinkel and Bisaro, 2016). 
 
Since AR5, the literature on coastal decision analysis has advanced significantly, specifically addressing the 
large uncertainty about post-2050 SLR through i) using robust decision approaches instead of expected 
utility, ii) iterating or adapting decisions over time, and iii) increasing flexibility of responses. Each advance 
is elaborated below. Furthermore, the coastal decision analysis literature also stresses the consideration of 
multiple criteria or attributes, because adaptation often involves stakeholders with differing objectives and 
ways of valuing alternatives (Oddo et al., 2017). Many decision making methods combine each of the three 
advances highlighted here (Marchau et al., 2019). The suitability of each method depends strongly on the 
specific context, including available resources, technical capabilities, policy objectives, stakeholder 
preferences, and available information. 
 
4.4.4.3.2 Using robustness criteria instead of expected utility 
A growing literature on decision analysis of coastal adaptation advocates the use of robust decision making 
(RDM) approaches instead of maximising expected utility approaches (Hallegatte et al., 2012; Haasnoot et 
al., 2013; Lempert et al., 2013; Wong et al., 2017). The core criterion to be considered for choosing between 
the two types of approaches is whether one is confronted with a situation of shallow or deep uncertainty 
(high confidence) (Lempert and Schlesinger, 2001; Kwakkel et al., 2010; Kwakkel et al., 2016b; Hinkel et 
al., 2019). Uncertainty is shallow when a single unambiguous objective or subjective probability distribution 
can be attached to states-of-the-world. Uncertainty is deep, when this is not possible, either because there is 
no unambiguous method for deriving objective probabilities or the subjective probability judgements of 
parties involved differ (Cross-Chapter Box 4 in Chapter 1; Type 2).  
 
Expected utility approaches can only be applied for identifying an optimal response in situations of shallow 
uncertainty. This is because these approaches require a probability distribution over states of the world in 
order to identify the optimal alternative which leads to the highest expected utility (i.e., the probability 
weighted sum of the utilities of all outcomes under a given alternative and all states-of-the-world) (Simpson 
et al., 2016). A prominent example of this approach is cost-benefit analysis under risk, which assesses 
expected outcomes across states of the world in terms of NPV (the discounted stream of net benefits). Cost-
benefit analysis has several well-known limitations, such as its sensitivity to discount rates and the difficulty 
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to monetize ecological, cultural and other intangible benefits (Section 1.1.4) that have been widely discussed 
in the climate change literature (Chambwera et al., 2014; Kunreuther et al., 2014; Dennig, 2018). 
 
In the context of coastal adaptation, uncertainty is only shallow if projected SLR does not significantly differ 
between low-end (e.g., RCP2.6) and high-end (e.g., RCP8.5) scenarios (Hinkel et al., 2019). The point in 
time when this is the case (i.e., time of scenario divergence) depends on what difference in expected utility 
matters to the particular stakeholders involved in a decision. The time of scenario divergence also differs 
across locations. In locations where the internal sea-level variability is large as compared to relative SLR, it 
takes longer before the differences in sea-levels under low-end and high-end scenarios become apparent. 
Figure 4.15 illustrates this effect for the extreme sea level projections of this report (Sections 4.2.3.2 and 
4.2.3.4), following the approach of Hinkel et al. (2019). Under the assumption that a 10% statistical distance 
between the distributions of RCP2.6 and RCP8.5 is decision-relevant, scenario divergence occurs before 
2050 for approximately two thirds of coastal sites with sufficient observational data, but for 7% of locations 
this occurs later than 2070. 
 
In principle, a single unambiguous probability distribution on future sea-levels could also be attained beyond 
the time of scenario divergence by attributing subjective probabilities to emission scenarios, but individuals 
may significantly disagree in their subjective probabilities, which again results in deep uncertainty (Lempert 
and Schlesinger, 2001; Stirling, 2010). For this reason, very few studies that assign subjective probabilities 
to emission scenarios are found in the literature (Woodward et al., 2014; Abadie, 2018). But even before the 
year of scenario divergence is reached, uncertainty about relative sea-level rise can be deep, because of deep 
uncertainties about non-climatic contributors to relative sea-level change, such as vertical land movement 
during or after earthquakes and human-induced subsidence (Cross-Chapter 5 in Chapter 1; Section 4.2.2.4) 
(Hinkel et al., 2019). 
 
Under situations of deep uncertainty, RDM approaches aim to identify alternatives that perform reasonably 
well (i.e., “are robust”) under a wide range of states-of-the-world or scenarios and hence do not require 
probability assessments. These approaches include minimax or minimax regret (Savage, 1951), info gap 
theory (Ben-Haim, 2006), robust optimisation (Ben-Tal et al., 2009) and exploratory modelling methods that 
create a large ensemble of plausible future scenarios for each alternative, and then use search and 
visualization techniques to extract robust alternatives (Lempert and Schlesinger, 2000). SLR examples of 
RDM include Brekelmans (2012) who minimize the average and maximum regret across a range of SLR 
scenarios for investments in dike rings in the Netherlands and Lempert et al. (2013) who apply RDM in Hoh-
Chi-Minh City. 
 
But even if SLR uncertainty is shallow, RDM are more suitable than expected utility approaches if parties 
involved or affected by a decision have a low uncertainty tolerance, because the goal of the uncertainty 
intolerant decision maker is to avoid major damages under most or all circumstances (Hinkel et al., 2019). 
An adaptation strategy developed based on the maximization of expected utility may not meet this goal, 
because worst-case damages occurring can exceed expected damages by orders of magnitude. 
 
The uncertainty tolerance of stakeholders is also determining how large of a SLR range needs to be 
considered in RDM. Stakeholders (i.e., those deciding and those affected by a decision) that have a high 
uncertainty tolerance (e.g. those planning for investments that can be very easily adapted) can use the 
combined likely range of RCP2.6 and RCP8.5 (0.29-1.10 m by 2100) for long-term adaptation decisions. For 
stakeholders with a low uncertainty tolerance (e.g. those planning for coastal safety in cities and long term 
investment in critical infrastructure) it is meaningful to also consider SLR above this range, because a 17% 
chance of GMSL exceeding this range under RCP8.5 is too high to be tolerated from this point of view 
(Ranger et al., 2013; Hinkel et al., 2015; Hinkel et al., 2019). 
 
Independent of the debate about whether to apply expected utility or robust decision-making approaches, 
there is an extensive literature that applies scenario-based cost-benefit analysis. For example, this approach 
has been applied for setting the safety standards of Dutch dike rings (Kind, 2014; Eijgenraam et al., 2016), 
exploring future protection alternatives for New York (Aerts et al., 2014), Ho Chi Minh City (Scussolini et 
al., 2017), and for many other locations. Scenario-based cost-benefit analysis differs from cost-benefit 
analysis under risk discussed above in that scenario-based cost-benefit analysis is not applied to rank 
alternatives across scenarios, but a “separate” cost-benefit analysis is applied within each emission or SLR 
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scenario considered. While this identifies the optimal alternative under each scenario, it does not formally 
address the problem faced by a coastal decision- maker, namely to decide across scenarios (Lincke and 
Hinkel, 2018). Nevertheless, the results of scenario-based cost-benefit analysis (i.e., NPV of each alternative 
under each scenario) provide guidance for decision-makers and can also be used as inputs (i.e., as attributes) 
to robust and flexible decision-making approaches. 
 
 

 
Figure 4.15: Year of scenario divergence between extreme sea-level projections for RCP2.6 and RCP8.5 for all tide-
gauge locations with sufficient observational data relative to a 1986–2005 baseline (bottom panel). Time of divergence 
is defined using a 10% threshold in the statistical distance between the two distributions, which can be graphically 
interpreted as the first year in which at least 10% of the area under the PDF of RCP8.5 lies outside of the area under the 
upper half (i.e. above the 50th percentile) of the PDF of RCP2.6. Upper panels indicate the median and 5–95% range of 
future extreme sea level relative to the 1986–2005 baseline for three tide gauge locations with low variability (Papeete), 
medium variability (New York) and high variability (Cuxhaven). Locations with low variability have a relatively early 
scenario divergence. 
 
 
4.4.4.3.3 Adapting decisions over time 
Irrespective of whether expected utility or robustness criteria are applied, there is high confidence that an 
effective way of dealing with large uncertainties is adaptive decision-making (also called iterative decision 
making, adaptive planning or adaptive management), which maintains that decision and decision analysis 
should be conducted within an iterative policy cycle. This approach includes monitoring of sea level 
variables and evaluation of alternatives in this light in order to learn from past decisions and collect 
information to inform future decisions (Haasnoot et al., 2013; Barnett et al., 2014; Burch et al., 2014; Jones 
et al., 2014; Wise et al., 2014; Kelly, 2015; Lawrence and Haasnoot, 2017). Such a staged approach is 
especially suitable for coastal adaptation due to the long lead and lifetimes of many coastal adaptation 
measures and the deep uncertainties in future sea-levels (Hallegatte, 2009; Kelly, 2015). Prominent 
representatives of methods that entail this idea are Dynamic Adaptive Policy Pathways (Haasnoot et al., 
2013) and Dynamic Adaptation Planning (Walker et al., 2001). An important prerequisite for any adaptive 
DM approach is a monitoring system that can detect sea-level signals sufficiently early to enable the required 
responses (Hermans et al., 2017; Haasnoot et al., 2018; Stephens et al., 2018). 
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Over the last years, many different frameworks for adaptative decision making have been put forward, 
including Adaptive Policy Making (Walker et al., 2001), Dynamic Adaptive Policy Pathways (Haasnoot et 
al., 2013), Dynamic Adaptive Planing (Walker et al., 2013), Iterative risk management (Jones et al., 2014) 
and Engineering Options Analysis (de Neufville and Smet, 2019). Each frameworks emphasizes particular 
aspects of adaptive decision making and has merits in specific situations depending on the preferences, 
goals, uncertainties and information at stake (Marchau et al., 2019). Nevertheless all of these frameworks 
share the following generic and iterative steps 
1. Set the stage: Identify current situation, objectives, options (alternatives) and uncertainties. 
2. Develop a dynamic plan, which consists of a basic plan plus contingency actions to be carried out based 

on observed triggers. 
3. Implement basic plan and monitor system for triggers. 
4. Monitor and act upon triggers. 
 
4.4.4.3.4 Increasing flexibility of responses 
An idea closely related to adaptive decision making is to keep future alternatives open by favouring flexible 
alternatives over non-flexible ones. An alternative is said to be ‘flexible’ if it allows switching to other 
alternatives once the implemented alternative is no longer effective. For example, a flexible protection 
approach would be to build small dikes on foundations designed for higher dikes, in order to be able to raise 
dikes in the future should SLR necessitate this. 
 
A prominent and straightforward method that addresses the objective of flexibility is adaptation pathways 
analysis (Haasnoot et al., 2011; Haasnoot et al., 2012), which is one component of Dynamic Adaptive Policy 
Pathways. The method graphically represents alternative combinations of measures over time together with 
information on the conditions under which alternatives cease to be effective in meeting agreed objectives, as 
well as possible alternatives that will then be available. As time and SLR progress, monitoring may trigger a 
decision to switch to another alternative. Adaptation pathway analysis has been widely applied both in the 
scientific literature as well as in practical cases. Applications after AR5 include Indonesia (Butler et al., 
2014), New York City (Rosenzweig and Solecki, 2014), Singapore (Buurman and Babovic, 2016) and 
Australia (Lin and Shullman, 2017). In New Zealand, the method has been included into national guidance 
for coastal hazard and climate change decision-making (Lawrence et al., 2018). There is high confidence that 
the method is useful in interaction with decision-makers and other stakeholders, helping to identify possible 
alternative sequences of measures over time, avoiding lock-in, and showing decision-makers that there are 
several possible pathways leading to the same desired future (Haasnoot et al., 2012; Haasnoot et al., 2013; 
Brown et al., 2014; Werners et al., 2015). 
 
Alternatives can also be characterized through multiple attributes such as costs, effectiveness, co-benefits, 
social acceptability, etc., which in turn can be used in multi-attribute decision-making methods (Haasnoot et 
al., 2013). An important attribute is transfer cost, which is the cost of course correction (switching from one 
alternative to another), reflecting the potential for path-dependency (Haasnoot et al., 2019). Delaying 
decisions and opting for flexible measures introduces extra costs, such as transfer costs. Also, flexible 
measures are often more expensive than inflexible ones, and damages may occur whilst delaying the 
decision. An important question therefore is whether it is cheaper to implement a flexible measure now or to 
wait and implement a less flexible (i.e., cheaper) measure later in time when more information is at hand. 
 
Technically more demanding methods such as real-options analysis (Dixit et al., 1994), and decision tree ana 
lysis (Conrad, 1980), can also find pathways that are economically efficient in terms of flexibility and timing 
of adaptation. There is little application of these approaches in the SLR literature. For example, Woodward 
et al. (2014) applied real-option analysis to determine flood defences around the Thames Estuary, London, 
England, Buurman and Babovic (2016) for climate-proofing drainage networks in Singapore, Dawson et al. 
(2018) for coastal rail infrastructure in southern England, and Kim et al. (2018) for assessing flood defences 
in southern England. A requirement for applying real-option analysis and decision tree analysis is to quantify 
today how much we will have learned at a given point in time in the future. The few applications of these 
methods to SLR-related decisions in the literature have generally used ad-hoc assumptions. For example, 
Woodward et al. (2011) assumed either perfect learning (i.e., in 2040 we will be sure which SLR trajectory 
we will be on) or no learning (i.e., uncertainty ranges and confidence in these remains as today). Others have 
derived learning rates from comparing past progress in SLR projections and then applied these to the future. 
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An example is given by Dawson et al. (2018) who derive learning rates from the 2002 and 2009 SLR 
projections of the UK Climate Impacts Programme (UKCIP) and apply these in real option analysis. 
 
4.4.4.3.5 Research needs 
Four general gaps can be identified in the literature. First, the generation of sea level rise information is 
insufficiently coupled to the use of this information in decision analysis. This constitutes a limitation, as 
different coastal decision contexts require different decision analysis methods, which in turn require different 
sea level rise information. Specifically, applications of decision analysis methods generally convert existing 
sea-level information to fit their method, often misinterpreting the information, making arbitrary assumptions 
or losing essential information in the process (Hinkel et al., 2015; Bakker et al., 2017; Van der Pol and 
Hinkel, 2018). Second, with the exception of adaptation pathway analysis, methods of robust and flexible 
decision making are under-represented in the literature despite their suitability (Van der Pol and Hinkel, 
2018). Third, research is necessary to compare the various methods, to identity which methods are best 
suitable in which context and to develop consistent categorisations of methods (Hallegatte et al., 2012; 
Haasnoot et al., 2013; Hinkel et al., 2015; Watkiss et al., 2015; Dittrich et al., 2016; Suckall et al., 2018). 
Fourth, future research needs to address how to embed decision analysis better into real world planning and 
decision-making processes, recognising that adaptation to sea level rise is a multi-stakeholder process often 
characterized by conflicting interests and interdependence between stakeholders (Sect 4.4.3). Addressing 
these gaps requires closer cooperation between SLR sciences, decision science and planning and governance 
scholars. An underlying challenge is to design and integrate relevant formal decision-making approaches into 
the heterogeneous reality of local planning and decision-making cultures, institutions, processes and 
practices, often with community-specific needs and requirements (see Box 4.4).  
 
 
[START BOX 4.4 HERE]  
 
Box 4.4: Community Based Experiences: Canadian Arctic and Hawkes Bay, New Zealand 
 
Climate-Change Adaptation on the Canadian Arctic Coast 
Communities of the Inuvialuit Settlement Region (ISR), established under the Inuvialuit Final Agreement 
(Government of Canada, 1984), include the delta communities of Aklavik and Inuvik (the regional hub) and 
the coastal hamlets of Tuktoyaktuk, Paulatuk, Sachs Harbour, and Ulukhaktok. The Inuvialuit Regional 
Corporation (IRC) administers Inuvialuit lands, a portfolio of businesses, and social and cultural services, 
including co-management of food harvest resources. Other social, education, health, and infrastructure 
services are managed by the Government of the Northwest Territories and municipal Councils. Community 
Corporations and Hunters and Trappers Committees handle other aspects of governance and socio-economic 
development. Very high ground-ice content renders the coast and coastal infrastructure in this region 
sensitive to rising temperatures and largely precludes conventional hard shore protection. Higher 
temperatures (>3°C rise since 1948), combined with rising sea level and a lengthening open-water season, 
contribute to accelerating coastal erosion, threatening infrastructure, cultural resources, and the long-term 
viability of Tuktoyaktuk Harbour, while impacting winter travel on ice, access to subsistence resources, food 
security, safety and well-being (Lamoureux et al., 2015). Despite ongoing shore recession, there is strong 
attachment to the most vulnerable sites and a reluctance to relocate. Adaptation challenges include technical 
issues (e.g., the ice-rich substrate, sea ice impacts), high transportation costs (until recent completion of an 
all-weather road to Tuktoyaktuk, heavy or bulky material had to come in by sea or ice road), availability of 
experienced labour, and, crucially, financial resources. Other inhibitors of adaptation include access to 
knowledge in suitable forms for uptake, gaps in understanding, research readiness, and institutional barriers 
related to multiple levels of decision-making (Ford et al., 2016a). The IRC, as the indigenous leadership 
organization in the ISR, is moving to play a more proactive role in driving adaptation at the regional level 
(IRC, 2016), as indigenous leaders across the country are demanding more control of the northern research 
agenda for adaptation action (Bell, 2016; ITK, 2018). For a number of years, IRC has promoted community-
based monitoring, incorporating Inuvialuit knowledge in partnership with trusted research collaborators. 
Recently IRC is exploring partnership with the community-based ice awareness service and social enterprise, 
SmartICE Inc. Despite the inherent adaptability of Inuit culture, concentration in locality-bound communities 
dependent on physical infrastructure has increased vulnerability, as changing climate has raised exposure. 
Various government and academic initiatives and tools over many years to promote resilience and adaptation 
strategies have had limited impact. Current engagement supporting locally-driven knowledge acquisition and 
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management capacity, combined with IRC institutional leadership with government support, are expected to 
enable a more effective co-designed and co-delivered adaptation agenda. 
 
Clifton to Tangoio Coastal Hazards Strategy 2120 Hawkes Bay, New Zealand: 
A community-based and science-informed decision-making process 
New Zealand is applying tools for decision making under deep uncertainty (Lawrence and Haasnoot, 2017; 
Lawrence et al., 2019) to address the changing risk and uncertainties related to sea level rise impacts on 
coastal settlements. An opportunity arose in 2017 for the Resilience National Science Challenge, “The 
Living Edge” research project (https://resiliencechallenge.nz/edge/), to co-develop a Coastal Hazards 
Strategy for the Clifton to Tangoio coast in Hawkes Bay, New Zealand. The Strategy, a joint council/ 
community/ iwi Māori initiative (Kench et al., 2018), planned to use Multi-Criteria Decision Analysis 
(MCDA) within their decision framework—a static tool in time and space, unsuited for decision making 
where changing risk and uncertainties exist over long timeframes. The Dynamic Adaptive Policy Pathways 
(Haasnoot et al., 2013) approach and a modified Real Options Analysis were proposed by the “Edge Team” 
and integrated with MCDA (Lawrence et al., 2019) in a process comprising a Technical Advisory Group of 
councils and two community panels of directly affected communities, infrastructure agencies, business, 
conservation interests, and iwi Māori. Many adaptation options and pathways were assessed for their ability 
to reduce risk exposure and maintain flexibility for switching pathways over a 100-year timeframe—the 
planning timeframe mandated by the New Zealand Coastal Policy Statement (NZCPS) (Minister of 
Conservation, 2010) with the force of law under the Resource Management Act, 1991. The recently revised 
New Zealand national coastal hazards and climate change guidance for local government (Bell et al., 2017a) 
provided context. This novel assessment, engagement and planning approach to the formulation of a Coastal 
Hazards Strategy was undertaken through a non-statutory planning process. The agreed options and 
pathways have yet to be implemented through statutory processes that will test the risk tolerance of the wider 
community. This example illustrates how tailor-made assessment that addresses SLR uncertainty and change 
by keeping options open and reducing path-dependency, engagement, and planning processes can be 
initiated with leadership across councils, sectors and stakeholders, before being implemented, thus reducing 
contestation. Lessons learned include the central role of: leadership, governance and iwi Māori; Local 
Authority collaboration; taking time to build trust; independent knowledge brokers for credibility; nuanced 
project leadership and facilitation—enabling a community-based process. The preferred intervention options 
and pathways have been agreed for implementation. The remaining challenges are to cost the range of 
actions, decide funding formulae, develop physical and socio-economic signals and triggers for monitoring 
changing risk, embed the Strategy in statutory plans and practices, and socialise the Strategy with the wider 
public in the context of competing priorities. 
 
[END BOX 4.4 HERE]  
 
 
4.4.5 Enabling Conditions and Lessons Learned From ‘Practice’ 
 
In addition to the literature on planning, public participation, conflict resolution and decision making 
assessed in the last Section, much is being learned from practical experiences gained in adapting to climate 
change and SLR at the coast. Some salient enabling conditions and lessons learnt are illustrated in Table 4.9 
through case studies or examples of real-world experience in diverse coastal communities around the world, 
structured according to the five overarching SLR governance challenges identified in Section 4.4.3. In these 
cases, the following stands out as being foundational for enabling the implementation of SLR responses and 
addressing the governance challenges that arise. First, effective SLR responses take a long-term perspective 
(e.g., 100 years and beyond) and explicitly account for the uncertainty of locality-specific risks beyond 2050. 
Second, given the locality-specific but cross-cutting nature of SLR impacts, improving cross-scale and cross-
domain coordination of SLR responses may be beneficial. Third, prioritising social vulnerability and equity 
in SLR responses may be essential because SLR impacts and risks are spread unevenly across society, and 
within and between coastal communities. Fourth, safe community arenas for working together constructively 
can help to resolve social conflict arising from SLR. Fifth, a sharp increase may be needed in governance 
capabilities to tackle the complex problems caused by SLR. Fifth, a sharp increase may be needed in 
governance capabilities to tackle the complex problems caused by SLR. There is, however, no one-size-fits-
all solution to SLR, and responses need to be tailored to the environmental, social, economic, political, 
technological, and cultural context in which they are to be implemented. Enablers that work in one context 



FINAL DRAFT Chapter 4 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 4-114 Total pages: 169 

might not be effective in another case. As sea-level rises, more experience in addressing SLR governance 
challenges will be gained, which can in turn be evaluated in order to obtain a better contextual understanding 
of enabling conditions and effective SLR governance.  
 
 
Table 4.9: Enablers and lessons learned to overcome governance challenges arising from SLR 

Governance 
challenges  

Enablers and lessons 
learned 

Illustrative examples 

Time 
horizon and 
uncertainty 

Take action now with the 
long-term in mind, keeping 
options open so that new 
responses can be developed 
over time (high confidence) 
(Section 4.4.2) (Haasnoot et 
al., 2013; Hurlimann et al., 
2014; Dewulf and Termeer, 
2015; Termeer et al., 2015; 
Stephens et al., 2018; OECD, 
2019) 
 

Participatory scenario planning has been used widely including in Lagos, Nigeria (Ajibade 
et al., 2016), Dhaka, Bangladesh (Ahmed et al., 2018), Rotterdam, Netherlands, Hong Kong 
and Guangzhou, China (Francesch-Huidobro et al., 2017), Maputo, Mozambique (Broto et al., 
2015), Santos, Brazil (Marengo et al., 2019), Arctic (Flynn et al., 2018), Indonesia (Butler et 
al., 2016a), Dutch delta (Dewulf and Termeer, 2015; Termeer et al., 2015; Bloemen et al., 
2019) and Bangladesh (Paprocki and Huq, 2018). Lessons include: 

• Develop shared coastal visions (Tuts et al.; Brown et al., 2016; OECD, 2019) 
• Use participatory planning processes that respect and reconcile different values, 

belief systems and cultures (Flynn et al., 2018) 
• Address power imbalances and human development imperatives (Broto et al., 2015; 

Butler et al., 2016a)  
 
Long-term adaptation pathways have been developed in New Zealand using ‘serious 
games’ (Flood et al., 2018) and hybrid processes to integrate decision analysis methods 
(Section 4.4.2) with public participation and planning (Section 4.4.3) (Cradock-Henry et al., 
2018; Lawrence et al., 2019). Lessons include:  

• Develop enabling national guidance, policy and legislation that requires a long-term 
focus (e.g., 100 years) and prioritises measures to minimise risk escalation 

• Secure buy-in from key governance actors 
• Involve coastal stakeholders in adaptation planning 
• Draw on local, indigenous and scientific knowledges  

Avoid new development 
commitments in high-risk 
locations (Section4.4.3) 
(medium evidence, high 
agreement) 
(Hurlimann and March, 2012; 
Glavovic and Smith, 2014; 
Hurlimann et al., 2014; Tuts 
et al.; Berke and Stevens, 
2016; Butler et al., 2016b; 
OECD, 2019) 
  

Spatial planning to regulate development at risk from SLR is underway in many locations, 
including Victoria, Australia (Hurlimann et al., 2014) and Florida, USA (Butler et al., 2016a; 
Vella et al., 2016). Limiting future development in high risk areas is much easier than dealing 
with existing assets at risk (Tuts et al.; OECD, 2019). 
 
Proactive managed retreat through flexible, tailor-made provisions that address distinctive 
local circumstances is under way in, e.g., USA and Australia, revealing the importance of 
understanding risks politicians face from local opposition, and distributional impacts 
(Dyckman et al., 2014; Gibbs, 2016; Siders, 2019). Post Hurricane Sandy managed retreat 
from Staten Island, New York City, USA, was enabled by community receptivity to buyouts 
and political expedience (Koslov, 2019)(Box 4.1). Lessons include:  

• Limit new development commitments in high risk areas 
• Facilitate property abandonment as inundation occurs  
• Leverage the window of opportunity coastal disasters create (Kousky, 2014)  

 
Cross-scale 
and cross-
domain 
coordination 

Build vertical and 
horizontal governance 
networks and linkages 
across policy domains and 
sectors to legitimise 
decisions, build trust and 
improve coordination (high 
confidence). 
(Glavovic and Smith, 2014; 
Colenbrander and Sowman, 
2015; Dutra et al., 2015; 
Sowman et al., 2016; Van 
Putten et al., 2016; Forino et 
al., 2018; Lund, 2018; Pinto et 
al., 2018; Clar, 2019; Pittman 
and Armitage, 2019) 
 

In the Lesser Antilles multiple state and non-state actors are working together, building trust, 
and coordinating activities through decentralisation and self-organisation (Pittman and 
Armitage, 2019). Lessons include.: 

• Participation in collaborative projects  
• Multilateral agreements between states 
• Boundary-spanning organisations connecting governance actors, citizens and states 
• Extreme events can be a catalyst for raising awareness and political salience 
• Leadership by central actors and capacitated teams  
• Mobilise capabilities of communities and non-state actors  

 
In South Devon, UK, decentralisation, privatisation and fragmentation impacts 
adaptation (Den Uyl and Russel, 2018). Lessons include: 

• Identify policy inconsistencies and clarify problem-ownership, responsibility and 
accountability 

• Explore ways to leverage national funding to support local action  
• Establish networks to facilitate interaction, dialogue, and coordination  

Social learning, 
experimentation and 
innovation inform technical 
solutions, build shared 
understanding, and develop 
locally appropriate SLR 
responses (high confidence). 
(Dyckman et al., 2014; Dutra 
et al., 2015; Ensor and 
Harvey, 2015; Chu et al., 
2018; McFadgen and 
Huitema, 2018; Mazeka, 
2019; Wolfram et al., 2019) 
(Glavovic and Smith, 2014) 

Innovation is underway to enhance social learning, reflexivity and coalition building (Chu 
et al., 2018; Bellinson and Chu, 2019; Wolfram et al., 2019), e.g., Surat, India (Chu, 2016a; 
Chu, 2016b), Santos, Brazil (Marengo et al., 2019), Portland, USA (Fink, 2019), and port cities 
in Europe and East Asia (Blok and Tschötschel, 2016), In Surat, for example, adaptation 
experiments created valuable arenas for engaging governance actors and stakeholders, 
understanding climate and development co-benefits, and testing new ideas (Chu, 2016b). 
Lessons include: 

• Design experiments to account for how local political economic factors shape 
adaptation, e.g., understanding local history and politics reveals how adaptation 
trade-offs are made in city decision-making 

• Ensure experiments generate socio-economic benefits and climate-development co-
benefits  
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 Accelerate social learning and governance innovations through transnational municipal 
networks together with local efforts (Hughes et al., 2018), with processes developed and 
institutionalised through political negotiation, e.g., Rotterdam, Netherlands, and Berkeley, 
USA (Bellinson and Chu, 2019).  

Equity and 
social 
vulnerability 
 

Recognise the political 
nature of adaptation and 
explicitly address 
vulnerability and equity 
implications to achieve 
enduring, enabling impact 
of responses (high 
confidence).  
(Eriksen et al., 2015; 
Sovacool et al., 2015; Tuts et 
al., 2015; Adger et al., 2017; 
Hardy et al., 2017; Holland, 
2017; Dolšak and Prakash, 
2018; Finkbeiner et al., 2018; 
Sovacool, 2018; Warner et al., 
2018b; OECD, 2019) 

Rights-based approach to participatory adaptation planning in Maputo, Mozambique 
fosters a more inclusive and potentially fairer city (Broto et al., 2015). Lessons include:  

• Expose drivers of structural inequity and vulnerability  
• Link adaptation and human development imperatives 
• Raise awareness and public support for adaptation with equity 

 
Race-aware adaptation planning can reveal racial inequalities and overcome passive 
indifference as shown in, e.g., Sapelo Island, Georgia, USA (Hardy et al., 2017). Lessons 
include:  

• Develop an understanding of historical racial drivers of coastal land ownership, 
development and risk. 

• Address barriers African Americans face in participating in adaptation planning  

Focus on enabling 
community capabilities for 
responding to SLR, where 
necessary complementing 
community knowledge, 
skills and resources, and 
political influence and 
problem-solving abilities, 
with external assistance and 
government support (high 
confidence).  
(Schlosberg, 2012; Musa et 
al., 2016; Vedeld et al., 2016; 
Elrick-Barr et al., 2017; 
Warrick et al., 2017; Dolšak 
and Prakash, 2018) 
 

Various professionals can play valuable support roles in leveraging and building adaptive 
capacity and resilience of small island communities, recognizing diverse needs and 
capabilities (Robinson, 2017; Weir et al., 2017; Kelman, 2018; Petzold and Magnan, 2019). 
For example, in poor Caribbean communities, social workers are helping strengthen social 
capital, enabling individuals to understand and integrate risk, resilience and sustainability 
principles into day-to-day decision-making, and promoting socially and environmentally just 
adaptation (Joseph, 2017). 
 
In the Solomon Islands, Pacific, community-based approaches enhance community 
capacity to work with external organisations to plan together, obtain resources, and respond to 
SLR on their own terms (Warrick et al., 2017). The value of integrating traditional community 
responses with local government efforts has been demonstrated in Micronesian islands (Nunn 
et al., 2017b) 
 
Local collective action in Monkey River, Belize, helped to overcome power asymmetries 
and to obtain support otherwise unavailable to vulnerable community members. Working 
with journalists, researchers and local NGOs, was key for villagers to have concerns heard and 
a solution found for coastal erosion (Karlsson and Hovelsrud, 2015). 
 
Rural coastal community resilience boosted in Albemarle Pamlico Peninsula of North 
Carolina, USA, by focused attention on local needs through capacity building, and ensuring 
local voices heard in adaptation planning (Jurjonas and Seekamp, 2018). 

Social 
conflict 
 

Social conflict can be 
reduced by tailor-made 
design and facilitation of 
participation processes, and 
involving stakeholders early 
and consistently throughout 
decision-making and 
implementation of SLR 
responses (medium evidence, 
high agreement). 
(Burton and Mustelin, 2013; 
Berke and Stevens, 2016; 
Gorddard et al., 2016; Webler 
et al., 2016; Schlosberg et al., 
2017; Kirshen et al., 2018; 
Lawrence et al., 2018; 
Mehring et al., 2018; Nkoana 
et al., 2018; Schernewski et 
al., 2018; Yusuf et al., 2018b; 
Uittenbroek et al., 2019) 

Public participation has been foundational for South Africa’s coastal management, risk 
reduction and adaptation efforts since 1994 (Celliers et al., 2013; Daron and Colenbrander, 
2015; Desportes and Colenbrander, 2016; Glavovic et al., 2018; Colenbrander, 2019). Lessons 
include: 

• Create opportunities to understand and address technical, socio-political and 
economic realities in an integrated way (Colenbrander and Sowman, 2015; Daron 
and Colenbrander, 2015) 

• Incorporate conflict resolution mechanisms into engagement processes (Daron and 
Colenbrander, 2015; Colenbrander et al., 2016; Colenbrander and Bavinck, 2017) 

• Align informal engagement processes with formal statutory provisions 
(Colenbrander and Bavinck, 2017), taking into account visible formal procedures 
and ‘invisible’ and informal ways in which knowledge is shared and shapes 
government decision-making (Leck and Roberts, 2015) 

• Independent facilitators can play crucial role bringing contending parties together; 
local government officials can work as bureaucratic activists to create more 
inclusive, iterative and reflexive participation (Desportes and Colenbrander, 2016) 

• Sustain engagement, sequence participatory interventions with political and 
bureaucratic cycles (Pasquini et al., 2013), and secure enabling resources, including 
channelling adaptation finance to local level (Colenbrander, 2019)  

• Use practical ways to involve historically disadvantaged and socially vulnerable 
groups and communities, e.g., by choosing accessible locations, language(s) and 
culturally appropriate meeting protocols (Sowman and Gawith, 1994; Ziervogel et 
al., 2016b) 

• Dedicated environmental champions within local political leadership play a key 
role in mainstreaming adaptation into local decision-making (Pasquini et al., 2015) 

Social conflict can be 
managed by creating safe 
arenas for inclusive, 
informed and meaningful 
deliberation, negotiation 
and collaborative problem-
solving (medium evidence, 
high agreement). 
(Susskind et al., 1999; Laws 
et al., 2014; Susskind et al., 

Turning conflict into cooperation in Baragaon village, northeast Bangladesh, and eight 
villages in Narial district, southwest Bangladesh: A flexible and enabling process, founded 
on local institutions judged robust and fair, prompted government investment in communities 
beyond their traditional focus on water infrastructure; paid attention to local social dynamics; 
and reduced elite domination and escalating local conflict (Sultana & Thompson 2017). 
Lessons include:  

• Use local knowledge to inform adaptation actions 
• Encourage institutional improvisation to address local concerns, e.g., shifting 

government investment from water infrastructure to community development 
• Use external facilitation 
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2015; Glavovic, 2016; 
Nursey-Bray, 2017; Sultana 
and Thompson, 2017) 

• Incentivise participation by disadvantaged groups  
 
Innovative collective coastal risk management process, New England (USA) Climate 
Adaptation Project, developed by university researchers with partner communities to address 
coastal conflict by:  

• Building community risk literacy, optimism and collaborative problem-solving 
capacity to take action  

• Joint fact-finding, scenario planning, negotiating trade-offs, facilitated public 
dialogue, and securing support for collaborative adaptation  

• Establishing forums for ongoing public deliberation and social learning; and 
committing to continual adjustments in face of change (Rumore, 2014; Susskind et 
al., 2015). 

Complexity Drawing upon multiple 
knowledge systems to co-
design and co-produce SLR 
responses results in more 
acceptable and 
implementable responses 
(high confidence). 
(Dannevig and Aall, 2015; 
Dutra et al., 2015; Sovacool et 
al., 2015; Desportes and 
Colenbrander, 2016; Adger et 
al., 2017; Betzold and 
Mohamed, 2017; Onat et al., 
2018; Warner et al., 2018b; 
St. John III and Yusuf, 2019) 

The merits of drawing on scientific and local and indigenous knowledges is recognised in 
diverse settings such as Australia (Dutra et al., 2015), Comoros (Betzold and Mohamed, 
2017), Arctic (Flynn et al., 2018; Huntington et al., 2019), Canada (Chouinard et al., 2015; 
Chouinard et al., 2017), Portugal (Costas et al., 2015), and Brazil (Marengo et al., 2019).  
 
Storytelling can build shared knowledge and understanding because stories are engaging, 
help people visualise problems, see things from different positions, and recognise shared goals 
(Dutra et al., 2015; Elrick-Barr et al., 2017). Māori, indigenous people of New Zealand, use 
oral history and storytelling to describe their relationship to the coast, which informs how New 
Zealand responds to SLR (Carter, 2018; Lawrence et al., 2018).  
 
Gaps between SLR science, policy and practice can be bridged by adaptation policy 
experiments with support of actors / organisations who work across organisational 
boundaries to bring parties together (Dannevig and Aall, 2015; St. John III and Yusuf, 
2019). 

Build governance 
capabilities to tackle 
complex problems (medium 
evidence, high agreement) 
(Moser et al., 2012; Head, 
2014; Dewulf and Termeer, 
2015; Head and Alford, 2015; 
Termeer et al., 2015; Kwakkel 
et al., 2016a; Termeer et al., 
2016; Alford and Head, 2017; 
Daviter, 2017; Head, 2018; 
McConnell, 2018) 

The Dutch Delta Programme aims to future-proof the Netherlands against SLR (Bloemen et 
al., 2019). Lessons learned in building governance capabilities to deal with associated complex 
problems include (Dewulf and Termeer, 2015; Bloemen et al., 2018; Bloemen et al., 2019): 

• Committing to long-term policy implementation at Cabinet level  
• Allocate necessary dedicated budget and build capacity of government agencies to 

tackle complex problems, e.g., Senate resolution and programme uniting 
government and knowledge institutes on adaptation 

• Flexible and robust governance approaches and solutions build resilience, e.g., 
independent programme alongside traditional administrative structures is more 
agile  

• Adaptation pathways help overcome the temporal mismatch between short-term 
decisions and long-term goals, explicitly accounting for uncertainty 

• Enabling provisions for fit-for-purpose local-level policy and practice are key to 
translating national programme goals into local action, e.g., liaison officers can 
bridge local, regional and national decision-making arenas 

• Institutionalise monitoring and lesson learning (e.g., annual reporting to parliament, 
forums for politicians to share experiences) to track progress, deal with multiple 
legitimate perspectives and tackle emergent problems 

• Responsive governance arrangements address competing demands legitimately and 
timeously, e.g., steering groups, workshops and social media reveal stakeholder 
concerns 

• Policy deadlocks or lock-in due to vested interests or short-term priorities can be 
tackled by taking a long term perspective, exploring alternative scenarios and 
incentivising novel solutions 

 
 
4.4.6 Towards Climate Resilient Development Pathways 
 
Our assessment shows that failure to mitigate greenhouse gas emissions or to adapt to SLR will cause major 
disruptions to many low-lying coastal communities and jeopardise achievement of all UN Sustainable 
Development Goals (SDGs) and other societal aspirations. Immediate and ambitious greenhouse gas 
emissions reduction is necessary (Hoegh-Guldberg et al., 2018) to contain the rate and magnitude of SLR, 
and consequently adaptation prospects. Under unmitigated emissions (RCP8.5), coastal societies, especially 
poorer, rural and small islands societies, will struggle to maintain their livelihoods and settlements during the 
21st century (Sect 4.3.4; 4.4.2). Without mitigation, sea-levels will continue to rise for centuries, reaching 
2.3–5.4 m by 2300 (likely range) and much more beyond (4.2.3.5), making adaptation extremely challenging, 
if not impossible, for all low-lying coasts, including more intensively developed urbanised coasts. But even 
with ambitious mitigation (RCP2.6), sea levels will continue to rise, reaching 0.6-1.1 m by 2300 (likely 
range) (Figure 4.2 Panel B). Hence, adaptation will continue to be imperative irrespective of the uncertainties 
about future GHG emissions and key physical processes such as those determining the Antarctic contribution 
to SLR. Our assessment also shows that all types of responses, from hard protection to ecosystem-based 
adaptation, advance and retreat, have important and synergistic roles to play in an integrated and sequenced 
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response to SLR. The merits of a particular type of response, at a particular point in time, critically depends 
on the biophysical, cultural, economic, technical, institutional and political context. 
 
In this context, AR5 put forward the vision of Climate Resilient Development Pathways, which is “a 
continuing process for managing changes in the climate and other driving forces affecting development, 
combining flexibility, innovativeness, and participative problem solving with effectiveness in mitigating and 
adapting to climate change” (Denton et al., 2014: 1106). Charting Climate Resilient Development Pathways 
in the face of rising sea level depends on how well mitigation, adaption and other sustainable development 
efforts are combined, and the governance challenges introduced by SLR are resolved. There are no panaceas 
for solving these complex issues. However, the wise application of the planning, public participation, 
conflict resolution, and decision analysis methods assessed above can help coastal communities, cities and 
settlements develop locally relevant, enabling and adaptive SLR responses. Difficult social choices will 
nonetheless need to be made as sea levels continue to rise. Given the SLR projections outlined here, we 
conclude that global resilience and sustainability prospects depend, to a large extent, on how effectively 
coastal communities develop and implement ambitious, forward-looking adaptation plans in synchrony with 
drastic mitigation of greenhouse gas emissions. 
 
 
[START FAQ 4.1 HERE] 
 
FAQ 4.1: What challenges does the inevitability of sea level rise present to coastal communities and 

how can communities adapt? 
 
As the global climate changes, rising sea levels, combined with high tides, storms and flooding, put coastal 
and island communities increasingly at risk. Protection can be achieved by building dikes or seawalls and 
naturally by maintaining natural features like mangroves or coral reefs. Communities can also adjust at first 
by reclaiming land from the sea and adapting buildings to cope with floods. However, all measures have 
their limits, and once these are reached people may ultimately have to retreat. Choices made today influence 
how coastal ecosystems and communities can respond to sea level rise in the future. Reducing greenhouse 
gas emissions would not just reduce risks, but also open up more adaptation options. 
 
Global Mean Sea Level is rising and it will continue to do so for centuries. Sustainable development 
aspirations are at risk because many people, assets and vital resources are concentrated along low-lying 
coasts around the world. Many coastal communities have started to consider the implications of sea level 
rise. Measures are being taken to address coastal hazards exacerbated by rising sea level, such as coastal 
flooding due to extreme events (e.g. storm surges, tropical cyclones), coastal erosion and salinization. 
However, many coastal communities are still not sufficiently adapted to today's extreme sea levels. 
  
Scientific evidence about sea level rise is clear: Global mean sea level rose by 1.5 mm per year during the 
period 1901–1990, accelerating to 3.6 mm per year during the period 2005–2015. It is likely to rise 0.61-1.10 
m by 2100 if global greenhouse gas emissions are not mitigated (RCP8.5). However, a rise of 2 or more 
meters cannot be ruled out. It could rise to more than 3 m by 2300, depending on the level of greenhouse gas 
emissions and the response of the Antarctic ice sheet, which are both highly uncertain. Even if efforts to 
mitigate emissions are very effective, extreme sea level events that were rare over the last century will 
become common before 2100, and even by 2050 in many locations. Without ambitious adaptation, the 
combined impact of hazards like coastal storms and very high tides will drastically increase the frequency 
and severity of flooding on low-lying coasts. 
  
Sea level rise, as well as the context for adaptation, will vary regionally and locally, thus action to reduce 
risks related to sea level rise takes different forms depending on the local circumstances. ‘Hard protection’, 
like dikes and seawalls, can effectively reduce risk under two or more meters of sea-level rise but it is 
inevitable that limits will be reached. Such protection produces benefits that exceed its costs in low-lying 
coastal areas that are densely populated, as is the case for many coastal cities and some small islands, but in 
general, poorer regions will not be able to afford hard protection. Maintaining healthy coastal ecosystems, 
like mangroves, seagrass beds or coral reefs, can provide ‘soft protection’ and other benefits. Sea-level rise 
can also be ‘accommodated’ by raising buildings on the shoreline, for example. Land can be reclaimed from 
the sea by building outwards and upwards.  In coastal locations where the risk is very high and cannot be 
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effectively reduced, ‘retreat’ from the shoreline is the only way to eliminate such risk. Avoiding new 
development commitments in areas exposed to coastal hazards and SLR also avoids additional risk. 
 
For those unable to afford protection, accommodation or advance measures, or when such measures are no 
longer viable or effective, retreat becomes inevitable. Millions of people living on low-lying islands face this 
prospect, including inhabitants of Small Island Developing States, of some densely populated but less 
intensively developed deltas, of rural coastal villages and towns, and of Arctic communities who already 
face melting sea ice and unprecedented changes in weather. The resultant impacts on distinctive cultures and 
ways of life could be devastating. Difficult trade-offs are therefore inevitable when making social choices 
about rising sea level. Institutionalising processes that lead to fair and just outcomes is challenging, but 
vitally important. 
 
Choices being made now about how to respond to sea-level rise profoundly influence the trajectory of future 
exposure and vulnerability to sea-level rise. If concerted emissions mitigation is delayed, risks will 
progressively increase as sea-level rise accelerates. Prospects for global climate-resilience and sustainable 
development therefore depend in large part on coastal nations, cities and communities taking urgent and 
sustained locally-appropriate action to mitigate greenhouse gas emissions and adapt to sea level rise.  
 
[END FAQ4.1 HERE] 
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SM4.1 Sea Level in the Geologic Past 
 
Here we provide additional background related to Section 4.2.2 on the recent advances and ongoing 
difficulties in relating changes in GMSL during the Mid Pliocene Warm Period (MPWP) and Last 
Interglacial (LIG) to global mean temperature and ice-sheet sensitivity. 
 
SM4.1.1 Mid-Pliocene Warm Period 
 
The mid-Pliocene Warm Period (mPWP) is far beyond the limit of ice cores, but various techniques have 
been developed to reconstruct Pliocene carbon dioxide (CO2) concentrations from sediment archives. 
Geochemically based estimates published since AR5 (Badger et al., 2013; Martínez-Botí et al., 2015) range 
from 250 to 450 ppmv (parts per million by volume), with central estimates (300–400 ppmv) similar to or 
slightly lower than current levels. Consistency between different and independent geochemical techniques 
(stable carbon isotopes of algal alkenones (Zhang et al., 2013) and the boron isotopic composition of planktic 
foraminifera (Martínez-Botí et al., 2015) and inverse modelling techniques relating CO2 changes to ocean 
temperature and ice volume (Stap et al., 2016), support the assessment of AR5 (Masson-Delmotte et al., 
2013) that mPWP CO2 concentrations were 300–450 ppmv. Some estimates based on the stomata of fossil 
leaves and needles (Hu et al., 2015; Wang et al., 2015) find evidence for values below 300 ppmv, but with 
considerable uncertainty. Despite these relatively modest CO2 concentrations, mid-Pliocene global mean 
temperature peaked between 2°C to 4°C above pre-industrial (Haywood et al., 2016), in part due to the long 
timescales allowing the Earth system to approach equilibrium with the elevated radiative forcing. Seasonal 
temperatures and precipitation during the mPWP are deemed analogous to a RCP4.5 future climate state 
beyond 2040 (Burke et al., 2018). However, the strength of polar amplification during the mid-Pliocene and 
magnitude, timing, and duration of orbitally paced atmospheric and oceanic warming, important for 
evaluating the sensitivity of the Greenland and Antarctica ice sheets, remain uncertain (Haywood et al., 
2016; Dolan et al., 2018). 
 
Most sea-level estimates for the mPWP period are considerably higher than at present. A recent compilation 
by Dutton et al. (2015a) argues that GMSL was at least 6 m higher, but with few constraints on the 
maximum. AR5 (Masson-Delmotte et al., 2013) assessed the maximum to be 14 m, with high confidence that 
it did not exceed 20 m. Post depositional processes influencing paleo-shoreline reconstructions, including 
GIA (Raymo et al., 2011) and dynamic topography, the vertical movement of the Earth’s surface in response 
to mantle dynamics, continue to produce considerable uncertainty in Pliocene sea-level reconstructions. 
GMSL <20 m higher than today appear the most consistent with data corrected for GIA and dynamic 
topography Rovere et al. (2014), however higher estimates exist. For example, a sea-level record based on a 
combination of geochemical data and a water-exchange/salinity model of the Mediterranean Sea (Rohling et 
al., 2014) supports several tens of meters of Pliocene sea-level variability and peak levels >30 m above 
present sea level. These values are similar to Miller et al. (2012) who reported GMSL 22 ± 5 m (likely range) 
higher than today, based on a combination of sedimentological water-depth estimates along continental 
margins, corrected for subsidence and loading, coral atolls, and the geochemistry of marine sediments 
including changes in the oxygen isotopic composition (d18O) of fossil foraminiferal calcite (a record of past 
ocean temperature and ice volume), and trace metal ratios (used to isolate the temperature component of the 
d18O signal). Mid-to-late Pliocene sea level (Naish and Wilson, 2009), and Antarctic ice-sheet variability in 
particular, has been associated with 41-kyr orbital obliquity cycles (changes in the Earth’s axial tilt that 
control the magnitude of seasonality) and ~20-kyr precession cycles (Naish et al., 2009; Patterson et al., 
2014) that control the seasonal timing of perihelion. The partitioning of Pliocene sea-level changes driven by 
greenhouse gas forcing, orbital forcing, and internal climate system feedbacks is not exactly known (Stap et 
al., 2018), further complicating any direct comparisons between mid-Pliocene GMSL maxima, changing on 
orbital (multi-millennial) timescales, and near-term future changes. 
 
Since AR5, updated oxygen isotope mass balance calculations comparing the isotopic composition of the 
modern and Pliocene ocean (Winnick and Caves, 2015), suggest Pliocene sea level was only ~9–13.5 m 
above modern with a relatively small 2–4.5 m contribution from East Antarctica in addition to West 
Antarctica and Greenland. However, the isotope approach relies on uncertain assumptions regarding the 
isotopic composition of Greenland and Antarctic ice sheets in the warmer Pliocene (Gasson et al., 2016), and 
the relative contribution of ice volume versus ocean temperature in the isotopic changes. Furthermore, the 
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technique relies on the average of multiple isotope records (Lisiecki and Raymo, 2005) with limited temporal 
resolution that might not represent the full range of Pliocene isotope and ice-volume variability. Addition 
complications come from isotope data themselves, because they could contain systematic “diagenetic” errors 
that could strongly bias relationships between isotope values and sea-level (Raymo et al., 2018). The 
apparent lack of an East Antarctic contribution to Pliocene sea level suggested by Winnick and Caves (2015) 
also contradicts more direct geological evidence from the Antarctic margin, recording cyclic retreat of the 
East Antarctic margin into the deep Wilkes subglacial basin (Cook et al., 2013; Patterson et al., 2014; 
Bertram et al., 2018). Subsequent work, using isotope-enabled climate and ice sheet models to constrain the 
isotope mass balance problem concluded that an Antarctic contribution to mid-Pliocene GMSL of 13 meters 
is consistent with the isotope records (Gasson et al., 2016). This higher GMSL estimate implies that up to 
~10 m of sea level rise could have been contributed by East Antarctica, in better agreement with the 
emerging geological records from the East Antarctic margin (Cook et al., 2013; Patterson et al., 2014; 
Bertram et al., 2018). 
 
Shakun et al. (2018) measured cosmogenic nuclide concentrations in Antarctic-proximal marine sediment 
cores and concluded that extensive East Antarctic subaerial land surfaces were not exposed during the 
Pliocene, implying that only marine-based ice was lost. Assuming all the marine-based ice in West 
Antarctica (equivalent to 3.3 m GMSL) (Bamber et al., 2009) and East Antarctica (~19.2 m) (Fretwell et al., 
2013) was vulnerable to mid-Pliocene warmth, this places an upper bound on Antarctica’s potential 
contribution to sea level of ~22.5 meters, with the potential for another ~7.4 m of GMSL rise from 
Greenland (Morlighem et al., 2017). This sums to a total of about 30 meters, but only if Greenland and 
Antarctic ice sheets were retreated at the same time. Koenig et al. (2014) simulated the GIS response to 
Pliocene warmth and reduced Arctic sea ice and found near complete loss of the ice sheet, equivalent to 5.8 
m GMSL rise, is possible. An ice-sheet modelling study including both the Greenland and Antarctic ice 
sheets de Boer et al. (2017b) yields a maximum combined ice-sheet contribution to Pliocene sea level of 13.3 
m. Their results show that the ice sheets in Greenland and Antarctica responded out of phase as a 
consequence of precessional orbital forcing (Raymo et al., 2006). The anti-phasing of Northern versus 
Southern Hemispheric ice sheets (de Boer et al., 2017a) is an important emerging issue, because the 
expansion of ice in one hemisphere during a mid-Pliocene sea level high stand would consequently require a 
larger sea-level contribution from the other hemisphere than indicated by the rise in GMSL. Orbital anti-
phasing of ice volume on Antarctica and Greenland also reduces the maximum potential GMSL rise. For 
example, assuming the GIS was comparable to its modern state while marine-based in Antarctica was fully 
retreated would result in <25 m of GMSL rise. 
 
Recent ice sheet modelling studies of mid-Pliocene ice loss on Antarctica (Austermann et al., 2015; Yamane 
et al., 2015; DeConto and Pollard, 2016) range widely, between 5.4 and 17.8 m sea-level equivalent. A 
model intercomparison study (de Boer et al., 2015) indicates that the largest uncertainty in modelling the 
mPWP is related to the mass balance forcing of Antarctic ice sheet models. Subsequently, an ice sheet model 
including new, but uncertain parameterizations of glaciological processes, including the influence of surface 
meltwater on crevasse penetration and ice shelf collapse, and calving of marine-terminating ice cliffs (MICI; 
see Cross-Chapter Box 8 in Chapter 3) demonstrates the potential for considerable Pliocene ice loss in East 
Antarctica, in addition to West Antarctica (Pollard et al., 2015; DeConto and Pollard, 2016). Golledge et al. 
(2017) demonstrated that ocean melt at grounding lines is capable of causing Pliocene ice retreat in East 
Antarctic basins. In this case, the model uses a sub-grid melt scheme that applies melt under partially 
grounded grid cells. This numerical treatment increases the model’s sensitivity to ocean forcing, although the 
validity of the approach remains uncertain (Yu et al., 2017; Seroussi and Morlighem, 2018). Antarctic 
bedrock underlying the ice sheet has probably evolved since the Pliocene (Aitken et al., 2016; Colleoni et al., 
2018), contributing additional uncertainty to the paleo ice-sheet simulations, but this has yet to be fully 
explored with ice sheet models. Given the ongoing uncertainties in mid-Pliocene sea-level reconstructions, 
the wide range of ice sheet model results, and unknown partitioning of greenhouse gas versus orbital forcing 
of ice sheet loss, we have low confidence in mPWP sea-level as a guide for future sea-level or for 
quantitative validation of ice sheet models. 
 
SM4.1.2 Last Interglacial  
 
Global mean temperatures during the LIG were not as warm as the mPWP and only slightly warmer (+0.5–
1.0 ºC) than preindustrial (Capron et al., 2014; Dutton et al., 2015a; Fischer et al., 2018). Sea surface 
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temperatures were comparable to today (Hoffman et al., 2017). Despite the minimal warmth relative to 
today’s climate, GMSL was considerably higher (Kopp et al., 2009). Climate models indicate a small (0.35–
0.4 m) contribution to GMSL from ocean thermal expansion during the LIG (McKay et al., 2011; Goelzer et 
al., 2016), implicating land ice as the dominant source of the elevated sea levels. Dutton et al. (2015a) 
present an updated review of Eemian sea level based on geological indicators, indicating that global mean 
sea level was 6 to 9 m higher than today. This is in line with an earlier probabilistic estimate of Kopp et al. 
(2009), based on a global compilation of GMSL data. Considerable uncertainty remains however, as 
demonstrated by Düsterhus et al. (2016), who applied data assimilation techniques including GIA corrections 
to the same LIG dataset used by Kopp et al. (2009). They found good agreement (7.5 ± 1.1 m likely range) 
with Kopp et al. (2009) and Dutton et al. (2015a), but only when certain statistical assumptions and model 
inputs were used. Estimates of peak LIG sea level were found to be especially sensitive to the assumed ice 
history before and after the LIG, as found in other studies (Lambeck et al., 2012; Dendy et al., 2017). One 
plausible ice history used by Düsterhus et al. (2016) increased their central estimate to 14.7 m. Austermann 
et al. (2017) compared a compilation of last interglacial (LIG) shoreline indicators with dynamic topography 
simulations. They found that vertical surface motions driven by mantle convection can produce several 
meters of uncertainty in LIG sea level estimates, but their mean and most probable estimates of 6.7 m and 
6.4 m are broadly in line with other previous estimates. 
 
The relative contributions to peak GMSL from the loss of Greenland versus Antarctic ice remains difficult to 
quantify from geological indicators. Kopp et al. (2009) argue for two highstands within the LIG with the first 
peak attributable to Antarctica; however, the shape of the LIG sea-level curve continues to be contested 
(Rovere et al., 2016). Some field sites exhibit evidence of multiple peaks in sea level, including multiple 
generations of reef growth in the Seychelles, the Yucatan peninsula, and the Bahamas among other sites 
(Blanchon et al., 2009; Vyverberg et al., 2018), but debate remains over the interpretation of this evidence. 
Barlow et al. (2018) argue that a sea level oscillation of >4 m is not plausible, but they do not rule out the 
possibility of smaller, meter-scale oscillations with the LIG. The role of Greenland versus Antarctica ice 
sheet in this variability is not known with sufficient certainty to allow an assessment. 
 
Atmospheric modelling results remain too inconsistent to provide definitive guidance on Greenland climate 
during the LIG. Surface mass balance varies strongly among atmospheric models with different resolutions 
and surface mass balance schemes (Plach et al., 2018), and different mass balance forcings produce very 
different spatial patterns of GIS retreat (Colleoni et al., 2014). Proxy climate reconstructions and the 
magnitude of LIG summer warming over the GIS also continue to be contested (Goelzer et al., 2016). Ice 
cores in north-central Greenland and lake archives in northwest Greenland indicate summer temperatures 
>6ºC warmer than preindustrial (Landais et al., 2016; Yau et al., 2016; McFarlin et al., 2018), but this large 
increase in summer temperature is compatible with limited ice retreat in ice sheet models (Dahl-Jensen et al., 
2013; Landais et al., 2016; Yau et al., 2016), or ice cores and internal ice layer imaging by radar (Dahl-
Jensen et al., 2013) indicating the persistent presence of an extensive GIS through the LIG. This suggests the 
GIS was either insensitive to LIG temperature changes, temperatures inferred from ice core oxygen isotope 
records are overestimated, or they were short lived. Bierman et al. (2016) used cosmogenic 10Be and 26Al 
of marine sediments to argue that large ice caps have persisted in east Greenland during the last 7.5 Myr. 
Data from 10Be and 26Al measurements of sediments below the ice suggest extensive, episodic ice-free 
conditions in Greenland’s interior (Schaefer et al., 2016), but the duration and frequency of such events are 
unknown. Whether these geological findings are compatible depends on the extent and thickness of the LIG 
ice sheet.  
 
Simulations with coupled climate-ice sheet models of Greenland indicate a GIS contribution to LIG sea-level 
rise of only up to 50 mm SLC per century (Helsen et al., 2013), a total contribution to LIG sea level of as 
little as 0.75 m (Quiquet et al., 2013), and probably not more than 2.5 m (Helsen et al., 2013; Stone et al., 
2013; Colleoni et al., 2014). In contrast, the modelling study of (Yau et al., 2016) yields a higher central 
estimate of 5.1 m, but with a poor fit between simulated and observed climate and surface elevation at 
Greenland ice core locations. While the modelling studies simulate a large range of maximum GIS retreat, 
they consistently indicate very little retreat early in the LIG and peak ice loss late in the interglacial around 
123–122 ka (Helsen et al., 2013; Quiquet et al., 2013; Goelzer et al., 2016; Yau et al., 2016). This implies 
that Antarctica was the dominant contributor to the early LIG highstand that began around 129 (Dutton et al., 
2015b), in agreement with Kopp et al. (2009), and recent ice modelling studies (DeConto and Pollard, 2016; 
Goelzer et al., 2016). 
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Antarctic ice cores and proxy sea-surface temperature records in the Southern Ocean indicate <2ºC warming 
in the early interglacial (Capron et al., 2014). If Antarctica was the dominant source of GMSL rise early in 
the LIG, this would indicate a highly sensitive Antarctic ice sheet to relatively modest climate forcing. 
Subsurface ocean warming and sub-ice melt rates could have played an important role in marine-based ice 
loss in Antarctica (Fogwill et al., 2014; Sutter et al., 2016), but their evolution through the LIG remain 
virtually unknown. Additional uncertainty is driven by the lack of direct evidence of WAIS retreat, and 
increasing recognition that maximum ice retreat in Greenland and Antarctica, was controlled in part by 
Interhemispheric differences in the strength of polar amplification (Stap et al., 2018) and time-evolving 
changes in Earth’s orbit over the course of the LIG, were not synchronous (Goelzer et al., 2016; de Boer et 
al., 2017a). Given these ongoing uncertainties in the relative contributions of the Greenland versus Antarctic 
Ice Sheet to GMSL as the LIG evolved, and poor constraints on local atmospheric temperatures and ice-
proximal ocean conditions, an assessment of each ice sheet’s sensitivity to a given climate forcing cannot be 
made.  
 
GMSL high-stands during past warm periods have been used to calibrate ice sheet model physical 
parameters, with the models subsequently applied to future climate scenarios (DeConto and Pollard, 2016). 
However, relatively small differences in the assumed paleo GMSL estimates can have a large impact on the 
future projections (Kopp et al., 2017; Edwards et al., 2019). Furthermore, the paleoclimate forcing applied to 
the ice sheet models is itself highly uncertain. In sum, we have low confidence in the utility of mPWP and 
LIG GMSL as direct guides on future sea-level or their validation of ice sheet models. 
 
 
SM4.2 SROCC Extreme Water Level Data 
 
These files contain the underlying data for the SROCC extreme water level data (Chapter 4, Figures 4.10, 4.11 
and 4.12) 
 
SM4.2.1 Mean Sea Level Projections 
 
The six scn_xx_xxxx.nc files contain the mean sea level (MSL) projections presented in Figure 4.10. The first 
number in each filename denotes the RCP scenario (scn_26_xxxx.nc=RCP2.6 etc.), and the second number 
denotes the time frame (scn_xx_2050.nc is 2046-2065 and scn_xx_2100.nc is 2081-2100). The files are in 
netCDF format, which can be opened with matlab, python (netCDF$ package), GMT, and ncview. Each file 
contains four variables: 
x: longitude (degrees) 
y: latitude (degrees) 
mean: mean sea level change relative to 1986-2005 (in meters) 
sterr: standard error of the MSL projection (in meters) 
 
SM4.2.2 Amplification Factors 
 
The file 'station_projections.xlsx' contains the projected changes in the amplification factors as presented in 
Figure 4.12. Each scenario and time frame has its own worksheet in the excel file. The worksheet each contain 
the following columns: 
Name: station name from the GESLA2 database 
Longitude: the longitude of the station 
Latitude: the latitude of the station 
MSL change (mean): Projected MSL change at the station's location in meters 
MSL change (standard error): Associated standard error of the projected MSL change at the station location 
in meters 
AF (5th pct): 5th percentile amplification factor of the present-day 100-year event. 
AF (50th pct): 50th percentile (or median) amplification factor of the present-day 100-year event. 
AF (95th pct): 95th percentile amplification factor of the present-day 100-year event. 
The last worksheet named “GPD parameters” contains the parameters for the GPD fit underlying the fits 
presented in Figure 4.11. 
Name: station name from the GESLA2 database 
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Longitude: the longitude of the station 
Latitude: the latitude of the station 
Location parameter: location parameter of the GPD fit 
Scale (5th pct): 5th percentile scale parameter 
Scale (50th pct): 50th percentile (or median) scale parameter 
Scale (95th pct): 95th percentile scale parameter 
Shape (5th pct): 5th percentile shape parameter 
Shape (50th pct): 50th percentile (or median) shape parameter 
Shape (95th pct): 95th percentile shape parameter 
 
 
SM4.3 Risks of Impact Assessment 
 
SM4.3.1 Overview of the Methodological Protocol 
 
 

 
Figure SM4.1: The general approach for building geography-centred burning embers.  
 
 
SM4.3.2 Metrics 
 
Table SM4.1 below provides a synthesis of the metrics used to assess both observed impacts (Present day) 
and projected risks (end-century). These metrics are proxies reflecting some developments in the chapter, i.e. 
damages to people, the built environment and land due to coastal flooding and erosion (Sections 4.3.3.2, 
4.3.3.3); impacts of water resources salinization (Section 4.3.3.4); and threats to ecosystems and ecosystem 
services (Section 4.3.3.5) and to human activities (4.3.3.6). More specifically, and in line with the IPCC risk 
framework (Cross-Chapter Box 1 in Chapter 1) that considers risk at the crossroads of Hazards, Exposure 
and Vulnerability: 

Metrics	
identification	
(SM4.3.2)

Consideration	of	
various	end-century	
SLR	scenarios	
(SM4.3.3.1)	

Consideration	of	
various	end-century	
Adaptation	scenarios	
(SM4.3.3.2)

Metrics	scoring	according	to	their	
contribution	 to	risk,	 for	the	Present	
day	and	in	the	Future (SM4.3.4)
Based	on	concrete	examples	and	
peer-reviewed	literature	(SM4.3.6)

Aggregation	of	metric	scores	per	
geography	 for	Present	day	and	in	the	
future	according	to	various	SLR	and	
Adaptation	scenarios
(method	 in	SM4.3.5,	results	in	SM4.3.6)

Final	burning ember figure	
(Fig.	4.3	and	Chapter section	4.3.4)
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• Exposure and Vulnerability drivers are reflected by the density of assets (M1) and the degree of 
degradation of natural buffer ecosystems (M2); 

• Hazards are reflected by the importance of coastal flooding (M3), coastal erosion (M4) and salinization 
(M5).  

• Adaptation is reflected by hard and nature-based coastal protection (M6 and M7, respectively), retreat 
measures (M8) and measures to limit subsidence (M9). 

 
 
Table SM4.1: Metrics used to assess risk and adaptation measures.  

Metrics 
M1. Density of assets (population, buildings, infrastructure) 

• Justification: Section 4.3.2.2, Cross-Chapter Box 9 
• Scenario considered for the 21st century: relatively stable density levels over the century (one scenario among 

others). The potential for decrease in assets density is considered through M8. 
M2. Level of degradation of marine and terrestrial natural buffers  

• Justification: Sections 4.3.2.3 and 4.3.3.5. Natural buffers considered here are marine (coral reefs, 
mangroves, wetlands, sea ice; Section 4.3.3.5, 5.3) and terrestrial (beaches, dune systems, vegetation; 
Sections 4.3.3.3, 5.3.3) 

• Scenario considered for the 21st century: continued degradation at the same pace than recent trends. 

M3. Relative extend of coastal flooding 
• Justification: Section 4.3.3.2 

M4. Degree of coastal erosion (beaches and/dune systems) or permafrost thaw 
• Justification: Section 4.3.3.3, Cross-Chapter Box 9 

M5. Degree of salinisation of groundwater lenses, soils and surface waters 
• Justification: Section 4.3.3.4. Water resources considered here are not only for freshwater consumption, but 

also for agriculture, so that the impact of salinisation on aquifers have consequences on the whole resource 
system. Yet, sea level rise is one of the two main controlling natural factors of aquifers volume and quality, 
together with precipitations; and even a low rise in sea level can have substantial effects on aquifers, 
especially in atoll island contexts. 

M6. Implementation level of adequately calibrated hard engineered coastal defences 
• Justification: Section 4.4.2.2 

M7. Implementation level of restoration of degraded ecosystems, or creation of new natural buffers areas 
• Justification: Sections 4.4.2.2 and 4.4.2.3 

M8. Implementation level of coastal retreat  
• Justification: Section 4.4.2.6, Cross-Chapter Box 9. The assessment takes into consideration the specific 

physical constrains of each archetypal geography. In particular, while megacities and deltas have a hinterland 
for relocation within the territorial system, land scarcity in atoll islands implies that relocation can take place 
within the island if needs for relocation are moderate, but should be either in another neighbouring island or 
in artificially raised islands in the case of higher relocation levels. 
In addition, this metric refers to planned retreat aiming at reducing the exposure of people, assets and 
infrastructure, and not to spontaneous retreat by individuals or small communities. 

M9. Limit subsidence 
• Justification: Sections 4.4.2.2, 4.4.2.5 

 
 
The approach consists of assessing the potential contribution of each of these metrics to risk reduction or 
increase (SM4.3.4) by the end of the century, and according to various SLR and Adaptation scenarios 
(SM4.3.3). This assessment is based on a semi-qualitative expert judgment informed by peer-reviewed 
literature on real-world case studies. 
 
SM4.3.3 Scenarios for the Future 
 
SM4.3.3.1 Three Sea Level Rise Scenarios 
 
In line with the specific scope of Chapter 4 (i.e., « Sea Level Rise and Implications for Low Lying Islands, 
Coasts and Communities »), this assessment focusses on the additional risks due to SLR trends and does not 
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account for changes in extreme event climatology (waves, cyclones, etc.; Sections 4.2.3.4.1 to 4.2.3.4.3, 
6.3.1.1 to 6.3.1.3). This would imply much larger risk than assessed here as, for example, this chapter 
however shows that events that are rare today will become more frequent in the future.  
 
Risk transitions are located using end-century Global Mean Sea Level (GMSL) rise (thereafter, SLR, in 
2100) relative to Present day (1986–2005), and the approximate nature of these transitions was signalled in 
part by using the following values: +43cm for mean SROCC RCP2.6 (range 0.29–0.59m); +84cm for mean 
SROCC RCP8.5 (range 0.61–1.10m), and +110cm for the SROCC RCP8.5 upper end of the likely range. See 
the main text for details (Table 4.3, Section 4.2.3.2).  
 
In this exercise, GMSL serves as a representation of different possible climate change scenarios (see Panel A 
in Figure. 4.3, Section 4.1.2). The assessment of additional risks due to SLR on specific geographies is 
developed not against GMSL, but against various levels of end-century relative sea level rise (RSL) in order 
to allow a geographically accurate approach (Panel B, Fig. 4.3). Accordingly, RSL is considered for each of 
the real-world case studies used for assessing risk to archetypal geographies (SM4.3.6; Table SM4.2; see 
coloured blocs in Panel B of Figures 4.3 and SM4.3.4), as well as in average per 
archetypal geographies (Table SM4.2, see coloured dotted lines in Panel B of Figures 4.3 and SM4.3.4). 
 
 
Table SM4.2: Relative sea level rise by 2100 at the real-world case studies (italics) and per archetypal geographies. 

Location 

SROCC 
RCP2.6 

SROCC 
RCP8.5 GIA 

Median Median Upper end 
(>95%) 

Megacities 

New York 0.55 1.02 1.53 0.09 
Rotterdam 0.39 0.82 1.23 0 
Shanghai 0.42 0.84 1.29 -0.03 

Mean 0.45 0.89 1.35 / 

Urban atoll islands 

South Tarawa 0.49 0.92 1.32 -0.02 
Funafuti 0.49 0.91 1.33 -0.01 
Male’ 0.46 0.92 1.32 -0.01 

Mean 0.48 0.92 1.32 / 

Large tropical 
agricultural deltas 

Mekong 0.43 0.84 1.23 -0.04 
Ganges-Brahmaputra 0.33 0.74 1.08 -0.04 

Mean 0.38 0.79 1.16 / 

Arctic coastal 
communities 

(remote from regions 
of rapid glacial-

isostatic adjustment) 

Bykovskiy 0.34 0.79 1.17 -0.01 
Shismaref 0.40 0.81 1.13 0.07 
Kivalina 0.37 0.77 1.10 0.06 
Tuktoyaktuk 0.39 0.77 1.09 0.18 
Shingle Point 0.40 0.76 1.10 0.17 

Mean 0.38 0.78 1.12 / 
 
 
N.B.: RSL includes vertical land movements, both uplift (e.g. due to tectonics) and subsidence. The causes 
of subsidence are both natural (e.g., tectonics, glacio-isostatic adjustment (GIA), sediment compaction) 
and human-induced (e.g., oil/gas/water extraction, mining activities). All of these causes are captured in RSL 
observations, but not in SROCC RSL projections that only include GIA and the regional gravitational, 
rotational and deformational responses (Section 4.2.3.4.1) to ice mass loss. Anthropogenic subsidence 
especially is not included in the SROCC RSL projections (Section 4.2.3.4.1): although acknowledged to be 
important at many locations, especially in deltas and megacities, it is challenging to project to the end of the 
century due to the influence of human interventions (important factor in the locations considered in this 
assessment). As a result, SROCC RSL projections only include the GIA component, the mass loss of glaciers 
and ice sheets, and oceans, including their spatial patterns.  
 
SM4.3.3.2 Two Adaptation Scenarios 
 
Two adaptation scenarios are considered:  
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(A) “No-to-moderate adaptation” (see Panel B in Figure 4.3) represents a business-as-usual scenario where 
no major additional adaptation efforts compared to today are implemented. That is, neither substantial 
intensification of current actions nor new types of actions, e.g., only moderate raising of existing protections 
in high-density areas or sporadic episodes of coastal retreat or beach nourishment where largescale efforts 
are not already underway. 
 
(B) “High adaptation” represents the opposite situation, i.e. an ambitious combination of both incremental 
and transformational adaptation that leads to significant additional efforts compared to today. Examples of 
measures are: relocation of entire districts in a megacity, or creation/restoration of beach-dune systems at a 
significant scale. Here, we assume adaptation implemented at its full potential, i.e., the extent of adaptation 
that is technologically possible, with little financial, social and political barriers. 
 
Table SM4.3 below summarizes the assessment framework (and based on SM4.3.2 an SM4.3.3), where Red 
refers to sea-level rise scenarios and Green refers to adaptation scenarios.  
 
 
Table SM4.3: The assessment framework (metrics, SLR scenarios, Adaptation scenarios). 

 
 
SM4.3.4 Metrics Scoring According to Their Contribution to Risk, for the Present Day and in the 

Future 
 
SM4.3.4.1 Scoring Risk for the Present Day 
 
Coastal risk gradient ranges from Undetectable to Very High (Panel A in Figure SM4.2 below). When 
including transitions, 7 levels are reported (Undetectable, Undetectable to Moderate, Moderate, Moderate to 
High, High, High to Very High, Very High) that describe a scoring scale going from 0 to +6, as shown in 
Panel B in Figure SM4.2. Based on the above-mentioned semi-qualitative expert judgment, a score is 
attributed to each metric to reflect its contribution to current coastal risk. Positive and negative scores 
describe contributions to increasing or decreasing risk, respectively. 
  

Sea level rise by 2100 (compared 
to the Present day, 1986-2005) 
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Present day score score score score score score score score score score 

+43cm by end-century (A) score score score score score score score score score score 

+43cm by end-century (B) score score score score score score score score score score 

+84cm by end-century (A) score score score score score score score score score score 

+84cm by end-century (B) score score score score score score score score score score 

+110cm by end-century (A) score score score score score score score score score score 

+110cm by end-century (B) score score score score score score score score score score 
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Figure SM4.2: Scoring scale for assessing Present day risk.  
 
 
SM4.3.4.2 Scoring Coastal Risk for the End-century (Under Various SLR Scenario and Adaptation 

Scenarios) 
 
Table SM4.4 below schematically quantifies the potential additional contribution of each metric to future 
coastal risk (increase or reduction; positive or negative scores, respectively). Respective contributions in a 
+43cm(A) scenario are compared to the Present-day (1986–2005); so that +43cm(A) scores are additional to 
the Present-day ones. In the same way, and to highlight cumulative effects across SLR and Adaptation 
scenarios, metrics’ contributions in the +84cm and +110cm scenarios are compared to scores for the +43cm 
and +84cm scenarios, respectively; so that +84cm and +110cm scores are additional to the +43cm and 
+84cm ones, respectively.  
 
In parallel, the adaptation scenario (B) scores are most of the time based on the scenario (A) scores of the 
same SLR scenario. For example, the scores for +43cm(B) describe the contribution of the implementation 
of adaptation measures (M6, M7, M8, M9) to the reduction of risk level at the +43cm(A).  
 
The scoring relies on a semi-qualitative expert judgment based on real-world case studies described in peer-
reviewed literature. Final assessment for each geography is presented in SM4.3.7.  
 
 
Table SM4.4: Scoring methodology for assessing future risk.  

Additional contribution 
of the metric to end-

century coastal risk level 

(A) 
No-to-moderate adaptation 

(B) 
High Adaptation 

No effect  [+0] [+0] 

Increases risk  
[+1] – Low additional contribution 
[+2] – Substantial additional contribution 
[+3] – Very substantial additional contribution 

[+1] – Low additional contribution 
[+2] – Substantial additional contribution 
[+3] – Very substantial additional contribution 

Decreases risk 
[-1] – Low additional contribution 
[-2] – Substantial additional contribution 
[-3] – Very substantial additional contribution 

[-1] – Low additional contribution 
[-2] – Substantial additional contribution 
[-3] – Very substantial additional contribution 

 
 
SM4.3.5 Aggregated Scores per Geography, Sea Level Rise Scenario and Adaptation Scenario 
 
Figure SM4.3 builds on Figure SM4.2 to describe the equivalence between coastal risk levels (according to 
the IPCC frame, Panel A in Figure SM4.3) and the assessment scores per criteria (Panel B). 
 
Four main steps for calculating future coastal risk levels are: 

Levels of additional risk due
to climate change and SLR

Panel A

Panel B
Individual scores (i.e. per metric) to
establish Present-day level of risk

(per metric and geography;
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Step 1 – For each metric, estimation of the current contribution to coastal risk, based on the 0–6 scale 
described in SM4.3.4.1 (see also Panel B in Figure SM4.3). 

Step 2 – Each metric’s additional contribution to coastal risk under various end-century SLR and 
Adaptation scenarios is assessed based on the scoring scale presented in Table SM4.4. Scores for the 
+43cm(A) scenario are based on Present day (1986–2005) scores. Scores for the +84cm(A) and 
+110cm(A) scenarios are calculated based on the +43cm(A) and +84cm(A) scores, respectively, and 
in order to reflect a cumulative effect of contributions to coastal risk as sea level rises.  
In parallel, the adaptation scenario (B) scores are most of the time based on the scenario (A) scores 
of the same SLR scenario. For example, the scores for +43cm(B) describe the contribution of the 
implementation of adaptation measures (metrics M6 to M8) to the reduction of the +43cm(A) risk 
level. 

Step 3 – Aggregated levels of coastal risk for the Present Day – These risk levels result from the 
aggregation (i.e., addition without weighting) of the 9 metrics’ individual scores developed in step 1. 
The range for Present day (1986–2005) aggregated scores goes from 0 (i.e., undetectable 
contribution to risk for all metrics) to 30 (i.e. very high contribution to risk for all metrics). The 
equivalence in terms of risk level is based on the risk scale used in previous IPCC assessments (see 
panel B of Figure SM4.3).  

Step 4 – Aggregated levels of coastal risk for the Future – Risk levels by the end of the century and for 
different SLR (A) and adaptation (B) scenarios result from the aggregation (i.e., addition without 
weighting) of the 9 metrics’ individual scores developed in step 2. The range for Future aggregated 
scores goes from 0 to 75 (i.e., respectively undetectable and very high contribution to risk for all 
metrics); this calculation is based on the combination of min./max. Present day (1986–2005) 
aggregated scores with additional contributions to risk for each metric (see sheet 2 in SM4.3 
datafile). To consider the wide range of possible aggregated scores implies to consider situations that 
are already at Very High risk and where each additional cm of SLR pushes the risk level to extreme 
limits, i.e., beyond “Very High”. According to this, we added another level of risk to the usual IPCC 
risk scale, and that describes “Extremely High” risk (see black-purple in Panel A of Figure SM4.3).  
In that way, the approach is standardized among the geographies, although it is acknowledged that, 
for example, atolls islands and Arctic communities do not have significant (if any) space for action 
under M9, as well as salinization (M5) is not an issue for megacities.  

 
 

 
Figure SM4.3: Scoring scale for assessing future risk.  
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Authors). This semi-qualitative expert judgment has been informed by using, for each archetypal geography, 
a set of real-world local case studies that have been described in the peer-reviewed literature (Table SM4.5). 
 
 
Table SM4.5: Real-world case studies used in the assessment of current and future coastal risk.  

Archetypal 
geography Case studies used for background information Main authors involved 

Megacities  

- New York City (USA) 
- Rotterdam (The Netherlands) 
- Shanghai (China) 
 
N.B.: insights from Box 4.1 have also been 
considered. 

- Maya Buchanan (USA), CA 
- Michael Oppenheimer (USA), CLA 

Urban atoll 
islands 

- Male’ (Maldives) 
- South Tarawa main islands (Kiribati) 
- Funafuti (Tuvalu) 

- Virginie Duvat (France), CA 
- Alexandre Magnan (France), LA 

Large tropical 
agricultural 
deltas 

- Mekong Delta 
- Ganges-Brahmaputra 

- Fabrice Renaud (UK), CA 
- Zita Sebesvari (Hungary/Germany), LA 

Arctic 
communities  

- Bykovskiy, Russia 
- Shismaref, Alaska, USA 
- Kivalina, Alaska, USA 
- Tuktoyaktuk, Canada 
- Shingle Point, Canada 
 
N.B.: these case studies have been selected because 
they are remote from regions of rapid glacial-
isostatic adjustment.. 

- Donald Forbes (Canada), CA 
- James Ford (UK), CA 

 
 
Scale considered: 
• Megacities: the coastal fringe 
• Urban atoll islands: the whole island system, i.e. capital islands of atoll nations 
• Large tropical agricultural deltas: considered as a whole, and not only their coastal fringe, for three main 

reasons: 
i) SLR will contribute in some deltas (e.g., tidal deltas) in increased salinity intrusion inland – so the 

direct impacts will be not only on the coastal fringes; 
ii) Some of the adaptation measures are easier if we consider a whole delta system: e.g. basin-scale water 

(sediment) management (with all the inherent difficulties of course), but also in terms of retreat 
(migration); 

iii) Delta level planning (e.g., the Mekong) already incorporates various delta-wide development 
scenarios, a couple of which are “do not protect too much” and thus convert to saline livelihoods 
(aquaculture, more salt tolerant crop varieties) and preserve a freshwater environment.  

• Arctic communities: the whole community system 
 
See supporting material in SM4.3.8  
 
SM4.3.7 Final Results 
 
The SM4.3 datafile provides the full assessment database describing all the scores for each metric and each 
geography. The final results are reported in Table SM4.6 below.  
 
Equivalences between final scores and risk levels as described in section SM4.3.5 and Figure SM4.4 below. 
 
 
Table SM4.6: Final aggregated levels of risk for each geography and according to various SLR and Adaptation 
scenarios. Text in black describes the Present Day as well as the “No-to-Moderate adaptation” scenarios for the future. 
Text in blue describes the “High adaptation” scenarios.  
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Sea level rise by 
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Megacities 
Present day 6 1 2 1 0 -3 0 -1 0  6 – Undetectable to Moderate 
+43cm (A) 7 2 4 2 0 -1 0 -1 0 13 – Moderate 
+43cm (B) 6 1 1 1 0 -3 0 0 0  6 – Undetectable to Moderate 
+84cm (A) 10 4 7 3 0 0 0 -2 0 22 – Moderate to High 
+84cm (B) 6 1 2 1 0 -3 0 0 0  7 – Undetectable to Moderate 

+110cm (A) 12 5 10 3 0 0 0 -3 0 27 – Moderate to High 
+110cm (B) 8 2 4 1 0 -2 0 -1 0 12 – Moderate 

Urban Atoll Islands 
Present day 5 5 5 4 2 -2 -1 0 0 18 – Moderate 
+43cm (A) 7 7 8 6 4 -2 -1 0 0 29 – Moderate to High 
+43cm (B) 7 7 8 6 4 -4 -3 -3 0 22 – Moderate to High 
+84cm (A) 10 9 11 8 6 -2 -1 0 0 41 – High to Very High 
+84cm (B) 10 9 11 8 6 -4 0 -6 0 34 – High  

+110cm (A) 13 11 14 10 8 -2 -1 0 0 53 – Very High 
+110cm (B) 13 11 14 10 8 -4 0 -9 0 43 – High to Very High 

Large tropical agricultural deltas 
Present day 4 3 3 2 2 -2 -1 0 0 12 – Moderate 
+43cm (A) 4 4 5 3 4 -2 -1 0 0 18 – Moderate 
+43cm (B) 4 4 5 3 4 -3 -3 0 -2 14 – Moderate 
+84cm (A) 4 5 8 5 6 -2 -1 0 0 26 – Moderate to High 
+84cm (B) 4 5 8 5 6 -4 -2 -3 -1 19 – Moderate 

+110cm (A) 4 5 11 7 8 -2 -1 0 0 33 – High 
+110cm (B) 4 5 11 7 8 -5 -1 -3 0 27 – Moderate to High 

Arctic coastal communities (remote from regions of rapid glacial-isostatic adjustment) 
Present day 4 5 4 5 2 -1 0 -1 0 18 – Moderate 
+43cm (A) 5 7 6 8 2 -1 0 -1 0 26 – Moderate to High 
+43cm (B) 5 7 6 7 2 -2 0 -2 0 23 – Moderate to High 
+84cm (A) 6 10 8 11 3 -1 0 -1 0 36 – High 
+84cm (B) 6 10 8 10 3 -3 0 -4 0 30 – High 

+110cm (A) 7 11 9 12 3 -1 0 -1 0 40 – High to Very High 
+110cm (B) 7 11 9 11 3 -3 0 -4 0 35 – High to very High 

 
 

 
Figure SM4.4: Additional risks from SLR on low-lying coastal geographies by the end of the 21st century (see Figure 
4.3 and caption in the main text, as well as Section 4.3.4 for synthetic methodological advances and brief analysis of the 
results).  
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SM4.3.8 Rationale for Scoring per Geography 
 
SM4.3.8.1 Megacities 
 
See Section 4.3.4.2.1 and Sheet 1 of the SM4.3 datafile. Main references used for the Megacities case study 
include Vellinga (2009), Delta Programme (2015), Zhou et al. (2016), Hinkel et al. (2018), Xian et al. 
(2018), along with those in Box 4.1. 
 
SM4.3.8.2 Urban Atoll Islands 
 
See complementary information in Section 4.3.4.2.1 and Sheet 1 of the SM4.3 datafile. 
 
The urban atoll islands considered in this analysis are the capital islands (or groups of islands) of three atoll 
nations in the Pacific and Indian Oceans: Fongafale (Funafuti Atoll, Tuvalu), the South Tarawa Urban 
District (Tarawa Atoll, Kiribati) and Male’ (North Kaafu Atoll, Maldives). Atoll island countries present a 
quite unique situation around the world as the Present and Future of their populations largely depend on the 
responses of coral reefs to climate change and induced changes in the ocean (Hughes et al., 2017; Perry et 
al., 2018). As atoll islands in general, urban atoll islands have low elevation (<4 m above mean sea level) 
and are mainly composed of reef-derived unconsolidated material.  
 
Urban atoll islands present a critical situation for these countries. On the one hand, they are the main 
economic and demographic centres at the country scale, thereby often concentrating most human assets and 
critical infrastructure (airports, main harbours). On the other hand, they illustrate the prominence of 
anthropogenic-driven disturbances to atoll island capacity to naturally adjust to ocean climate-related 
changes, and SLR in particular. Human disturbances affect the critical services provided by the reef-island 
system, in particular the coastal protection service delivered by the reef ecosystem and beach. This service 
consists of wave energy attenuation, which reduces wave-induced flooding and coastal erosion, and sediment 
provision by the reef ecosystem to the island, which is critical to island persistence over time through 
continuous adjustment to waves and SLR through sediment reorganisation (McLean and Kench, 2015; 
Quataert et al., 2015; Elliff and Silva, 2017; Storlazzi et al., 2018).  
 
Three critical controlling factors of the future habitability of these islands are the density of assets exposed to 
climate-induced coastal hazards (metric M1), marine flooding (M3) and coastal erosion (M4). These critical 
controlling factors are interlinked with ecosystem response to ocean-climate related pressures and the effects 
(detrimental or beneficial) of human activities. The following assessment takes this into consideration.  
 
Present day 

M1: Human-driven disturbances to the natural reef-island system are inherent to high populations 
densities and unplanned urban development. In countries such as the Maldives, Tuvalu and Kiribati, 
the capital atolls and island host between around a third (in the Maldives) and half (in Tuvalu and 
Kiribati) of the national population. This translates into high levels of population density: ~65,700 
inh. km-2 in Male’ (GoM-MoT 2014), ~4,200 inh. km-2 in Funafuti Atoll (McCubbin et al., 2015), 
~3,200 inh. km-2 in South Tarawa (McIver et al., 2015). This all the more contributes to risk that as 
illustrated in Tuvalu and Kiribati, settlements concentrate on the lagoon side, i.e., very low-lying 
(<1.80 m in elevation, e.g., South Tarawa)(Duvat, 2013) and therefore flood-prone, side of islands. 
The capital islands also often host the main critical infrastructures of the country, especially 
international airports and main harbours, which are critical for the economy and more broadly the 
opening up to the World. Together, high population densities and the concentration of critical 
infrastructure in naturally low-lying areas substantially contribute to coastal risk (Duvat et al., 2013). 
Þ Final score of [5].  

M2: The main ecosystems considered here are coral reefs, mangroves and sandy beaches. It is 
acknowledged that today, the degradation of marine and coastal ecosystems that serve as natural 
buffers is high in urban atoll islands due, for example, to mangrove clearing in South Tarawa (Duvat, 
2013) or to human-induced coral reef degradation through land reclamation in Male’ (Naylor, 2015). 
As a result, the above-mentioned coastal protection service is most often already seriously 
undermined, with implications in terms of increasing coastal risk. Þ Final score of [5]. 
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M3: High to Very High flooding risk today for all the case studies. Extreme sea levels (including during 
high tides) already generate flooding events on relatively large parts of islands. Experiences are 
reported in Male’ (Wadey et al., 2017) and Funafuti (Yamano et al., 2007; McCubbin et al., 2015). 
Flooding is a major risk in atoll island environments as flooding events often cause substantial 
damages to human assets (e.g., destruction of roads, coastal protection structures and airstrips), as 
well as they have cascading effects on livelihoods, for example as a result of groundwater and soil 
salinization. Land scarcity in atoll environments exacerbates the importance of such damages and 
cascading impacts. Þ Final score of [5]. 

M4: Coastal erosion is already a major concern along some non-armoured shoreline sections in urban 
islands in South Tarawa, Kiribati (Duvat, 2013) and Fongafale, Tuvalu (Onaka et al., 2017). It is not 
the case in Male’, Maldives, where surrounding fortifications occupy almost all the shoreline from 
several decades (Naylor, 2015). In urban islands, coastal erosion occurring on non-fixed shoreline 
sections is generally attributed to the disruption of natural processes by human disturbances, in 
particular land reclamation, causeway construction aimed at connecting nearby islands and sediment 
extraction from beaches, reef flats and shallow lagoons (Biribo and Woodroffe, 2013; Duvat, 2013; 
Duvat et al., 2013; Donner and Webber, 2014; McLean and Kench, 2015; Duvat, 2019). Þ Final 
score of [4]. 

M5: Salinization already affects groundwater lenses in atoll islands, especially as a result of overwash 
events (Terry and Chui, 2012; Hoeke et al., 2013; Oberle et al., 2017). While the population of Male’ 
relies on desalinized seawater, groundwater lenses still provide water for human consumption and 
agricultural purposes in South Tarawa, for example (Bailey et al., 2014; Post et al., 2018). This 
explains variable contributions of groundwater lens salinization to risk depending on the urban atoll 
island considered. Despite increasing rainwater harvesting, groundwater lenses remain a primary 
source of domestic freshwater in South Tarawa, which advocates for their sustainable management 
(White and Falkland, 2010; Post et al., 2018). N.B.: attribution of groundwater lens salinization to 
SLR however remain unclear (Section 4.3.3.1). Therefore, a score of [+2] which reflects a moderate 
contribution of salinization to risk. Þ Final score of [2]. 

M6: Some existing hard protection in all of the case studies. The quality of such coastal defences is 
however highly variable between the case studies, from appropriate engineered to poorly designed 
structures. Male’ constitutes an exception in urbanized atoll environments as it surrounded by 
massive engineered structures, especially breakwaters and rock revetments (Naylor, 2015). However, 
although these appropriate engineered structures substantially contribute to reduce risk (i.e., 
individual score of -4), they don’t totally eliminate the flooding hazard. At the opposite, in South 
Tarawa urban islands, adequate structures are seldom, with poorly designed handmade structures 
prevailing along the coast (Duvat, 2013; Duvat et al., 2013), therefore an individual score of [-2]. 
Funafuti presents a similar situation to the one of South Tarawa (Onaka et al., 2017). Þ Final score 
of [-2]. 

M7: Today, measures to protect/restore natural buffers are still limited in urban atoll contexts. A well-
known example is mangrove replanting in the eastern lagoon part of South Tarawa (Donner and 
Webber, 2014), but such examples remain limited in the literature. Þ Final score of [-1]. 

M8: Today, the level of implementation of retreat measures aiming at reducing the exposure of people, 
assets and infrastructure remains sporadic and unplanned in urban atoll islands. Accordingly, we 
estimated undetectable contribution to today's coastal risk reduction. Þ Final score of [0]. 

M9: Not considered for urban atoll islands. 
 

+43(A)  
M1: Even in the case of a relative stabilization of the population, densities will remain high in the future 

(see SM4.3.2). Due to the low-lying coasts of atoll islands and the concentration of settlements along 
the very low-lying lagoon coast of atoll islands such as South Tarawa, even stabilized densities 
would translate into a substantial increase (i.e. [+2] compared to Present day) of M1 contribution to 
risk even under a +43cm rise in sea level. Þ Final score of [+2] compared to the Present day. 

M2: While this assessment focusses on the additional risks due to SLR, it is important to note that ocean 
acidification and warming will weaken the capacity of marine ecosystems, including coral reefs and 
mangroves, to cope with SLR (Van Hooidonk et al., 2013; Pendleton et al., 2016; Perry and Morgan, 
2017; Perry et al., 2018)(Sections 4.3.3.5, 5.3), which will in turn exacerbate the influence of SLR on 
coastal risk. Þ Final score of [+2] compared to the Present day.  
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M3: Important increase in risk of flooding compared to today is expected (Beetham et al., 2017; Storlazzi 
et al., 2018). Þ Final score: [+3] compared to Present day. 

M4: Coastal erosion is expected to increase substantially even under relatively small rise in sea level, 
mainly due to the pursuing of current trends as well as the possible increase in human-driven 
disturbances (e.g., sand mining) that undermine the capacity of islands to adjust to ocean-climate 
related pressures (McLean and Kench, 2015; Duvat, 2019). Such a role of coastal erosion in risk 
increase will be important in South Tarawa and Funafuti, but not in Male’ where the shoreline is 
almost entirely fixed by engineered coastal protection structures. Þ Final score: [+2] compared to 
Present day. 

M5: Substantial increase in risk of groundwater salinization compared to today, as even small values of 
SLR are expected to significantly affect atoll islands aquifers (Bailey et al., 2016; Storlazzi et al., 
2018). Þ Final score: [+2] compared to Present day.  

M6: No major additional adaptation efforts compared to today. Same score as for Present day. 
M7: No major additional adaptation efforts compared to today. Same score as for Present day. 
M8: No major additional adaptation efforts compared to today. Same score as for Present day. 
M9: Not considered for urban atoll islands. 

 
+43(B)  

M1: As for +43cm(A). 
M2: As for +43cm(A). 
M3: As for +43cm(A). 
M4: As for +43cm(A). 
M5: As for +43cm(A). 
M6: Substantial additional contribution of appropriate engineered protection structures to decreasing risk, 

compared to business-as-usual interventions. While engineered protection structures will reduce risk 
of flooding especially, they will not necessarily prevent seawater infiltration due to the permeable 
nature of the island substratum. So even adequate coastal protection would probably not eliminate 
risk (Hinkel et al., 2018). Þ Final score: [-2] compared to +43cm(A). 

M7: In a relatively moderate increase in sea level, substantial additional contribution of ecosystem 
restoration efforts to decreasing risk can be expected. Despite this, human- and climate-driven 
disturbances of these natural buffers will not be fully removed. As a result, the Present day natural 
buffering capacities of marine and coastal ecosystems cannot be fully recovered in the urban atoll 
island context, which prevents these ecosystems to have a very substantial contribution to risk 
reduction (i.e., [-3] compared to today). This reflects some irreversibility in human-driven ecosystem 
degradation in urban environments. Þ Final score: [-2] compared to +43cm(A).  

M8: Very substantial additional contribution of proactive coastal retreat (e.g. first and second lines of 
buildings and infrastructures; associated with relocation either on the same island or to a nearby 
island exhibiting medium population densities) to decreasing risk compared to business-as-usual 
interventions. To the point that such a retreat can compensate the extent of coastal flooding and 
hence the level of associated damages to the built assets. Þ Final score: [-3] compared to +43cm(A). 

M9: Not considered for urban atoll islands. 
 
+84(A)  

M1: Very substantial increased contribution to risk compared to +43cm(A) scenario. Very substantial 
additional contribution of high density to risk. Þ Final score [+3] compared to +43cm(A).  

M2: Substantial increased contribution to risk compared to +43cm(A) scenario, due both to continued 
human-driven degradation of ecosystems –reminder: (A) scenarios considers no major additional 
adaptation efforts compared to today (SM4.3.3.2)– and the impacts of ocean warming and 
acidification. Þ Final score: [+2] compared to +43cm(A).  

M3: Substantial increased contribution to risk compared to +43cm(A) scenario. This reflects the 
combination of very low-lying topographies with increased relative and extreme sea levels. Þ Final 
score: [+3] compared to +43cm(A). 

M4: Substantial increased contribution to risk compared to +43cm(A) scenario. Accelerated erosion at all 
sites due to the fact that the sediment budget of islands will already be substantially affected under a 
+43cm rise in sea level, so that erosion trends continuation will result in less sediments being 
available at the coast in higher SLR scenarios. Final score: [+2] compared to +43cm (A). 
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M5: Massive effects on the volume and quality of groundwater lenses, surface waters and soils are to be 
expected in a SROCC RCP8.5 scenario, therefore substantial cumulative effect in terms of 
contribution to risk compared to +43cm(A). Þ Final score: [+2] compared to +43cm(A). 

M6: No major additional adaptation efforts compared to today. Same score as for Present day. 
M7: No major additional adaptation efforts compared to today. Same score as for Present day. 
M8: No major additional adaptation efforts compared to today. Same score as for Present day. 
M9: Not considered for urban atoll islands. 

 
+84(B)  

M1: As for 84cm(A). 
M2: As for 84cm(A). 
M3: As for 84cm(A). 
M4: As for 84cm(A). 
M5: As for 84cm(A).  
M6: While the development of adequate engineered coastal defence structures will still provide some 

benefits in terms of risk reduction (e.g., flooding limitation, shoreline stabilization), these protection 
structures will not necessarily prevent seawater infiltration due to the permeable nature of the island 
substratum. So even adequate coastal protection will probably not eliminate risk (Hinkel et al., 
2018). As a result, and given the very low elevation and the porous nature of urban islands, one can 
hypothesize that higher SLR scenarios would weaken the additional benefits of coastal protection 
structures –although huge uncertainty remains on such a hypothesis. Þ Final score: [-0] compared to 
+84cm(B). 

M7: No more contribution to risk reduction in higher end-century SLR: the contribution of ecosystem 
restoration becomes obsolete as, for example, corals will face difficulties to keep-up with SLR and 
mangroves will lose habitats (Sections 4.3.3.5, 5.3). As a result, we considered a decreasing 
contribution to risk reduction. Þ Final score: [-1] compared to +84cm(A), i.e. [+1] compared to 
+43cm(B). 

M8: More intense coastal retreat (e.g., >3 lines of buildings and infrastructures) will decrease risk, but in 
an atoll island context, such a level of retreat will face physical constrains due to land scarcity. To 
address this constraint, however, relocation to other islands in the same atoll can be envisaged (e.g. 
in Tarawa and Funafuti that still have many rural and uninhabited islands). In Kaafu Atoll, Maldives, 
where land is scarce (most islands are already settled or exploited, e.g. by resorts), additional 
artificially raised islands such as Hulhumale’ could offer some opportunities. This highlights the 
potential cumulative benefits of a progressive shift in retreat approaches, from within the capital 
island to neighbouring or artificial islands. Þ Final score: [-3] compared to +43cm(B). 

M9: Not considered for urban atoll islands.  
 
+110(A)  

M1: Same justification as for M1 under +43cm. Very substantial additional contribution of high densities 
compared to the +85cm situation. Þ Final score: [+3] compared to +84cm(A).  

M2: Same justification as for M2 under +84cm. Substantial increased contribution to risk compared to 
+84cm(A) scenario, due both to continued human-driven degradation of the ecosystems and the 
impacts of ocean warming and acidification. Þ Final score: [+2] compared to +84cm(A). 

M3: Same justification as for M3 under +84cm. Combination of very low-lying topographies with 
increased relative and extreme sea levels. Final score: [+3] compared to +84cm(A). 

M4: Same justification as for M4 under +84cm. Beaches sediment budgets will already be substantially 
affected as SLR in the +84cm scenario, and the situation will become worst under higher SLR. As a 
result, less sediments will be available at the coast compared to the +84cm situation. Þ Final score: 
[+2] compared to +84cm(A). 

M5: Same justification as for M5 under +84cm. Intense cumulative effects of reduction in both volume 
and quality for groundwater lenses, surface waters and soils, compared to the +84cm situation. Þ 
Final score: [+2] compared to +84cm(A). 

M6: No major additional adaptation efforts compared to today. Same score as for Present day. 
M7: No major additional adaptation efforts compared to today. Same score as for Present day. 
M8: No major additional adaptation efforts compared to today. Same score as for Present day. 
M9: Not considered for urban atoll islands. 
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+110(B)  
M1: As for +110cm(A). 
M2: As for +110cm(A). 
M3: As for +110cm(A). 
M4: As for +110cm(A). 
M5: As for +110cm(A). 
M6: Same as for ME +84cm(B): while the development of adequate coastal defence structures will still 

provide some benefits in terms of risk reduction (e.g., flooding limitation), protection structures will 
not necessarily prevent seawater infiltration due to the permeable nature of the island substratum. So 
even adequate coastal protection will probably not eliminate risk (Hinkel et al., 2018). As a result, 
and given the low elevation and porous nature of the islands, one can hypothesize that higher SLR 
scenarios would weaken the additional benefits of coastal protection structures –although huge 
uncertainty remains on such a hypothesis. Þ Final score: [-0] compared to +84cm(B).  

M7: It is virtually certain that any climate change scenario resulting in a +110cm rise in sea-level will 
also generate significant changes in the ocean chemical parameters (temperature, pH). Accordingly, 
risks to ecosystems associated with such a scenario will be high to very high (Section 5.3.4). In the 
same line as in n+84cm(B), this results in a reduced contribution of this metric to risk reduction 
under the SROCC RCP8.5 upper end of the likely range. Þ Final score: [-1] compared to 
+110cm(A), i.e. [+1] compared to +84cm(B). 

M8: The rationale is basically the same as for +84cm(B), except that land scarcity is exacerbated under a 
higher SLR scenario (i.e. higher potential loss of land). We however consider that the above-
mentioned progressive shift in retreat approaches from within the capital island to neighbouring or 
artificial islands (see +84cm(B)) will remain relevant even under the SROCC RCP8.5 upper end of 
the likely range. Þ Final score: [-3] compared to +84cm(B). 

M9: Not considered for urban atoll islands. 
 
SM4.3.8.3 Large Tropical Agricultural Deltas 
 
See complementary information in Section 4.3.4.2.1 and Sheet 1 of the SM4.3 datafile. 
 
The deltas considered in this analysis are the Ganges-Brahmaputra-Meghna Delta and the Mekong River 
Delta. Both deltas are large (1st and 2nd largest deltas by area globally), low-lying and dominated by 
agricultural production. The risk assessment to SLR considers the entire delta area (not only the coastal 
fringe), for the following reasons: 
i) SLR will contribute in some deltas (e.g. tidal deltas) in increased salinity intrusion inland – so the direct 

impacts will be not only on the coastal fringes; 
ii) Some of the adaptation measures are easier if we consider a whole delta system: e.g. basin-scale water 

(sediment) management (with all the inherent difficulties of course), but also in terms of retreat 
(migration); 

iii) Delta level planning (e.g. the Mekong) already incorporates various delta-wide development scenarios, a 
couple of which are “do not protect too much” and thus convert to saline livelihoods (aquaculture, more 
salt tolerant crop varieties) and preserve a freshwater environment.  

Other coastal river deltas with different characteristics will exhibit different risks to sea level rise related 
coastal hazards. Influencing factors are for example smaller ratio of coastal areas to full delta plain area (e.g. 
Limpopo delta, Mozambique), steeper slope (e.g. Red River delta Vietnam), higher share of urbanization 
(e.g. Nile delta, Egypt), megacity at the coast (e.g. Jakarta, Indonesia), lower population density (e.g. 
Orinoco delta, Venezuela), already strong protection (e.g. Rhine delta, Netherlands), and strong subsidence 
(e.g. Jakarta, Indonesia).  
 
Present day 

M1: Population densities are high in both deltas compared to average coastal population densities with 
1,280 inh. km-2 for the Ganges-Brahmaputra-Meghna (Ericson et al., 2006) and 433 inh. km-2 for the 
Mekong delta (GSO, 2016). Asset densities are moderate as both deltas are agriculture-dominated 
(Hossain et al., 2018; Kondolf et al., 2018). Agricultural production contributes to GDP strongly 
(Smajgl et al., 2015; Hossain et al., 2018), thus agricultural fields are important assets. Þ The 
overall contribution of population and asset density to risk is moderate to high in the Mekong delta 
and high in the Ganges-Brahmaputra-Meghna. The overall risk is high [4]. 
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M2: In both deltas, mangroves are partially cut (Ghosh et al., 2018; Veettil et al., 2018). Wetlands at the 
coast but also further inland are degraded (Quan et al., 2018; Rahman et al., 2018), floodplains are in 
many instances cut off from the river due to flood protection for agricultural fields by poldering or 
dykes (Rogers and Overeem, 2017; Ngan et al., 2018; Warner et al., 2018). Þ On the delta scale, the 
contribution of degraded coastal ecosystems to risk driven by SLR related hazards is moderate to 
high [3]. 

M3: Currently in both deltas riverine flooding dominates (Auerbach et al., 2015; Rahman and Rahman, 
2015; Ngan et al., 2018). High tides and cyclones however can lead to considerable and sometimes 
catastrophic coastal flooding especially in the GBM delta (Auerbach et al., 2015) (Rahman and 
Rahman, 2015). Low flows in the river, dredging for sand and thus river bed deepening and 
subsidence leads to stronger intrusion of tidal flood water (Minderhoud et al., 2017; Shammi et al., 
2017). In both deltas, subsidence is increasing the probability of flooding (Brown et al., 2018). Þ 
The contribution of coastal flooding to risk is currently moderate in the Mekong and high in the 
GBM when the entire delta is considered. Þ Overall score is moderate to high [3]. 

M4: Coastal and river bank erosion is already a serious problem in parts of both deltas (Anthony et al., 
2015; Brown and Nicholls, 2015; Li et al., 2017), while other parts are prograding (Wilson and 
Goodbred Jr, 2015; Zoccarato et al., 2018). Þ Coastal erosion is happening but in light of the overall 
delta area, it only contributes moderately to the current delta risk when the entire delta plain is 
considered [2]. 

M5: Salinization is already happening in many aquifers, soils and surface water in the coastal parts of 
both deltas (Ayers et al., 2017; Minderhoud et al., 2017; Shammi et al., 2017). However, many 
communities also take advantage of the saline water for saline aquaculture (Smajgl et al., 2015; 
Rahman et al., 2018). Furthermore, salinity of water and soil resources did not yet reached a level, 
where it would contribute to risk significantly at the delta scale and it is still a coastal phenomenon 
(Smajgl et al., 2015; Ayers et al., 2017) although in some years salinity intrusion can reach far inland 
such as in 2015 in the Mekong delta (UNDP, 2016). Salinity is a threat for domestic water supply but 
currently rather localized in the coastal zone (Ayers et al., 2017; Kondolf et al., 2018). Þ The 
contribution of salinization to overall risk at the delta scale is currently moderate [2]. 

M6: Both deltas have a partial protection with hard engineered defences such as sluice gates to prevent 
flooding, polders and dykes in some coastal stretches (Smajgl et al., 2015; Rogers and Overeem, 
2017; Warner et al., 2018). Coastal defences do not cover the entire coastline. Þ The contribution of 
hard engineered coastal defences to risk reduction is moderate today [2]. 

M7: Today, level of implementation of measures to protect/restore natural buffers is still limited. There 
are ongoing efforts in both deltas to restore mangroves for example (Quan et al., 2018; Rahman et 
al., 2018). Þ The overall scale of these measures is however rather small compared to the coastline 
length and thus the risk reduction effect is undetectable to moderate [1]. 

M8: Today, the implementation of planned retreat aiming at reducing the exposure of people, assets and 
infrastructure remains sporadic in the Mekong and GBM deltas. Coastal areas of the GMB delta are 
very dynamic and dynamic community responses are well known (e.g. relocations in the char-lands 
(Islam and Khan, 2018) but this is not a planned retreat. Þ Risk reduction by retreat measures is 
currently undetectable on the delta scale [0]. 

M9: Today, level of implementation of measures aiming at reducing subsidence is very low (Schmidt, 
2015; Schmitt et al., 2017) although the first efforts to restrict groundwater extraction are underway. 
Þ Risk reduction by subsidence reduction is currently undetectable on the delta scale [0]. 

 
+43(A) 

M1: Both deltas experience outmigration today (Huy and Nonneman, 2016; Adams and Kay, 2019) and 
this might increase in the future. Asset density might increase with economic development (Szabo et 
al., 2015; Hoang et al., 2018). Þ Overall, population and asset densities might remain high in the 
future, therefore we assume a similar contribution to risk under +43cm(A) than today [4]. 

M2: Compared to Present day and without enhanced adaptation action coastal ecosystems will be under 
increasing exposure to floods, erosion, cyclones, etc. (Li et al., 2017; Brown et al., 2018). Only when 
protected, sustainably managed and not squeezed, coastal ecosystems could keep up with SLR 
(Brown et al., 2018; Kondolf et al., 2018). Þ Without increased adaptation action and ecosystem 
management/protection, we assume an increase of risk mainly caused by further degradation [+1].  
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M3: Compared to Present day without increased adaptation action and no action to held subsidence, 
coastal flooding will contribute very substantially to increasing risk (Erban et al., 2014; Brown and 
Nicholls, 2015; Zoccarato et al., 2018). Þ The additional contribution to overall risk at the delta 
scale will be substantial [+2]. 

M4: Compared to Present day without increased adaptation action and no action to hold subsidence, 
coastal erosion will increase due to SLR, subsidence, increased wave action and extreme events 
(Schmitt et al., 2017; Dang et al., 2018). Þ The additional contribution to overall risk at the delta 
scale remains moderate given that large share of the delta area will not be directly affected [+1]. 

M5: If no action taken to increase adaptation and limit subsidence, salinization of coastal waters and soils 
will be significant (Vu et al., 2018; Zoccarato et al., 2018; Rakib et al., 2019). Þ Salinization will 
contribute to risk substantially with impacts on agriculture, water supply etc. [+2] 

M6: No major additional adaptation efforts compared to today. Same score as for Present day. 
M7: No major additional adaptation efforts compared to today. Same score as for Present day. 
M8: No major additional adaptation efforts compared to today. Same score as for Present day. 
M9: No major additional adaptation efforts compared to today. Same score as for Present day. 

 
+43(B) 

M1: As for +43cm(A). 
M2: As for +43cm(A).  
M3: As for +43cm(A).  
M4: As for +43cm(A).  
M5: As for +43cm(A). 
M6: Additional contribution of enhanced adequately calibrated structures to decreasing risk, relative to 

business-as-usual interventions in the +43cm(A) scenario. The implementation of hybrid defences is 
assumed with strong contribution of ecosystem-based adaptation combined with hard engineered 
coastal defences (Melillo, 2014; Hill, 2015). Þ Overall, the risk reduction contribution of hard 
engineered measures remains moderate in this scenario on the delta scale [-1]. 

M7: Additional contribution of ecosystem restoration efforts to decreasing risk (Dasgupta et al., 2019; 
Nguyen and Parnell, 2019), relative to business-as-usual interventions in the +43cm(A) scenario in 
these agriculture dominated deltas (Schmitt et al., 2013; Van Cuong et al., 2015; Rahman et al., 
2018). Despite this, human- and climate-driven disturbances on natural buffer ecosystems will not be 
fully removed as population and assets density will remain high in large tropical agricultural deltas 
(Davis et al., 2018; Uddin et al., 2019; Whitehead et al., 2019). Þ Overall, the risk reduction 
contribution of hard engineered measures remains moderate in this scenario on the delta scale [-2]. 

M8: It is assumed that hybrid protection effectively reduces the risk at +43cm SLR (Al Masud et al., 
2018; Van Coppenolle et al., 2018), thus retreat will not contribute substantially to the reduction of 
risk at the delta scale. Þ Same as present day. 

M9: It is assumed that measures to lower subsidence will contribute to reduce the risk at +43cm sea level 
rise. Since the reduction of subsidence would have impact on the risk level in large parts of the delta 
(Nicholls et al., 2016; Schmitt et al., 2017), risk reduction effects will be felt on large scale. Þ 
Substantial risk reduction on the delta scale [-2] 

 
+84(A) 

M1: As for +43(A). 
M2: Without increased adaptation coastal ecosystems will be under increasing exposure to floods, 

erosion, cyclones etc. (Erban et al., 2014; Takagi et al., 2016). They will be largely degraded and 
will contribute to the increasing risk strongly at the coast and moderately on the delta scale. Þ Final 
score: [+1] compared to +43cm(A). 

M3: Without increased adaptation action and no action to held subsidence, coastal flooding will 
contribute very substantially to increasing risk (Khan et al., 2013; Takagi et al., 2016; Carvalho and 
Wang, 2019). Þ Final score: [+3] compared to +43cm(A) 

M4: Without increased adaptation action and no action to held subsidence coastal erosion will increase 
due to sea level rise (Erban et al., 2014; Uddin et al., 2019), subsidence, increased wave action and 
extreme events. The additional contribution to overall risk at the delta scale will be substantially 
stronger than with +43cm given that impacts will be felt more inland (Chen and Mueller, 2018; Vu 
et al., 2018). Þ Final score: [+2] compared to +43cm(A) 
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M5: Without increased no adaptation action and no action to held subsidence salinity intrusion will 
contribute substantially to risk as groundwater, soil and surface water will be salinized far inland. Þ 
Final score: [+2] compared to +43cm(A) 

M6: No major additional adaptation efforts compared to today. Same score as for Present day. 
M7: No major additional adaptation efforts compared to today. Same score as for Present day. 
M8: No major additional adaptation efforts compared to today. Same score as for Present day. 
M9: No major additional adaptation efforts compared to today. Same score as for Present day. 

 
+84(B) 

M1: As for +84cm(A). 
M2: As for +84cm(A).  
M3: As for +84cm(A).  
M4: As for +84cm(A).  
M5: As for +84cm(A). 
M6: More engineered coastal defences will be implemented within the grey-green defence continuum 

(Yamamoto and Esteban, 2015). Risk reduction is substantial. Þ Final score: [-2] compared to + 
84cm(A). 

M7: At 84cm SLR the role of coastal ecosystems in reducing risk will be limited (low additional 
contribution). Þ Final score: [-1] compared to + 84cm(A). 

M8: At 84cm SLR migration is assumed to take place and policies can help here greatly to reduce the risk 
(Chen and Mueller, 2018). Additional risk reduction potential is very substantial. Þ Final score: [-3] 
compared to + 84cm(A). 

M9: At 84cm SLR the share of subsidence reduction in reducing the overall risk is smaller than at +43cm 
SLR. Þ Final score: [-1] compared to + 84cm(A). 

 
+110(A) 

M1: Same as for +84cm(A) 
M2: Without increased adaptation coastal ecosystems will be largely destroyed already at +84cm 

(Schmitt et al., 2017; Mehvar et al., 2019; Mukul et al., 2019). No further increase in risk 
contribution is expected. Þ Final score: Same as at +84cm(A). 

M3: Without increased adaptation action, coastal flooding will contribute very substantially to increasing 
risk at the entire delta level (Huong and Pathirana, 2013; Brown et al., 2018; Dang et al., 2018). Þ 
Final score: [+3] compared to +84cm(A) 

M4: Without increased adaptation action coastal erosion will increase due to sea level rise (Anthony et 
al., 2015; Liu et al., 2017; Uddin et al., 2019), increased wave action and extreme events. The 
additional contribution to overall risk at the delta scale will be substantial and stronger than with 
+84cm given that impacts will be felt more inland. Þ Final score: [+2] compared to +84cm (A) 

M5: With increased adaptation action salinity intrusion will contribute substantially to risk as 
groundwater, soil and surface water will be salinized far inland (Tran Anh et al., 2018; Rakib et al., 
2019). It will strongly impact agriculture and water supply in the entire delta (Jiang et al., 2018; 
Timsina et al., 2018; Nhung et al., 2019). Þ Final score: [+3] compared to +84cm(A) 

M6: No major additional adaptation efforts compared to today. Same score as for Present day. 
M7: No major additional adaptation efforts compared to today. Same score as for Present day. 
M8: No major additional adaptation efforts compared to today. Same score as for Present day. 
M9: No major additional adaptation efforts compared to today. Same score as for Present day. 

 
+110(B) 

M1: As for +110cm(A). 
M2: As for +110cm(A).  
M3: As for +110cm(A). 
M4: As for +110cm(A). 
M5: As for +110cm(A). 
M6: Efforts towards the development of adequate coastal defence structures will provide substantial 

benefits in terms of risk reduction (Bhuiyan and Dutta, 2012; Danh and Khai, 2014). Þ Final score: 
[-3] compared to +110cm(A). 
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M7: At 110cm SLR the role of ecosystems in risk reduction is reduced (Doughty et al., 2019; Mukul et 
al., 2019), they provide only a low to non-detectable contribution to risk reduction. Þ Final score: 
[0] compared to + 110cm(A). 

M8: Coastal retreat has a substantial potential to contribute risk reduction due to restricted habitability, 
livelihood options in the remaining delta area (Bhuiyan and Dutta, 2012). Þ Final score: [-3] 
compared to +110cm(A). 

M9: At +110cm, the share of subsidence reduction in reducing the overall risk is low (Payo et al., 2016; 
Zoccarato et al., 2018). Þ Final score: [-1] compared to +110cm(A). 

 
SM4.3.8.4 Arctic Communities (Remote From Regions of Rapid Glacial-isostatic Adjustment)  
 
See complementary information in Section 4.3.4.2.1 and Sheet 1 of the Excel SM4.3 datafile. 
 
The communities considered in this analysis are small indigenous settlements located on the Arctic Coastal 
Plain. They lie on exposed coasts composed of unlithified ice-rich sediments in permafrost, all in areas of 
slow SLR, with seasonal sea ice and lengthening open-water seasons. More broadly in the Arctic, coastal 
communities with a variety of cultural, socio-economic and institutional characteristics, a wide range of 
population size from <150 (e.g. Sachs Harbour and Grise Fiord, Canada) to ~300,000 (Murmansk, Russian 
Federation), and a variety of coastal settings will exhibit different vulnerability (Forbes, 2011; Ford et al., 
2016). In particular, communities located in areas of rapid glacio-isostatic adjustment, such that relative sea 
level projections are negative (falling sea level) for all realistic emission scenarios and pathways this century 
(James, 2014; James et al., 2015; Forbes et al., 2018), have very low sensitivity to sea level change. In this 
analysis, however, only selected Arctic communities remote from regions of rapid glacial-isostatic 
adjustment have been considered, more precisely: 
• Bykovsky, Sakha Republic, Russian Federation (Lena Delta) 
• Shishmaref, Alaska, USA 
• Kivalina, Alaska, USA 
• Shingle Point, Inuvialuit Settlement Region, Canada (Mackenzie Delta) 
• Tuktoyaktuk, Inuvialuit Settlement Region, Canada (Mackenzie Delta) 
 
Present day 

M1: Shishmaref and Kivalina are located on low-lying barrier islands formed by wave action and highly 
susceptible to variations in sea level (Marino, 2012; Bronen and Chapin, 2013; Fang et al., 2018; 
Rolph et al., 2018). Erosion has always been a problem, there is limited space to build, and there are 
few locations if any with low exposure. Shingle Point is similarly situated on an active gravel spit. 
Tuktoyaktuk is partly built on low ground with very high concentrations of massive ice, leading to 
rapid shoreline erosion, and extensive areas are flooded by storm surges at present sea level. 
Bykovsky is mostly situated at higher elevation, but erosion is nevertheless a problem. Þ In such 
sensitive and constraining environments, the overall contribution of population and asset density to 
risk is considered rather high, i.e. score of [4]. 

M2: Accelerating permafrost thaw is promoting erosion of ice-rich sediments at Bykovsky and 
Tuktoyaktuk. In addition, sea ice and its decreasing extent, with a lengthening open-water season, 
provides less protection from storm impacts, particularly later in the year (Lantuit et al., 2011; 
Melvin et al., 2017). Furthermore, extensive critical ecosystems, especially the Lena and Mackenzie 
deltas, which provide food and other ecosystem services to nearby communities, are at risk today 
(Emmerton et al., 2007; Forbes, 2019). Þ Score [5] 

M3: High flooding risk today for Kivalina, Shishmaref, Shingle Point, Tuktoyaktuk, and parts of the 
Mackenze and Lena deltas (less so for Bykovsky). In Shishmaref, for example, 10 flooding events 
(1973-2015) resulted in emergency declarations (Solomon, 2005; Bronen and Chapin, 2013; 
Lamoureux et al., 2015; Albert et al., 2018; Fang et al., 2018; Irrgang et al., 2019). Þ Score [4] 

M4: Rapid erosion of ice-rich slopes below residences and other amenities at Bykovsky (Myers, 2005; 
Lantuit et al., 2011; Vanderlinden et al., 2018); likewise at Shishmaref and Kivalina (Bronen and 
Chapin, 2013; Albert et al., 2018; Fang et al., 2018), and at Tuktoyaktuk and vicinity (Lamoureux et 
al., 2015; Ford et al., 2016). Þ Score [5] 

M5: No evidence of salinisation issues in communities, but brackish water flooding of the outer 
Mackenzie Delta caused by a 1999 storm surge (a rare event due to upwelling ahead of the storm) 
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led to widespread die-off of vegetation with negative ecosystem impacts (Pisaric et al., 2011; Kokelj 
et al., 2012). Þ Score [2] 

M6: Some existing hard protection in Shishmaref and Tuktoyaktuk (Marino, 2012; Bronen and Chapin, 
2013; Lamoureux et al., 2015; Ford et al., 2016). Þ Score [-1] 

M7: No evidence of attention to natural buffers. Not possible for sea ice. Þ Score [0] 
M8: Recognition of the need for possible retreat from eroding bluff in Bykovsky (Vanderlinden et al., 

2018) and similarly in Tuktoyaktuk, where some facilities (e.g. police, school) have already been 
relocated (Lamoureux et al., 2015). A new suburb has been established in Tuktoyaktuk but is 
unpopular because of isolation and there is a strong desire to maintain the historical settlement 
footprint. In Shishmaref and Kivalina, relocation and retreat policies have been discussed but not 
implemented, with many challenges identified (Marino, 2012; Bronen and Chapin, 2013; Marino and 
Lazrus, 2015; Albert et al., 2018). Þ Score [-1] 

M9: Not considered for Arctic communities. 
 
+43(A)  

M1: Modest increase in exposed assets and reflection of population growth with few options to build new 
infrastructure (Hamilton et al., 2016).  

M2: SLR effects exacerbated by increasing permafrost thaw and thermal degradation of ice-rich slopes 
with climate warming, and ongoing loss of sea ice. This results in increased risk to delta ecosystems 
(Vermaire et al., 2013; Lamoureux et al., 2015; Melvin et al., 2017; Vanderlinden et al., 2018; 
Forbes, 2019) , and increased contribution of their degradation to risk reduction. 

M3: Increased risk of coastal flooding in communities (except Bykovsky) and delta ecosystems; in 
Shishmaref, projected SLR and reduced ice cover are projected to increase flooding and erosion 
significantly (Melvin et al., 2017; Hoegh-Guldberg et al., 2018). 

M4: As for M3, with erosion further accelerated by permafrost thaw (Lamoureux et al., 2015; Melvin et 
al., 2017). 

M5: Possible risk of more extensive salinisation, e.g. in Mackenzie Delta. 
M6: No major additional adaptation efforts compared to today. Same score as for Present day. 
M7: Little can be done. No way to restore lost ice.  
M8: Under (A) scenario, the significant cost and social capital required for relocation would limit retreat 

policies, and therefore no further risk reduction compared to today. 
M9: Not considered for Arctic communities. 

 
+43(B)  

M1: As for +43cm(A). 
M2: As for +43cm(A). Sea-ice loss and permafrost thaw projected to continue. 
M3: As for +43cm(A).  
M4: As for +43cm(A), but with some potential for erosion to be reduced by adaptation. 
M5: As for +43cm(A). 
M6: There are few opportunities even with current rates of change. Potential adaptations include 

shoreline protection or seawall construction, which may have some value in reducing flooding, but 
past experience is not encouraging and long-term effectiveness open to question (Sussman et al., 
2014; Melvin et al., 2017; Fang et al., 2018). Þ Score [-1] compared to +43cm(A). 

M7: As for +43cm(A). 
M8: Limited governance stability or resources for action in Bykovsky (Vanderlinden et al., 2018), but 

overall, retreat could contribute to some risk reduction compared to scenario (A). 
M9: Not considered for Arctic communities. 

 
+84(A)  

M1: Same rationale as for +43cm(A), with increase in exposed assets in some places and higher sea level 
making asset density more challenging. 

M2: Exacerbation of permafrost thaw and thermal degradation of ice-rich slopes, increased risk to delta 
ecosystems including Lena Delta Wildlife Reserve and Kendall Island Bird Sanctuary, and ongoing 
loss of sea ice.  

M3: Increased risk of flooding, particularly in the outer deltas (Fedorova et al., 2015; Forbes, 2019), with 
much more extensive flooding in Kivalina and Shishmaref (Melvin et al., 2017). 

M4: Accelerated erosion at all sites. 
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M5: Risk of more extensive salinisation in Mackenzie Delta and potential impacts on barrier island 
settlements. 

M6: No risk reduction anticipated for scenario (A) given challenges outlined above. 
M7: No change, little attention to natural buffers, and no way to address some such as lost sea ice. 
M8: As for +43cm(A). 
M9: Not considered for Arctic communities. 

 
+84(B)  

M1: As for +84cm(A). 
M2: As for +84cm(A). 
M3: As for +84cm(A).  
M4: As for +84cm(A). 
M5: As for +84cm(A).  
M6: Even under scenario (B) there are probably few additional options, but demands for more shore 

protection will be louder in Tuktoyaktuk. The effectiveness of hard-engineered protection structures 
may however be limited by permafrost thaw. 

M7: As for +84cm(A). 
M8: Possibly some local ad hoc action on retreat from eroding bluffs at Bykovsky, although lack of 

governance stability or effectiveness limits action (Vanderlinden et al., 2018); some additional 
relocation of assets will probably occur in Tuktoyaktuk and Shingle Point; SLR of this magnitude 
may provide additional impetus for community relocation in Shishmaref and Kivalina. Therefore: 
substantial effect on risk reduction compared to +43cm(B). 

M9: Not considered for Arctic communities. 
 
+110(A)  

M1: Probable increase in exposed assets. 
M2: Increased risk to delta ecosystems as well as ongoing deeper thaw and loss of sea ice. Possible 

natural aggradation of barrier islands and spits at Shishmaref, Kivalina, and Shingle Point (Irrgang et 
al., 2018), but would be accompanied by flooding and infrastructure damage. 

M3: Increased risk of flooding (deltas and communities). 
M4: Accelerated erosion at all sites. 
M5: Enhanced risk in Mackenzie Delta.  
M6: As for +84(A). 
M7: As for +84(A). 
M8: As for +84(A). 
M9: Not considered for Arctic communities. 

 
+110(B)  

M1: As for +110cm(A). 
M2: As for +110cm(A). 
M3: As for +110cm(A). 
M4: As for +110cm(A). 
M5: As for +110cm(A).  
M6: Enhanced shore protection at Tuktoyaktuk, but in Shishmaref and Kivalina there are probably few 

additional options for adaptation. As for +84cm(B), the effectiveness of hard-engineered protection 
structures may however be limited by permafrost thaw. 

M7: As for +84cm(B). 
M8: As for +84cm(B). While some further community-led relocation in Shishmaref and Kivalina, for 

example, offers a way to reduce risk, it also faces many barriers. 
M9: Not considered for Arctic communities. 
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Executive Summary 
  
The ocean is essential for all aspects of human well-being and livelihood. It provides key services 
like climate regulation, through the energy budget, carbon cycle and nutrient cycle. The ocean is the 
home of biodiversity ranging from microbes to marine mammals that form a wide variety of 
ecosystems in open pelagic and coastal ocean. 
 
Observations: Climate-related trends, impacts, adaptation 
 
Carbon emissions from human activities are causing ocean warming, acidification, and 
oxygen loss with some evidence of changes in nutrient cycling and primary production. The 
warming ocean is affecting marine organisms at multiple trophic levels, impacting fisheries 
with implications for food production and human communities. Concerns regarding the 
effectiveness of existing ocean and fisheries governance have already been reported, 
highlighting the need for timely mitigation and adaptation responses. 
 
The ocean has warmed unabated since 2005, continuing the clear multi-decadal ocean 
warming trends documented in the IPCC Fifth Assessment Report (AR5).  The warming trend 
is further confirmed by the improved ocean temperature measurements over the last decade.  The 
0−700 m and 700–2000 m layers of the ocean have warmed at rates of 5.31±0.48 and 
4.02±0.97 ZJ yr-1 from 2005 to 2017. The long-term trend for 0-700 m and 700-2000 m layers have 
warmed 4.35±0.8 and 2.25±0.64 ZJ yr-1 from 1970 to 2017 and is attributed to anthropogenic 
influences. It is likely1 the ocean warming has continued in the abyssal and deep ocean below 
2000m (southern hemisphere and Southern Ocean). {1.8.1, 1.2, 5.2.2} 
 
It is likely that the rate of ocean warming has increased since 1993.  The 0−700 m and 700–
2000 m layers of the ocean have warmed by 3.22±1.61 ZJ and 0.97±0.64 ZJ from 1970 to 1993, 
and 6.28±0.48 ZJ and 3.86±2.09 ZJ from 1993 to 2017.  This represents at least a two-fold increase 
in heat uptake. {Table 5.1, 5.2.2} 
 
The upper ocean is very likely to have been stratifying since 1970. Observed warming and high 
latitude freshening are making the surface ocean less dense over time relative to the deeper ocean 
(high confidence2) and inhibiting the exchange between surface and deep waters. The upper 200m 
stratification increase is in the very likely range of between 2.18% and 2.42% from1970 to 2017. 
{5.2.2} 
 
Multiple datasets and models show that the rate of ocean uptake of atmospheric CO2 has 
continued to strengthen in the recent two decades in response to the increasing concentration 
of CO2 in the atmosphere. The very likely range for ocean uptake is between 20-30% of total 
anthropogenic emissions in the recent two decades. Evidence is growing that the ocean carbon sink 
is dynamic on decadal timescales, especially in the Southern Ocean, which has affected the total 
global ocean carbon sink (medium confidence). {5.2.2.3} 

                                                
1 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: 
Virtually certain 99–100% probability, Very likely 90–100%, Likely 66–100%, About as likely as not 33–66%, 
Unlikely 0–33%, Very unlikely 0–10%, and Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–
100%, More likely than not >50–100%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed 
likelihood is typeset in italics, e.g., very likely (see Section 1.9.2 and Figure 1.4 for more details). This Report also uses 
the term ‘likely range’ to indicate that the assessed likelihood of an outcome lies within the 17-83% probability range. 
2 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; 
and for the degree of agreement: low, medium, or high. A level of confidence is expressed using five qualifiers: very 
low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and 
agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of 
agreement are correlated with increasing confidence (see Section 1.9.2 and Figure 1.4 for more details). 
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The ocean is continuing to acidify in response to ongoing ocean carbon uptake.  The open 
ocean surface water pH is observed to be declining (virtually certain) by a very likely range of 
0.017 to 0.027 pH units per decade since the late 1980s across individual time-series observations 
longer than 15 years. The anthropogenic pH signal is very likely to have emerged for three-quarters 
of the near-surface open ocean prior to 1950 and it is very likely that over 95 % of the near-surface 
open ocean has already been affected. These changes in pH have reduced the stability of mineral 
forms of calcium carbonate due to a lowering of carbonate ion concentrations, most notably in the 
upwelling and high latitude regions of the ocean. {5.2.2.3, Box 5.1}  
 
There is a growing consensus that the open ocean is losing oxygen overall with a very likely 
loss of 0.5 to 3.3% between 1970-2010 from the ocean surface to 1000 m (medium confidence). 
Globally, the oxygen loss due to warming is reinforced by other processes associated with ocean 
physics and biogeochemistry, which cause the majority of the observed oxygen decline (high 
confidence). The oxygen minimum zones are expanding by a very likely range of 3-8%, most 
notably in the tropical oceans, but there is substantial decadal variability that affects the attribution 
of the overall oxygen declines to human activity in tropical regions (high confidence). {5.2.2.4} 
 
In response to ocean warming and increased stratification, open ocean nutrient cycles are 
being perturbed and there is high confidence that this is having a regionally variable impact 
on primary producers. There is currently low confidence in appraising past open ocean 
productivity trends, including those determined by satellites, due to newly identified region-specific 
drivers of microbial growth and the lack of corroborating in situ time series datasets. {5.2.2.5, 
5.2.2.6}  
 
Ocean warming has contributed to observed changes in biogeography of organisms ranging 
from phytoplankton to marine mammals (high confidence), consequently changing 
community composition (high confidence), and in some cases, altering interactions between 
organisms (medium confidence). Observed rate of range shifts since the 1950s and its very likely 
range are estimated to be 51.5±33.3 km per decade and 29.0±15.5 km per decade for organisms in 
the epipelagic and seafloor ecosystems, respectively. The direction of the majority of the shifts of 
epipelagic organisms are consistent with a response to warming (high confidence). {5.2.3, 5.3} 
 
Warming-induced range expansion of tropical species to higher latitudes has led to increased 
grazing on some coral reefs, rocky reefs, seagrass meadows and epipelagic ecosystems, leading 
to altered ecosystem structure (medium confidence). Warming, sea level rise, and enhanced loads 
of nutrients and sediments in deltas have contributed to salinization and deoxygenation in estuaries 
(high confidence), and have caused up-stream redistribution of benthic and pelagic species 
according to their tolerance limits (medium confidence). {5.3.4, 5.3.5, 5.3.6, 5.2.3}  
 
Fisheries catches and their composition in many regions are already impacted by the effects 
of warming and changing primary production on growth, reproduction and survival of fish 
stocks (high confidence).  Ocean warming and changes in primary production in the 20th century 
are related to changes in productivity of many fish stocks (high confidence), with an average 
decrease of approximately 3% per decade in population replenishment and 4.1% (very likely range 
of 9.0% decline to 0.3% increase) in maximum catch potential (robust evidence, low agreement 
between fish stocks, medium confidence). Species composition of fisheries catches since the 1970s 
in many shelf seas ecosystems of the world is increasing dominated by warm-water species 
(medium confidence). {5.2.3, 5.4.1} 
 
Warming-induced changes in spatial distribution and abundance of fish stocks have already 
challenged the management of some important fisheries and their economic benefits (high 
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confidence).  For existing international and national ocean and fisheries governance, there are 
concerns about the reduced effectiveness to achieve mandated ecological, economic, and social 
objectives because of observed climate impacts on fisheries resources (high confidence). {5.4.2, 
5.5.2} 
 
Coastal ecosystems are observed to be under stress from ocean warming and sea level rise 
that are exacerbated by non-climatic pressures from human activities on ocean and land (high 
confidence). Global wetland area has declined by nearly 50% relative to pre-industrial level as a 
result of warming, sea level rise, extreme climate events and other human impacts (medium 
confidence). Warming-related mangrove encroachment into subtropical saltmarshes has been 
observed in the past 50 years (high confidence). Distributions of seagrass meadows and kelp forests 
are contracting at low-latitudes that is attributable to warming (high confidence), and in some areas 
a loss of 36-43%  following heat waves (medium confidence). Inundation, coastline erosion and 
salinization are causing inland shifts in plant species distributions, which has been accelerating in 
the last decades (medium confidence). Warming has increased the frequency of large-scale coral 
bleaching events, causing worldwide reef degradation since 1997-1998 with cases of shifts to algal-
dominated reefs (high confidence). Sessile calcified organisms (e.g. barnacles, mussels) in intertidal 
rocky shores are highly sensitive to extreme temperature events and acidification (high confidence), 
a reduction in their biodiversity and abundance have been observed in naturally-acidified rocky reef 
ecosystems (medium confidence). Increased nutrient and organic matter loads in estuaries since the 
1970s have exacerbated the effects of warming on bacterial respiration and eutrophication, leading 
to expansion of hypoxic areas (high confidence). {5.3.1, 5.3.2, 5.3.4, 5.3.6} 
 
Coastal and near-shore ecosystems including saltmarshes, mangroves, and vegetated dunes in 
sandy beaches have a varying capacity to build vertically and expand laterally in response to 
sea-level rise. These ecosystems provide important services including coastal protection, carbon 
sequestration and habitat for diverse biota (high confidence). The carbon emission associated with 
the loss of vegetated coastal ecosystems is estimated to be 0.04–1.46 Gt C yr-1 (high confidence). 
The natural capacity of ecosystems to adapt to climate impacts may be limited by human activities 
that fragment wetland habitats and restrict landward migration (high confidence). {5.3.2, 5.3.3, 
5.4.1, 5.5.1} 
 
 
Three out of the four major Eastern Boundary Upwelling Ecosystems (EBUS) have shown 
large-scale wind intensification in the past 60 years (high confidence). However, the interaction 
of coastal warming and local winds may have affected upwelling strength, with the direction of 
changes varies between and within EBUS (low confidence). Increasing trends in ocean acidification 
and deoxygenation are observed in the two Pacific (California Current and Humboldt Current) 
EBUS in the last few decades (high confidence), although there is low confidence to distinguish 
anthropogenic forcing from internal climate variability. The expanding California EBUS oxygen 
minimum zone has altered ecosystem structure and fisheries catches (medium confidence). {Box 
5.3}  
 
Since the early 1980s, the occurrence of harmful algal blooms (HABs) and pathogenic 
organisms (e.g. Vibrio) has increased in coastal areas in response to warming, deoxygenation 
and eutrophication, with negative impacts on food provisioning, tourism, the economy and 
human health (high confidence). These impacts depend on species-specific responses to the 
interactive effects of climate change and other human drivers (e.g. pollution). Human communities 
in poorly monitored areas are among the most vulnerable to these biological hazards (medium 
confidence). {Box 5.4, 5.4.2} 
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Many frameworks for climate-resilient coastal adaptation have been developed since AR5, 
with substantial variations in approach between and within countries, and across 
development status (high confidence). Few studies have assessed the success of implementing 
these frameworks due to the time-lag between implementation, monitoring, evaluation and 
reporting (medium confidence). {5.5.2} 
 
Projections: scenarios and time horizons 
 
Climate models project significant changes in the ocean state over the coming century. Under 
the high emissions scenario (RCP8.5) the impacts by 2090 are substantially larger and more 
widespread than for the low emissions scenario (RCP2.6) throughout the surface and deep 
ocean, including: warming (virtually certain); ocean acidification (virtually certain); decreased 
stability of mineral forms of calcite (virtually certain); oxygen loss (very likely); reduced near-
surface nutrients (likely as not); decreased net-primary productivity (high confidence); 
reduced fish production (likely) and loss of key ecosystems services (medium confidence) that 
are important for human wellbeing and sustainable development. {5.2.2, Box 5.1, 5.2.3, 5.2.4, 
5.4} 
 
By 2100 the ocean is very likely to warm by 2 to 4 times as much for low emissions (RCP2.6) 
and 5 to 7 times as much for the high emissions scenario (RCP8.5) compared with the 
observed changes since 1970. The 0–2000 m layer of the ocean is projected to warm by a further 
2150 ZJ (very likely range 1710 to 2790 ZJ) between 2017 and 2100 for the RCP8.5 scenario. The 
0–2000 m layer is projected to warm by 900 ZJ (very likely range 650 to 1340 ZJ) by 2100 for the 
RCP2.6 scenario, and the overall warming of the ocean will continue this century even after 
radiative forcing and mean surface temperatures stabilize (high confidence). {5.2.2.2} 
 
The upper ocean will continue to stratify. By the end of the century the annual mean stratification 
of the top 200 m (averaged between 60°S and 60°N relative to the 1986 to 2005 period) is projected 
to increase in the very likely range of 1 to 9% and 12 to 30% for RCP2.6 and RCP8.5 respectively. 
{5.2.2.2} 
 
It is very likely that the majority of coastal regions will experience statistically significant 
changes in tidal amplitudes over the course of the 21st century.  The sign and amplitude of local 
changes to tides are very likely to be impacted by both human coastal adaptation measures and 
climate drivers. {5.2.2.2.3} 
 
It is virtually certain that surface ocean pH will decline, by 0.036-0.042 or 0.287-0.29 pH units 
by 2081-2100, relative to 2006-2015, for the RCP2.6 or RCP8.5 scenarios, respectively. These 
pH changes are very likely to cause the Arctic and Southern Oceans, as well as the North Pacific 
and Northwestern Atlantic Oceans to become corrosive for the major mineral forms of calcium 
carbonate under RCP8.5, but these changes are virtually certain to be avoided under the RCP2.6 
scenario.  There is increasing evidence of an increase in the seasonal exposure to acidified 
conditions in the future (high confidence), with a very likely increase in the amplitude of seasonal 
cycle of hydrogen iron concentrations of 71-90% by 2100, relative to 2000 for the RCP8.5 scenario, 
especially at high latitudes. {5.2.2.3} 
 
Oxygen is projected to decline further.  Globally, the oxygen content of the ocean is very likely to 
decline by 3.2-3.7% by 2081-2100, relative to 2006-2015, for the RCP8.5 scenario or by 1.6-2.0% 
for the RCP2.6 scenario. The volume of the oceans oxygen minimum zones is projected to grow by 
a very likely range of 7.0±5.6% by 2100 during the RCP8.5 scenario, relative to 1850-1900. The 
climate signal of oxygen loss will very likely emerge from the historical climate by 2050 with a very 
likely range of 59-80% of ocean area being affected by 2031-2050 and rising with a very likely 
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range of 79-91% by 2081-2100 (RCP8.5 emissions scenario). The emergence of oxygen loss is very 
likely smaller in area for the RCP2.6 scenario in the 21st century and by 2090 the emerged area is 
declining. {5.2.2.4, Box 5.1 Figure 1} 
 
Overall, nitrate concentrations in the upper 100m are very likely to decline by 9-14 % across 
CMIP5 models by 2081-2100, relative to 2006-2015, in response to increased stratification for 
RCP8.5, with medium confidence in these projections due to the limited evidence of past 
changes that can be robustly understood and reproduced by models. There is low confidence 
regarding projected increases in surface ocean iron levels due to systemic uncertainties in these 
models. {5.2.2.5} 
 
Climate models project that net primary productivity will very likely decline by 4-11% for 
RCP8.5 by 2081-2100, relative to 2006-2015.  The decline is due to the combined effects of 
warming, stratification, light, nutrients and predation and will show regional variations between low 
and high latitudes (low confidence). The tropical ocean NPP will very likely decline by 7-16% for 
RCP8.5, with medium confidence as there are improved constraints from historical variability in 
this region. Globally, the sinking flux of organic matter from the upper ocean into the ocean interior 
is very likely to decrease by 9-16% for RCP8.5 in response to increased stratification and reduced 
nutrient supply, especially in tropical regions (medium confidence), which will reduce organic 
carbon supply to deep sea ecosystems (high confidence). The reduction in food supply to the deep 
sea is projected to lead to a 5-6% reduction in biomass of benthic biota over more than 97% of the 
abyssal seafloor by 2100. {5.2.2.6, 5.2.4.2} 
 
New ocean states for a broad suite of climate indices will progressively emerge over a 
substantial fractions of the ocean in the coming century (relative to past internal ocean 
variability), with ESMs showing an ordered emergence of first pH, followed by SST, interior 
oxygen, upper ocean nutrient levels and finally NPP. The anthropogenic pH signal has very 
likely emerged for three quarters of the ocean prior to 1950, with little difference between scenarios. 
Oxygen changes will very likely emerge over 59-80% of the ocean area by 2031-2050 and rises to 
79-91% by 2081-2100 (RCP8.5 emissions scenario). The rate and extent of these effects for all 
variables remain detectable over 30% of the ocean surface in the RCP2.6 scenario, but are much 
lower than for RCP8.5. {Box 5.1, Box 5.1 Figure 1}  
 
Simulated ocean warming and changes in net primary production during the 21st century are 
projected to alter community structure of marine organisms (high confidence), reduce global 
marine animal biomass (medium confidence) and the maximum potential catches of fish 
stocks (medium confidence) with regional differences in the direction and magnitude of 
changes (high confidence). The global biomass of marine animals, including those that contribute 
to fisheries, is projected to decrease with a very likely range under RCP2.6 and RCP8.5 of 4.3±2.0% 
and 15.0±5.9%, respectively, by 2080–2099 relative to 1986–2005. The maximum catch potential is 
projected to decrease by 2.8% to 9.1% (RCP2.6) and 16.2% to 25.5% (RCP8.5) in the 21st century. 
{5.4.1} 
 
Projected decreases in global marine animal biomass and fish catch potential could elevate 
the risk of impacts on income, livelihood and food security of the dependent human 
communities (medium confidence). Projected climate change impacts on fisheries also increase 
the risk of potential conflicts among fishery area users and authorities or between two different 
communities within the same country (medium confidence), exacerbated through competing 
resource exploitation from international actors and mal-adapted policies (low confidence). {5.2.3, 
5.4, 5.5.3} 
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Projected decrease in upper ocean export of organic carbon to the deep seafloor is expected to 
result in a loss of animal biomass on the deep seafloor by 5.2% to 17.6% by 2090-2100 
compared to the present (2006-2015) under RCP8.5 with regional variations (medium 
confidence). Some increases are projected in the polar regions, due to enhanced stratification in the 
surface ocean, reduced primary production and shifts towards small phytoplankton (medium 
confidence). The projected impacts on biomass in the abyssal seafloor are larger under RCP8.5 than 
RCP4.5 (very likely). The increase in climatic hazards beyond thresholds of tolerance of deep-sea 
organisms will increase the risk of loss of biodiversity and impacts on functioning of deep water 
column and seafloor that is important to support ecosystem services, such as carbon sequestration 
(medium confidence). {5.2.4} 
 
Structure and functions of all types of coastal ecosystems will continue to be at moderate to 
high risk under the RCP2.6 scenario (medium confidence) and will face high to very high risk 
under the RCP8.5 scenario (high confidence) by 2100. Seagrass meadows (high confidence), 
kelp forests (high confidence) and coral reefs (very high confidence) will face high to very high risk 
already at temperatures 1.5 °C of global warming (high confidence). Intertidal rocky shores are also 
expected to be at very high risk (transition above 3°C) under the RCP8.5 scenario (medium 
confidence). These ecosystems have low to moderate adaptive capacity, as they are highly sensitive 
to ocean temperatures and acidification. The ecosystems with moderate to high risk (transition 
above 1.8°C) under future emissions scenarios are mangrove forests, sandy beaches, estuaries and 
saltmarshes (medium confidence). Estuaries and sandy beaches are subject to highly dynamic 
hydrological and geomorphological processes, giving them more natural adaptive capacity to 
climate hazards. In these systems, sediment relocation, soil accretion and landward expansion of 
vegetation may initially mitigate against flooding and habitat loss, but saltmarshes, in particular, 
will be at very high risk in the context of sea level rise and extreme climate-driven erosion under 
RCP8.5. {5.3, Figure 5.16} 
  
Expected coastal ecosystem responses over the 21st century are habitat contraction, migration 
and loss of biodiversity and functionality. Pervasive human coastal disturbances will limit natural 
ecosystem adaptation to climate hazards (high confidence). Global coastal wetlands will lose 
between 20-90% of their area depending on emissions scenario with impacts on their contributions 
to carbon sequestration and coastal protection (high confidence). Kelp forests at low-latitudes and 
temperate seagrass meadows will continue to retreat as a result of intensified extreme temperatures, 
and their low dispersal ability will elevate the risk of local extinction under RCP8.5 (high 
confidence). Intertidal rocky shores will continue to be affected by ocean acidification, warming, 
and extreme heat exposure during low tide emersion, causing reduction of calcareous species and 
loss of ecosystem biodiversity and complexity shifting towards algae dominated habitats (high 
confidence). Salinization and expansion of hypoxic conditions will intensify in eutrophic estuaries, 
especially in mid and high latitudes with microtidal regimes (high confidence). Sandy beach 
ecosystems will increasingly be at risk of eroding, reducing the habitable area for dependent 
organisms (high confidence). {5.3, 5.4.1} 
 
Almost all coral reefs will degrade from their current state, even if global warming remains 
below 2ᴼC (very high confidence), and the remaining shallow coral reef communities will 
differ in species composition and diversity from present reefs (very high confidence). These 
declines in coral reef health will greatly diminish the services they provide to society, such as food 
provision (high confidence), coastal protection (high confidence) and tourism (medium confidence). 
{5.3.4, 5.4.1} 
 
Multiple hazards of warming, deoxygenation, aragonite under-saturation and decrease in flux 
of organic carbon from the surface ocean will decrease calcification and exacerbate the 
bioerosion and dissolution of the non-living component of cold-water coral. Habitat-forming, 
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cold-water corals will be vulnerable where temperature and oxygen exceed the species’ thresholds 
(medium confidence). Reduced particulate food supply is projected to be experienced by 95% of 
cold-water coral ecosystems by 2100 under RCP8.5 relative to the present, leading to a very likely 
range of 8.6±2% biomass loss (medium confidence). {5.2.4, Box 5.2} 
 
Anthropogenic changes in Eastern Boundary Upwelling Ecosystems (EBUS) will emerge 
primarily in the second half of the 21st century (medium confidence). EBUS will be impacted 
by climate change in different ways, with strong regional variability with consequences for 
fisheries, recreation and climate regulation (medium confidence). The Pacific EBUS are projected 
to have calcium carbonate undersaturation in surface waters within a few decades under RCP8.5 
(high confidence); combined with warming and decreasing oxygen levels, this will increase the 
impacts on shellfish larvae, benthic invertebrates and demersal fishes (high confidence) and related 
fisheries and aquaculture (medium confidence). The inherent natural variability of EBUS, together 
with uncertainties in present and future trends in the intensity and seasonality of upwelling, coastal 
warming and stratification, primary production and biogeochemistry of source waters, poses large 
challenges in projecting the response of EBUS to climate change and to the adaptation of 
governance of biodiversity conservation and living marine resources in EBUS (high confidence). 
{Box 5.3} 
 
Climate change impacts on ecosystems and their goods and services threatens key cultural 
dimensions of lives and livelihoods. These threats include erosion of Indigenous and non-
indigenous culture, their knowledge about the ocean and knowledge transmission, reduced access to 
traditional food, loss of opportunities for aesthetic and spiritual appreciation of the ecosystems, and 
marine recreational activities (medium confidence). Ultimately, these can lead to the loss of part of 
people’s cultural identity and values beyond the rate at which identify and values can be adjusted or 
substituted (medium confidence). {5.4.2}  
 
Climate change increases the exposure and bioaccumulation of contaminants such as 
persistent organic pollutants and mercury (medium confidence), and their risk of impacts on 
marine ecosystems and seafood safety (high agreement, medium evidence, medium confidence). 
Such risks are particularly large for top predators and for human communities that have high 
consumption on these organisms, including coastal Indigenous communities (medium confidence). 
{5.4.2}  
 
B1.18 Shifting distributions of fish stocks between governance jurisdictions will increase the 
risk of potential conflicts among fishery area users and authorities or between two different 
communities within the same country (medium confidence). These fishery governance related 
risks are widespread under high emissions scenarios with regional hotspots (medium confidence), 
and highlight the limits of existing natural resource management frameworks for addressing 
ecosystem change (high confidence). {5.2.5, 5.4.2.1.3, 5.5, 5.5.2}  
 
Response options to enhance resilience 
 
There is clear evidence for observed climate change impacts throughout the ocean with 
consequences for human communities and require options to reduce risks and impacts. 
Coastal blue carbon can contribute to mitigation for many nations but its global scope is 
modest (offset of < 2% of current emissions) (likely). Some ocean indices are expected to 
emerge earlier than others (e.g., warming, acidification and effects on fish stocks) and could 
therefore be used to prioritise planning and building resilience.  The survival of some 
keystone ecosystems (e.g., coral reefs) are at risk, while governance structures are not well-
matched to the spatial and temporal scale of climate change impacts on ocean systems. 
Ecosystem restoration may be able to locally reduce climate risks (medium confidence) but at 
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relatively high cost and effectiveness limited to low emissions scenarios and to less sensitive 
systems (high confidence). {5.2, 5.3, 5.4, 5.5}   
 
Coastal blue carbon ecosystems, such as mangroves, salt marshes and seagrasses, can help 
reduce the risks and impacts of climate change, with multiple co-benefits. Some 151 countries 
around the world contain at least one of these coastal blue carbon ecosystems and 71 countries 
contain all three. Below-ground carbon storage in vegetated marine habitats can be up to 1000 tC 
ha-1, much higher than most terrestrial ecosystems (high confidence). Successful implementation of 
measures to maintain and promote carbon storage in such coastal ecosystems could assist several 
countries in achieving a balance between emissions and removals of greenhouse gases (medium 
confidence). Conservation of these habitats would also sustain the wide range of ecosystem services 
they provide and assist with climate adaptation through improving critical habitats for biodiversity, 
enhancing local fisheries production, and protecting coastal communities from sea level rise and 
storm events (high confidence). The climate mitigation effectiveness of other natural carbon 
removal processes in coastal waters, such as seaweed ecosystems and proposed non-biological 
marine CO2 removal methods, are smaller or currently have higher associated 
uncertainties.  Seaweed aquaculture warrants further research attention. {5.5.1.1, 5.5.1.1, 5.5.1, 
5.5.2, 5.5.1.1.3, 5.5.1.1.4} 
 
The potential climatic benefits of blue carbon ecosystems can only be a very modest addition 
to, and not a replacement for, the very rapid reduction of greenhouse gas emissions. The 
maximum global mitigation benefits of cost-effective coastal wetland restoration is unlikely to be 
more than 2% of current total emissions from all sources. Nevertheless, the protection and 
enhancement of coastal blue carbon can be an important contribution to both mitigation and 
adaptation at the national scale. The feasibility of climate mitigation by open ocean fertilization of 
productivity is limited to negligible, due to the likely decadal-scale return to the atmosphere of 
nearly all the extra carbon removed, associated difficulties in carbon accounting, risks of 
unintended side effects and low acceptability. Other human interventions to enhance marine carbon 
uptake, e.g., ocean alkalinisation (enhanced weathering), would also have governance challenges, 
with the increased risk of undesirable ecological consequences (high confidence). {5.5.1.2} 
 
Socio-institutional adaptation responses are more frequently reported in the literature than 
ecosystem-based and built-infrastructure approaches. Hard engineering responses are more 
effective when supported by ecosystem-based adaptation approaches (high agreement), and both 
approaches are enhanced by combining with socio-institutional approaches for adaptation (high 
confidence). Stakeholder engagement is necessary (robust evidence, high agreement). {5.5.2}  
 
Ecosystem Based Adaptation is a cost-effective coastal protection tool that can have many co-
benefits, including supporting livelihoods, contributing to carbon sequestration and the 
provision of a range of other valuable ecosystem services (high confidence). Such adaptation 
does, however, assume that the climate can be stabilised.  Under changing climatic conditions there 
are limits to the effectiveness of ecosystem based adaptation, and these limits are currently difficult 
to determine. {5.5.2.1} 
 
Socio-institutional adaptation responses, including community-based adaptation, capacity-
building, participatory processes, institutional support for adaptation planning and support 
mechanisms for communities are important tools to address climate change impacts (high 
confidence). For fisheries management, improving coordination of integrated coastal management 
and marine protected areas have emerged in the literature as important adaptation governance 
responses (robust evidence, medium agreement).{5.5.2.2, 5.5.2.6} 
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Observed widespread decline in warm water corals has led to the consideration of alternative 
restoration approaches to enhance climate-resilience. Approaches, such as ‘coral reef gardening' 
have been tested, and ecological engineering and other approaches such as assisted evolution, 
colonization and chimerism are being researched for reef restoration. However, the effectiveness of 
these approaches to increase resilience to climate stressors and their large-scale implementation for 
reef restoration will be limited unless warming and ocean acidification are rapidly controlled (high 
confidence). {Box 5.5, 5.5.2} 
 
Existing ocean governance structures are already facing multi-dimensional, scale-related 
challenges because of climate change. This trend of increasing complexity will continue (high 
confidence). The mechanisms for the governance of marine Areas Beyond National Jurisdiction, 
such as ocean acidification, would benefit from further development (high confidence).  There is 
also scope to increase the overall effectiveness of international and national ocean governance 
regimes by increasing cooperation, integration and widening participation (medium 
confidence).  Diverse adaptations of ocean-related governance are being tried, and some are 
producing promising results. However, rigorous evaluation is needed of the effectiveness of these 
adaptations in achieving their goals. {5.5.3} 
 
There are a broad range of identified barriers and limits for adaptation to climate change in 
ecosystems and human systems (high confidence). Limitations include the space that ecosystems 
require, non-climatic drivers and human impacts that need to be addressed as part of the adaptation 
response, the lowering of adaptive capacity of ecosystems because of climate change, and the 
slower ecosystem recovery rates relative to the recurrence of climate impacts, availability of 
technology, knowledge and financial support, and existing governance structures (medium 
confidence). {5.5.2} 
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5.1 Introduction 
 
The ocean is a key component of the Earth System (Chapter 1) as it provides essential life-supporting 
services (Inniss et al., 2017). For example, it stores heat trapped in the atmosphere caused by increasing 
concentrations of greenhouse gases, it masks and slows surface warming, it stores excess carbon dioxide and 
is an important component of global biogeochemical cycles.  The ocean is the home to the largest continuous 
ecosystem, provides habitats for rich marine biodiversity, is an essential source of food and contributes to 
human health, livelihood and security. The ocean also supports other services to humans, for example, 
transport and trade, tourism, renewable energy, and cultural services such as aesthetic appeal, local and 
traditional knowledge and religious practices. Governance of the ocean has a unique set of challenges and 
opportunities compared with land systems and requiring different treatment under a changing climate.  
  
The IPCC Fifth Assessment Report (AR5) from Working Group I (WGI) showed that there are ongoing 
changes to the physical and chemical state of the ocean. AR5 WGI report (IPCC, 2013) concluded that (1) 
‘ocean warming dominates the increased energy stored in the climate system with more than 90% of the 
energy accumulated since 1971’; (2) ‘the ocean has absorbed about 30% of the emitted anthropogenic 
carbon causing ocean acidification’ since pre-industrial times; and (3) it is ‘extremely likely that human 
influence has been the dominant cause of warming since mid 20th century’.  
 
The IPCC AR5 Working Group II (WGII) concluded that changes in the ocean such as warming, 
acidification and deoxygenation are affecting marine life from molecular processes to organisms and 
ecosystems, with major impacts on the use of marine systems by human societies (Pörtner, 2012).  IPCC 
Special Report on the Impacts of Global 
Warming of 1.5oC above pre-industrial levels and related global greenhouse gas emission pathways (SR1.5) 
also concluded that reducing these risks by ‘limiting warming to 1.5°C above pre-industrial levels would 
require transformative systemic change, integrated with sustainable development’ and that ‘adaptation needs 
will be lower in a 1.5°C world compared to a 2°C world.’ (de Coninck et al., 2018; Hoegh-Guldberg et al., 
2018). 
 
This report updates earlier assessments, evaluating new research and knowledge regarding changing ocean 
climate and ecosystems, risks to ecosystem services, and vulnerability of the dependent communities 
including governance. It also delves into changes the ocean that were beyond the scope of the previous 
reports. Radiation management techniques (also known as sunlight reflection methods) are excluded here. 
Such geo-engineering approaches are addressed in the SR1.5. However, natural carbon uptake and stores in 
the marine environment are included (Section 5.5.1).  
 
The chapter is structured around three guiding questions:  
• What are the key changes in the physical and biogeochemical properties of the ocean (Section 5.2.2)?  
• How have these changes impacted key ecosystems, risks to ecosystems services and human wellbeing 

(Section 5.2.3, 5.2.4, 5.3, 5.4)?  
• Are there effective pathways for adaptation and nature-based solutions to risk reduction for marine 

dependent communities (Section 5.5)?  
 
This chapter covers both regional and global scales and across natural and human systems. Chapter 3 covers 
the Polar Regions, including their oceans, Chapter 4 covers sea level and its implications, and Chapter 6 
covers extremes and abrupt events. This chapter uses IPCC calibrated language around scientific uncertainty, 
as described in Section 1.8.3. Two emissions scenarios, RCP2.6 and RCP8.5, are used for projections of 
climate change (RCP means Representative Concentration Pathway; see Cross-Chapter Box 1 in Chapter 1). 
 
 
5.2 Changing Oceans and Biodiversity 
 
5.2.1 Introduction 
 
This section assesses changes in the ocean.  It includes the physical and chemical properties (Section 5.2.2), 
their impacts on the pelagic ecosystem (Section 5.2.3) and deep seafloor system (Section 5.2.4). In this 
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assessment, the open ocean and deep seafloor includes areas where the water column is deeper than 200 
metres; it is the main subject of Section 5.2. Coastal and shelf seas are primarily discussed in Section 5.3.  
 
5.2.2 Changes in Physical and Biogeochemical Properties 
 
5.2.2.1 Introduction to Changing Open Ocean 
 
The ocean is getting progressively warmer, with parallel changes in ocean chemistry such as acidification 
and oxygen loss, as documented in the AR5 (Rhein et al., 2013). The global scale warming and acidification 
trends are readily detectable in oceanic observations, well understood scientifically, and consistently 
projected by Earth Systems Models (ESMs). Each of these has been directly attributed to anthropogenic 
forcing from changing concentrations of greenhouse gases and aerosols (Bindoff et al., 2013). These trends 
in the global average ocean temperature will continue for centuries after the anthropogenic forcing is 
stabilized (Collins et al., 2013).  
 
The impacts on ocean ecosystems and human societies are primarily driven by regional trends and by the 
local manifestation of the global-scale changes. At these smaller scales, the temperature, acidification, 
salinity, nutrient and oxygen concentrations in the ocean are also expected to exhibit basin and local-scale 
changes. However, the ocean also has significant natural variability at local and basin scales with timescales 
from minutes to decades and longer (Rhein et al., 2013), which can mask the underlying observed and 
projected trends (see Box 5.1). The impact of multiple stressors on marine ecosystems is one of the main 
subjects of this chapter (Section 5.2.3, 5.2.4, 5.3), including new evidence and understanding since the last 
assessment report (e.g., Gunderson et al., 2016). The most severe impacts of a changing climate will 
typically be experienced when conditions are driven outside the range of previous experience at rates that are 
faster than human or ecological systems can adapt (Pörtner et al., 2014; Box 5.1). 
 
This section summarizes our emerging understanding of the primary changes to the ocean, along with an 
assessment of several key areas of scientific uncertainty about these changes. Because many of these long-
term trends have already been extensively discussed in previous assessments (IPCC, 2013), much of this 
summary of the physical changes is brief except where there are significant new findings.  
 
5.2.2.2 Changing Temperature, Salinity, Circulation 
 
Historically, scientific research expeditions starting in the 19th century have provided occasional sections 
measuring deep ocean properties (Roemmich et al., 2012). Greater spatial and temporal coverage of 
temperatures down to about 700 m was obtained using expendable bathythermographs (XBTs) along 
commercial shipping tracks starting in the 1970s (Abraham et al., 2013). Since the early 2000s, thousands of 
autonomous profiling floats (Argo floats) have provided high-quality temperature and salinity profiles of the 
upper 2000 m in ice-free regions of the ocean (Abraham et al., 2013; Riser et al., 2016). Further advances in 
autonomous floats have been developed that now allow these floats to operate in seasonally ice-covered 
oceans (Wong and Riser, 2011; Wong and Riser, 2013), and more recently to profile the entire depth of the 
water column down to 4000 or 6000 m (Johnson et al., 2015; Zilberman, 2017) and to include 
biogeochemical properties (Johnson et al., 2017). Autonomous floats have revolutionized our sampling and 
accuracy of the global ocean temperature and salinity records and increased certainty and confidence in 
global estimates of the earth heat (temperature) budget, particularly since 2004 (Von Schuckmann et al., 
2014; Roemmich et al., 2015; Riser et al., 2016), as demonstrated by the convergence of observational 
estimates of the changes in the heat budget of the upper 2000 m (Figure 5.1). New findings using data 
collected from such observing platforms mark significant progress since AR5. 
 
To understand the recent and future climate, we use ensembles of coupled ocean-atmosphere-cryosphere-
ecosystem models (ESMs) with the full-time history of atmospheric forcing (greenhouse gases, aerosols, 
solar radiation and volcanic eruptions) for the historical period and projections of the concentrations or 
emissions of these forcings to 2100. For these projections the RCPs of atmospheric emissions scenarios are 
used as specified by the Climate Model Inter-comparison Project, Phase 5 (CMIP5) (see Section 1.8.2.3, 
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Cross-Chapter Box 1, and also IPCC AR5)3. This chapter focuses on the low and high emissions scenarios 
RCP2.6 and RCP8.5, respectively. When these scenarios are used to drive ESMs, it is possible to simulate 
the recent and future patterns of changes in the ocean temperature, salinity and circulation (and other oceanic 
properties such as ocean oxygen concentration and acidification, Section 5.2.2.3 and 5.2.2.4). Finally, the 
projections of ocean changes also informs the detection, attribution and projection of risk and impacts on 
ecosystems (Sections 5.2.3, 5.2.4 and 5.3), ecosystem services (Section 5.4.1) and human wellbeing (Section 
5.4.2) under climate change.  
 
5.2.2.2.1 Observed and projected global ocean heat uptake 
As AR5 concluded, the ocean is warming as a direct result of anthropogenic changes to the radiative 
properties of the atmosphere and the heat budget of the Earth (very likely) (Bindoff et al., 2013). Over the 
past few decades our ocean observing system has measured an increase in ocean temperature (Figure 5.1).  
This temperature increase corresponds to an uptake of over 90% of the excess heat accumulated in the Earth 
system over this period (Bindoff et al., 2013; Rhein et al., 2013). This heat in the ocean also causes it to 
expand and has contributed about 43% of the observed global mean sea level rise from 1970-2015 (Section 
4.2.2.3.6).  
 
Since AR5, there have been further improvements in our ability to understand and correct instrumental errors 
and new estimates also attempt to minimize biases in estimating temperature changes arising from traditional 
data-void filling strategies (Abraham et al., 2013; Durack, 2015; Cheng and Chen, 2017; Cheng et al., 2017). 
New estimates from ocean observations of ocean heat uptake in the top 2000 m between 1993 and 2017 very 
likely range from 9.2±2.3 ZJ yr-1 to 12.1±3.1 ZJ yr-1 (Johnson et al., 2018) 4.  Three recent independent 
estimates do a better job of accounting for instrumental biases and the sparseness of historical ocean 
temperature measurements than the older studies assessed in AR5, and provide larger and more consistent 
estimates of heat uptake rates for the 0-2000m layer of 5.8±1.0 ZJ yr-1 (Cheng and Chen, 2017; Cheng et al., 
2017; Ishii et al., 2017), 6.0±0.8 ZJ yr-1 (updated from Domingues et al. (2008)) and 6.3±1.8 ZJ yr-1 (Cheng 
and Chen, 2017; Cheng et al., 2017; Ishii et al., 2017) for the 1971-2010 period assessed by AR5.  
 
Based on these new published methods and revised atlases we update the estimates for ocean heat uptake 
(Table 5.1, and SM 5.1).  For all of the periods assessed in Table 5.1, it is virtually certain that the upper 
ocean (0-700 m) has warmed. These results are consistent with earlier research into the duration of record 
needed to detect a significant signal in global ocean heat content (Gleckler et al., 2012). Critically, the high 
confidence and high agreement in the ocean temperature data means we can detect discernable rates of 
increase in ocean heat uptake (Gleckler et al., 2012; Cheng et al., 2019). The rate of heat uptake in the upper 
ocean (0-700m) is very likely higher in the 1993-2017 (or 2005-2017) period compared with the 1969-1993 
period (see Table 5.1). The deeper layer (700-2000 m) heat uptake rate is likely to be higher in the 1993-
2017 period compared with the 1969-1993 period. Flato et al. (2013)Flato et al. (2013)Flato et al. 
(2013)Flato et al. (2013)Flato et al. (2013)Flato et al. (2013)Flato et al. (2013)Flato et al. (2013)Flato et al. 
(2013) 
 
 
Table 5.1: The assessed rate of increase in ocean heat content in the two depth layers 0-700 m and 700-2000 m and 
their very likely ranges. Fluxes in Wm-2 are averaged over the Earth’s entire surface area.  The four periods cover earlier 
and more recent trends; the 2005-2017 period has the most complete interior ocean data coverage and the greatest 
consistency between estimates, while longer trends are better for distinguishing between forced changes and internal 
variability. These observationally-estimated rates come from an assessment of the recent research (See Supplementary 

                                                
3 The 30 CMIP5 ESMs used in here in various contexts were selected based on the availability of ocean data from the 
historical period, RCP2.6 and RCP8.5 projections, and corresponding control runs to correct for model drift. The 
models used include: ACCESS1.0, ACCESS1.3, BNU-ESM, BCC-CSM1-1, CCSM4, CESM1, CMCC-CESM, 
CMCC-CMS, CNRM-CM5, CSIRO-Mk3, CanESM2, FGOALS-S2.0, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, 
GISS-E2-H, GISS-E2-R, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, INM-CM4, IPSL-CM5A-LR, IPSL-CM5A-
MR, IPSL-CM5B-LR, MIROC-ESM, MIROC5, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, and NorESM1-M. Up 
to 3 ensemble members or variants were included per model, and all changes are relative to a control run with an 
identical initial condition but with preindustrial forcing. A table with a description and citations for each of these 
models, along with more detailed discussion of the use of ESM output, can be found in Flato et al. (2013). 
4 ZJ is Zettajoule and is equal to 1021 Joules. Warming the entire ocean by 1℃ requires about 5500 ZJ; 144 ZJ would 
warm the top 100 m by about 1℃. 
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material SM5.1), while the CMIP5 ESM estimates are based on a combined 28-member ensemble of historical, RCP2.6 
and RCP8.5 simulations.  

 Ocean Heat Uptake Rate, ZJ yr-1 Ocean Heat Uptake as Average Fluxes, W m-2 

Period 1969-1993 1993-2017 1970-2017 2005-2017 1969-1993 1993-2017 1970-2017 2005-2017 

Observationally Based Ocean Heat Uptake Estimates: 

0-700m 3.22±1.61 6.28±0.48 4.35±0.80 5.31±0.48 0.20±0.1 0.39±0.03 0.27±0.05 0.33±0.03 

700-2000m  0.97±0.64 3.86±2.09 2.25±0.64 4.02±0.97 0.06±0.04 0.24±0.13 0.14±0.04 0.25±0.06 

CMIP5 ESM Ensemble-mean Ocean Heat Uptake with 90% Certainty Range from Ensemble Spread: 

0-700m 3.60±1.92 7.37±2.09 5.64±1.90 7.85±2.71 0.22±0.12 0.46±0.13 0.35±0.12 0.49±0.17 

700-2000m  1.32±1.49 2.72±1.41 1.99±1.51 3.33±1.75 0.08±0.09 0.17±0.09 0.12±0.09 0.21±0.11 

 
 
The direct comparison of the observed changes in ocean heat content and the simulated historical changes is 
undertaken to detect climate change, to attribute the causes of climate change to the forcings in the system, 
and to evaluate the performance of ESMs. Attribution studies also reject competing hypotheses to explain 
the global ocean changes such as natural forcing from solar variability or volcanic eruptions (see Section 
1.3) (Bindoff et al., 2013). Detection and attribution studies have since been used to detect changes in the 
rate of ocean heat uptake and to attribute these changes to human activity (Gleckler et al., 2016).  
 
Updated observationally-based estimates of ocean heat uptake are consistent with simulations of equivalent 
time-periods from an ensemble of CMIP5 ESMs (Table 5.1 and the inset panel in Figure 5.1) (high 
confidence), once the limitations of the historical ocean observing network and the internally generated 
variability with a single realization of the real world are taken into account (see Section 5.2.2.2). Following 
the CMIP5 protocol, the ESMs are radiatively forced with observationally derived estimates of greenhouse 
gas concentrations and aerosols, including natural forcing variations from volcanic eruptions and solar 
forcing, through 2005; after 2006 each of the ESMs uses either the RCP2.6 or RCP8.5 emissions scenarios. 
The very likely ranges of the observed trends of heat uptake for the four periods and two layers all fall within 
the very likely range of simulated heat uptake from the ESM ensemble (Table 5.1). The difference between 
observations and average of the simulations in the upper ocean is an overestimate of heat uptake by about 
20% and for the deeper layer there an underestimate by a similar amount, but this difference is still well 
within the very likely range from the ensemble of simulations. The overall consistency between 
observationally-based estimates and ESM simulations of the historical period gives greater confidence in the 
projections; it is very likely that historical simulations agree with observations of the global ocean heat 
uptake (Table 5.1). 
 
While the collection of the worlds’ ESMs have been criticized for having an ensemble mean that does not 
exhibit the observed ‘hiatus’ or ‘slowdown’ of global mean surface temperature increase in the early 21st 
century (Meehl et al., 2011; Trenberth et al., 2016) , it is increasingly clear that this is at least in part due to 
the redistribution of heat within the climate system from the surface into the interior ocean and between 
ocean basins. Individual realizations of ESMs do show decades with slow increases in mean surface 
temperature change comparable to what was observed, even though these cases exhibit continued interior 
ocean heat uptake, and every ensemble member exhibits surface warming closer to the ensemble-mean over 
multidecadal timescales (Meehl et al., 2011; England et al., 2015; Knutson et al., 2016).  
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Figure 5.1: Time series of globally integrated upper 2000 m ocean heat content changes in ZJ, relative to the 2000 to 
2010 period average, as inferred from observations (green) and as simulated for historical (magenta), RCP2.6 (blue) 
and RCP8.5 (red) forcing by a 25-member ensemble of CMIP5 ESMs ((Cheng et al., 2019). The shaded green in the 
outer panel is the very likely range determined by combining data from 4 long-term estimates (Green lines; Palmer et 
al., 2007; Levitus et al., 2012; Lyman and Johnson, 2014; Cheng and Chen, 2017; Cheng et al., 2017; Ishii et al., 2017) 
processed as in Johnson et al. (2018). The magenta, blue and red lines are the ESM ensemble means, while shading 
shows each ensemble’s 5th to 95th percentile range. In the inset subpanel, the 4 different shaded green areas are the 
reported very likely range of heat content changes as inferred from observations by 4 independent groups (Green lines; 
Palmer et al., 2007; Lyman and Johnson, 2014; Cheng and Chen, 2017; Cheng et al., 2017; Ishii et al., 2017) processed 
as in Johnson et al. (2018). In the inset subpanel the RCP2.6 and RCP8.5 projections after 2005 are combined into a 
single ensemble with the historical simulations. 
 
 
The ocean will continue to take up heat in the coming decades for all plausible scenarios. As depicting in 
Figure 5.1, the ensemble of CMIP5 ESMs used by Cheng et al. (2019) project that under RCP2.6, the top 
2000 m of the ocean will take up 935 ZJ of heat between 2015 and 2100 (with a very likely range of 650 to 
1340 ZJ based on the 5th and 95th percentiles of the 25 ESMs used here that have available data from the 
historical, scenario and control runs for RCP2.6). Under RCP8.5 this ensemble projects heat uptake of 2180 
ZJ (with a very likely range of 1710 to 2790 ZJ, based on 35 ESMs) between 2015 and 2100. By 2100 the 
ocean is very likely to warm by 2 to 4 times as much for low emissions (RCP2.6) and 5 to 7 times as much 
for the high emissions scenario (RCP8.5) compared with the observed changes since 1970. With the RCP8.5 
scenario, the ocean is very likely to take up about twice as much heat as RCP2.6 (Figure. 5.1). Even under 
RCP2.6 the ocean will continue to warm for several centuries to come (Collins et al., 2013). It is virtually 
certain that the ocean will continue to take up heat throughout the 21st century, and the rate of uptake will 
depend upon on the emissions scenario we collectively choose to follow. 
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Figure 5.2: Heat uptake by the top 700 m of the ocean, as determined by differences between the averages over two 5- 
or 20-year intervals converted to a heat flux into the ocean (W m-2), either from observationally-based analyses or a 38-
member ensemble of CMIP5 ESMs. (a) Change between (1971-1990) and (1997-2016) as inferred from observations 
(Good et al., 2013); (b) The ensemble mean change in CMIP5 ESMs for the same time periods as in (a); (c) Projected 
ensemble mean change in CMIP5 ESMs between (1986-2005) and (2081-2100) for the RCP8.5 forcing scenario. In 
panels (b) and (c), stippling indicates regions where the ensemble mean change is not significantly different from 0 at 
the 95% confidence level based on the models’ temporal variability. (d) Change between (2004-2008) and (2013-2017) 
as inferred from observations by the SODA 3.4.2 reanalysis product (Carton et al., 2018); (e) and (f) Estimates of 
change in heat uptake as in (d) but from two individual realizations of the CCSM ESM. These two realizations are 
identical apart from their initial conditions, which leads to different timing in their internal modes of variability; they 
were selected from the full CMIP5 ensemble as examples where one is reminiscent of the recent observed changes 
while the other has regional changes that have dissimilar timing. 
 
 
5.2.2.2.2 Structure of anthropogenic climate changes in the ocean 
The ensemble average of the CMIP5 ESMs projects widespread ocean warming over the coming century, 
concentrated in the upper ocean (Figures 5.2c and 5.3) (Kuhlbrodt and Gregory, 2012). The anthropogenic 
heat will penetrate into the ocean following well-established circulation pathways (Jones et al., 2016a). The 
greatest vertically integrated heat uptake occurs where there is already the formation of interior waters, such 
as Antarctic Intermediate Water along the Antarctic Circumpolar Current (Frölicher et al., 2015) or North 
Atlantic Deep Water precursors in the Nordic Seas (Figure 5.2c), but all water-masses5 that are subducted 

                                                
5 Following common oceanographic practice dating back to Helland-Hansen (1916) and discussed in detail by Sverdrup 
et al. (1942), an ocean water-mass is defined as a large volume of seawater with a characteristic range of temperature 
and salinity properties, typically falling along a line in temperature-salinity space, often with common formation 
processes and locations. 
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over decades are expected to experience significant warming (see Figure 5.3). The warming in the 
subtropical gyres penetrates deeper into the ocean than other gyres (roughly 15°N to 45°N and 15°S to 45°S 
in Figure 5.3), following the wind-driven bowing down of the density surfaces (the solid lines in Figure 5.3) 
in these gyres (Terada and Minobe, 2018). The greater warming at 700-2000 m in the Atlantic than the 
Pacific or Indian Oceans (Figure 5.3) reflects the strong southward transport of recently formed North 
Atlantic Deep Water at these depths by the Atlantic Meridional Overturning Circulation (AMOC). Two 
areas that commonly exhibit substantially reduced near-surface warming over the course of the 21st century 
are the northern North Atlantic, where a slowing AMOC (see Section 6.7.1.1) reduces the northward heat 
transport and brings the surface temperatures closer to what is found in other ocean basins at these latitudes 
(Collins et al., 2013), and the southern side of the Southern Ocean, where water upwells that has been 
submerged for so long that it has not yet experienced significant anthropogenic climate change (Armour et 
al., 2016). Most of these projected warming patterns are broadly consistent across the current and previous 
generations of climate models (Mitchell et al., 1995; Collins et al., 2014) as well as observations and 
theoretical understanding. These multiple lines of evidence give high confidence that the projections describe 
the changes in the real world (high agreement, robust evidence). 
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Figure 5.3: Side-view basin-averaged zonal-mean trends (change per century) in water-mass properties in the top 2000 
m by basin (a) as inferred from observations (average of 2013 to 2017 minus average of 2005 to 2009) and (b) CMIP5 
model projections with RCP8.5 forcing (average of 2081 to 2100 minus average of 1981 to 2000) trends in water-mass 
changes forcing. Subpanels within each group: top-to-bottom (Atlantic, combined Pacific and Indian, Global); left-to-
right (Temperature, In situ Density, Salinity). Shaded areas show where the projected changes are not statistically 
significant at the 95% level. This figure uses the same observationally-derived reanalysis datasets and ensemble of 
ESMs as in Fig. 5.2c and 5.2d. Solid lines show present contours of these fields; the curious structure in the global-
zonal mean contours of density and salinity are due to the relatively salty Mediterranean and fresh Black seas. 
 
 
The near surface salinity of the ocean is both observed and projected to evolve in ways that reflect the 
increased intensity of the Earth’s hydrologic cycle (Durack, 2015) and the increasing near-surface ocean 
stratification (Zika et al., 2018). As described in WGI AR5, the ocean surface in areas that currently have net 
evaporation are expected to become saltier, while areas with net precipitation are expected to get fresher 
(Rhein et al., 2013), as the patterns of precipitation and evaporation are generally expected to be amplified 
(Held and Soden, 2006). At longer timescales of decades, the larger scale changes in the ocean circulation 
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and basin-integrated freshwater imbalances emerge in the near-surface salinity changes, as shown in Figure 
5.3b, with an increasingly salty tropical and subtropical Atlantic and Mediterranean contrasting with a 
freshening Pacific and polar Arctic emerging as robust signals across the suite of ESMs (Collins et al., 
2013). The freshening of the high latitudes in the North Atlantic and Arctic basin is consistent with the 
widely expected weakening of the AMOC (also discussed in Section 6.7), hydrological cycle changes and a 
decline in the volume of sea ice (discussed in Section 3.2.2). 
 
Projected salinity changes in the subsurface ocean reflect changes in the rates of formation of water-masses 
or their newly formed properties (Purich et al., 2018). Thus, projected freshening of the Southern Ocean 
surface leads to a freshening of the Antarctic Intermediate Water that is subducted there, flowing northward 
from the Southern Ocean as a relatively fresh water-mass at depths of 500-1500 m (Figure 5.3b). Increased 
surface salinity in the Atlantic subtropical gyres are pumped into the interior by the winds, leading to an 
increased salinity of the interior subtropical gyres, along with contributions from increasingly salty 
Mediterranean water (Jordà et al., 2017). Conversely, freshwater capping of the northwestern North Atlantic 
is projected to inhibit deep convection in the Labrador Sea and the consequent production of Labrador Sea 
Water in some models (Collins et al., 2013), and contributes to the increased salinity of the North Atlantic 
between 1000 m and 2000 m depths (Figure 5.3b).   
 
Identifying the specific patterns of anthropogenic climate changes in oceanic observations is complicated by 
the presence of basin-scale natural variability with timescales ranging from tidal to multi-decadal, and due to 
the difficulties associated with maintaining high-precision observing systems spanning the ocean basins and 
limited observational coverage of the extratropical Southern Hemisphere before 2006 (Rhein et al., 2013). 
Inferences based on oceanographic observations from the 1970s onward show wide-spread warming of the 
upper 700 m (Figure 5.2a), in broad agreement with the ensemble of historical CMIP5 ESM simulations 
(Figure 5.2b). These ESMs indicate that anthropogenic regional warming over the past half-century should 
be discernable at the 95% confidence level in much of the upper oceans (un-stippled areas in Figure 5.2b). 
Most of the areas where observational analyses (Figure 5.2a) exhibit long-term cooling are either regions 
where the internally generated variability is large enough to mask the trends (e.g., the Eastern Tropical 
Pacific, Northwest Atlantic, and Kurushio extension east of Japan, which are stippled in Figure 5.2b), or 
where the observational coverage early in the record is limited and different analyses can disagree about 
trends (e.g., the Southern Ocean and extratropical South Pacific). When internal variability is taken into 
account, the broad consistency in the magnitude and regional distribution of observed and simulated 50-year 
trends gives confidence to the ESM projections of longer-term oceanic changes described previously. 
  
Detailed regional patterns of trends in temperature and heat content at depths of 0 m to 2000 m during the 
early 21st century are consistent in various analysis, owing to the improved observing network (Roemmich 
et al., 2015; Desbruyères et al., 2016a) (Figure 5.2d). At depths of 700–2000 m, observations in all of the 
ocean basins show broadly warming trends in the well-observed Argo era (2006-present), with particularly 
significant warming patterns in the Southern Hemisphere extratropics around 40o S and the subpolar North 
Atlantic (Figure 5.3a). These observed changes support the notion that deep ocean heat content has been 
continuously increasing. As a result, regional climate change signatures emerge from confounding natural 
variability sooner in the 700-2000 m depth range than in upper 700 m of the ocean, where interannual modes 
of variability have a larger influence on the circulation (for a more complete discussion see Johnson et al. 
(2018)). Despite regional patches of cooling water in the upper 700 m (Figure 5.2d), every one of the 
world’s ocean basins volume averaged over depths of 0 m to 2000 m has experienced significant warming 
over the last decade (Figure 5.3, and also Desbruyères et al. (2016a)). The greatest warming of the top 2000 
m has been in the Southern Ocean (Roemmich et al., 2015; Trenberth et al., 2016), the tropical and 
subtropical Pacific Ocean (Roemmich et al., 2015), and the tropical and subtropical Atlantic Ocean (Cheng 
and Chen, 2017).  The Southern Hemisphere extratropical oceans accounted for 67%-98% of the total ocean 
heat increase in the uppermost 2000 m for the period of 2006 to 2013 (Roemmich et al., 2015). Shi et al. 
(2018)  suggest that the dominant ocean heat uptake by the Southern Hemisphere in the early 21st century is 
expected to become more balanced between the hemispheres as the asymmetric cooling by aerosols 
decreases. 
 
Large-scale patterns of natural variability at interannual to decadal time scales can mask the long-term 
warming trend in the upper 700 m, particularly in the tropical Pacific and Indian Oceans (England et al., 
2014; Liu et al., 2016) and in the North Atlantic (Buckley and Marshall, 2015). The most significant upper 
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700 m warming between five-year averages centered on 2007 and 2015 occurred in a large extratropical 
band of the Southern Hemisphere between 30º S and 60º S, and in the tropical Indian Ocean, the eastern 
North Pacific and western subtropical North Atlantic (Figure 5.2d). Warming of the southern hemisphere 
subtropical gyres is driven, in part, by an intensification of Southern Ocean winds in recent decades, 
facilitating the penetration of heat to deeper depths (Gao et al., 2018). Marginal seas, such as the 
Mediterranean and Red seas have also exhibited notable warming. Conversely, over this timeframe there 
were also regions of cooling in the upper 700 m, notably in the North Atlantic around 40o N-60o N and in the 
western tropical Pacific (Figure 5.2d). Recent relatively cold and fresh surface and subsurface conditions in 
the North Atlantic have been attributed to anomalous atmospheric forcing (Josey et al., 2018) or weakened 
transport by the North Atlantic Current and AMOC (Smeed et al., 2018), and in turn may have contributed to 
an intensification of deep convection in the Labrador Sea since 2012 (Yashayaev and Loder, 2017). All these 
observed decadal changes can be related to internal decadal variability (Robson et al., 2014; Yeager et al., 
2015) even though they resemble expected longer-term anthropogenically forced trends. Substantial decadal-
scale warming and cooling trends in the tropical Pacific and Indian oceans can arise from natural El Niño-
Southern Oscillation (ENSO) and Indian Ocean Dipole variability (Han et al., 2014). Large ensembles of 
freely running CMIP5 ESM simulations also show that internal variability can dominate the regional 
manifestation of the anthropogenic climate signal on decadal timescales (Kay et al., 2014). This is illustrated 
by the differing warming trends in Figure 5.2e and 5.2f from two identical ESMs that differ only in the 
weather in their 1850 initial conditions, averaged over the whole 21st century, by contrast, the ensemble of 
CMIP5 models project statistically significant anthropogenic regional upper 700 m heat content trends 
almost everywhere (Figure 5.2c). 
 
There are well documented changes in observed ocean temperatures and salinities (Abraham et al., 2013; 
Ishii et al., 2017). However, attributing these changes in the state of the ocean to anthropogenic causes can 
be challenging due to the presence of internally generated variability, which can swamp the underlying 
climate change signal in short records and on regional scales. As can be seen in Figure 5.2, the observed 
long-term trends (Figure 5.2a) exhibit a striking similarity to the CMIP5 ensemble mean in areas where the 
models suggest that anthropogenic changes should be statistically significant (Figure 5.2b). However, the 
trends in the shorter well-observed period covering 2005 to 2017 (Figure 5.2d) exhibits strong trends from 
internal variability, as illustrated by the differences of two ensemble members of the same ESM with the 
same forcing but initialized with different weather (Figure 5.2e and 5.2f).  Detection and Attribution studies 
take the internal variability into account and separate the underlying climate signals with the same spatio-
temporal sampling as the observations, and apply a range of statistical tests to determine the coherence of the 
observations with the co-sampled observations (Bindoff et al., 2013; AR5 WG1 Box 10.1).  
 
Since AR5, the use of different and updated oceanographic data sets and increase in the number of 
ensembles of the CMIP5 simulations (Kay et al., 2014) has improved the overall detection and attribution of 
human influence. Together these measures increase the coherence of the simulations and reduce noise. For 
example, an isotherm approach used to reduce the noise from the displacement of isotherms in the upper 
water column allowing detection in each of the mid-latitude ocean basins was achieved on 60 year time 
series (Weller et al., 2016). Using all the available ocean temperature and salinity profiles from the Southern 
Ocean, Swart et al. (2018) show that the warming and freshening patterns were consistent primarily with 
increased human induced greenhouse gases and secondarily from ozone depletion in the stratosphere, but 
inconsistent with internal variability. Together the evidence from the AR5, and the discussion above 
with the new evidence on regional scales across the global oceans, we conclude that the observed 
long-term upper ocean temperature changes are very likely to have a substantial contribution from 
anthropogenic forcing. 
 
The wind-driven ocean circulation at the end of the 21st century is expected to be qualitatively similar to that 
in the present-day, even as important buoyancy-loss driven overturning circulations are expected to weaken. 
ESM projections suggest that some major ocean current transports will exhibit a modest increase (such as the 
Kuroshio Extension (Terada and Minobe, 2018) or a small decrease (such as for the Indonesian Throughflow 
(Sen Gupta et al., 2016); many predominantly wind-driven current-system transports are expected to exhibit 
smaller than 20% changes by 2100 with RCP8.5 forcing. Climate-change induced changes of the circulation 
in other mid-latitude basins may be difficult to detect or reliably project because of significant natural 
variability at inter-annual (e.g., El Niño) to decadal (e.g., the Pacific Decadal Oscillation) timescales. The 
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Antarctic Circumpolar Current is projected to be subject to strengthening westerly winds and substantially 
reduced rates of Antarctic Bottom Water (AABW) formation, as assessed in the Cross-Chapter Box 7 in 
Chapter 3. The heat transported by the buoyancy-loss driven AMOC, in particular, contributes to the 
relatively clement climate of northern Europe and the North Atlantic Basin as a whole, although the wind-
driven ocean gyres also contribute to the meridional ocean heat transport (see the review by Buckley and 
Marshall (2015). As a result, there is a concern that significant changes in ocean circulation could lead to 
localized climate changes that are much larger than the global mean. Projected and observed changes in the 
AMOC and the rates of formation of deep water-masses in the North Atlantic are discussed in Chapter 6.7.1, 
along with the possibility of abrupt or enduring changes resulting from forcing by Greenlandic meltwater. A 
significant reduction in AMOC would, in turn, modestly weaken the Gulf Stream transport, which also has a 
substantial wind driven component (Frajka-Williams et al., 2016). Most aspects of the large-scale wind-
driven ocean circulation are very likely to be qualitatively similar to the circulation in the present-day, with 
only modest changes in transports and current location.   
 
The global ocean below 2000 m has warmed significantly between the 1980s and 2010s (Figure 5.4), 
contributing to ocean heat uptake and through thermal expansion to sea level rise (Purkey and Johnson, 
2010; Desbruyères et al., 2016b). The observed deep warming rate varies regionally and by depth reflecting 
differences in the waters influencing particular regions. The deep and abyssal North Atlantic, fed by North 
Atlantic Deep Water (NADW), has reversed from warming to cooling over the past decade, possibly 
associated with the North Atlantic Oscillation (e.g., Yashayaev, 2007; Desbruyères et al., 2014) or longer-
term weakening in North Atlantic overturning circulation (Caesar et al., 2018; Thornalley et al., 2018). The 
strongest warming is observed in regions of the deep ocean Antarctic bottom water (AABW) (Purkey et al., 
2014). Regions of the ocean fed by AABW from the Weddell Sea have exhibited a possible slowdown in 
local AABW warming rates (Lyman and Johnson, 2014), while the Pacific, fed by AABW from the shelves 
along the Ross and Adelie Coast, has continued to warm at an accelerating rate between 1990 and 2018 
(Desbruyères et al., 2016b).  
 
To date, assessment of deep ocean (below 2000 m) heat content has mostly been from ship-based data 
collected along decadal repeats of oceanographic transects (Figure 5.4b) (Talley et al., 2016a). While 
relatively sparse in space and time compared to the upper ocean, these transects were positioned to optimize 
sampling of most deep ocean basins and provide the highest quality of salinity, temperature and pressure 
data. Argo floats capable of sampling to 6000 m have just started to populate select deep ocean basins; this 
Deep Argo data has just started providing regional deep ocean warming estimates (Johnson et al., 2019). 
Decadal monitoring by the full global deep Argo array (Johnson et al., 2015), complemented by indirect 
estimates from space (Llovel et al., 2014; Von Schuckmann et al., 2014), will strongly reduce the currently 
large uncertainties of deep ocean heat content change estimates in the future. 
 
The spatial and temporal sparseness of observations below 4000 m, along with significant differences 
between various ESMs, limits our understanding of the exact mechanisms driving the abyssal ocean 
variability. However, ESMs consistently predict an anthropogenic climate-change induced long-term abyssal 
warming trend originating in the Southern Ocean due to a reduction in the formation rates of cold Antarctic 
Bottom Water (Heuzé et al., 2015). Although the abyssal modes of natural variability are not as pronounced 
as closer to the surface, deep ocean heat content can vary on relatively short time scales through the 
communication of topographic and planetary waves driven by changes in the rate of deep water formation at 
high latitudes (Kawase, 1987; Masuda et al., 2010; Spence et al., 2017). Antarctic Bottom Water (AABW) 
has shown variability in properties and production rates over the past half century (Purkey and Johnson, 
2013; Menezes et al., 2017). A slowdown in AABW formation rates may arise from freshening of shelf 
waters, changes in local winds driving cross shelf mixing, or larger scale dynamics controlling the spin up or 
down of Southern Ocean gyres influencing the density of outflowing waters over deep sills. Large-scale 
circulation changes can also alter the properties of the ambient water that is entrained as dense water 
descends along the Antarctic continental slopes (Spence et al., 2017). Evolving AABW properties may also 
reflect changes in deep Southern Ocean convection. The Weddell Polynya is a large opening in the 
wintertime ice of the Weddell Sea that is kept ice-free despite intense heat loss to the atmosphere by 
convective mixing bringing up warm and salty water from the deep ocean. (See Box 3.2 for a more extensive 
discussion of polynyas and the Weddell Polynya in particular.) The Weddell Polynya was present in three of 
the first years of infrared satellite observations of wintertime sea-ice concentrations in the mid-1970s, but it 
has been closed since 1976, only to reopen in 2016 and 2017. The prominent Weddell Polynya in the mid-
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1970s greatly increased the volume of the coldest waters in the deep Weddell Sea. Weddell Polynyas are 
documented to drive abyssal cold and salty signals and can spread thermal signals as waves further and 
faster than could be explained by slow advective signals (Martin et al., 2015; Zanowski and Hallberg, 2017); 
these waves do not directly heat individual water parcels, but instead warm the ocean where they cause the 
coldest deep layers to spread laterally and thin. However, recovery from the large Weddell polynya of the 
early 1970s can only explain about 20% of the observed abyssal warming trend (Zanowski et al., 2015). 
 
 
a       b 

 
Figure 5.4: Observed rates of warming from 1981 to 2019 (a) as a function of depth globally (orange) and south of the 
Sub-Antarctic Front (the purple line in (b) at about 55°S) (purple) with 90% confidence intervals and (b) average 
warming rate (colors) in the abyss (below 4000 m) over various ocean basins (whose boundaries are shown in grey 
lines), with stippling indicating basins with no significant changes.  The black lines show the repeat hydrographic 
sections used to make these estimates. These figures use updated GoShip data and the techniques of (Purkey and 
Johnson, 2010). 
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Figure 5.5: Zonal and 20-year mean stratification averaged over the top 200 m of the ocean for the CMIP5 ensemble of 
simulations at the end of the historical runs (black and grey), and for the end of the 21st century for RCP 2.6 (blue) and 
RCP8.5 (red) scenarios. The values between the 5th and 95th percentiles of the ensembles are shaded, while the lines are 
the ensemble mean. These model results are not adjusted by the control-run, so the spread in the various estimates 
primarily reflect model formulation differences. The average squared buoyancy frequency shown here is nearly linearly 
proportional to the density difference between the surface and 200 m, and is a measure of the density stratification of 
the upper ocean. 
 
 
The ocean’s properties are changing most rapidly in the near surface waters that are more immediately 
exposed to atmospheric forcing. As a result of the surface-intensified warming, the upper few hundred 
meters of the ocean are becoming more stably stratified (Helm et al., 2011; Talley et al., 2016b). The 
combination of surface intensified warming and near-surface freshening at high latitudes leading to a 
projection of more intense near-surface stratification (the downward-increasing vertical gradient of density) 
across all ocean basins (Figures 5.3 and 5.5) is a robust result with a high agreement across successive 
generations of coupled climate models (Capotondi et al., 2012; Bopp et al., 2013). Based on the projected 
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changes from individual models between (1986-2005) and (2081-2100), the mean stratification of the upper 
200 m averaged between 60°S and 60°N, normalized by the ensemble mean value from (1986-2005) will 
very likely increase by between 1.0% and 9.3% (with 95% confidence, and a CMIP5 median change of 
2.6%) for RCP2.6, and by between 12.2% and 30.0% (median value 21.2%) for RCP8.5. Inferences from 
oceanic observations (Good et al., 2013) suggest that the 20-year mean stratification averaged between 60°S 
and 60°N and over the top 200 m very likely increased by between 2.18% and 2.42% from (1971-1990) to 
(1998-2017). By contrast, the bottom intensified warming in the abyss (see Figure 5.4) which is consistent 
with a slowing in the rate of AABW formation, is also associated with a reduction in the abyssal 
stratification of the ocean (Lyman and Johnson, 2014; Desbruyères et al., 2016b). Both of these changes 
have consequences for the evolving turbulence and ocean water-mass structure. Based on observational 
evidence, theoretical understanding and robust ESM projections, it is very likely that stratification in the 
upper few hundred meters of the ocean below the mixed layer will increase significantly in the 21st century 
over most ocean basins as a result of climate change, and abyssal stratification will likely decrease. 
 
Many dynamical consequences of increased stratification are understood with very high confidence (see, for 
instance, Gill (1982) and Vallis (2017)). For the same turbulent kinetic energy dissipation, locally increased 
stratification reduces the turbulent vertical diffusivity of heat, salinity, oxygen and nutrients (see Section 
5.2.2.2.4). Increased stratification in the tropics and subtropical gyres will likely lead to a net reduction in the 
vertical diffusivities of nutrients and other gases within the main thermocline, reducing the flux of nutrients 
into the euphotic zone and increasing the gradient in oxygen concentrations between the near surface ocean 
and the interior. Increasing upper ocean stratification (Figure 5.5) acts to restrict the depth of the ocean’s 
surface mixed layer.  Increasing stratification increases the buoyancy frequency and the lateral propagation 
speed of internal gravity waves and boundary waves by about half the percentage change of the stratification 
itself. Increasing stratification increases both the length of the internal deformation radius (a typical length 
scale in baroclinic eddy dynamics) and the horizontal scales of internal tides (see Section 5.2.2.2.3) 
proportionately with the changes in the internal gravity wave speeds. An increase in stratification will 
increase the lateral propagation of internal Rossby waves (which set up the basin-scale ocean density 
structure) proportionately. For the same forcing, increasing stratification reduces the geostrophically 
balanced slope of density surfaces, and hence the vertical extent of basin-scale wind-driven gyres or coastal 
upwelling circulations. The flattening of density surfaces by increased stratification inhibits advective 
exchange between the surface and interior ocean (Wang et al., 2015a), with consequences for the uptake of 
anthropogenic carbon (Section 5.2.2.3), the evolving oxygen distribution (Section 5.2.2.4) and the supply of 
nutrients to support primary production (Section 5.2.2.5). 
 
5.2.2.2.3 Tides and coastal physical changes in a changing climate 
Coastal systems are subject to the same large-scale warming trends as the open ocean, but the local response 
may be dominated by a complex of localized changes in factors such as circulation, mixing, river plumes or 
the seasonal upwelling of cold water. Using ESMs to project how these factors will interact often requires 
much finer resolution than is currently affordable in global models, however regional high-resolution models 
can be effective, especially in marginal seas like the Mediterranean with restricted interactions with the open 
ocean and that respond primarily to local forcing  (Adloff et al., 2015). High resolution regional models have 
also been used to project robust localized ocean climate changes in wide shelf-seas with more extensive 
interactions with the open ocean, like those in northwestern Europe (Tinker et al., 2016). The technical 
difficulties of using nested regional models are much greater in coasts adjacent to energetic large-scale 
currents like the Gulf Stream, Kuroshio, and Agulhas, and projecting detailed coastal climate change such 
places may require the use of expensive high resolution global models (Saba et al., 2016). These physical 
coastal changes have consequences that cascade through ecosystems to people, as is illustrated in detail for 
eastern boundary upwelling systems in Box 5.2. 
 
Both human structures and ecological systems in the coastal zone are directly impacted by tidal amplitudes, 
which contribute to high-water levels and the tidal flushing rates of estuaries, embayments, marshes and 
mangroves. The tides are the response of a forced-damped-resonance system (Arbic et al., 2009). The M2 
tide is the dominant tidal constituent in most places, with a period of ½ lunar day, or 12 hours, 25 minutes; 
the M2 tides are created by the differential motion of the solid Earth and oceans in response to the 
gravitational attraction of the moon (Newton, 1687; Laplace, 1799). The astronomical forcing evolves only 
slowly, however the tidal damping and basin resonance at tidal frequencies can change in response to 
changes in sea-level, stratification, and coastal conditions (Müller, 2012; Schindelegger et al., 2018). Several 
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recent studies have analyzed historical coastal tide gauge data and found amplitude trends of order 1-4% per 
century (Ray, 2009; Woodworth, 2010; Müller et al., 2011). In some locations, the changes in the tides have 
been of comparable importance to changes in mean sea level for explaining changes in high water levels 
(Jay, 2009). For many individual tide gauges, the trends in tidal amplitude are strongly positively or 
negatively correlated with local time-mean sea level trends (Devlin et al., 2017). Another source of secular 
tidal changes, changes in oceanic stratification, modifies the rate of energy conversion from the barotropic 
tides to the internal tides (Jayne and St. Laurent, 2001), the vertical profile of turbulent viscosity on shelves 
(Müller, 2012), and the propagation speed of the internal tides (Zhao, 2016). For example, Colosi and Munk 
(2006) found an increase in the amplitude of the principal lunar semidiurnal tide M2 in Honolulu of about 1 
cm over the past 100 years, which they attributed primarily to changes in oceanic stratification bringing 
about local changes in relative phases of the internal and external M2 tides, increasing constructive 
interference. Both sea level and stratification are expected to exhibit robust secular positive trends in the 
coming century due to climate change, at rates that are significantly larger than historical trends, and people 
may choose to replace natural beaches and marshes with sea-walls in response to rising sea-levels. As a 
result, it is very likely that the majority of coastal regions will experience statistically significant changes in 
tidal amplitudes over the course of the 21st century. 
 
Because coastal tides are near resonance in many locations, small changes in sea level and bay shape can 
change the local tides significantly. For example, the insertion of tidal power plants can have a significant 
impact on the local tides (Ward et al., 2012). Various observational and modeling studies demonstrate that 
sea level rise has spatial heterogeneous impacts on the tides, with some locations experiencing decreased 
tidal amplitudes and others experiencing increased tidal amplitudes (Pickering et al., 2012; Devlin et al., 
2017; Pickering et al., 2017). Projections of tidal changes indicate that the patterns and even the sign of 
changes in tidal amplitudes depend on whether the coastlines are allowed to recede with rising sea levels or 
are held in place (Pickering et al., 2017; Schindelegger et al., 2018). Pelling et al. (2013) and Hwang et al. 
(2014) demonstrate that the rapid coastline changes in China’s Bohai Sea have already altered the tides in 
that region and throughout the Yellow Sea (Hwang et al., 2014). Pelling and Green (2014) examine the 
impact of flood defenses as well as sea level rise on tides on the European Shelf. Such tidal changes have 
implications for designing flood defenses, for tidal renewable energy, for tidal flushing timescales of 
estuaries and embayments, and for navigational dredging requirements (Pickering et al., 2012) (Section 
5.4.2). The sign and amplitude of local changes to tides are very likely to be impacted by both human coastal 
adaptation measures and climate drivers (listed above). 
 
5.2.2.2.4 Systematic sources of uncertainty in projections of ocean physical changes 
ESMs are able to capture the dynamics of the climate system, but all numerical models have approximations 
and biases. The most commonly used type of ocean component in ESMs is known to exhibit numerically 
induced vertical mixing that can be a significant fraction of the physical mixing (Ilıcak et al., 2012; Megann, 
2018). Because so many ocean models exhibit the same sign of bias, there is a systematic warming of the 
lower-main thermocline that is not cancelled out when taking the average over the ensemble of all the 
models in CMIP5. These biases are widely known within the ocean modelling community, and various 
groups are working to reduce these biases in future ESMs with better ocean model numerics and 
parameterizations. To correct for model biases, ESM projections are always taken as the difference from a 
control run without the anomalous forcing. However, some aspects of the ocean response to climate change 
are nonlinear, and model biases can introduce uncertainties into climate projections. In the case of heat 
uptake, this is of the order of 10% uncertainty, while for the rate of steric sea level rise (which depends on 
the nonlinear equation of state of seawater) the uncertainty in CMIP5 models is of the order of 20% 
(Hallberg et al., 2012).  
 
Mesoscale eddies (geostrophic rotating vortices with spatial scales of 10-100 km that penetrate deeply into 
the water column, and are often described as the ocean’s weather) play an important role in regulating the 
changes to the larger scale ocean circulation, especially in the Antarctic Circumpolar current, as is discussed 
in Cross Chapter Box 7. In addition, sub-mesoscale eddies (rotationally influenced motions with smaller 
horizontal scales of hundreds of metres to about 10 km and intrinsic timescales of a few days that especially 
arise in association with fronts in the ocean’s surface properties) are known to be particularly important in 
the dynamics of the near-surface ocean boundary layer (see the review by Mahadevan (2016)). Sub-
mesoscale instabilities are associated with re-stratifying overturning circulations that can limit the thickness 
of the well-mixed ocean surface boundary layer near fronts (Bachman et al., 2017). Moreover, sub-
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mesoscale motions generate strong vertical velocities that drive fluxes of nutrients from the interior ocean 
into the euphotic zone or create pockets of reduced mixing with increased phytoplankton residency time 
within the euphotic zone (Lévy et al., 2012). Intense mesoscale eddies are known to create favourable 
conditions for sub-mesoscale instabilities as shown in both observational (Bachman et al., 2017) and 
numerical studies (Brannigan et al., 2017). Intensifying Southern Ocean eddy fields will have a significant 
local impact on biological productivity, ecosystem structure, and carbon uptake, both directly and via sub-
mesoscale processes. At typical CMIP5 ESM resolutions, it is only in the tropics that mesoscale eddies are 
adequately resolved to explicitly model their effects (Hallberg, 2013), while submesoscale eddies are not 
resolved anywhere, so eddy effects need to be parameterized in ESMs. Despite great progress over the past 
30 years in parameterizing eddy effects, uncertainties in these parameterizations and how eddies will 
respond to novel conditions continue to contribute to uncertainties in projections of oceanic climate change 
(medium confidence). 
 
Ocean turbulent mixing is a key process regulating the ocean circulation and climate. Turbulent mixing is 
important for the uptake and redistribution of heat, carbon, nutrients, oxygen and other tracers (properties 
that are carried along with the flow of water) in the ocean (Schmittner et al., 2009; MacKinnon et al., 2017). 
Both observations and theory indicate that turbulent mixing in the ocean is not constant in space or time. 
Global estimates of both the turbulent kinetic energy dissipation rate and the vertical diffusivity, two 
measures of ocean turbulence, vary over several orders of magnitude throughout the ocean (Figure 5.6) 
(Polzin et al., 1997; Waterman et al., 2012; Whalen et al., 2012; Alford et al., 2013; Hummels et al., 2013; 
Sheen et al., 2013; Waterhouse et al., 2014; Kunze, 2017).  For a given energy dissipation rate, the turbulent 
diffusivities of heat, salinity, nutrients and other tracers tend to be smaller with stronger stratification. This 
dependency on stratification helps explain why the observationally inferred diffusivity in the heavily 
stratified main thermocline (250 m-1000 m depth) is of similar magnitude to those deeper in the water 
column, while the turbulent energy density and dissipation rate are much stronger at the shallower depths 
(Whalen et al., 2012). Oceanic turbulence also fluctuates in time, is modulated by tidal cycles (Klymak et al., 
2008), the mesoscale eddy field and seasonal changes (Whalen et al., 2018). In the mixed layer and directly 
below, turbulence changes according to local conditions, such as the winds, heating rates and local 
stratification (Sloyan et al., 2010; Moum et al., 2013; D'Asaro, 2014; Tanaka et al., 2015) at diurnal to 
seasonal and longer timescales. These variations in near-surface turbulence need to be taken into account for 
ESMs to reproduce more accurately the observed seasonal cycle of surface properties and spatial structure of 
the depth of the thermally well-mixed near surface layer of the ocean. The spatial and temporal patterns of 
ocean turbulence help shape ocean tracer distributions (heat, dissolved greenhouse gases, nutrients) and how 
they will evolve in a changing climate (high confidence).  
 
 

�
Figure 5.6: Estimate of the average vertical turbulent diffusivity between 250 and 1000 m calculated by applying fine 
structure techniques to Argo float data from below the well-mixed near-surface boundary layer. Only bins with at least 
three estimates are plotted and regions with insufficient data are coloured grey. This figure was created using updated 
data through April, 2018 with the techniques from Whalen et al. (2012). 
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Ocean turbulent mixing requires energy sources, many of which are expected to change with a changing 
climate. Surface wind and buoyancy forcing, the mean and eddying larger-scale ocean circulation itself, and 
the barotropic tides are all thought to be significant sources of the energy that drives mixing (Wunsch and 
Ferrari, 2004). Often this energy first passes through the ocean’s pervasive field of internal gravity waves 
that propagate and refract through the varying ocean circulation, often breaking into turbulent mixing far 
from their sources (Eden and Olbers, 2014; Alford et al., 2016; Melet et al., 2016; Meyer et al., 2016; Zhao 
et al., 2016b). The energy contributing to the internal waves from the winds and the subsequent turbulence 
will be altered by changes in tropical storm activity or sea-ice coverage. For example, the increasing extent 
of ice-free Arctic Ocean has already been observed to lead to increased wind-driven internal waves (Dosser 
and Rainville, 2016). The Southern Annular Mode is expected to intensify as a result of climate change 
(Young et al., 2011; Jones et al., 2016b), bringing with it stronger winds, and more wind-energy input over 
most of the Southern Ocean and a more intense mesoscale eddy field (Hogg et al., 2015). Changes in the 
near-bottom stratification will alter the rate that the barotropic tides generate internal waves, thereby altering 
the strength and distribution of the tidally generated mixing. Some of the parameterizations of interior ocean 
mixing used in CMIP5 ESMs take some changing turbulent energy sources into account  (Jayne and St. 
Laurent, 2001), and more comprehensive mixing treatments are being developed for use in future 
generations of ESMs (Eden and Olbers, 2014). However, not all of the physical processes leading to the rich 
structure of mixing shown in Figure 5.6 are well understood or included in ESMs; the prospect of significant 
changes in the patterns and intensity of ocean turbulent mixing is a potential source of uncertainty (probably 
at the 10% level) in projections of physical and ecological changes in the ocean, including heat uptake, 
stratification changes, steric sea-level rise, deoxygenization, and nutrient fluxes  (medium confidence). 
 
5.2.2.3 Changes in Ocean Carbon  
 
Since AR5, new global-scale data synthesis products, novel methods for their analyses, as well as progress in 
modeling have substantially increased our quantitative understanding of the role of the ocean in absorbing 
and storing CO2 from the atmosphere. The most important progress concerns the data-based quantification of 
the temporal variability of the ocean carbon sink. While AR5 assessed primarily the climatological mean 
processes governing the ocean carbon cycle, the most recent work now permits us to assess how these 
processes have changed in recent decades in response to climate variability and change. Here we focus 
specifically on the open ocean carbon cycle. 
 
5.2.2.3.1 Ocean carbon fluxes and inventories 
The analyses of the steadily growing number of surface ocean CO2 observations (now more than 20 million 
observations, SOCATv6 (https://www.socat.info/index.php/2018/06/19/v6-release/) demonstrate that the net 
ocean uptake of CO2 from the atmosphere has increased from around 1.2±0.5 Pg C yr-1 in the early 1980s to 
2.0±0.5 Pg C yr-1 in the years 2010-2015 (Rödenbeck et al., 2014; Landschützer et al., 2016). Once new 
estimates of the outgassing flux stemming from river derived carbon of 0.8 Pg C yr-1 (Resplandy et al., 2018) 
are accounted for, these new observations imply that the rate of global ocean uptake of anthropogenic CO2 
increased from 2.0±0.5 Pg C yr-1 to 2.8±0.5 Pg C yr-1 between the early 1980s and 2010-2015 (Rödenbeck et 
al., 2014; Landschützer et al., 2016; Le Quéré et al., 2018). This increase is supported by the current 
generation of ocean carbon cycle models (Le Quéré et al., 2018), and commensurate with the increase in 
atmospheric CO2.  
 
The continuing efforts to re-measure dissolved inorganic carbon (DIC) along many of the repeat 
hydrographic lines that were occupied during the 1980s and 1990 (Talley et al., 2016a), alongside the 
preparation of a global quality-controlled database of ocean interior observations (Olsen et al., 2016a), have 
led to progress since AR5 regarding to the oceanic interior storage of anthropogenic CO2. Several studies 
analyzed the changes in the amount of anthropogenic CO2 that have accumulated between different 
occupations in the different ocean basins (Wanninkhof et al., 2010; Pérez et al., 2013; Woosley et al., 2016; 
Carter et al., 2017), confirming that the anthropogenic CO2 taken up from the atmosphere is transported to 
depth, where most of it is stored. Using a newly developed reconstruction method, Gruber et al. (2019) 
extended these results to the globe. They find that between 1994 and 2007, across two standard deviations, 
that the global ocean has accumulated an additional 30-38 Pg C of anthropogenic CO2, which is equivalent 
to an air-sea CO2 flux of between 2.3-2.9 Pg C yr-1 (coherent with surface ocean CO2 observations), bringing 
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the total inventory for the year 2007 to 150±20 Pg C. Extrapolating this estimate to the year 2010 gives an 
inventory of 158±18 Pg C, which is statistically indistinguishable from the ‘best’ estimate provided by 
Khatiwala et al. (2013) of 155±31 Pg C and more recently also found from a steady-state ocean model 
(DeVries, 2014) for this reference year. If the inventory-based estimates are adjusted for the loss of natural 
carbon, a very likely total increase in storage between 1994 and 2007 of 24-34 Pg C, or around 25% of total 
emissions, is found (Gruber, 2019). 
 
Thus, there is very high confidence from surface ocean and ocean interior carbon data that the strength of the 
ocean sink for anthropogenic carbon has increased in the last two decades in response to the growth of 
atmospheric CO2. Multiple lines of evidence indicate that it is very likely that the ocean has taken up 20-30% 
of the global emissions of CO2 from the burning of fossil fuels, cement production, and land-use change 
since the mid 1980s. The consistency between independent surface ocean observations and the ocean interior 
data-based reconstructions supports the assessment of very high confidence and provides robust evidence 
that fraction of emissions taken up by the ocean has not changed in a statistically significant manner in the 
last few decades and remains consistent with AR5 
 
Alongside a globally integrated perspective, these new surface ocean observations also reveal a substantial 
degree of variability at inter annual and decadal scales (Rödenbeck et al., 2015; Landschützer et al., 2016; Le 
Quéré et al., 2018). Most notable are the air-sea CO2 flux variations in the tropics linked to ENSO variations 
(Rödenbeck et al., 2015; Landschützer et al., 2016), as well as the strong decadal variations in the high 
latitudes, especially the Southern Ocean (Landschützer et al., 2015; Munro et al., 2015; Ritter et al., 2017), 
discussed further in Chapter 3 (Section 3.2.1.2.4). Fluctuations in the Southern Ocean CO2 flux are important 
as they impart a substantial imprint also on the global uptake fluxes. For instance, reduced Southern Ocean 
uptake in the 1990 to 2000 period coincided with an exceptionally weak global net uptake of only about 
0.8±0.5 Pg C yr −1. 
 
Thus, there is growing evidence from multiple datasets that the ocean carbon sink exhibits decadal 
variability at regional scales that significantly alter the globally integrated sink (medium confidence). 
 
Detailed analyses of the spatial structure of the change in storage of anthropogenic CO2 confirm the variable 
nature of the ocean carbon sink suggested by the surface observations (Pérez et al., 2013), which are most 
likely a consequence of changes in ocean circulation (DeVries and Weber, 2017). The increase in 
anthropogenic CO2 between 1994 and 2007 occurs throughout the upper 1000 m, but with very different 
penetration depths, reflecting largely differences in the efficiency, with which the anthropogenic CO2 is 
transported from the surface to depth (Gruber et al., 2019) (Figure 5.7). This spatial distribution of how the 
amount of anthropogenic CO2 has changed between 1994 and 2007 is similar to the distribution of 
anthropogenic CO2 reconstructed for 1994 (Sabine et al., 2004), although the imprint of regional variations 
in ocean circulation and transport are discernible (Gruber, 2019). 
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Figure 5.7: Vertical sections of the change in anthropogenic CO2 from 1994 to 2007 represented by the zonal mean 
sections in each ocean basin, organized around the Southern Ocean in the center. The upper 500 m are expanded. 
Contour intervals of anthropogenic CO2 are 2 µmol kg-1 (Gruber, 2019). 
 
 
5.2.2.3.2 Ocean carbon chemistry 
Analyses of direct measurements of ocean chemistry from time-series stations and merged shipboard studies 
show consistent decreases in surface-ocean pH over the past few decades. Reductions range between 0.013 
to 0.03 pH units decade-1 over records that span up to 25 years (Table SM5.3). Focusing on the individual 
time series locations with records longer than 15 years, there is an overall decline of 0.017 to 0.027 (across 
99% confidence intervals). Trends calculated from repeat measurements on ocean surveys show a consistent 
value of around -0.02 pH units decade-1 for diverse oceanic regions (Table SM5.3), with greater subsurface 
than surface trends reported in the subtropical oceans (Dore et al., 2009). At larger spatial scales, surface-
ocean pH trends are assessed using shipboard observations of the fugacity of CO2 and estimates of ocean 
alkalinity (Takahashi et al., 2014; Lauvset et al., 2015). Between 1991–2011, mean surface-ocean pH has 
declined by 0.018 ±0.004 units decade–1 in 70% of ocean biomes, with the largest declines in the Indian 
Ocean (–0.027 units decade–1), eastern Equatorial Pacific (–0.026 units decade–1) and the South Pacific 
subtropical (–0.022 units decade–1) biomes (Lauvset et al., 2015). Due to the close link between carbonate 
ion concentrations and pH, mean trends in the stability of mineral forms of aragonite and calcite (known as 
the ‘saturation state’) that are important for organisms such as coccolithophorids, pteropods and corals 
follow those of pH, with high latitude regions most vulnerable to under-saturation due to naturally lower 
mean values. 
 
It is virtually certain that ocean pH is declining, and the virtually likely range of this decline is 0.017 to 
0.027 pH units per decade for the 8 locations where individual time-series observations longer than 15 years 
exist. This trend is lowering the chemical stability of mineral forms of calcium carbonate and can be 
attributed to rising atmospheric CO2 levels.  
 
CMIP5 models are in good agreement with historical observations of declining surface-ocean pH (Figure 
5.8a). Models project global surface-ocean declines between 2006-2015 and 2081-2100 of 0.287-0.291 and 
0.036-0.042 pH units (both across 99% confidence intervals) for the RCP2.6 and RCP8.5 scenarios, 
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respectively, with higher reductions in the subsurface of subtropical oceans (Bopp et al., 2013; Gattuso et al., 
2015). These changes in pH will be greatest in the Arctic Ocean and the high latitudes of the Atlantic and 
Pacific Oceans due to their lower buffer capacity and are lowest in contemporary upwelling systems (Figure 
5.8b) and will also reduce the stability of calcite minerals (Bopp et al., 2013; Gattuso et al., 2015). The area 
of the surface ocean (0-10m) characterized by undersaturated conditions in CMIP5 models by 2081-2100 
reduces from a very likely range of 6.4-9.5x1012 m2 or 5.5-7.3x1013 m2 under RCP8.5 (as much as 16-20% of 
ocean surface area for aragonite), to just 0.01-0.2 x1012 m2 or 0.01-0.13x1013 m2 under RCP2.6 for either 
calcite or aragonite minerals, respectively. Under RCP8.5, hotspots for undersaturated waters for calcite 
remain restricted to the Arctic Ocean, while for aragonite, much of the Southern Ocean and the North Pacific 
and Northwestern Atlantic Oceans are also projected to become undersaturated (Orr et al., 2005; Hauri et al., 
2015; Sasse et al., 2015). These results arise from the very well understood reductions in carbonate ion 
concentrations at lower pH, the vulnerability of regions with naturally low mean values, and the greater 
overall sensitivity of aragonite solubility. Regional models, with higher resolution that ESMs, also project 
year-round corrosive conditions for aragonite in some eastern boundary upwelling systems (Franco et al., 
2018a). In the ocean interior, the decline in pH and calcium carbonate saturation state is more uncertain 
across models (Steiner et al., 2014)  as it is modulated by changes to ocean overturning and water mass 
subduction (Resplandy et al., 2013; Chen et al., 2017). Projected benthic changes in pH over the next century 
are highly localized and are linked to transport of surface anomalies to depth, with over 20 % of the North 
Atlantic sea floor deeper than 500 m projected to experience pH reductions greater than 0.2 units by 2100 
under the RCP8.5 scenario (Gehlen et al., 2014a). Changes in pH in the abyssal ocean (>3,000 m deep) are 
greatest in the Atlantic and Arctic Oceans, with lesser impact in the Southern and Pacific Oceans by 2100, 
mainly due to the circulation timescales (Sweetman et al., 2017).  
 
Overall, it is virtually certain that the future surface open ocean will experience pH drops of either 0.036-
0.042 (RCP2.6) or 0.287-0.291 (RCP8.5) pH units by 2081-2100, relative to 2006-2105. These pH changes 
are very likely to cause 16-20% of the surface ocean, specifically the Arctic and Southern Oceans, as well as 
the northern Pacific and north-western Atlantic Oceans, to experience year-round corrosive conditions for 
aragonite by 2081-2100. It is virtually certain these impacts will be avoided under the RCP2.6 scenario. 
There is medium confidence, due to the potential for parallel changes in ocean circulation, that the Arctic and 
North Atlantic seafloors will experience the largest pH changes over the next century. 
 
Although ocean acidification results in long-term trends in mean ocean chemistry, it can also influence 
seasonal cycles. Observation-based products indicate that the seasonal cycle of global surface-ocean pCO2 
increased in amplitude by 2.2 ± 0.4 µatm between 1982 and 2014 (Landschützer et al., 2018). CMIP5 models 
and data-based products similarly project consistent future increases in the seasonal cycle of surface-ocean 
pCO2 under the RCP8.5 emissions scenario, with enhanced amplification in high-latitude waters (McNeil 
and Sasse, 2016). The amplitude of the seasonal cycle of global surface-ocean free acidity ([H+]) is projected 
to increase by 71-91% (across 90% confidence intervals) over the twenty-first century under RCP8.5, also 
with greater amplification in the high-latitudes (Kwiatkowski et al., 2018). Conversely, models project a 12-
20% reduction (across 90% confidence intervals) in the seasonal amplitude of surface-ocean pH, as changes 
in pH represent relative changes in [H+] due to their logarithmic relationship, and there are typically greater 
projected increases in annual mean state [H+] than the seasonal amplitude of [H+]. Models also project a 4-
14% (across 90% confidence intervals) reduction in the seasonal amplitude of global mean surface-ocean 
aragonite saturation state under RCP8.5, with a slight amplification in the subtropics being outweighed by 
dampening elsewhere. The contrasting changes in the seasonal amplitudes of ocean carbonate chemistry 
variables derive from different sensitivities to atmospheric CO2 and climate change and to diverging trends 
in the seasonal cycles of dissolved inorganic carbon, alkalinity and temperature. Model skill at simulating 
the seasonal cycles of carbonate chemistry is moderate, with persistent biases in the Southern Ocean, 
particularly for pCO2, [H+] and pH (Kwiatkowski et al., 2018; Mongwe et al., 2018). 
 
Overall, we assess that alongside the strong mean state changes, it is very likely that the amplitude of the 
seasonal cycle in free acidity will increase by 71-91%, while it is very likely that the seasonal cycles of pH 
and aragonite saturation will decrease by 12-20% and 4-14%, respectively.  
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Figure 5.8: Panels a, d, g and j display simulated global changes over the period of 1900 to 2100 (with solid lines 
representing the multi-model mean and the envelope representing 90% confidence intervals for RCP8.5 and RCP2.6), 
for surface pH, O2 concentration averaged over 100 to 600 m depth, upper 100 m nitrate concentrations and NPP 
integrated over the top 100 m. Differences are calculated relative to the 1850-1900 period. Panels b, e, h and k show 
spatial patterns of simulated change in surface pH, upper 100 m nitrate concentrations, O2 concentration averaged over 
100 to 600 m depth, and NPP integrated over the top 100 m averaged over 2081-2100, relative to 1850-1900 for 
RCP8.5. Panels c, f, i and l display time series of the percentage of total uncertainty ascribed to internal variability 
uncertainty, model uncertainty, and scenario uncertainty in projections of global annual mean changes Figure adapted 
after (Frölicher et al., 2016). Please note that confidence intervals can be affected by the different number of models 
available for the RCP8.5 and RCP2.6 scenarios and for different variables.  See also Table SM5.4. 
 
 
5.2.2.4 Changing Ocean Oxygen  
 
Ocean oxygen (O2) levels at the surface are controlled by the balance between oxygen production during 
photosynthesis, temperature-controlled solubility and air-sea exchange. Deeper in the water column, 
consumption of oxygen during respiration and redistribution by ocean circulation and mixing are dominant 
processes. In theory, a warmer more stratified ocean would have a reduced oxygen content, due to the 
combined influence of lowered gas solubility and a greater interior respiration of organic matter due to 
enhanced physical isolation of subsurface waters. In accord, global changes in ocean oxygen assessed from 
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three different analyses of compiled global oxygen datasets going back to the 1960s agree that there is a net 
loss of oxygen from the ocean over all depths (see Table 5.2). For the 0-1000m depth stratum that contains 
the most data and is common to all three analyses, oxygen is assessed to have declined by a very likely range 
of 0.5 to 3.3% between 1970 and 2010. For the surface ocean (0-100m) and the thermocline later of 100-
600m the very likely range of oxygen declines are 0.2-2.1% and 0.7-3.5%, respectively (Table 5.2). Across 
two studies, global oxygen is assessed to have declined by a very likely range of 0.3 to 2.0%, with a similar 
range of decline for waters deeper than 600m (Table 5.2). The regions of lowest oxygen, known as oxygen 
minimum zones (OMZs, with oxygen levels lower than 80 µmol L-1), are observed to be expanding by a very 
likely range of 3.0-8.3% across the three studies. 
 
Regionally, all studies agree that the north Pacific and Southern Oceans have shown the largest overall 
oxygen declines (Figure 5.9), but there is some disagreement regarding the magnitude of the oxygen change 
in the tropical ocean, with some studies suggesting significant declines (Schmidtko et al., 2017) and other 
reporting more modest reductions (Helm et al., 2011; Ito et al., 2017) and data coverage is still limited for 
some regions and deeper than 1000m. Based on the available data, the strongest declines in deep ocean 
oxygen have occurred in the Equatorial Pacific, North Pacific, Southern Ocean and South Atlantic, with 
intermediate declines in the Arctic, South Pacific and Equatorial Atlantic, while the North Atlantic has 
experienced a moderate oxygen increase below 1,200 m (Figure 5.9). A particular difference between 
parallel oxygen analyses concerns the means of integrating and mapping sparse data across the ocean, both 
horizontally and vertically, with different studies making specific decisions about averaging grids and 
integration methods. Moreover, data remains sparse for some ocean regions, depths and periods. Taken 
together, the challenges of data sparsity, regional differences and the relatively large uncertainties on the 
oxygen changes across different studies, but also recognizing that oxygen declines are significantly different 
to zero, leads to medium confidence in the observed oxygen decline.  
 
Syntheses of datasets from local time series tend to document stronger trends, with oxygen declines of over 
20% at sites in the Northeastern Pacific between 1956-2006 (Whitney et al., 2007), the Northwestern Pacific 
between 1954-2014 (Sasano et al., 2015) and the California Current between 1984-2011 (Bograd et al., 
2015). Despite holding the highest inventory of oxygen in the ocean, oxygen levels in Southern Ocean 
contributed 25% to the global decline between 1970–1992 (Helm et al., 2011) and have fallen by over 150 
Tmol per decade from the 1960s to present (Schmidtko et al., 2017). Observations along ocean cruises as 
part of the CLIVAR programme have also documented broad thermocline oxygen declines in the northern 
hemisphere oceans, accompanied by well understood oxygen increases in subtropical and southern 
hemispheres (Talley et al., 2016b).  
 
Overall there is medium confidence that the oxygen content of the upper 1000m has declined with a very 
likely loss of 0.5-3.3% between 1970-2010. Oxygen minimum zones are expanding in volume, by a very 
likely range of 3.0-8.3%. There is medium confidence that the largest regional changes have occurred in the 
Southern Ocean, equatorial regions, North Pacific and South Atlantic due to medium agreement among 
studies.  
 
The role of ocean warming alone in driving the oxygen changes can be appraised using solubility estimates, 
which vary between around 15-50% for the upper 1000m oxygen trend between studies (Helm et al., 2011; 
Ito et al., 2017; Schmidtko et al., 2017). The role of other processes, linked to changing ocean ventilation 
and respiration are challenging to appraise directly, but tend to reinforce the impacts from warming and are 
probably predominant overall (Oschlies et al., 2018). Indeed, that the observed oxygen decline is negatively 
correlated with ocean heat content changes (Ito et al., 2017) reflects the overriding role of changing ocean 
ventilation and associated processes (see also Section 5.2.2). That the ratio of the associated oxygen to heat 
changes is larger than would be expected from thermal processes alone also highlights the role played by 
other processes (Oschlies et al., 2018). Local oxygen trends have emphasized the role of changes to ocean 
physics in western Northern Pacific (Whitney et al., 2013); Sasano et al. (2015), the southern California 
Current region (Goericke et al., 2015), and the Santa Barbara Basin (Goericke et al., 2015). In regions of 
high mesoscale activity, such as the tropical north Atlantic, low oxygen eddies can have a significant impact 
on oxygen dynamics (Karstensen et al., 2015; Grundle et al., 2017). Oxygen fluctuations in the deep ocean 
have been linked to changes in large scale ocean circulation (Watanabe et al., 2003; Stendardo and Gruber, 
2012) and at the global scale, the observed oxygen decline is negatively correlated with ocean heat content 
changes (Ito et al., 2017). Changes to respiration rates, either due to temperature enhancement or in the 
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amount/quality of organic material can also be important and the enhanced respiratory demand associated 
with an intensified monsoon has been invoked as a driver of the expansion of the Arabian Sea OMZ 
(Lachkar et al., 2018). 
 
Ocean oxygen changes are also affected by climate variability on interannual and decadal timescales, 
especially for the tropical ocean OMZs (Deutsch et al., 2011). ENSO variability in particular affects the 
thermocline structure, which then alongside changes in circulation modulates oxygen solubility and 
respiratory demand in this region (Ito and Deutsch, 2013; Eddebbar et al., 2017). These drivers may then be 
combined with modifications to overturning and ventilation of OMZs by lateral jets and equatorial current 
intensity (Duteil et al., 2014). Centennial scale studies based on isotope proxies for low oxygen regions have 
demonstrated fluctuations in OMZ extent linked to decadal changes in tropical trade winds that affects 
interior ocean respiratory oxygen demand, which implies that it will be difficult to attribute recent changes in 
the Pacific OMZ to anthropogenic forcing alone (Deutsch et al., 2015). Parallel work based on oxygen 
observations (Llanillo et al., 2013), as well as modelling (Duteil et al., 2018) supports the importance of 
decadal scale variability in the eastern tropical Pacific OMZ. There is some evidence for the potential of a 
modulating impact on tropical Pacific oxygen at interannual timescales from atmospheric deposition of 
nitrogen and iron (Ito et al., 2016; Yang and Gruber, 2016). 
 
 
Table 5.2: Observed oxygen changes for the period 1970 to 2010 for 6 different layers within the ocean.  The changes 
are shown as percentage change of global averages.  The layers are depths 0-100, 100-600, 0-1000, and 600-bottom are 
in metres.  The oxygen minimum zone (OMZ) is defined as the ocean volume change that is less than 80 µmol L-1. The 
estimates and confidence intervals are based published papers (Schmidtko et al. 2018, Ito et al, 2017 and Helm et al. 
2011).  The assessed change is the average of the available estimates and the 90% Confidence Interval (CI) combines 
the confidence as their standard deviation with two degrees of freedom. 

   Schmidtko  Ito  Helm  
Assessed 
Change  

Layer Period Change 90 CI Change 90 CI Change 90 CI Change 90 CI 

0-100 1970-2010 -0.38% ±1.06% -1.65% ±0.63% -1.30% ±0.54% -1.11% ±0.95% 

100-600 1970-2010 -1.06% ±1.36% -3.17% ±1.34% -2.04% ±0.60% -2.09% ±1.42% 

0-1000 1970-2010 -1.35% ±1.38% -2.70% ±1.30% -1.74% ±0.54% -1.93% ±1.39% 

600-
bottom 1970-2010 -1.51% ±0.62% NA NA -0.81% ±0.57% -1.16% ±0.84% 

          

OMZ 1970-2010 6.33% ±2.52% 6.10% 1.2% 4.49% ± 2 . 2 5 % 5.64% ±2.66% 

          

Global 1970-2010 -1.43% ±0.70% NA NA -0.87% ±0.53% -1.15% ±0.88% 

 
 
At the global scale, there is high confidence that the impact of a warmer ocean on oxygen levels is reinforced 
by other processes associated with ocean physics and biogeochemistry, which cause the majority of the 
observed oxygen decline. For the tropical Pacific OMZ, there is medium confidence arising from medium 
agreement from medium evidence that low frequency decadal changes in ocean physics have controlled past 
fluctuations in OMZ extent.  
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Figure 5.9: Absolute change in dissolved oxygen (umol kg-1 per decade) between water depths of (a) 0 and 1,200 m, 
and (b) 1,200 m and the sea floor over the period 1960-2010. Lines indicate boundaries of OMZs with less than 80 µ 
mol kg–1 oxygen anywhere within the water column (dashed/dotted), less than 40 µ mol kg–1 (dashed) and less than 20 
µ mol kg–1 (solid). Redrawn from Oschlies et al. (2018). 
 
 
Future changes in oxygen can be appraised from ESMs that account for the combined effects of ocean 
physics and biogeochemistry. Globally, these models project that it is very likely oxygen will decline by 3.2-
3.7% or 1.6-2.0% (both across 90% confidence limits) for RCP8.5 or RCP2.6, respectively, relative to 2000 
(Bopp et al., 2013). Focussing on the 100-600m depth stratum, O2 changes by -4 to -3.1% for the RCP8.5 or 
by -0.5 to +0.1% for the RCP2.6 scenario (relative to 2006-2015, Figure 5.8d). It should be noted that ESMs 
appear to be underestimating the rate of oxygen change from available datasets from the historical period 
(Oschlies et al., 2018). Increased tropical ocean stratification reduces interior ocean oxygen by diminishing 
pathways of ventilation in the subtropical gyres and by inhibiting turbulent mixing with the oxygen-rich 
surface ocean (see Section 5.2.2.2.4). This relatively robust global modelled trend (Figure 5.8d) however 
masks important uncertainties in the projection of regional trends (Figure 5.8e), particularly in the tropical 
ocean OMZs (Bopp et al., 2013; Cocco et al., 2013; Cabré et al., 2015). The uncertainty in the trends in 
tropical ocean OMZs arises due to the fact that oxygen depletion due to warming induced reductions in 
oxygen saturation are opposed by oxygen enrichment due to reduced oxygen consumption during respiration 
in response to predicted declines in marine export production, as well as biases due to model resolution in 
the tropics and the length of the model spin up (Bopp et al., 2017). The 80 µmol L-1 threshold that may be 
used to define the volume of the oxygen minimum is projected to grow by a very likely range of 7.0±5.6% by 
2100 during the RCP8.5 scenario or show virtually no change during the RCP2.6 scenario, relative to a 
1850-1900 reference period (Figure 5.10). At the seafloor, between 200–3000 m depth strata, the North 
Pacific, North Atlantic, Arctic and Southern Oceans may see oxygen declines by 0.3% to 3.7% by 2100 
(relative to 2005), with abyssal ocean changes being lower and more localised around regions in the North 
Atlantic and Southern Ocean (Sweetman et al., 2017), but will be modulated by any future changes in 
overturning strength. There is high confidence that the largest changes in deep sea systems will occur after 
2100 (Battaglia and Joos, 2018).  
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Figure 5.10: The evolution of the volume of the 100-600m layer of the ocean with oxygen concentrations less than 80 
µmol L-1 for the RCP8.5 (black line) and the RCP2.6 (blue line), normalised to the volume in 1850-1900. Dashed lines 
indicated the very likely range (90% confidence intervals) across the CMIP5 models (CNRM-CM5, GFDL-ESM2M, 
GFDL-ESM2G, IPSL-CM5A-LR, IPSL-CM5A-MR, MPI-ESM-LR, MPI-ESM-MR and the NCAR-CESM1 models). 
Models are corrected for drift in O2 using their control simulations. 
 
 
Simulations extended to 2300 suggest that by 2150 the trend of declining tropical ocean oxygen (both in 
terms of concentrations and volume of low oxygen waters) may reverse itself, mainly due to the effect of 
strong declines in primary production and organic matter fluxes to the ocean interior (Fu et al., 2018) or due 
to enhanced Antarctic ventilation (Yamamoto et al., 2015), but with low confidence due to limited evidence. 
At the global scale, 10,000 year intermediate complexity model simulations find that overall ocean oxygen 
loss shows near linear relationships to equilibrium temperature, itself linearly related to cumulative 
emissions, and any climate mitigation scenario will reduce peak oxygen loss by 4.4% per degree Celsius of 
avoided warming (Battaglia and Joos, 2018).  
 
In summary, the total oxygen content of the ocean is very likely to decline by 3.2-3.7% by 2100, relative to 
2000, for RCP8.5 or by between 1.6-2.0% for RCP2.6 with medium confidence. There is medium confidence 
that sea floor changes will be more localised in the North Atlantic and Southern Oceans by 2100, but high 
confidence that the largest deep sea floor changes in oxygen will occur after 2100. 
 
5.2.2.5 Changing Ocean Nutrients  
 
Changes to ocean nutrient cycling are driven by modifications to ocean mixing and transport (Section 
5.2.2.2.2), internal biogeochemical cycling and fluctuations in external supply, particularly from rivers and 
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the atmosphere. This assessment will focus on the main nutrients important for driving microbial growth 
(Section 5.2.2.6), namely nitrogen, phosphorus and iron.  
 
Diverse studies (including shipboard experiments and use of protein biomarkers) have highlighted nitrogen 
and phosphorus limitation in the stratified tropical ocean regions accompanied by widespread iron limitation 
at high latitudes and in upwelling regions that typically have elevated levels of productivity (Figure 5.11) 
(Moore et al., 2013; Saito et al., 2014; Browning et al., 2017; Tagliabue et al., 2017). Moreover, more 
extensive experimental work has demonstrated overlapping nitrogen-iron co-limitation at the boundaries 
between gyre and upwelling regimes (Browning et al., 2017). There is high confidence arising from robust 
evidence and high agreement across different types of studies that the main limiting nutrient is either iron (in 
most major upwelling regions and the Southern, North Atlantic, and sub-Arctic Pacific Oceans) or nitrogen 
and phosphorus (in the low productivity tropical ocean gyres). 
 
 

 
Figure 5.11: Map of the dominant limiting resource (Moore et al., 2013), updated to include new experiments from the 
north Pacific, tropical Atlantic and south east Atlantic (Browning et al., 2017; Shilova et al., 2017). The background is 
depth integrated primary productivity using the Vertically Generalized Production Model (VPGM) algorithm. Coloring 
of the circles indicates the primary limiting nutrients inferred from chlorophyll and/or primary productivity increases 
following artificial amendment of: N (green), P (black), Fe (red), Co (yellow) and Zn (cyan). Divided circles indicate 
potentially co-limiting nutrients, e.g., a red-green divided circle indicates Fe-N co-limitation. 
 
 
There is limited evidence on contemporary trends in nutrient levels, either from time-series sites or broader 
meta-analyses. Increasing inputs of anthropogenic nitrogen from the atmosphere are perturbing ocean 
nutrient levels (Jickells et al., 2017). In the North Pacific in particular, additional atmospheric nitrogen input 
has raised the nitrogen to phosphorus ratio between 1988-2011 and induced a progressive shift towards 
phosphorus limitation in this region (Kim et al., 2011; Kim et al., 2014; Ren et al., 2017). This tendency is 
supported by modelling experiments that find enhanced atmospheric nitrogen input only has a small 
influence on productivity due to expanded phosphorus limitation (Yang and Gruber, 2016) and other 
nitrogen cycle feedbacks (Somes et al., 2016; Landolfi et al., 2017). 
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In general, future increases in stratification (Dave and Lozier, 2013; Talley et al., 2016b; Kwiatkowski et al., 
2017; and see also Section 5.2.2.2) will trap nutrients in the ocean interior and reduce upper ocean nutrient 
levels, alongside an additional local impact from changes to atmospheric delivery. However, no CMIP5 
models accounted for changes in nutrient delivery from dust and anthropogenic aerosols during their 
experiments, which could be an important component of regional change (Wang et al., 2015b; Somes et al., 
2016; Yang and Gruber, 2016). ESMs project a decline in the nitrate content of the upper 100m of 9-14% or 
1.5-6% (across 90% confidence intervals) for the RCP8.5 or RCP2.6 scenario, respectively, by 2081-2100 
relative to 2006-2015 (Figure 5.8g). The largest absolute declines in nitrate content is projected in the 
present-day upwelling zones (Figure 5.8h). Projected changes to upper 100m nitrate concentrations are 
significantly different to zero for both RCP8.5 and RCP2.6 at the 90% confidence level, but are overall 
lower for the RCP2.6. Scenario, internal variability and inter-model variability contribute roughly equally to 
the overall projection uncertainty in 2100 (Figure 5.8i) and there is no clear separation of nitrate trends 
between RCP8.5 and RCP2.6 outside the model uncertainty (Figure 5.8h). 
 
Iron concentrations are projected to increase in the future from ESM simulations, due to enhanced lateral 
transport into high latitude oceans and reduced biological consumption in regions of declining nitrate 
(Misumi et al., 2013). Other modelling efforts also suggest greater levels of the more biologically available 
Fe(II) species in a warmer and more acidic ocean (Tagliabue and Völker, 2011). These modelling studies 
tend to indicate greater ocean iron availability in the future overall, but the very limited skill of 
contemporary global ocean iron models in reproducing observations available from the new basin scale 
datasets from the international GEOTRACES program and neglect for parallel dust supply changes lower the 
confidence in the models’ projected changes (Tagliabue et al., 2016).   
 
Overall, nitrate concentrations in the upper 100m are very likely to decline by 9-14% by 2081-2100, relative 
to 2006-2015 for RCP8.5 or 1.5-6% for RCP2.6, in response to increased stratification, with medium 
confidence in these projections due to the limited evidence of past changes that can be robustly understood 
and reproduced by models.  Surface ocean iron levels is projected to increase in the 21st century with low 
confidence due to systemic uncertainties in these models.  
 
5.2.2.6 Changing Ocean Primary and Export Production 
 
Ocean primary productivity is a key process in the ocean carbon cycle (see Section 5.2.2.3), as well as for 
supporting pelagic ocean ecosystems (see Section 5.2.3). Net primary production (NPP) is the product of 
phytoplankton growth rate and standing stock. Phytoplankton growth is controlled by the combination of 
temperature, light and nutrients, while the phytoplankton standing stock is modified by both gains from 
growth and losses due to grazing by zooplankton (Figure 5.12). Export production is here defined as the 
sinking flux of particulate organic carbon (produced by NPP) across a specified depth horizon. Otherwise 
known as the biological pump, export production is also a key component of the global carbon cycle (see 
Section 5.2.2.3) and an essential food supply to benthic organisms (see Section 5.2.3.2). Export production is 
regulated by the level of primary production and the transfer efficiency with depth, itself controlled by the 
type of sinking organic carbon, which is affected by the upper ocean food web structure (Boyd et al., 2019).  
 
Satellite datasets that use mathematical algorithms to convert ocean colour, often alongside other remotely 
sensed information, into chlorophyll or other indexes of phytoplankton biomass and NPP provide the 
potential to deliver a global meta-analysis of changes in NPP. Since AR5, a variety of studies have reported 
relatively insignificant changes in overall open ocean chlorophyll levels of < ±1% yr–1 for individual time 
periods (Boyce et al., 2014; Gregg and Rousseaux, 2014; Boyce and Worm, 2015; Hammond et al., 2017). 
Regionally, trends of ±4% between 2002-2015 for different regions are found when different satellite 
products are merged, with increases at high latitudes and moderate decreases at low latitudes (Mélin et al., 
2017). While some studies report good comparability of merged products (Mélin et al., 2017), others 
highlight significant mismatches regarding absolute values and decadal trends in NPP between NPP 
algorithms (Gómez-Letona et al., 2017). Satellite derived NPP shows significant mismatches when 
compared to in situ data and reducing uncertainties in derived NPP is a high priority for the community (Lee 
et al., 2015), although there is a reasonable correlation in higher biomass coastal regions (Kahru et al., 2009). 
Importantly, satellite records are not yet long enough to unambiguously isolate long term climate related 
trends from natural variability (Beaulieu et al., 2013). Overall, there is low confidence in satellite-based 
trends in global ocean NPP due to the time series length and lack of corroborating in situ measurements or 
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other validation time series. This is especially true at regional scales where distinct sets of poorly understood 
processes dominate.  
 
Future changes in NPP will result from the changing influence from temperature, light, nutrients and grazing 
(Figure 5.12). Across CMIP models, NPP is predicted to broadly decline or remain constant by 2081-2100, 
with mean changes by 2100 of – 3.8 to -10.6% and -1.1% to +0.8%  across 90% confidence intervals for the 
RCP85 and RCP26 scenario, respectively (all relative to 2006-2015), with a strong degree of regional 
symmetry (Figure 5.8k). As seen for nitrate, changes are most marked in low latitude upwelling regions, 
which are projected to show the largest absolute declines. As for nitrate, projected NPP changes are lower 
for the RCP26 scenario (Figure 5.8j), but the overall uncertainty is dominated by internal and inter-model 
variability in 2100 (Figure 5.8l) which results in no clear separation of NPP trends between the RCP85 and 
RCP26 (Figure 5.8j). Tropical ocean NPP is projected to show a large decline, but is underpinned by 
substantial intermodal uncertainty, with mean changes of 11 ± 24% across the suite of CMIP5 models by 
2100, relative to 2000 under RCP8.5 (Laufkötter et al., 2015). However, if emergent constraints from the 
historical record that link the variability of tropical productivity to temperature anomalies then a four-fold 
decline in inter-model uncertainty results. This leads to a projected tropical ocean decline of 11±6%, or from 
6.8-16.2% across 90% confidence limits, depending on which historical constraint is used (Kwiatkowski et 
al., 2017). NPP is projected to increases for higher latitude regions, such as the Arctic and Southern Oceans. 
 
Detailed analyses of the interplay between different drivers of NPP, including temperature, light, nutrient 
levels and grazing from a subset of CMIP5 models, reveals a complex interplay with a strong latitudinal 
dependence (Laufkötter et al., 2015) summarised in Figure 5.12. Warming acts to enhance growth, most 
notably at lower latitudes, while light conditions are also predicted to improve, mostly at the poles. Nutrient 
limitation shows a much more complex response across models, but tends to increase in the tropics and 
northern high latitudes, with little change in the Southern Ocean. Taken together there is a tendency for 
reduced growth rates across the entire ocean, but there is a large amount of inter-model variability. The 
changes in growth are allied to a consistent increase in the grazing loss of biomass to upper trophic levels. 
Since AR5, we have an increasing body of literature concerning role of biological feedbacks, especially due 
to interactions between organisms, specific physiological responses and from upper trophic levels on nutrient 
concentrations, linked to variable food quality (Kwiatkowski et al., 2018), resource recycling (Boyd et al., 
2015a; Tagliabue et al., 2017) and interactions between organisms (Lima-Mendez et al., 2015), but their role 
in shaping the response of NPP to climate change remains a major unknown. Lastly, modelling work 
suggests that the increasing deposition of anthropogenic aerosols (supplying N and Fe) stimulates biological 
activity (Wang et al., 2015b) and may compensate for warming driven reductions in primary productivity 
(Wang et al., 2015b), but these effects do not form part of the CMIP5 projections assessed here. 
 
CMIP5 models show a strong negative relationship between changes in stratification that reduces net 
nutrient supply and integrated export production (Fu et al., 2016). Export production is projected to decline 
by 8.9-15.8% or 1.6-4.9% (across 90% confidence intervals) by 2100, relative to 2000 for the RCP8.5 or 
RCP2.6 scenario, respectively (Bopp et al., 2013; Fu et al., 2016; Laufkötter et al., 2016). The projected 
changes in export production can be larger than global primary production because they are affected by both 
the NPP changes, but also how shifts in food web structure modulates the ‘transfer efficiency’ of particulate 
organic material (Guidi et al., 2016; Tréguer et al., 2018), which then affects the sinking speed and lability of 
exported particles through the ocean interior to the sea floor (Bopp et al., 2013; Fu et al., 2016; Laufkötter et 
al., 2016). Declines in export production over much of the ocean mean that the flux arriving at the sea floor 
is also predicted to decline, while increases in export production are projected in the polar regions that see 
enhanced NPP (Sweetman et al., 2017).  
 
The realism in model projections can be appraised via their ability to accurately simulate the limiting 
nutrient in specific ocean regions (Figure 5.11), with high model skill in reproducing surface distributions of 
nitrate and phosphate (Laufkötter et al., 2015), raising confidence in projections in nitrogen and phosphorus 
limited systems, but poor skill in reproducing iron distributions (Tagliabue et al., 2016) lowering confidence 
in iron limited regions (Figure 5.11). In addition to concentrations of specific nutrients, the response of NPP 
to environmental change is strongly controlled by accurate representation of the ratio of resources (Moreno 
et al., 2017). Overall CMIP5 models skill in reproducing patterns of NPP and export production from limited 
satellite derived estimates range from poor to average (correlation coefficients of 0.1-0.6 across different 
models (Laufkötter et al., 2016; Moreno et al., 2017)), but it should be noted that complete comprehensive 



FINAL DRAFT Chapter 5 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 5-39 Total pages: 198 

observational datasets do not exist for these metrics with very few in situ observations. As export production 
is a much better understood net integral of changing net nutrient supply (Sarmiento and Gruber, 2002) and 
can be constrained by interior ocean nutrient and oxygen levels, there is medium confidence in these 
projections for global changes. Improving the ability of models to reproduce historical NPP is crucial for 
more accurate projections as model biases in simulating contemporary ocean biogeochemistry play a key 
role in driving future projections (Fu et al., 2016).  
 
Overall, these assessments balance the range of projections across models alongside the strength of different 
kinds of observational constraints available, as well as our theoretical or experimental understanding of the 
impact of a warmer, more stratified ocean on NPP and export production. As for AR5, net primary 
productivity is very likely to decline by 4-11% by 2081-2100, relative to 1850-1900, across CMIP5 models 
for RCP8.5, but there is low confidence for this estimate due to the medium agreement among models and 
the limited evidence from observations. It is very likely that tropical NPP will decline by 7-16% by 2100 for 
RCP8.5with medium confidence, as there are improved constraints from historical variability in this region. 
Globally, the increased stratification in the future is very likely to reduce export production by 9 to 16% in 
response to reduced nutrient supply, especially in tropical regions (medium confidence). 
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Figure 5.12: A schematic diagram to illustrate how NPP is a combination of microbial growth and biomass. In this 
context, growth is controlled by three limiting factors (nutrients, light and temperature), while biomass is affected by 
grazing. The grey lines in the plots represent results from different CMIP5 models as reported by Laufkötter et al. 
(2015). Poorly understood feedbacks from upper trophic levels on autotroph biomass and nutrients are represented by 
dashed arrows. 
 
 
[START BOX 5.1 HERE] 
 
Box 5.1: Time of Emergence and Exposure to Climate Hazards  
 
The concept of time of emergence (ToE) is defined as the time at which the signal of climate change in a 
given variable emerges from a measure of the background variability or noise (SROCC Glossary). In 
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associating a calendar date with the detection, attribution and projection of climate trends, the concept of a 
ToE has proved useful for policy and planning particularly through informing important climatic thresholds 
and the uncertainties associated with past and future climate change (Hawkins and Sutton, 2012). However, 
there is not a single agreed metric and the ToE for a given variable thus depends on choices regarding the 
space and time scale, the threshold at which emergence is defined and the reference period (WGI AR5 
11.3.2.1). Recently, the ToE concept has been expanded to consider variables related to climatic hazards to 
marine organisms and ecosystems such as pH, carbonate ion concentrations, aragonite and calcite saturation 
states, nutrient levels and marine primary productivity (Box 5.1, Figure 1) (Ilyina et al., 2009; Friedrich et 
al., 2012; Keller et al., 2014b; Lovenduski et al., 2015; Rodgers et al., 2015). ToE assessments for the ocean 
typically quantify the internal variability using the standard deviation of the detrended data over a given time 
period (Keller et al., 2014b; Rodgers et al., 2015; Henson et al., 2016; Henson et al., 2017), the scenario and 
model uncertainty associated with different climate scenarios and across available ESMs (Frölicher et al., 
2016), and in some cases the autocorrelation of noise (Weatherhead et al., 1998). As more components of 
‘noise’ are accounted for, the ToE lengthens and the ToE is also affected by whether a control simulation or 
historical variability is used to determine the noise (Hameau et al., 2019).  
 
This assessment considers the ToE of hazards exposed to by marine organisms and ecosystems. These 
biological components of the ocean respond to climate hazards that emerge locally, rather than to the global 
and basin-scale averages reported in WGI AR5 (Stocker et al., 2013). Overall, ESMs show that there is an 
ordered emergence of the climate variables, with pH emerging rapidly across the entire open ocean, followed 
by SST, interior oxygen, upper ocean nutrient levels and finally NPP under both RCP2.6 and RCP8.5 
relative to the 1861-1900 reference period (Box 5.1, Figure 1). Anthropogenic signals remain detectable for 
over large parts of the ocean even for the RCP2.6 scenario for pH and SST, but are likely lowered for 
nutrients and NPP in the 21st century. For example, for the open ocean, the anthropogenic pH signal in ESM 
historical simulations is very likely to have emerged for three-quarters of the ocean prior to 1950 and it is 
very likely over 95 % of the ocean has already been affected, with little discernable difference between 
scenarios. The climate signal of oxygen loss will very likely emerge from the historical climate by 2050 with 
a very likely range of 59-80% by 2031-2050 and rising with a very likely range of 79-91% of the ocean area 
by 2081-2100 (RCP8.5 emissions scenario). The emergence of oxygen loss is smaller in area under RCP2.6 
scenario in the 21st century and by 2090 the emerged area is declining (Henson et al., 2017) (Box 5.1 Figure 
1). It has also been shown that changes to oxygen solubility or utilization may emerge earlier than bulk 
oxygen levels (Hameau et al., 2019). 
 
It must be noted that variability will be greater in the coastal ocean than for the open ocean, which will be 
important for both hazard exposure for coastal species and the detection of trends. For example, although 
signals of anthropogenic influences have already emerged from internal variability in the late 20th century 
for global and basin-scale averaged ocean surface and sub-surface temperature (very likely) (AR5 WGI 
SPM), their ToE and level of confidence vary greatly at local scales and in coastal seas (Frolicher et al., 
2016). Pelagic organisms with small range size may thus be more (or less) at risk to warming with earlier (or 
later) ToE at the scale of the area that they inhabit. From an observational standpoint, analyses that account 
for autocorrelation of noise suggest time series of around a decade are sufficient to detect a trend in pH or 
SST, whereas datasets spanning 30 years or longer are typically needed for detection of emergence at local 
scales for oxygen, nitrate and primary productivity (Henson et al., 2016).  
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Box 5.1, Figure 1: Time of emergence of key ocean condition variables: sea surface temperature (SST), 
surface pH, 100-600m oxygen (O2), 0-100m nitrate (NO3), and 0-100m integrated net primary production 
(NPP). The year of emergence represents the year when the mean change relative to the reference period of 
1986-2005 is above the standard deviation of each variable over the historical period (Frölicher et al., 2016) 
and is expressed here in terms of the rate at which different climate signals emerge as a proportion of total 
ocean area for the RCP8.5 scenario. The final area (and standard deviation) by 2100 under the RCP2.6 
scenario is indicated by vertical lines at 2100.  
 
The rapidity of change and its geographic scope, encompassed in the ToE, can be linked to concepts of 
exposure to hazard and vulnerability of biota. As organisms have evolved to be adaptable to natural 
variations in the environmental conditions of their habitats, changes to their habitat conditions larger than 
that typically experienced or specific biological thresholds such as upper temperature or oxygen tolerance 
may become hazardous (Mora et al., 2013). This would then move from the statistical nature of the 
‘detection and attribution’ nature of the ToE discussed above towards timescales of impacts on organisms 
useful for ecosystem projections. In doing so, it will be important to think about the differences in habitat 
suitability between different organisms, including their specific thresholds for specific drivers, e.g. 
temperature, oxygen or calcium carbonate stability e.g., warming thresholds for coral bleaching (Pendleton 
et al., 2016) may differ from the temperature and oxygen thresholds for fishes such as Atlantic cod and tunas 
(Deutsch et al., 2015). Moreover, species with fast generation times relative to the ToE of key habitat 
conditions (e.g., phytoplankton) may evolve more quickly to environmental change and be less vulnerable to 
climate change than longer-lived, slower generation time species (e.g., large sharks) (Jones and Cheung, 
2018). However, evidence on evolutionary adaptation to expected climate change is limited, thus while 
shorter generation time may facilitate adaptation to environmental change, it does not necessarily result in 
successful adaptation of organisms (Section 5.2.3.1). 
 
Earlier ToE and their subsequent biological impacts on organisms and ecosystems increase the urgency of 
policy responses through both climate mitigation and adaptation (Sections 5.5). However, the rapid 
emergence of hazards at the local scale in the near-term (already past or in this decade) such as warming and 
ocean acidification and the resulting impacts on some of the more sensitivity or less adaptive biodiversity 
and ecosystem services may post challenges for international and regional policies as their often require 
multiple decades to designate and implement (Box 5.6). In contrast, scope for adaptation for national and 
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local ocean governance can be more responsive to rapid changes (Sections 5.5.2, 5.5.3). This highlights the 
opportunities for multi-level adaptation that allows for reducing climate risks that are expected to emergence 
of stressors and impacts at different time frame (Mackenzie et al., 2014). 
  
[END BOX 5.1 HERE] 
 
 
5.2.3 Impacts on Pelagic Ecosystems  
 
Marine pelagic ecosystems (the water column extending from the surface ocean down to the deep sea floor) 
face increasing climate related hazards from the changing environmental conditions (see Section 5.2.2). 
WGII AR5 (Pörtner et al., 2014) concluded, as also confirmed in Section 5.2.2, that long time-series of more 
than three or four decades in length are necessary for determining biological trends in the ocean. However, 
long-term biological observations of pelagic ecosystems are rare and biased toward mid to high latitude 
systems in the Northern Hemisphere (Edwards et al., 2013; Poloczanska et al., 2013; Poloczanska et al., 
2016). This assessment, therefore, combines multiple lines of evidence ranging from experiments, field 
observations to model simulations to detect and attribute drivers of biological changes in the past, project 
future climate impacts and risks of pelagic ecosystems. In this section the pelagic ecosystem is subdivided 
into the surface, epipelagic ocean (<200 m, the uppermost part of the ocean that receives enough sunlight to 
allow photosynthesis) (Section 5.2.3.1) and the deep pelagic ocean, comprising the twilight, mesopelagic 
zone (200-1000 m) and the dark, bathypelagic zone (>1000 m deep) (Section 5.2.3.2). Although the WGII 
AR5 Chapter 30 defined the deep sea as below 1000 m (Hoegh-Guldberg et al., 2014), the absence of 
photosynthetically useful light and ensuing critical ecological, biogeochemical transformations, and altered 
human interactions that occur on much of the sea floor below 200 m have led both pelagic and benthic 
biologists to include the ocean waters and seafloor below 200 m within the definition of the deep sea 
(Herring and Dixon, 1998; Gage, 2003). 
 
5.2.3.1 The Epipelagic Ocean 
 
This section synthesizes new evidence since AR5 to assess observed changes in relation to the effects of and 
the interactions between multiple climate and non-climate hazards, and to project future risks of impacts 
from these hazards on the epipelagic organisms, communities and food web interactions, and their scope and 
limitation to adapt.  
 
5.2.3.1.1 Detection and attribution of biological changes in the epipelagic ocean  
Temperature-driven shifts in distribution and phenology  
WGII AR5 concluded that the vulnerability of most organisms to warming is set by their physiology, which 
defines their limited temperature ranges and thermal sensitivity (Pörtner et al., 2014). Although different 
hypotheses have been proposed since AR5 to explain the mechanism linking temperature sensitivity of 
marine organisms and their physiological tolerances (Schulte, 2015; Pörtner et al., 2017; Somero et al., 
2017), evidence from physiological experiments and observations from paleo- and contemporary periods 
continue to support the conclusion from AR5 on the impacts of temperature change beyond thermal 
tolerance ranges on biological functions such as metabolism, growth and reproduction (Payne et al., 2016; 
Pörtner and Gutt, 2016; Gunderson et al., 2017), contributing to changes in biogeography and community 
structure (Beaugrand et al., 2015; Stuart-Smith et al., 2015) (high agreement, high confidence). Comparison 
of biota across land and ocean suggests that marine species are generally inhabiting environment that is 
closer to their upper temperature limits, explaining the substantially higher rate of local extirpation related to 
warming relative to those on land (Pinsky et al., 2019). Hypoxia and acidification can also limit the 
temperature ranges of organisms and exacerbate their sensitivity to warming (Mackenzie et al., 2014; Rosas-
Navarro et al., 2016; Pörtner et al., 2017), although interactions vary strongly between species and biological 
processes (Gobler and Baumann, 2016; Lefevre, 2016). 
 
Shifts in distribution of marine species from phytoplankton to marine mammals continued to be observed since AR5 
across all ocean regions (Poloczanska et al., 2016). Recent evidence continues to support that a large proportion of 
records of observed range shifts in the epipelagic ecosystem (Poloczanska et al., 2016) are correlated with ocean 
temperature, with an estimated average shift in distribution (including range centroids, northward and southward 
boundaries) from these records of 51.5 ± 33.3 km per decade since the 1950s (Figure 5.13). Such rate of shift is 
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significantly faster than those records for organisms in the seafloor; the latter has an average rate of distribution shift of 
29.0 ± 15.5 km per decade (44% of the records for seafloor species with range shifts that are consistent with expectation 
from the observed temperature changes) (Figure 5.13). Comparison of global seafloor-derived planktonic foraminifera 
from pre-industrial age with recent (from year 1978) communities show that the recent assemblages differ from their pre-
industrial with increasing dominance of warmer or cooler species that are mostly consistent with temperature changes 
(Jonkers et al., 2019). Rate of observed responses also varies between and within animal groups among ocean regions, 
with zooplankton and fishes having faster recorded range shifts (Pinsky et al., 2013; Asch, 2015; Jones and Cheung, 
2015; Poloczanska et al., 2016). For example, analysis of the Continuous Plankton Recorder (CPR) data-series from the 
North Atlantic in the last decades shows that the range of dinoflagellates tended to closely track the velocity of climate 
change (the rate of isotherm movement). In contrast, the distribution range of diatoms shifted much more slowly (Chivers 
et al., 2017) and its distribution seems to be primary influenced by multi-decadal variability rather than from secular 
temperature trends. The CPR surveys have also provided evidence that some calanoid copepods are expanding poleward 
in the Northeast Atlantic, at a rate up to 232 km per decade (Beaugrand, 2009; Chivers et al., 2017), although different 
calanoid species respond differently in the rate and direction of shifts (Philippart et al., 2003; Edwards and Richardson, 
2004; Asch, 2015; Crespo et al., 2017). Overall, the observed changes in biogeography are consistent with expected 
responses to changes in ocean temperature for the majority of marine biota (high confidence). This is also consistent with 
theories and experimental evidence that scale from individual organisms’ physiological responses to community level 
effects (high confidence). Sensitivity of organisms’ biogeography varies between taxonomic groups (high confidence).  
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Figure 5.13: Evidence of climate change responses of marine organisms to changes in ocean conditions under climate 
change. (a) evidence of interactive effects (including synergistic and antagonistic) of multiple climatic hazards (based 
on Przeslawski et al. (2015); Lefevre (2016); Section 5.2.2, 5.2.3, 5.2.4, 5.3). “Others” mainly include mammals, 
seabirds and marine reptiles). The lighter-coloured cell represents insufficient information to draw conclusion; (b - d) 
observations on changes in latitudinal range and (e – h) phenology (based on Poloczanska et al., 2013). For b – h, each 
bar represents one record. 
 
 
The rate and direction of observed range shifts are shaped by the interaction between climatic and non-
climatic factors (Poloczanska et al., 2013; Sydeman et al., 2015; Poloczanska et al., 2016), such as local 
temperature and oxygen gradients in the habitat across depth (Cheung et al., 2013; Deutsch et al., 2015), 
latitude and longitude (Burrows et al., 2014; Barton et al., 2016), ocean currents (Sunday et al., 2015; 
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Barton et al., 2016; García Molinos et al., 2017), bathymetry in all or part of their life stages (for organisms 
living on or close to the seafloor)  (Pinsky et al., 2013; Kleisner et al., 2015), geographical barriers (Pinsky 
et al., 2013; Burrows et al., 2014), availability of food and critical habitat (Sydeman et al., 2015), fishing 
and other non-climatic human impacts (Engelhard et al., 2014; Hoegh-Guldberg et al., 2014). Moreover, 
observed range shifts in respond to climate change in some regions such as the North Atlantic are strongly 
influenced by warming due to multi-decadal variability (Edwards et al., 2013; Harris et al., 2014), 
suggesting that there is a longer time-of-emergence of range shifts from natural variability and a need for 
longer biological time-series for robust attribution. The rate of shifts in biogeography of organism is 
influenced by multiple climatic and non-climatic factors (high confidence) that can result in non-
synchronous shifts in community composition (high confidence). There is general under-representation of 
biogeographical records in low latitudes (Dornelas et al., 2018), rendering detection and attribution of shifts 
in biogeography in these regions having medium confidence. The variation in responses of marine biota to 
range shifts can cause spatial restructuring of the pelagic ecosystem with consequences for organisms at 
higher trophic levels (Chivers et al., 2017; Pecl et al., 2017) (high confidence). Marine ectotherms have 
demonstrated some capacity for physiological adjustment and evolutionary adaptation that lowers their 
sensitivity to warming and decrease in oxygen (Pörtner et al., 2014; Cavallo et al., 2015) (low confidence). 
However, historical responses in abundance and ranges of marine species to ocean warming suggest that 
adaptation not always suffices to mitigate projected impacts (WGII AR5 Chapter 6) (high confidence).  
 
Marine reptiles, seabirds and mammals breathe air, instead of obtaining oxygen from water, and many of 
them spend some of their life cycle on land, being their abundance and distribution still affected by 
temperature (Pörtner et al., 2014). Long term population changes and shifts in distribution associated with 
climate change have been observed for temperate species of seabirds and marine mammals (Henderson et 
al., 2014; Hiscock and Chilvers, 2014; Ramp et al., 2015) (high confidence). For example, Laysan, 
Phoebastria immutabilis, and Wandering, Diomedea exulans, albatross have responded positively to 
climate change as they have been able to take advantage of the increased intensity of winds. This has 
allowed them to forage farther and faster, making their foraging trips shorter, increasing their foraging 
efficiency and breeding success (Descamps et al., 2015; Thorne et al., 2016).  For reptiles, like sea turtles 
and snakes, temperature directly affects important life history traits including hatchling size, sex, viability 
and performance (high confidence) (Hays et al., 2003; Pike, 2014; Dudley et al., 2016; Santos et al., 2017). 
This is particularly important for marine turtles as changing temperatures will affect the hatchling sex ratio 
because sex is determined by nest site temperature (high confidence) (Hatfield et al., 2012; Santidrián 
Tomillo et al., 2014; Patricio et al., 2017). Loss of breeding substrate, including mostly coastal habitats 
such as sandy beaches (Section 5.3.3), can reduce the available nesting or pupping habitat for land breeding 
marine turtles, lizards, seabirds and pinnipeds (Fish et al., 2005; Fuentes et al., 2010; Funayama et al., 
2013; Reece et al., 2013; Katselidis et al., 2014; Patino-Martinez et al., 2014; Pike et al., 2015; Reynolds et 
al., 2015; Marshall et al., 2017) (high confidence). Climatic hazards such as sea level rise contributes to the 
loss of these coastal habitats (see Section 5.3 and Chapter 3). Changes in ocean temperature will also 
indirectly impact marine mammals, seabirds and reptiles by changing the abundance and distribution of 
their prey (Polovina, 2005; Polovina et al., 2011; Doney et al., 2012; Sydeman et al., 2015; Briscoe et al., 
2017; Woodworth-Jefcoats et al., 2017) (high confidence). The distributions of some of these large animals 
is determined by the occurrence and persistence of oceanic bridges and barriers that are related to climate 
driven processes (Ascani et al., 2016; McKeon et al., 2016). For example, the decline of Arctic sea-ice is 
affecting the range and migration patterns of some species and is allowing the exchange of species 
previously restricted to either the Pacific or Atlantic oceans (Alter et al., 2015; George et al., 2015; Laidre 
et al., 2015; MacIntyre et al., 2015; McKeon et al., 2016; Breed et al., 2017; Hauser et al., 2017) (Chapter 
3). Also, the range expansion of some of these predatory megafauna can affect species endemic to the 
habitat; for example, while the decrease in summer sea ice in the Arctic may favour the expansion of killer 
whales (Orcinus orca), their occurrence can result in narwhale (Monodon monoceros) to avoid the use of 
key habitats to reduce the risk of killer whales’ predation(Bost et al., 2009; Sydeman et al., 2015; Breed et 
al., 2017) (see Chapter 3; section 3.2.1.4).  In addition, marine mammals, seabirds and sea turtles present 
habitat requirements associated with bathymetric and mesoscale features that facilitate the aggregation of 
their prey (Bost et al., 2015; Kavanaugh et al., 2015; Hindell et al., 2016; Hunt et al., 2016; Santora et al., 
2017). The persistence and location of these features are linked to variations in climate (Crocker et al., 
2006; Baez et al., 2011; Dugger et al., 2014; Abrahms et al., 2017; Youngflesh et al., 2017) and to foraging 
success, juvenile recruitment, breeding phenology, growth rates and population stability (Costa et al., 2010; 
Ancona and Drummond, 2013; Ducklow et al., 2013; Chambers et al., 2014; Descamps et al., 2015; Abadi 
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et al., 2017; Bjorndal et al., 2017; Fluhr et al., 2017; Youngflesh et al., 2017) (high confidence). Overall, 
recent evidence further support that impacts of climate change on some marine reptiles, mammals and birds 
have been observed in recent decades (high confidence) and that the direction of impacts vary between 
species, population and geographic locations (Trivelpiece et al., 2011; Hazen et al., 2013; Clucas et al., 
2014; Constable et al., 2014; George et al., 2015) (high confidence).   
 
Warming has contributed also to observed changes in phenology (timing of repeated seasonal activities) of 
marine organisms (Gittings et al., 2018), although observations are biased towards the Northeast Atlantic 
(Poloczanska et al., 2016; Thackeray et al., 2016). Shifts in the timing of interacting species have occurred 
in the last decades, eventually leading to uncoupling between prey and predators, with cascading 
community and ecosystem consequences (Kharouba et al., 2018; Neuheimer et al., 2018). Timing of spring 
phenology of marine organisms is shifting to earlier in the year under warming, at an average rate of 4.4 ± 
1.1 days per decade (Poloczanska et al., 2013), although it is variable among taxonomic groups and among 
ocean regions (Lindley and Kirby, 2010). This is consistent with the expectations based on the close 
relationship between temperature and these biological events, supporting evidence from AR5 (Bruge et al., 
2016; Poloczanska et al., 2016). Thus, the growing amount of literature and new studies since AR5 WGII 
and SR1.5 further support that phenology of marine ectotherms in the epipelagic systems are related to 
ocean warming (high confidence) and that the timing of biological events has shifted earlier (high 
confidence).  
 
Observed impacts of multiple climatic hazards 
 
WGII AR5 concludes that multiple climatic hazards from ocean acidification, hypoxia, and decrease in 
nutrient and food supplies pose risks to marine ecosystems, and the risk can be elevated when combined 
with warming (Riebesell and Gattuso, 2014; Gattuso et al., 2015). In a recent meta-analysis of 632 
published experiments, primary production by temperate non-calcifying plankton increases with elevated 
temperature and CO2, whereas tropical plankton decreases productivity because of acidification 
(Nagelkerken and Connell, 2015). Also, temperature increases consumption and metabolic rates of 
herbivores but not secondary production; the latter decreases with acidification in calcifying and non-
calcifying species. These effects together create a mismatch with carnivores whose metabolic and foraging 
costs increase with temperature (Nagelkerken and Connell, 2015). Warming may also exacerbate the 
effects of ocean acidification on the rate of photosynthesis in phytoplankton (Lefevre, 2016). There is 
some, but limited, reports of observed impacts on calcified pelagic organisms that are attributed to secular 
trend in ocean acidification and warming (Harvey et al., 2013; Kroeker et al., 2013; Nagelkerken et al., 
2015; Boyd et al., 2016). For example, Rivero-Calle et al. (2015) reported, using CPR archives, that stocks 
of coccolithophores (a group of phytoplankton that forms calcium carbonate plateles) have increased by 2% 
to over 20% in the North Atlantic over the last five decades, and that this increase is linked to synergistic 
effects of increasing anthropogenic CO2 and rising temperatures, as supported by their statistical analysis 
and a number of experimental studies. Most of the available evidence supports that ocean acidification and 
hypoxia can act additively or synergistically between each other and with temperature across different 
groups of biota (Figure 5.13). Limitation of nutrient and food availability and predation pressures can 
further increase the sensitivity of organismal groups to climate change in specific ecosystems (Riebesell et 
al., 2017). Climate change also affects organisms indirectly through the impacts on competitiveness 
between organisms that favour those that are more adaptive to the changing environmental conditions 
(Alguero-Muniz et al., 2017) and changes in trophic interactions (Seebacher et al., 2014). Overall, direct in-
situ observations and laboratory experiments show that there are significant responses to the multiple 
stressors of warming, ocean acidification and low oxygen on phytoplankton, zooplankton and fishes and 
that these responses can be additive or synergistic (high confidence, Figure 5.13).   
 
5.2.3.1.2 Future changes in the epipelagic ocean  
WGII AR5 and SR1.5 conclude that projected ocean warming will continue to cause poleward shifts in the 
distribution and biomass of pelagic species, paralleled by altered seasonal timing of their activities, species 
abundance, migration pattern and reduction in body size in the 21st century under scenarios of increasing 
greenhouse gas emission (Pörtner et al., 2014; Hoegh-Guldberg et al., 2018). Simultaneously, projected 
expansion of oxygen minimum zones and ocean acidification could lead to shifts in community composition 
toward hypoxia-tolerant and non-calcified organisms, respectively. However, these projected biological 
changes in the ocean raise questions about how individuals, communities and food webs will respond to the 
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multiple impacts from climatic and non-climatic stressors in the future, and the feedbacks of the effects of 
their ecological impacts on modifying the physical and biogeochemical conditions of the ocean (Schaum et 
al., 2013; Boyd et al., 2016; O’Brien et al., 2016; Moore, 2018). This section focuses on addressing these 
questions in order to assess the future risk of impacts of climate change on the epipelagic ecosystem. 
 
Future projections on phytoplankton distribution, community structure and biomass 
 
While analysis of outputs from CMIP5 ESMs project that global average net primary production and 
biomass of phytoplankton community will decrease in the 21st century under RCP2.6 and RCP8.5 (see 
Section 5.2.2.6). However, the future risk of impacts of epipelagic ecosystem can also depend on changes in 
community structure of phytoplankton species. Barton et al. (2016) projected the biogeography of 87 taxa of 
phytoplankton (diatoms and dinoflagellates) in the North Atlantic to 2051-2100 relative to the past (1951-
2000) with scenarios of changes in temperature and other ocean conditions such as salinity, density and 
nutrients under RCP8.5. The study found that 74% of the studied taxa exhibit a poleward shift at a median 
rate of 12.9 km per decade, but 90% of the taxa shift eastward at a median rate of 42.7 km per decade. Such 
changes may affect food webs and biogeochemical cycles, and with consequence to the productivity of 
living marine resources (Stock et al., 2014; Barton et al., 2016). 

Outputs from CMIP5 ESMs suggest that projected warming and reduction in nutrient availability in low 
latitudes, as a result of increasing stratification of the ocean under climate change, will increase the 
dominance of small-sized phytoplankton, growing more efficiently than larger taxa at low nutrient levels 
(Dutkiewicz et al., 2013b). Dominant groups in subtropical oceans, like the picoplanktonic cyanobacteria 
Synechococcus and Prochlorococcus, are projected to expand their range of distribution towards higher 
latitudes and increase their abundances by 14–29%, respectively, under a future warmer ocean (Flombaum et 
al., 2013), although synergistic effects of warming and CO2 on photosynthetic rates could lead to a 
dominance of Synechococcus over Prochlorococcus (Fu et al., 2007)  (low confidence). Similarly, 
temperature-driven range shifts towards higher latitudes are also likely for tropical diazotrophic (N2-fixing) 
cyanobacteria, although they could disappear from parts of their current tropical ranges where future 
warming may exceed their maximum thermal tolerance limits (Hutchins and Fu, 2017) (low confidence). 
Modelling experiments show that the effects of warming on phytoplankton community will be exacerbated 
by ocean acidification at levels expected in the 21st century for RCP8.5, leading to increasing growth rate 
responses of some phytoplankton groups, such as diazotrophs and Synechococcus, with predicted increases 
in biomass up to 10% in tropical and subtropical waters (Dutkiewicz et al., 2015) (low confidence). 
Furthermore, warming is projected to interact with decreasing oxygen levels and increases in iron in the 
nutrient-impoverished subtropical waters, favoring the dominance of the diazotrophic colonial cyanobacteria 
Trichodesmium (Sohm et al., 2011; Boyd et al., 2013; Ward et al., 2013; Hutchins and Fu, 2017) (medium 
confidence).  
 
Regional differences in the changes in phytoplankton community and their impacts on epipelagic ecosystem 
are however complex and depends on multiple interactions of co-varying climate change stressors at regional 
level (Boyd and Hutchins, 2012).  Based on global ocean model simulations, Boyd et al. (2015b) show that 
the interaction between warming, increased CO2 and a decline in phosphate and silicate would benefit 
coccolithophores against diatoms in the northern North Atlantic, despite decreasing rates of calcification. 
Evidence, based on long-term experiments of acclimation or adaptation to increasing temperatures in 
combination with elevated CO2, show that individual growth and carbon fixation rates of coccolithophores at 
high CO2 are modulated by temperature, light, nutrients and UV radiation, and could increase calcification 
while the responses are also species-specific (Lohbeck et al., 2012; Khanna et al., 2013). Calcification of 
planktonic foraminifera will be however negatively affected by acidification (Roy et al., 2015), and their 
populations are predicted to experience the greatest decrease in diversity and abundance in sub-polar and 
tropical areas, under RCP8.5 (Brussaard et al., 2013),  however environmental controls of calcite production 
by foraminifera are still poorly understood (low confidence). Boyd et al. (2015b) analysis indicate also that 
diatoms would benefit from the synergistic effects of increased warming and iron supply in the northern 
Southern Ocean, as supported by laboratory experiments and field studies with polar diatoms (Rose et al., 
2009) (low confidence). At low latitude provinces, projected concurrent increases of CO2 and iron, and 
decreases in both nitrate and phosphate supply, may favour nitrogen fixers,  but with ocean regional 
variability, since iron is thought to limit N2 fixation in the eastern Pacific and phosphorus in the Atlantic 
Ocean (Gruber, 2019; Wang et al., 2019). However, recent experimental work with the diazotrophic colonial 
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Trichodesmium and the unicellular Crocosphaera have shown a broad range of responses from rising CO2, 
with either increases or decreases in N2 fixation rates, and with mixed evidence on co-limiting processes 
(Eichner et al., 2014; Garcia et al., 2014; Gradoville et al., 2014; Walworth et al., 2016; Hong et al., 2017; 
Luo et al., 2019) (low confidence).  
 
Overall, the response of phytoplankton to the interactive effects of multiple drivers is complex, and presently 
ESMs do not resolve the full complexity of their physiological responses (Breitberg et al., 2015; Hutchins 
and Boyd, 2016; O’Brien et al., 2016), precluding a clear assessment of the effects of these regional 
distinctive multi-stressor patterns (high confidence) 
 
Future projections on zooplankton distribution and biomass 
 
An ensemble of 12 CMIP5 ESMs project average declines of 6.4% ± 0.79% (95% confident limits) and 
13.6% ± 1.70%) in zooplankton biomass in the 21st century relative to 1990-1999 historical values under 
RCP2.6 and RCP8.5 (Kwiatkowski et al., 2019). Also, production of mesozooplankton is projected from a 
single ESM to decrease by 7.9% between 1951-2000 and 2051-2100 under RCP8.5 (Stock et al., 2014).  
Such projected decreases in zooplankton biomass and production are partly contributed by climate-induced 
reduction in phytoplankton production and trophic transfer efficiency particularly in low latitude ecosystems 
(Stock et al., 2014) (5.2.2.6). The impacts may be larger than these projections if changes in the relative 
abundance of carbon, nitrogen and phosphorus are considered by the models (Kwiatkowski et al., 2019). The 
overall projected decrease in zooplankton biomass is characterized by a strong latitudinal differences, with 
the largest decrease in tropical regions and increase in the polar regions, particularly the Arctic Ocean (Chust 
et al., 2014; Stock et al., 2014; Kwiatkowski et al., 2019) (Chapter 3) (high agreement). However, the 
projected increase in zooplankton biomass in the polar region may be affected by the seasonality of light 
cycle at high latitudes that may limit the bloom season at high latitude (Sundby et al., 2016). The projected 
decrease in zooplankton abundance, particularly in tropical regions, can impact marine organisms higher in 
the foodweb, including fish populations that are important to fisheries (Woodworth-Jefcoats et al., 2017). 
Therefore, there is high agreement in model projections that global zooplankton biomass will very likely 
reduce in the 21st century, with projected decline under RCP8.5 almost doubled that of RCP2.6 (very likely). 
However, the strong dependence of the projected declines on phytoplankton production (low confidence, 
5.2.2.6) and simplification in representation of the zooplankton communities and foodweb render their 
projections having low confidence.  
 
Future responses of zooplankton species and communities to climate change are however affected by 
interactions between multiple climatic drivers. Experiments in laboratory show that acidification could partly 
counteract some observed effects of increased temperature on zooplankton, although the level and direction 
of the biological responses vary largely between species (Mayor et al., 2015; Garzke et al., 2016), with 
results ranging from no effects (Weydmann et al., 2012; McConville et al., 2013; Cripps et al., 2014; 
Alguero-Muniz et al., 2016; Bailey et al., 2016), to negative effects (Lischka et al., 2011; Cripps et al., 2014; 
Alguero-Muniz et al., 2017) or positive effects (Alguero-Muniz et al., 2017; Taucher et al., 2017). These 
differences in response can affect trophic interactions between zooplankton species; for example, some 
predatory non-calcifying zooplankton may perform better under warmer and lower pH conditions, leading to 
increased predation on other zooplankton species (Caron and Hutchins, 2012; Winder et al., 2017). 
Therefore, the large variation in sensitivity between zooplankton to future conditions of warming and ocean 
acidification suggests elevated risk on community structure and inter-specific interactions of zooplankton in 
the 21st century (medium confidence).  Consideration of these species-specific responses may further modify 
the projected changes in zooplankton biomass by ESMs (Boyd et al., 2015a). 
 
 Future projections on fish distribution, size and biomass 
 
Recent model projections since AR5 and SR1.5 continue to support global-scale range shifts of marine fishes 
at rates of tens to hundreds of km per decade in the 21st century, with rate of shifts being substantially higher 
under RCP8.5 than RCP2.6 (Jones and Cheung, 2015; Robinson et al., 2015; Morley et al., 2018). Globally, 
the general direction of range shifts of epipelagic fishes is poleward (Jones and Cheung, 2015; Robinson et 
al., 2015), while the projected directions of regional and local range shifts generally follow temperature 
gradients (Morley et al., 2018). Polewards range shifts are projected to result in decreases in species richness 
in tropical oceans, and increases in mid to high latitude regions leading to global-scale species turnover (sum 
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of species local extinction and expansion) (Ben Rais Lasram et al., 2010; Jones and Cheung, 2015; Cheung 
and Pauly, 2016; Molinos et al., 2016) (medium confidence on trends, low confidence on magnitude because 
of model uncertainties and limited number of published model simulations). For example, species turnover 
relative to their present-day richness in the tropical oceans (30oN to 30oS) is projected to be 14 to 21% and 
37 to 39% by 2031-2050 and 2081-2100 under RCP8.5 (ranges of mean projections from two sets of 
simulation for marine fish distributions) (Jones and Cheung, 2015; Molinos et al., 2016). In contrast, high 
latitude regions (> 60oN and S) is projected to have higher rate of species turnover than the tropics (an 
average of 48% between the two data sets for region >60oN). The high species turnover in the Arctic is 
explained by species’ range expansion from lower-latitude and the relatively lower present-day fish species 
richness in the Arctic. The projected intensity of species turnover is lower under lower emission scenarios 
(Jones and Cheung, 2015; Molinos et al., 2016) (see also Section 5.4.1) (high confidence). Projections from 
multiple fish species distribution models show hotspots of decrease in species richness in the Indo-Pacific 
region, and semi-enclosed seas such as the Red Sea and Arabian Gulf (Cheung et al., 2013; Burrows et al., 
2014; García Molinos et al., 2015; Jones and Cheung, 2015; Wabnitz et al., 2018) (medium evidence, high 
agreement). In addition, geographic barriers such as land boundaries in the poleward species range edge in 
semi-enclosed seas or lower oxygen water in deeper waters are projected to limit range shifts, resulting in 
larger relative decrease in species richness (medium confidence) (Cheung et al., 2013; Burrows et al., 2014; 
García Molinos et al., 2015; Jones and Cheung, 2015; Rutterford et al., 2015).  
 
Warming and decrease in oxygen content is projected to impact growth of fishes, leading to reduction in 
body size and contraction of suitable environmental conditions (Deutsch et al., 2015; Pauly and Cheung, 
2017), with the intensity of impacts being directly related to the level of climate change. The projected 
reduction in abundance of larger-bodied fishes could reduce predation and exacerbate the increase in 
dominance of smaller-bodied fishes in the epipelagic ecosystem (Lefort et al., 2015). Fishes exposed to 
ocean acidification level expected under RCP8.5 showed impairments of sensory ability and alteration of 
behaviour including olfaction, hearing, vision, homing and predator avoidance (Kroeker et al., 2013; Heuer 
and Grosell, 2014; Nagelkerken et al., 2015). The combined effects of warming, ocean deoxygenation and 
acidification in the 21st century are projected to exacerbate the impacts on the body size, growth, 
reproduction and mortality of fishes, and consequently increases their risk of population decline (medium 
evidence, high agreement, high confidence).  
 
 
Table 5.3: Projected changes in total animal biomass by the mid- and end- of the 21st century under RCP2.6 and 
RCP8.5. total animal biomass is based on 10 sets of projections for each RCP under the Fisheries and Marine 
Ecosystems Impact Model Intercomparison Project (FISMIP) (Lotze et al., 2018). The very likely ranges of the 
projections (95% confidence intervals) are provided. Reference period is the present-day (1986-2004). 

 Total animal biomass (%) 
 RCP2.6 RCP8.5 
Region 2031-2050 2081-2100 2031-2050 2081-2100 
>60o N 8.4 ± 9.3 8.5 ± 13.7 7 ± 9.2 -1.1 ± 20.2 
30oN – 50oN -8.1 ± 4 -4.5 ± 3.6 -10.1 ± 4.7 -21.3 ± 9.4 
30oN – 30oS -7.2 ± 2.7 -7.3 ± 3.1 -9 ± 3.6 -23.2 ± 9.5 
30oS – 50oS -3.3 ± 2.1 -3.5 ± 2.5 -4.2 ± 2.9 -9 ± 9.8 
<60o S 1.7 ± 4.5 -0.9 ± 2.9 0.7 ± 3.9 12.4  ±11.9 

 
 
An ensemble of global-scale marine ecosystem and fisheries models that are part of the Fisheries and Marine 
Ecosystems Impact Models Intercomparison Project (FishMIP) undertook coordinated simulation 
experiments and projected future changes in marine animals (mainly invertebrate and fish) globally under 
climate change (Lotze et al., 2018). These models represent marine biota and ecosystems differently, ranging 
from population-based to functional traits- and size-based structure and their responses are driven primarily 
by temperature and net primary production, although oxygen, salinity and ocean advection are considered in 
a subset of models and play a secondary role in affecting the projected changes in biomass (Blanchard et al., 
2012; Fernandes et al., 2013; Carozza et al., 2016; Cheung et al., 2016a). Overall, potential total marine 
animal biomass is projected to decrease by 4.3 ±2.0% (95% confident intervals) and 15.0±5.9% under 
RCP2.6 and RCP8.5, respectively, by 2080-2099 relative to 1986-2005, while the decrease is around 4.9% 
by 2031-2050 across all RCP2.6 and RCP8.5 (very likely) (Figure 5.14).  Accounting for the removal of 
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biomass by fishing exacerbates the decrease in biomass for large-bodied animals which are particularly 
sensitive to fishing (likely for the direction of changes). Regionally, total animal biomass decreases largely in 
tropical and mid-latitude oceans (very likely) (Table 5.3, Figure 5.14) (Bryndum-Buchholz et al., 2019). The 
high uncertainty and the low confidence in the projection in the Arctic Ocean (Chapter 3) is because of the 
large variations in simulation results for this region between the ESMs and between the FishMIP models, as 
well as the insufficient understanding of the oceanographic changes and their biological implications in the 
Arctic Ocean. In the Southern Ocean, the decrease in consumer biomass is mainly in the southern Indian 
Ocean while other parts of the Southern Ocean are projected to have an increase in animal biomass by 2100 
under RCP8.5, reflecting mainly the projected pattern of changes in net primary production from the ESMs 
(see Section 5.2.2.6). 
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Figure 5.14: Projected changes in total animal biomass (including fishes and invertebrates) based on outputs from 10 
sets of projections for each RCP from the Fisheries and Marine Ecosystems Impact Model Intercomparison Project 
(FISMIP, https://www.isimip.org/gettingstarted/marine-ecosystems-fisheries/) (Lotze et al., 2018); (a, b) multi-model 
mean change (%) in un-fished total marine animal biomass in 2085-99 relative to 1986-2005 under RCP2.6 and 
RCP8.5, respectively. Dotted area represents 8 out of 10 sets of model projections agree in the direction of change (c) 
projected change in global total animal biomass from 1970 to 2099 under RCP2.6 (red) and RCP8.5 (blue). Variability 
among different ecosystem and Earth-system model combinations (n = 10) expressed as the very likely range (95% 
confidence interval).  
 
 
Future projections on epipelagic components of the biological pump 
 
A wide range of studies, from laboratory experiments, mesocosm enclosures, synthesis of observations to 
modeling experiments, provide insights into how the multi-faceted components of the ‘biological pump’ (the 
physical and biologically mediated processes responsible for transporting organic carbon from the upper 
ocean to depth) are projected to be altered in the coming decades. A synthesis of the individual components 
reported to both influence the performance of the biological pump, and which are sensitive to changing 
ocean conditions, is presented in Table 5.4. The table lists the putative controlling of each environmental 
factor, such as warming, that influences the biological pump, and the reported modification (where 
available) of each individual factor by changing ocean conditions for both the epipelagic ocean and the deep 
ocean. Analyses of long-term trends in primary production and particle export production, as well as model 
simulations, reveal that increasing temperatures, leading to enhanced stratification and nutrient limitation, 
will have the greatest influence on decreasing the flux of particulate organic carbon (POC) to the deep ocean 
(Bopp et al., 2013; Boyd et al., 2015a; Fu et al., 2016; Laufkötter et al., 2016). However, different lines of 
evidence (including observation, modeling and experimental studies) provide low confidence on the 
mechanistic understanding of how climatic drivers affect different components of the biological pump in the 
epipelagic ocean, as well as changes in the efficiency and magnitude of carbon export in the deep ocean (see 
section below and Table 5.4); this renders the projection of future contribution of the biological carbon pump 
to the export of POC to the deep ocean having low confidence.  
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Table 5.4: Projected future changes to the ocean biological pump (adapted from Boyd et al. (2015a)). Environmental controls on individual factors that influence downward POC 
flux are based on published reports from experiments (denoted by E), modelling simulations (M) and observations (O).  In some cases, due to the paucity, and regional specificity, of 
published reports it has been indicated the sign of the projected change on export (in italics), as opposed to the magnitude. NPP: Net Primary Production; POC: Particulate Organic 
Carbon; DOC: Dissolved Organic Carbon; TEP: Transparent Exopolymer Particles; OA: Ocean Acidification. Climate change denotes multiple controls such as nutrients, temperature 
and irradiance, as parameterised in coupled ocean atmosphere models. *denotes observed for low latitudes only. ** represents major uncertainty over environmental modulation of this 
component of the biological pump. ***denotes joint influence of temperature and acidification. 

Pump component Oceanic driver Projected change (by year 2100) Confidence References & Lines of evidence 

Epipelagic Ocean     

Phytoplankton growth Temperature (warming) ~10% Faster (nutrient-replete) no change (nutrient-
deplete) 

High (Boyd et al., 2013) E; (Maranon et al., 2014) O* 

Net Primary Production (NPP) Climate change (temperature, 
nutrients, CO2) 

10-20% decrease (low latitudes);  
10-20% increase (high latitudes) 

Medium (Bopp et al., 2013) M 

Partitioning of NPP (POC, TEP, DOC) OA ~20% increase in TEP production  Medium (Engel et al., 2014) E; (Riebesell et al., 2007) E; (Seebah et 
al., 2014) E  

Food web retention of NPP OA Enhanced transfer of organic matter to higher trophic 
levels, reduced N and P sedimentation by 10% 

Low (Boxhammer et al., 2018) E 

Floristic shifts Climate change (warming, salinity, 
OA, iron) 

Shift to smaller or larger cells 
(less export vs more export; inconclusive)  

Low (Moràn et al., 2010) O; (Li et al., 2009) O; (Dutkiewicz et al., 
2013a) M; (Tréguer et al., 2018) O; (Sett et al., 2014) E 

Differential susceptibility Temperature (warming) Growth-rate of grazers more temperature dependent than 
prey  
(less export) 

Low (Rose and Caron, 2007) O  

Bacterial hydrolytic effects Warming, OA Increase under warming and low pH (variable response in 
different plankton communities) 

Low (Burrell et al., 2017) E 

Grazer physiological responses Warming  Copepods had faster respiration and ingestion rates, but 
higher mortality  
(inconclusive) 

Low (Isla et al., 2008) E 

Faunistic shifts Temperate and subpolar zooplankton 
species shifts  

Temperature  
(inconclusive) 

Low (Edwards et al., 2013) O 

Food web amplification Warming Zooplankton negatively amplify the climate change signal 
that propagates up from phytoplankton in tropical regions, 
and positively amplify in polar regions 

Low (Chust et al., 2014) M; (Stock et al., 2014) M 

Deep Ocean     
Bacterial hydrolytic enzyme activity Temperature  20% increase (resource-replete) to no change (resource-

deplete) 
Low (Wohlers-Zöllner et al., 2011) E; (Endres et al., 2014) E; 

(Bendtsen et al., 2015) E; (Piontek et al., 2015) E*** 
Particle sinking rates (viscosity) Warming 5% faster sinking/ °C warming Low (Taucher et al., 2014) M 

Mesozooplankton community composition Temperature** Shifts which increase/decrease 
particle transformations 
(less/more export, respectively) 

Low (Burd and Jackson, 2002) M; (Ikeda et al., 2001) O 

Vertical migrators Climate change (irradiance, 
temperature) 

(more export) Low (Almén et al., 2014) O; (Berge et al., 2014) O 

Deoxygenation Climate change (more export) Low (Rykaczewski and Dunne, 2010) M; (Cocco et al., 2013) O; 
(Hofmann and Schellnhuber, 2009) M 
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5.2.3.2 The Deep Pelagic Ocean 1 
 2 
5.2.3.2.1 Detection and attribution of biological changes in the deep ocean 3 
The pelagic realm of the deep ocean represents a key site for remineralisation of organic matter and long-4 
term biological carbon storage and burial in the biosphere (Arístegui et al., 2009), but the observed effects of 5 
climate change on deep-sea organisms, communities and biological processes are largely unknown (high 6 
confidence). Observational and model-based methods provide limited evidence that the transfer efficiency of 7 
organic carbon to the sea floor is partly controlled by temperature and oxygen in the mesopelagic zone, 8 
affecting microbial metabolism and zooplankton community structure, with highest efficiencies for high-9 
latitude and oxygen minimum zones (OMZs) (see Section 5.2.2.4 for more detail on OMZs), while below 10 
1000 m organic carbon transfer is controlled by particle sinking speed (Boyd et al., 2015a; Marsay et al., 11 
2015; DeVries and Weber, 2017). However, there are contrasting results and  low confidence on whether 12 
transfer efficiencies are highest at low or high latitudes (Boyd et al., 2015a; Marsay et al., 2015; Guidi et al., 13 
2016; DeVries and Weber, 2017; Sweetman et al., 2017). There is also low confidence on the effects of 14 
increasing temperatures on particulate organic carbon (POC) remineralisation to CO2 versus POC 15 
solubilisation to dissolved organic carbon (DOC) by microbial communities and its storage as refractory 16 
DOC (i.e., with life times of >16,000 years) (Legendre et al., 2015).  17 
 18 
5.2.3.2.2 Future changes in the deep ocean 19 
The global magnitude of the biological pump and how this will be affected by climate change is also 20 
uncertain. Model-based studies agree in projecting a global decline in particle gravitational flux to the deep-21 
sea floor, but with regional variability in both the total particle export flux and transfer efficiency (DeVries 22 
and Weber, 2017; Sweetman et al., 2017) (see Sections 5.2.2 and 5.2.4). However, recent evidence suggest 23 
that other physical and biological processes may contribute nearly as much as the gravitational flux to the 24 
carbon transport from the surface to the deep ocean (Boyd et al., 2019), with low confidence on the future 25 
rate of change in magnitude and direction of these processes. In particular, the ‘active flux’ of organic 26 
carbon due to vertical migration of zooplankton and fishes has been reported to account from 10  to 40% of 27 
the gravitational sinking flux (Bianchi et al., 2013; Davison et al., 2013; Hudson et al., 2014; Jónasdóttir et 28 
al., 2015; Aumont et al., 2018; Gorgues et al., 2019). Predictions based on model studies suggest that 29 
mesopelagic zooplankton and fish communities living at deep scattering layers (DSLs) will increase their 30 
biomass by 2100, enhancing their trophic efficiency, because of deep-ocean warming (Section 5.2.2.1; 31 
Figures 5.2 and 5.3) and shallowing of DSL (Proud et al., 2017) (low confidence). Expansion of OMZs (see 32 
Section 5.2.2.4) will also widen the DSL and increase the exposure of mesopelagic organisms to shallower 33 
depths (Gilly et al., 2013; Netburn and Anthony Koslow, 2015). In the California Current, the abundance of 34 
mesopelagic fishes is closely tied to variations in the OMZ, whose dynamic is linked to the Pacific Decadal 35 
Oscillation and El Niño-Southern Oscillation (ENSO) cycles (Koslow et al., 2015). Some large predators, 36 
like the Humboldt squid, could indirectly benefit from expanding OMZs due to the aggregation of their 37 
primary food source, myctophid fishes (Stewart et al., 2014). However, many non-adapted fish and 38 
invertebrates (like diurnal vertical migrators) will have their depth distributions compressed, affecting the 39 
carbon transport and trophic efficiency of food webs in the mesopelagic (Stramma et al., 2011; Brown and 40 
Thatje, 2014; Rogers, 2015) (low confidence). In OMZ waters, where zooplankton is almost absent, like in 41 
the Eastern Tropical North Pacific, the microbial remineralisation efficiency of sinking particles would be 42 
reduced, eventually increasing the transfer efficiency of organic matter to the deep ocean and thus biological 43 
carbon storage (Cavan et al., 2017) (low confidence; Table 1). However, increases in ocean temperature may 44 
also lead to shallower remineralisation of POC in warm tropical regions, counteracting the storage of carbon 45 
in the dark ocean (Marsay et al., 2015).  Overall, the direct impacts of climate change on the biological pump 46 
are not well understood for the deep pelagic organisms and ecosystems (Pörtner et al., 2014), and there is 47 
low confidence on the effect of climate change drivers on biological processes in the deep ocean (Table 5.1). 48 
 49 
 50 
5.2.4 Impacts on Deep Seafloor Systems 51 
 52 
5.2.4.1 Changes on the Deep Seafloor  53 
 54 
The deep seafloor is assessed here as the vast area of the ocean bottom >200 m deep, beyond most 55 
continental shelves (Levin and Sibuet, 2012; Boyd et al., 2019)  (Figure 5.15). Below 200 m changes in 56 
light, food supply, and the physical environment lead to altered benthic (seafloor) animal taxonomic 57 
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composition, morphologies, lifestyles, and body sizes collectively understood to represent the deep sea 1 
(Tyler, 2003).  2 
 3 
 4 

 5 
Figure 5.15: A conceptual diagram illustrating how climate drivers are projected to modify deep-sea ecosystems as 6 
discussed in Section 5.2.4.   7 
 8 
 9 
Most deep-seafloor ecosystems globally are experiencing rising temperatures, declining oxygen levels, and 10 
elevated CO2, leading to lower pH and carbonate undersaturation (WGII AR5 30.5.7; Section 5.2.2.3). Small 11 
changes in exposure to these hazards by deep seafloor ecosystem have been confirmed by observation over 12 
the past 50 years. However, analysis using direct seafloor observations of these hazards over the past 15-29 13 
years suggest that the environmental conditions are highly variable over time because of the strong and 14 
variable influences by ocean conditions from the sea surface (Frigstad et al., 2015; Thomsen et al., 2017). 15 
Such high environmental variability makes it difficult to attribute observed trends to anthropogenic drivers 16 
using existing datasets (Smith et al., 2013; Hartman et al., 2015; Soltwedel et al., 2016; Thomsen et al., 17 
2017) (high confidence).  Projections from global Earth system models suggest large changes for 18 
temperature by 2100 and beyond under RCP8.5 (relative to present day variation) (Mora et al., 2013; 19 
Sweetman et al., 2017; FAO, 2019). The magnitude of the projected changes is lower under RCP 2.6, and in 20 
some cases the direction of projected change to 2100 varies regionally under either scenario (FAO, 2019) 21 
(high confidence). 22 
 23 
5.2.4.2 Open Ocean Seafloor - Abyssal Plains (3000-6000 m)  24 
 25 
Abyssal communities (3000-6000 m) cover over 50% of the ocean’s surface and are considered to be 26 
extremely food limited (Gage and Tyler, 1992; Smith et al., 2018). There is a strong positive relationship 27 
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between surface primary production, export flux, and organic matter supply to the abyssal seafloor (Smith et 1 
al., 2008), with pulses of surface production reflected as carbon input on the deep seafloor in days to months 2 
(Thomsen et al., 2017). Both vertical and horizontal transport contribute organic matter to the sea floor 3 
(Frischknecht et al., 2018). Food supply to the seafloor regulates faunal biomass, explaining the strong 4 
positive relationships documented between surface production and seafloor faunal biomass in the Pacific 5 
Ocean (Smith et al., 2013), Gulf of Mexico (Wei et al., 2011) and North Atlantic Ocean (Hartman et al., 6 
2015). Extended time series and broad spatial coverage reveal strong positive relationship between annual 7 
POC flux and abyssal sediment community oxygen consumption (Rowe et al., 2008; Smith et al., 2016a). 8 
Observed reduction in in POC flux at the abyssal seafloor enhances the relative importance of the microbial 9 
loop and reduces the importance of benthic invertebrates in carbon transfer (Dunlop et al., 2016) (single 10 
study, limited evidence). However, changes in the overlying mesopelagic and bathypelagic communities (see 11 
Section 5.2.3.2) will also affect food flux to the deep seafloor, as nekton and zooplankton transfer energy to 12 
depth through diel (daily day-night) vertical migrations, ontogenetic (life-staged based) migrations and falls 13 
of dead carcasses (Gage, 2003). Therefore, climate change impacts on organic carbon export from the 14 
epipelagic (Section 5.2.3.1) and deeper pelagic systems (Section 5.2.3.2) can affect the energy available to 15 
support the abyssal seafloor ecosystems (medium confidence). However, because observations on historical 16 
changes in POC flux in abyssal seafloor ecosystems are limited to a few locations, long-term records show 17 
high variability, and mechanistic understanding of factors affecting the biological carbon pump is 18 
incomplete, there is limited evidence that the abyssal seafloor ecosystem has already been affected by 19 
changes in POC flux as a result of climate change. The metabolic rate of deep seafloor ectotherms, and 20 
consequently their demand for food, increases with temperature. Thus, observed warming in deep-sea 21 
ecosystems (Hoegh-Guldberg et al., 2014) (Section 5.2.2.2.1) is expected to increase the sensitivity of deep 22 
seafloor biota to decrease in food supplies associated with a change in POC flux (high confidence). 23 
However, there is limited evidence of observed changes in abyssal biota. Small deep-sea biota demonstrate 24 
increased efficiency (effective use of food energy for growth and metabolism with minimal loss) at low food 25 
inputs (due to small size and dominance by prokaryotic taxa) (Gambi et al., 2017). Adaptation to low food 26 
availability in abyssal ecosystems may confer higher capacity to adjust to reduced food availability than for 27 
shallow biota (limited evidence). Overall, the risk of impacts of climate change on abyssal ecosystems 28 
through reduction in food supplies from declining POC flux in the present day is low with low confidence.   29 
 30 
The globally integrated export flux of carbon is projected to decrease in the open ocean in the 21st century 31 
under RCP2.6 (by 1.6-4.9%) and RCP8.5 (by 8.9-15.8%) relative to 2000 (medium confidence) (Section 32 
5.2.2.6). This change in export flux of carbon is projected to yield declines in POC flux at the abyssal 33 
seafloor (representing food supply to benthos) of up to -27% in the Atlantic and up to -31 to -40% in the 34 
Pacific and Indian Oceans, with some increases in polar regions (Sweetman et al. 2017).  In some models, 35 
additional dissolution of calcium carbonate due to ocean acidification further lowers POC flux, causing the 36 
projected export production declines to be up to 38% at the northeast Atlantic seafloor (Jones et al., 2014).  37 
Lower POC fluxes to the abyss reduce food supply and have been projected to cause a size-shift towards 38 
smaller organisms (Jones et al., 2014), resulting in rising respiration rates, lower biomass production 39 
efficiency, and lesser energy transfer to higher trophic levels (Brown et al., 2004) (medium confidence). 40 
Changes are projected to be largest for macrofauna and lesser and similar for megafauna and meiofauna 41 
(Jones et al., 2014) (limited evidence, low confidence). Projections using outputs from seven CMIP5 models 42 
suggest that 97.8% ±0.6% (95% CI) of the abyssal seafloor area will experience a biomass decline by 2091-43 
2100 relative to 2006-2015 under RCP 8.5. The projected decreases in overall POC flux to the abyssal 44 
seafloor are projected to cause a 5.2% to 17.6 % reduction in seafloor biomass in 2090-2100, relative to 45 
2006-2015 under RCP8.5 (Jones et al., 2014). The projected impacts on abyssal seafloor biomass are 46 
significantly larger under RCP8.5 than RCP4.5 (Jones et al., 2014). However, existing estimates are based 47 
on total POC flux changes and do not account for changes in the type or quality of the sinking material, to 48 
which macrofaunal and meiofaunal invertebrates are highly sensitive (Smith et al., 2008; Smith et al., 2009; 49 
Tittensor et al., 2011). The projections also do not account for direct faunal responses to changes in 50 
temperature, oxygen or the carbonate system, all of which will influence benthic responses to changing food 51 
availability (AR5 Chapter 30.5.7), reducing to medium confidence the risk assessment that is based on these 52 
projections (Fig. 5.16).  53 
 54 
Regionally, while reductions in POC flux are projected at low and mid latitudes in the Pacific, Indian and 55 
Atlantic Oceans, increases are projected at high latitudes associated in part with reduction in sea ice cover 56 
(Yool et al., 2013; Rogers, 2015; Sweetman et al., 2017; Yool et al., 2017; FAO, 2018a) (see Chapter 3) 57 
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(medium confidence). Notably, Arctic and Southern Ocean POC fluxes at the abyssal seafloor are projected 1 
to increase by up to 38% and 21%, respectively by 2100 under RCP 8.5 (Sweetman et al., 2017). While an 2 
increase in food supply may yield higher benthic biomass at high latitudes, warmer temperatures and 3 
reduced pH projected for the polar regions (Chapter 3) would elevate faunal metabolic demands, likely 4 
diminishing the benefit of elevated food supply to an unknown extent (Sweetman et al., 2017). Overall, 5 
given the limited food availability for fauna in the abyssal plains and the projected warming (Section 6 
5.2.2.2.2) that increases the demand for food to support the elevated metabolic rates, the projected decrease 7 
in influx of organic matter and seafloor biomass will result in high risks of impacts to abyssal ecosystems by 8 
the end of the 21st century under RCP8.5 (medium confidence) (Figure 5.16). The risk of impacts is projected 9 
to be substantially lower under RCP4.5 or RCP2.6 (high confidence). The impacts on abyssal seafloor 10 
ecosystems affect functions that are important to support ecosystem services (see Section 5.4.1). For 11 
example, smaller-sized organisms exhibit reduced bioturbation intensity and depth of mixing causing 12 
reduced carbon sequestration (Smith et al., 2008) (Figure 5.15).  13 
 14 
5.2.4.3 Bathyal Ecosystems (200 m – 3000 m)  15 
 16 
Bathyal ecosystems consist of numerous geomorphic features with steep topography (Figure 5.15). These 17 
include continental slopes covering 5.2% of the seafloor, over 9,400 steep-sided canyons, and > 9,000 18 
conical seamounts (submarine volcanos which are mainly inactive), as well as guyots and ridges which 19 
together cover ~ 6% of the seafloor (Harris et al., 2014). Seamounts and canyons support high animal 20 
densities and biomass including cold-water coral, sponge and bryozoan reefs, exhibit high secondary 21 
production supported by locally enhanced primary production and intensified water flow, function as 22 
diversity hotspots and serve as stepping stones for larval dispersal (Rowden et al., 2010). Canyons transport 23 
particulate organic matter, migrating plankton and coarse material from the shelf,  and are sites where 24 
intensified mixing and advection of water masses occurs (De Leo et al., 2010; Levin and Sibuet, 2012; 25 
Fernandez-Arcaya et al., 2017).   Slopes, canyons and seamounts exhibit strong vertical temperature, oxygen 26 
and pH gradients generating sharp ecological zonation (Levin and Sibuet, 2012), thus changes in exposures 27 
are expected to alter the distributions of their communities (Figure 5.15, 5.16) (medium confidence).   28 
 29 
In some regions, observational records document changing conditions in bathyal ecosystems (Levin, 2018; 30 
Section 5.2.2.4). In the Northeast Pacific continental slopes associated with the California Current 31 
ecosystem, observations over the past 25 years show high variability but an overall trend of decreasing ocean 32 
oxygen and pH levels with oxygen declines of up to 40% and pH declines of 0.08 units in California . 33 
(Goericke et al., 2015) (high agreement, robust evidence, high confidence). Large oxygen declines are linked 34 
to past warming events on continental margins, over multiple time scales from 1-100 ky (Dickson et al., 35 
2012; Moffitt et al., 2015). Studies across modern oxygen gradients on slopes reveal that suboxic (5-10 36 
µMol kg-1 O2) values lead to loss of biodiversity of fish (Gallo and Levin, 2016), invertebrates (Levin, 2003; 37 
Gallo and Levin, 2016; Sperling et al., 2016), and protozoans (Bernhard and Reimers, 1991; Gooday et al., 38 
2000; Moffitt et al., 2014) (high confidence). Shoaling oxyclines on continental slopes have altered depth 39 
distributions of multiple co-occurring echinoid species over the past 25 y (Sato et al., 2017) and can reduce 40 
the growth rate, and change the skeletal structure and biochemical composition of a common sea urchin 41 
(Sato et al., 2017). In central Pacific oceanic canyons, fish abundance and diversity are reduced at 4-5x 42 
higher oxygen concentrations than on continental slopes (< 31 µMol kg-1 O2) (De Leo et al., 2012). Low 43 
oxygen on continental slopes causes reductions in faunal body size and bioturbation (Diaz and Rosenberg, 44 
1995; Levin, 2003; Middelburg and Levin, 2009; Sturdivant et al., 2012),  simplification of trophic structure 45 
reducing energy flow to upper trophic levels (Sperling et al., 2013), shifts in carbon processing pathways 46 
from metazoans to protozoans (Woulds et al., 2009), and reduced colonization potential (Levin et al., 2013). 47 
These changes are expected to lead to altered ecosystem structure and function, with lower carbon burial 48 
(Smith et al., 2000; Levin and Dayton, 2009) (medium confidence). Both carbon sequestration and nitrogen 49 
recycling are highly sensitive to small changes in oxygenation within the suboxic zone (Deutsch et al., 50 
2011). 51 
 52 
Bathyal species adapted to OMZs where CO2 levels are characteristically high, appear less vulnerable to the 53 
negative impacts of ocean acidification (Taylor et al., 2014). Benthic foraminifera, which are often the 54 
numerically dominant deep-sea taxon, show no significant effect of short-term exposure to ocean 55 
acidification on survival of multiple species (Dissard et al., 2010; Haynert et al., 2011; Keul et al., 2013; 56 
McIntyre-Wressnig et al., 2014; Wit et al., 2016) and in fact hypoxia in combination with elevated pCO2 57 
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favors survival of some foraminifera (Wit et al., 2016). However, lower pH exacerbates shallow 1 
foraminiferal sensitivity to warming (Webster et al., 2016). Limited evidence suggests that combined 2 
declines in pH and oxygen may lead to increase in some agglutinating taxa and a decrease in carbonate-3 
producing foraminifera, including those using carbonate cement (van Dijk et al., 2017). Exposure to 4 
acidification (0.4 unit pH decrease) reduces fecundity and embryo development rate in a bathyal polychaete. 5 
Where both oxygen and CO2 stress occur together on bathyal slopes, oxygen can be the primary driver of 6 
change (Taylor et al., 2014; Sato et al., 2017). Nematodes are sensitive to changes in temperature (Danovaro 7 
et al., 2001; Danovaro et al., 2004; Yodnarasri et al., 2008)  and elevated CO2 (Barry et al., 2004; Fleeger et 8 
al., 2006; Fleeger et al., 2010). There is low agreement about the direction of meiofaunal responses among 9 
studies, reflecting opposing responses in different regions. However, there is high agreement that meiofauna 10 
are sensitive to change in environment and food supply (medium confidence). Additional research is needed 11 
across all taxa on how hypoxia and pH interact (Gobler and Baumann, 2016).   12 
 13 
Continental slopes, seamounts and canyons (200-2,500 m) are projected to experience significant warming, 14 
pH decline, oxygen loss and decline in POC flux by 2081-2100 (compared to 1951-2000) under RCP 8.5  15 
(Table 5.5). In contrast, the average changes are projected to be 30-50% less under RCP 2.6 (Table 5.5) by 16 
2081-2100. Most ocean regions at bathyal depths (200-2,500 m) except the Southern and Arctic Oceans are 17 
predicted to experience on average declining export POC flux under RCP 8.5 by 2081-2100 (Yool et al., 18 
2017; FAO, 2019) with the largest declines of 0.7-8.1 mg C m-2 d-1 in the Northeast Atlantic (FAO, 2019). 19 
There is a strong macroecological relationship between depth, export POC flux, biomass and zonation of 20 
macrobenthos on continental slopes (Wei et al., 2011), such that lower POC fluxes will alter seafloor 21 
community biomass and structure (medium confidence) (See also Section 5.2.4.1). This is modified on the 22 
local scale by near-bottom currents, which alter sediment grain size, food availability, and larval dispersal 23 
(Wei et al., 2011).  24 
 25 
Declines in faunal biomass (6.1 ± 1.6% 95% C.I) are predicted for 96.6% ± 1.2% of seamounts under RCP 26 
8.5 by 2091-2100 relative to 2006-2015, driven by a projected 13.8% ± 3.3% drop in POC flux (Jones et al., 27 
2014). The majority (85%) of mapped canyons are projected to experience comparable benthic biomass 28 
declines (Jones et al., 2014). By 2100 under RCP8.5, pH reductions exceeding -0.2 pH units are projected in 29 
~ 23% of North Atlantic deep-sea canyons and 8% of seamounts (Gehlen et al., 2014a), with potential 30 
negative consequences for their cold-water coral habitats (See Box 5.2). 31 
 32 
Mean temperature (warming) signals are projected to emerge from background variability before 2040 in 33 
canyons of the Antarctic, northwest Atlantic, and South Pacific (FAO, 2019). Enhanced stratification and 34 
change in the intensity and frequency of downwelling processes under atmospheric forcing (including storms 35 
and density-driven cascading events  would alter organic matter transported through canyons (Allen and 36 
Durrieu de Madron, 2009) (low confidence). Changes in the quantity and quality of transferred particulate 37 
organic matter, as well as physical disturbance during extreme events cause a complex combination of 38 
positive and negative impacts at different depths along the canyon floor (Canals et al., 2006; Pusceddu et al., 39 
2010). Canyons and slopes are recognized as hosting many methane seeps and other chemosynthetic habitats 40 
(e.g., whale and wood falls) supported by massive transport of terrestrial organic matter (Pruski et al., 2017); 41 
their climate vulnerabilities are discussed below.   42 
 43 
Seamounts have been proposed to serve as refugia for cold-water corals facing shoaling aragonite saturation 44 
horizons (Tittensor et al., 2011), but could become too warm for deep-water corals in some regions (e.g., 45 
projections off Australia) (Thresher et al., 2015) (one study, low confidence). Seamounts are major spawning 46 
grounds for fishes; reproduction on seamounts may be disrupted by warming (Henry et al., 2016) (one study, 47 
low confidence). In the North Atlantic, models suggest seamounts are an important source of cold-water 48 
coral larvae that maintain resilience under shifting NAO conditions (Fox et al., 2016), thus  loss of suitable 49 
seamount habitat may have far-reaching consequences (Gehlen et al., 2014b) (low confidence) (also see Box 50 
5.2). 51 
 52 
 53 
Table 5.5: Projected climate changes from the present to 2081-2100 given as mean (min, max) at the deep seafloor for 54 
continental slopes, canyons, seamounts and cold-water corals mapped from 200 m to 2500 m under RCP 8.5 and 2.6   55 
Projections are based on three 3-D, fully coupled earth system models (as part of CMIP5): the Geophysical Fluid 56 
Dynamics Laboratory’s ESM 2G (GFDL-ESM-2G); the Institut Pierre Simon Laplace’s CM6-MR (IPSL-CM5A-MR); 57 
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and (iii) the Max Planck Institute’s ESM-MR (MPI-ESM-MR). Export flux at 100 m was converted to export POC flux 1 
at the seafloor (epc) using the Martin curve following the equation:  epc = epc100 (depth/export depth)-0.858. Projections 2 
were made onto the (i) slope from a global ocean basin mask from World Ocean Atlas 2013 V2 (NOAA, 2013), (ii) 3 
global distribution of seamounts with summits between 200 and 2 500 m (Kim et al., 2011); (iii) global distribution of 4 
submarine canyons with canyon heads shallower than 1, 500 m (Harris and Whiteway, 2011); and (iv) global 5 
occurrence of cold-water corals between 200 and 2 500 m. 6 
 7 

       Temperature  
               (oC) 

             pH  DO  
(µMol kg-1) 

POC flux 
(mgC m-2 d-1) 

  RCP 2.6 RCP 2.6 RCP 2.6  RCP 2.6 
Continental slopes +0.30 (-0.44, + 2.30) -0.06 (-0.19, -0.02) -3.1 (-49.3, +61.7) -0.39 (-16.0, +3.9) 
Canyons +0.31 (-0.27, +1.76) -8.53 (-49.76, +17.82) -3.5 (-44.7, +29.3) -0.33 (-10.53, +3.53) 
Seamounts +0.13 (0.01, +0.67) -4.42 (-27.4, +2.27) -3.46 (-18.9, +4.1) -0.15 (-2.20, +1.33) 
Cold water corals +4.3 (-0.29, +1.85) -0.07 (-0.13, 0.0) -3.5 (-25.6, +24.7) -0.7 (-10.5, +3.4) 
     
 RCP 8.5 RCP 8.5 RCP 8.5 RCP 8.5 
Continental slopes 0.75 (-8.4, +4.4) -0.14 (-0.44, -0.02) -10.2 (-67.8, +53.8)  -0.66 (-33.33, + 10.3) 
Canyons +0.19 (-0.03, +1.14) -0.11 (-0.35, +0.02) -0.8 (-28.8, +10.1) -0.80 (-28.76, +10.07) 
Seamounts +0.66 (-0.75, +3.19) -0.3 (-0.19, +0.001) -0.50 (-7.2, +3.0) -0.50 (-7.18, +2.98) 
Cold water corals +0.96 (-0.42, +3.84) -0.15 (-0.39, 0.001) -10.6 (-59.2, + 11.1) -1.69 (-20.1, + 4.6) 

 8 
 9 
5.2.4.4 Chemosynthetic Ecosystems  10 
 11 
Despite having nutrition derived largely from chemosynthetic sources fueled by fluids from the earth’s 12 
interior, hydrothermal vent and methane seep ecosystems are linked to surface ocean environments and 13 
water-column processes in many ways that can expose them to aspects of climate change (medium 14 
confidence). The reliance of vent and seep mussels on surface-derived photosynthetic production to 15 
supplement chemosynthetic food sources (Riou et al., 2010; Riekenberg et al., 2016; Demopoulos et al., 16 
2019), and in some cases as a cue for synchronized gametogenesis (sperm and egg production) (Dixon et al., 17 
2006; Tyler et al., 2007) can make them vulnerable to changing amounts or timing of POC flux to the deep 18 
seabed in most areas except high latitudes, or to changes in timing of surface production (see Section 19 
5.2.2.5) (limited evidence) Most of the large, habitat-forming (foundation) species at vents and seeps such as 20 
mussels, tubeworms, and clams require oxygen to serve as electron acceptor for aerobic hydrogen-, sulfide- 21 
and methane oxidation (Dubilier et al., 2008) and appear unable to grow under dysoxic conditions (< 5-10 22 
µmol kg–1 O2) (Sweetman et al., 2017) (medium confidence).  The distributions of these taxa at seeps could 23 
be constrained by climate-driven expansion of midwater oxygen minima (Stramma et al., 2008; Schmidtko 24 
et al., 2017), which is occurring at water depths where seep ecosystems typically occur on continental 25 
margins (200-1000 m). Rising bottom temperatures or shifting of warm currents on continental margins 26 
could increase dissociation of buried gas hydrates on margins (Phrampus and Hornbach, 2012) (low 27 
confidence) potentially intensifying anaerobic methane oxidation (which produces hydrogen sulfide) 28 
(Boetius and Wenzhoefer, 2013) and expanding cover of methane seep communities (limited evidence). 29 
Larvae of vent species such as bathymodiolin mussels, alvinocarid shrimp, and some limpets that develop in 30 
or near surface waters (Herring and Dixon, 1998; Arellano et al., 2014), are likely to be exposed to warming 31 
waters, decreasing pH and carbonate saturation states, and in some places, reduced phytoplankton 32 
availability (Section 5.2.2), causing reduced calcification and growth rates (as in shallow water mussel 33 
larvae, Frieder et al. (2014)) (limited evidence, low confidence). Larvae originating at vents or seeps beneath 34 
upwelling regions may also be impaired by effects of hypoxia associated with expanding oxygen minimum 35 
zones (Stramma et al., 2008) during migration to the surface (limited evidence). Warming and its effects on 36 
climate cycles have the potential to alter patterns of larval transport and population connectivity through 37 
changes in circulation (Fox et al., 2016) or surface-generated mesoscale eddies (Adams et al., 2011) (limited 38 
evidence; low confidence). Climate-induced changes in the distribution and cover of vent and seep 39 
foundation species may involve alteration of attachment substrate, food, and refuge for the many habitat-40 
endemic species that rely on them (Cordes et al., 2010) and for the surrounding deep-sea ecosystems which 41 
interact through transport of nutrients and microbes, movement of vagrant predators and scavengers, and 42 
plankton interactions (Levin et al., 2016) (limited evidence; low confidence). There is, however, insufficient 43 
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analysis of faunal symbiont and nutritional requirements, life histories, larval transport and cross-system 1 
interaction to quantify the extent of the consequences described above under future climate conditions.   2 
 3 
 4 
[START BOX 5.2 HERE] 5 
 6 
Box 5.2: Cold-Water Corals and Sponges  7 
 8 
Cold-water corals and sponges form large reefs at the deep seafloor mostly between 200 m-1500 m, creating 9 
complex 3-dimensional habitat that supports high biodiversity; they are found at the highest densities on 10 
hard substrates of continental slopes, canyons, and seamounts (Buhl-Mortensen et al., 2010). The meta-11 
analysis reported in AR5 Chapter 6 Table 6-3 (Pörtner et al., 2014), identifies 10 studies involving 6 species 12 
of cold-water corals that suggest low vulnerability to CO2 changes at RCP 6.0 and medium vulnerability at 13 
RCP 8.5, with negative effects starting at pCO2 of 445 µatm.  14 
 15 
Scleractinian corals have the capacity to acclimate to high CO2 conditions due to their capacity to upregulate 16 
the pH at the calcification site (Form and Riebesell, 2011; Rodolfo-Metalpa et al., 2015; Gori et al., 2016). 17 
The most widely distributed, habitat-forming species in deep water (e.g., Lophelia pertusa [renamed 18 
Desmophyllum pertusum) (Addamo et al., 2016)can continue to calcify at aragonite undersaturation and high 19 
CO2 levels projected for 2100 (750-1100 uatm) based on experiments  (Georgian et al., 2016; Kurman et al., 20 
2017) and observations along the natural gradient of carbon chemistry in their distributions (Fillinger and 21 
Richter, 2013; Movilla et al., 2014; Baco et al., 2017) (Appendix 1) (robust evidence, medium agreement, 22 
medium confidence) and thus appear to be able to acclimate to rising CO2 levels (Hennige et al., 2015). 23 
However, net calcification rates (difference between calcification and dissolution) of L. pertusa exposed to 24 
aragonite-undersaturated conditions (Ωarag < 1, where Ωarag =aragonite saturation state) often decreases to 25 
close to zero or even becomes negative (Lunden et al., 2014; Hennige et al., 2015; Büscher et al., 2017), with 26 
genetic variability underpinning ability to calcify at low aragonite saturation states (Kurman et al., 2017). 27 
Additionally, skeletons become longer, thinner and weaker (Hennige et al., 2015), and bioerosion is 28 
enhanced (e.g., by bacteria, fungi, annelids and sponges) (Schönberg et al., 2017), exacerbating effects of 29 
dissolution of the skeleton.  L. pertusa can calcify when exposed to multiple environmental stresses in the 30 
laboratory (Hennige et al., 2015; Büscher et al., 2017), but cannot survive with warming above water 31 
temperatures of 14°C to 15oC or oxygen concentrations below 1.6 ml l-1 in the Gulf of Mexico, 3.3 ml l-1 in 32 
the North Atlantic, 2 ml l-1 in the Mediterranean, and 0.5 to 1. 5 ml l-1 in the SE Atlantic (Brooke et al., 2013; 33 
Lunden et al., 2014; Hanz et al., 2019), highlighting the existence of critical thresholds for cold water coral 34 
populations living at the edge of their tolerance.  The role of temporal dynamics, species-specific thermal 35 
tolerances, and food availability in mediating the response to combinations of stressors is recognized but is 36 
still poorly studied under in situ conditions (Lartaud et al., 2014; Naumann et al., 2014; Baco et al., 2017). 37 
 38 
Sponges also form critical habitat in the deep ocean but are much less well studied than CWC with respect to 39 
climate change. The geologic record, modern distributions and evolutionary and metabolic pathways suggest 40 
that sponges are more tolerant to warm temperatures, high CO2 and low oxygen than are CWC (Schulz et al., 41 
2013). One habitat forming, deep-sea sponge along with its microbiome (microbial inhabitants) has been 42 
shown in laboratory experiments to tolerate a 5°C increase in temperature, albeit with evidence of stress 43 
(Strand et al., 2017), while ocean acidification (pH 7.5) reduces the feeding of two deep-sea demosponge 44 
taxa (Robertson et al., 2017).  45 
 46 
Generally, the deep-sea areas where cold-water corals may be found are projected to be exposed to multiple 47 
climate hazards in the 21st century because of the projected ocean warming, oxygen loss, and decrease in 48 
POC flux (Table 5.5) under scenarios of greenhouse gas emissions. The average changes in these climate 49 
hazards for coral-water corals are projected to be almost halved under RCP2.6 relative to RCP 8.5 (Table 50 
5.5).  Under RCP 8.5, 95% ±2% (95% CI) of coral-water coral habitats are projected to experience animal 51 
biomass decline (-8.6% ± 2.0%) globally by 2091-2100 relative to 2006-2015, driven by a projected 21% ± 52 
9% drop in POC flux (Jones et al., 2014). However, nutritional co-reliance of coral-water corals on 53 
zooplankton (Höfer et al., 2018) and carbon fixation by symbiotic microbes (Middelburg et al., 2015), is not 54 
incorporated into the models, adding uncertainty to these estimates. Regionally, suitable habitat for coral-55 
water corals in the NE Atlantic is projected to decrease with multiple climatic hazards (warming, 56 
acidification, decreases in oxygen and POC flux) under RCP 8.5 for 2081-2100 (FAO, 2019), with up to 57 
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98% loss of suitable habitat by 2099 due to shoaling aragonite saturation horizons. In the Southern 1 
hemisphere, a tolerance threshold of 7°C and decline of aragonite saturation below that required for survival 2 
(Ωarag < 0.84) can cause large loss of cold-water corals habitat (Solenosmilia variabilis) on seamounts off 3 
Australia and New Zealand under future projections of warming and acidification to 2099 at RCP 4.5 and 4 
nearly complete loss under RCP 8.5 (Thresher et al., 2015).  5 
 6 
Overall, cold-water corals can survive conditions of aragonite-undersaturation associated with ocean 7 
acidification but sensitivity varies among species and skeletons will be weakened (medium confidence). The 8 
largest impacts on calcification and growth will occur when aragonite saturation is accompanied by warming 9 
and/or decrease in oxygen concentration beyond the tolerance limits of these corals (medium confidence). 10 
Given present day occurrence of 95% of cold-water corals above the aragonite saturation horizon (Guinotte 11 
et al., 2006) and that no adaptation has been detected with regard to increased dissolution of exposed 12 
aragonite (Eyre et al., 2014), there is limited scope for the non-living components of cold water corals and 13 
for the large, non-living reef framework that comprises deep water reefs to avoid dissolution under RCP 8.5 14 
in the 21st century (high confidence). Multiple climatic hazards of warming, deoxygenation, aragonite under-15 
saturation and decrease in POC flux are projected to negatively affect cold-water corals worldwide from the 16 
present day by 2100 (high confidence). Uncertainty remains in the adaptive capacity of living cold-water 17 
corals to cope with these changes and in the influence of altered regional current patterns on connectivity 18 
(Fox et al., 2016; Roberts et al., 2016). Sponges and the habitat they form may be less vulnerable than cold-19 
water corals to warming, acidification and deoxygenation that will occur under RCP 8.5 in 2100 (low 20 
confidence).  21 
 22 
[END BOX 5.2 HERE] 23 
 24 
 25 
5.2.5 Risk Assessment of Open Ocean Ecosystems 26 

This section synthesizes the assessment of climate impacts on open ocean and deep-seafloor ecosystem 27 
structure and functioning and the levels of risk under future conditions of global warming (see SM5.2). The 28 
format for Figure 5.16 matches that of Figure 19.4 of AR5 (Pörtner et al., 2014) and Figure 3.20 of SR1.5 29 
(Hoegh-Guldberg et al., 2018), indicating the levels of additional risk as colors (white, yellow, red and 30 
purple). Each column in Figure 5.16 indicates how risks increase with ocean warming, acidification (OA), 31 
deoxygenation, and POC flux with a focus on present day conditions (2000s) and future conditions by the 32 
year 2100 under low (RCP 2.6) and high (RCP 8.5) CO2 emission scenarios. The transition between the 33 
levels of risk to each type of ecosystem is estimated from key evidence assessed in earlier parts of this 34 
Chapter (Sections 5.2.2, 5.2.3, 5.2.4).  Sea surface temperature is chosen to provide an indication of the 35 
changes in all these variables because it is closely related to cumulative carbon emission (Gattuso et al., 36 
2015) which is the main climatic driver of the hazards. Sea surface temperature slightly (<0.1 °C) from 37 
global atmospheric temperature (Karl et al., 2015), while the transition values may have an error of ±0.3 °C 38 
depending on the consensus of expert judgment. The deep seafloor embers are generated based on earth 39 
system model projection of climate variables to the seafloor under RCP 2.6 and RCP 8.5 scenarios, and then 40 
translated to RCP- associated change in SST. The assessed confidence in assigning the levels of risk at 41 
present day and future scenarios are low, medium, high, and very high levels of confidence. A detailed 42 
account of the procedures involved in the ember for each type of ecosystem, such as their exposure to 43 
climate hazards, sensitivity of key biotic and abiotic components, natural adaptive capacity, observed 44 
impacts and projected risks, and regional hotspots of vulnerability is provided in the SM5.2 and Table 5.5. 45 
The risk assessment for cold-water corals is in agreement with the conclusions in AR5 Ch6.3.1.4.1, although 46 
more recent literature is assessed in Box 5.2 and Table SM5.5.  47 

 48 
Overall, the upper ocean (0−700 m) and 700-2000m layers have both warmed from 2004 to 2016 (virtually 49 
certain) and the abyssal ocean continues to warm in the Southern Hemisphere (high confidence). The ocean 50 
is stratifying; observed warming and high latitude freshening are both surface intensified trends making the 51 
surface ocean lighter at a faster rate than deeper in the ocean (high confidence) (Section 5.2.2.2). It is very 52 
likely that stratification in the upper few hundred meters of the ocean will increase significantly in the 21st 53 
century. It is virtually certain that ocean pH is declining by ~0.02 pH units per decade where time-series 54 
observations exist (Section 5.2.2.3). The anthropogenic pH signal has already emerged over the entire 55 
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surface ocean (high confidence) and emission scenarios are the most important control of surface ocean pH 1 
relative to internal variability for most of the 21st century at both global and local scale (virtually certain). 2 
The oxygen content of the global ocean has declined by about 0.5 to 3.3% in 0-1000m meter layer  (Section 3 
5.2.2.4). Over the next century oxygen declines of 3.5% by 2100 are predicted by CMIP5 models globally 4 
(medium confidence), with low confidence at regional scales, especially in the tropics. The largest changes in 5 
the deep sea will occur after 2100 (Section 5.2.2.3). CMIP5 models project a decrease in global net primary 6 
production (medium confidence) with increases in high latitude (low confidence) and decreases in low 7 
latitude (medium confidence) (Section 5.2.2.6) in response to changes in ocean nutrient supply (Section 8 
5.2.2.5).  These models also project reductions by 8.9-15.8% in the globally integrated POC flux for RCP8.5, 9 
with decreases in tropical regions and increases at higher latitudes (medium confidence), affecting the 10 
organic carbon supply to the deep-sea floor ecosystems (high confidence) (Section 5.2.2.6). However, there 11 
is low confidence on the mechanistic understanding of how climatic drivers will affect the different 12 
components of the biological pump in the epipelagic ocean (Table 5.4). Therefore, the exposure to hazard for 13 
epipelagic ecosystems ranges from moderate (RCP2.6) to high (RCP8.5), with uncertain effects and 14 
tolerance of planktonic organisms, fishes and large vertebrates to interactive climate stressors. Major risks 15 
are predicted for declining productivity and fish biomass in tropical and subtropical waters (RCP8.5) 16 
(SM5.2).  17 
 18 
The climatic hazards for pelagic organisms from plankton to mammals are driving changes in eco-19 
physiology, biogeography and ecology and biodiversity (high confidence) (Section 5.2.3.1). Observed and 20 
projected population declines in the equator-ward range boundary (medium confidence), expansion in the 21 
poleward boundary (high confidence), earlier timing of biological events (high confidence), overall shift 22 
species composition (high confidence) and decreases in animal biomass (medium confidence), are consistent 23 
with expected responses to climate change (Section 5.2.3; Figure 5.13). It is likely that increased OA has not 24 
yet caused sufficient reduction in fitness to decrease abundances of calcifying phytoplankton and 25 
zooplankton, but is very likely (high confidence) that calcifying planktonic organisms will experience great 26 
decreases in abundance and diversity under high emission scenarios by the end of the century. Therefore, 27 
impacts to the epipelagic ecosystems are already observed in the present day (Figure 5.16). Based on 28 
simulation modelling and experimental findings, the combined effects of warming, ocean deoxygenation, 29 
OA and changes in net primary production in the 21st century are projected to exacerbate the impacts on the 30 
growth, reproduction and mortality of fishes, and consequently increase the risk of population decline (high 31 
confidence) (Section 5.2.3.1). There may be some capacity for adjustment and evolutionary adaptation that 32 
lowers their sensitivity to warming and decrease in oxygen (low confidence). However, historical responses 33 
in abundance and ranges of marine fishes to ocean warming and decrease in oxygen in the past suggest that 34 
adaptation is not always sufficient to mitigate the observed impacts (medium confidence) (Section 5.2.3) 35 
(SM5.2).   36 
 37 
Despite its remoteness, most of the deep seafloor ecosystems already have or are projected to experience 38 
rising temperatures and declining oxygen, pH and POC flux beyond natural variability within the next half 39 
century (See Section 5.2.4). On slopes, seamounts and canyons these changes are projected to be much 40 
larger under RCP8.5 than under RCP2.6 (high confidence), with greatest effects on seafloor community 41 
diversity and function from expansion of low oxygen zones and aragonite undersaturation (medium 42 
confidence).  As critical thresholds of temperature, oxygen and CO2 are exceeded, coral species will alter 43 
their depth distributions, non-living carbonate will experience dissolution and bioerosion, and stress will be 44 
exacerbated by lower food supply. These changes are projected to cause loss of cold water coral habitat with 45 
highest climate hazard in the Arctic and North Atlantic Ocean (medium confidence), while sponges may be 46 
more tolerant (Box 5.2) (low confidence). Projected changes in food supply to the seafloor at abyssal depths 47 
combined with warmer temperatures are anticipated to cause reductions in biomass and body size (medium 48 
confidence) that could affect the carbon cycle in this century under RCP 8.5 (low confidence).  Even at 49 
hydrothermal vents and methane seeps, some dominant species such as mussels may be vulnerable to 50 
reduced photosynthetically-based food supply or have planktonic larvae or oxidizing symbionts that are 51 
negatively affected by warming, acidification and oxygen loss (low confidence).  52 
 53 
Widespread attributes of deep seafloor fauna (e.g., great longevity, high levels of habitat specialization 54 
including well-defined physiological tolerances and thresholds, dependence on environmental triggers for 55 
reproduction, and highly developed mutualistic interactions) can increase the vulnerability of selected taxa to 56 
changing conditions (FAO, 2019) (medium confidence). However, some deep-sea taxa (e.g., foraminifera 57 
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and nematodes) may be more resilient to environmental change than their shallow-water counterparts (low 1 
confidence).  Observations, experiments and model projections indicate that impacts of climate change have 2 
or are expected to take place in this century, indicating a transition from undetectable risk to moderate risk at 3 
<1.5oC for continental slope, canyon and seamount habitats, and for cold-water corals (Figure 5.16). 4 
Emergence of risk is expected to occur later at around the mid-21st century under RCP8.5 for abyssal plain 5 
and chemosynthetic ecosystems (vents and seeps) (Figure 5.16). All deep-seafloor ecosystems are expected 6 
to be subject to at least moderate risk under RCP 8.5 by the end of the 21st century, with cold-water corals 7 
experiencing a transition from moderate to high risk below 3oC (SM5.2). 8 
 9 
 10 
5.3 Changing Coastal Ecosystems and Biodiversity 11 
 12 
The world’s shelf seas and coastal waters (hereafter ‘coastal seas’) extend from the coastline to the 200 m 13 
water depth contour. They encompass diverse ecosystems, including estuaries, sandy beaches, kelp forests, 14 
mangroves and coral reefs. Although they occupy a small part of the global ocean (7.6%), coastal seas 15 
provide up to 30% of global marine primary production and about 50% of the organic carbon supplied to the 16 
deep ocean (Chen, 2003; Bauer et al., 2013) (Sections 5.2.4.1 and 5.4.1.1). Coastal seas include several 17 
frontal and upwelling areas (Box 5.3) that support high fisheries yields (Scales et al., 2014), and productive 18 
coastal ecosystems, such as wetlands (McLeod et al., 2011). Mangrove forests, seagrass meadows and kelp 19 
forests form important habitats supporting high biodiversity while offering opportunities for climate change 20 
mitigation and adaptation (Section 5.5.1.2) (Duarte et al., 2013), with mangrove forests providing physical 21 
protection against extreme events such as storms and floods (Kelleway et al., 2017a) (Sections 5.4.1.2 and 22 
4.3.3.5.4). The regional characteristics and habitat heterogeneity of many coastal seas support endemic fauna 23 
and flora (e.g., seagrass meadows in the Mediterranean), which makes them particularly vulnerable to 24 
climate change impacts with high risk of diversity loss and alterations in ecosystem structure and functioning 25 
(Rilov, 2016; Chefaoui et al., 2018). 26 
 27 
Near-shore coastal ecosystems are classified by their geomorphological structure (e.g., estuaries, sandy 28 
beaches, and rocky shores) or foundation species (e.g., saltmarshes, seagrass meadows, mangrove forests, 29 
coral reefs, and kelp forests). All these coastal ecosystems are threatened to a varying degree by sea level 30 
rise (SLR), warming, acidification, deoxygenation and extreme weather events (Sections 5.3.1 to 5.3.7). 31 
Unlike the open ocean where detection and attribution of climate driven-physical and chemical changes are 32 
robust (Section 5.2.2), coastal ecosystems display regional complexity that can render the conclusive 33 
detection and attribution of climate effects uncertain. The hydrological complexity of coastal ecosystems that 34 
affects their biota is driven by the interactions between the land (e.g. river and groundwater discharges), the 35 
sea (e.g. circulation, tides) (Section 5.2.2.2.3) and seabed structures and substrates (Sharples et al., 2017; 36 
Chen et al., 2018; Laurent et al., 2018; Zahid et al., 2018). 37 
 38 
Additionally, the high density of human populations on coastal land causes most of the adjacent marine 39 
ecosystems to be impacted by local anthropogenic disturbances such as eutrophication, coastline 40 
modifications, pollution and overfishing (Levin et al., 2015; Diop and Scheren, 2016; Maavara et al., 2017; 41 
Dunn et al., 2018) (Section 4.3.2.2, Integrative Cross-Chapter Box 9). Climate driven impacts interact with 42 
such human disturbances and pose a serious risk to ecosystems structure and functioning (Gattuso et al., 43 
2015). Projections of the ecological impacts of climate change in coastal ecosystems must therefore deal 44 
with many emerging complexities such as the differentiation between the long-term climate trends (e.g., 45 
progressive ocean acidification) and the short-term natural fluctuations (Boyd et al., 2018), ranging from the 46 
seasons to interannual climate oscillations like El Niño. The ‘time of emergence’ for specific climate drivers 47 
to exceed background variability varies between ecosystems and is strongly sensitive to projected emission 48 
scenarios (Hammond et al., 2017; Reusch et al., 2018) (Box 5.1). 49 
 50 
This section summarizes our updated understanding of ecological and functional changes that coastal 51 
ecosystems are experiencing due to multiple climate and non-climatic human drivers, and their synergies. 52 
Additional experimental and long-term observational evidence since AR5 WGII (Wong et al., 2014a) and 53 
SR1.5 (Hoegh-Guldberg et al., 2018) improves the attribution of impacts on all the types of coastal 54 
ecosystems assessed here to climate trends (Sections 5.3.1 to 5.3.6). Moreover, the emergent impacts 55 
detected in the present strengthen the projection of risk of each ecosystem under future emission scenarios 56 
by 2100, depending on their exposure to different climate hazards (Section 5.3.7). 57 
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�1 
5.3.1 Estuaries 2 
 3 
Estuarine ecosystems are defined by the river-sea interface that provides high habitat heterogeneity and 4 
supports high biodiversity across freshwater and subtidal zones (Basset et al., 2013). AR5 WGII (Wong et 5 
al., 2014a) and SR1.5 (Hoegh-Guldberg et al., 2018) concluded that estuarine ecosystems have been 6 
impacted by sea level rise (SLR) and human influences that drive salinization, resulting in increased 7 
flooding, land degradation and erosion of coastal areas around estuaries. 8 
 9 
Observations since AR5 provide further evidence that SLR increases seawater intrusions and raises salinity 10 
in estuaries. Salinization of estuaries can be exacerbated by droughts and modifications of drainage area by 11 
human activities (Ross et al., 2015; Cardoso-Mohedano et al., 2018; Hallett et al., 2018; Zahid et al., 2018). 12 
The changing salinity gradients in estuaries have been linked to the observed upstream expansion of brackish 13 
and marine benthic and pelagic communities, and a reduction in the diversity and richness of freshwater 14 
fauna (Robins et al., 2016b; Raimonet and Cloern, 2017; Hallett et al., 2018; Addino et al., 2019) (medium 15 
confidence). However, because the distribution of benthic species in estuaries is strongly determined by 16 
sediment properties like grain size, the gradient of sediment types in estuaries can be a barrier to upstream 17 
shifts of brackish and marine benthic biota, leading to a reduction in species richness in mid- to upper- 18 
estuarine areas and altering food webs (Little et al., 2017; Hudson et al., 2018; Addino et al., 2019). 19 
Similarly, estuarine wetlands (Section 5.3.2) have reduced their extent and productivity in response to 20 
increased salinity, inundation and wave exposure, especially in areas with limited capacity for soil accretion 21 
or inland migration due to coastal squeezing (Sections 4.3.2.3, 5.3.2) (high confidence). Poleward migration 22 
of tropical and sub-tropical biota between estuaries has been observed in response to warming (Hallett et al., 23 
2018) (medium confidence), in agreement with the global trend of biogeographic shifts of marine organisms 24 
(Sections 5.2.3.1.1; 5.3.2-5.3.6). 25 
 26 
Intensive human activities around estuaries and river deltas worldwide has substantially increased nutrient 27 
and organic matter inputs into such systems since the 1970s (Maavara et al., 2017). Increased organic matter 28 
accumulation has been shown to interact with warming, resulting in intensification of bacterial degradation 29 
and eutrophication (Maavara et al., 2017; Chen et al., 2018; Fennel and Testa, 2019), contributing to an 30 
increase in the frequency and extent of hypoxic zones (Breitberg et al., 2015; Gobler and Baumann, 2016). 31 
The interaction between warming, increased nutrient loading, and hypoxia has shown to be related to the 32 
increased occurrences of harmful algal blooms (Anderson et al., 2015; Paerl et al., 2018b) (Box 5.4) (high 33 
confidence), pathogenic bacteria such as Vibrio species (Baker-Austin et al., 2017; Kopprio et al., 2017) 34 
(Section 5.4.2) (low confidence), and mortalities of invertebrates and fish communities (Jeppesen et al., 35 
2018; Warwick et al., 2018) (medium confidence). 36 
 37 
Fluctuations in estuarine salinity, turbidity and nutrient gradients are influenced by changes in precipitation 38 
and wind-stress caused by large-scale climatic variations such as the El Niño/Southern Oscillation (ENSO), 39 
the North Atlantic Oscillation (NAO) and the South Atlantic Meridional Overturning Circulation (SAMOC) 40 
which have shown persistent anomalies associated with climate change since the 1970s (Wang and Cai, 41 
2013; Delworth and Zeng, 2016; García-Moreiras et al., 2018). Similarly, storm surges and heat waves have 42 
increased nutrients and sediment loads in estuaries (Tweedley et al., 2016; Arias-Ortiz et al., 2018; Chen et 43 
al., 2018). Sustained long-term observations (15-40 years) provide evidence that large-scale climatic 44 
variations and extreme events affect plankton phenology and composition in estuaries worldwide with 45 
regional differences in the characteristics of the responses (Thompson et al., 2015; Abreu et al., 2017; 46 
Marques et al., 2017; Arias-Ortiz et al., 2018; López-Abbate et al., 2019) (high confidence). Although these 47 
changes in ecosystem components may be attributed to climate variability (Box 5.1), they demonstrate the 48 
sensitivity of estuarine ecosystems to climate change. Also, these large-scale climate events are likely to be 49 
intensified in the 21st century (Stocker, 2014) (Section 6.5.1). 50 
 51 
Salinization in estuaries is projected to continue in response to SLR, warming and droughts under global 52 
warming greater than 1.5°C (high confidence), and will pose further risks to ecosystems biodiversity and 53 
functioning (Zhou et al., 2017; Hallett et al., 2018; Zahid et al., 2018; Elliott et al., 2019) (Section 4.3.3.4, 54 
Cross-Chapter Box 7) (medium confidence). Estuarine wetlands are resilient to modest rates of SLR due to 55 
their sediment relocation capacity, but such adaptation is not expected to keep pace with projected rates of 56 
SLR under the RCP8.5 climate scenario (Section 5.3.2) (high confidence). Moreover, human activities that 57 
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inhibit sediment movement and deposition in coastal deltas increase the likelihood of their shrinking as a 1 
result of SLR (Brown et al., 2018b; Schuerch et al., 2018b) (medium confidence). 2 
 3 
Oxygen-depleted dead zones in coastal areas are already a problem; they are projected to increase under the 4 
co-occurrence and intensification of climate threats and eutrophication (Breitburg et al., 2018; Laurent et al., 5 
2018) (Section 5.2.2.4). While warming is the primary climate driver of deoxygenation in the open ocean, 6 
eutrophication is projected to increase in estuaries due to human activities and intensified precipitation 7 
increasing riverine nitrogen loads under both RCP2.6 and RCP8.5 scenarios, both mid-century (2031–2060) 8 
and later (2071–2100) (Sinha et al., 2017). Moreover, enhanced stratification in estuaries in response to 9 
warming is also expected to increase the risk of hypoxia through reduced vertical mixing (Du et al., 2018; 10 
Hallett et al., 2018; Warwick et al., 2018).The effects of warming will be more pronounced on high latitude 11 
and temperate shallow estuaries with limited exchange with the open ocean (e.g., Río de La Plata Estuary, 12 
Baltic Sea and Chesapeake Bay) and seasonality that already leads to dead zone development when 13 
summertime temperatures reach critical values (e.g., Black Sea) (Altieri and Gedan, 2015) (medium 14 
confidence). The coastal acidification related to this expansion of hypoxic zones (Zhang and Gao, 2016; Cai 15 
et al., 2017; Laurent et al., 2017) imposes risk for sensitive organisms (Beck et al., 2011; Duarte et al., 2013; 16 
Feely et al., 2016; Carstensen et al., 2018). 17 
 18 
The interaction of SLR and changes in precipitation will have a more severe impact on shallow estuaries 19 
(<10 m) than on deep basin estuaries (>10 m) (Hallett et al., 2018; Elliott et al., 2019) (medium confidence). 20 
For a projected SLR of 1 m, climate-related risks for shallow estuaries ecosystems are estimated to increase 21 
through increased tidal current amplitudes (by 5% on average), energy dissipation, vertical mixing and 22 
salinity intrusion (Prandle and Lane, 2015). Estuaries with high tidal exchanges and associated well-23 
developed sediment areas are more resilient to global climate changes than estuaries with low tidal 24 
exchanges and sediment supply, since the latter are more vulnerable to SLR and changes in river flow 25 
(Brown et al., 2018b; Warwick et al., 2018) (medium confidence).  26 
 27 
Overall, this assessment concludes that there is evidence of upstream redistribution of marine biotic 28 
communities in estuaries driven by increased sea water intrusion (medium confidence). Such distribution 29 
shifts are limited by physical barriers such as the availability of benthic substrates leading to reduction of 30 
suitable habitats for estuarine communities (medium confidence). Warming has led to poleward range shifts 31 
of biota between estuaries (medium confidence). Increased nutrient inputs from intensive human 32 
development in deltas increases bacterial respiration, which in turn is exacerbated by warming, leading to an 33 
expansion of suboxic and anoxic areas (high confidence). These changes reduce the survival of estuarine 34 
animals (medium confidence), and increase the occurrence of harmful algal blooms (HABs) and pathogenic 35 
microbes (medium confidence). Projected warming, SLR and tidal changes in the 21st century will continue 36 
to expand salinization and hypoxia in estuaries (medium confidence). These impacts will be more 37 
pronounced under higher emission scenarios, and in temperate and high latitude estuaries that are eutrophic, 38 
shallow and that naturally have low sediment supply. 39 
�40 
5.3.2 Coastal Wetlands (Saltmarshes, Seagrass Meadows and Mangrove Forests) 41 
 42 
Coastal vegetated wetlands include saltmarshes, mangrove forests and subtidal seagrass meadows 43 
ecosystems, considered to be the main ‘blue carbon’ habitats (Sections 5.4.1 and 5.5.1.1) (McLeod et al., 44 
2011). IPCC AR5 WGII and SR1.5 concluded that wetland salinization is occurring at a large geographic 45 
scale (high confidence); that rising water temperatures has led to shifts in plant species distribution (medium 46 
confidence)(Wong et al., 2014b); and that SLR and storms are causing wetland erosion and habitat loss, 47 
enhanced by human disturbances (high confidence) (Section 4.3.3.5.1) (Wong et al., 2014b). This section 48 
assesses new evidence since AR5 and SR1.5 of observed climate impacts and future risks of these vegetated 49 
wetlands in terms of their role in supporting biodiversity and key ecosystem functions. The recent literature 50 
confirms and strengthens the SR1.5 conclusions (Section 5.3.7 and Figure 5.16). 51 
 52 
Nearly 50% of the pre-industrial, natural extent of global coastal wetlands have been lost since the 19th 53 
century (Li et al., 2018a). Such a reduction in wetlands is primarily caused by non-climatic drivers such as 54 
alteration of drainage, agriculture development, coastal settlement, hydrological alterations and reductions in 55 
sediment supply (Adam, 2002; Wang et al., 2014; Kroeger et al., 2017; Thomas et al., 2017; Li et al., 56 
2018a). However, large-scale mortality events of mangroves from ‘natural causes’ has also occurred globally 57 
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since the 1960s; ~70% of this loss has resulted from low frequency, high intensity weather events, such as 1 
tropical cyclones (45%) and climatic extremes such as droughts, SLR variations and heat waves (Sippo et 2 
al., 2018) (high confidence). In Australia, the mangrove loss due to heat waves accounted for 22% of global 3 
mangrove forests (Sippo et al., 2018), with negative impacts on ecosystem biodiversity and the provisioning 4 
of services (Carugati et al., 2018; Saintilan et al., 2018) (Section 5.4). In coastal areas with sufficient 5 
sediment supply across the Indo-Pacific region, inland expansion of mangroves is occurring as a result of 6 
vertical accretion and root growth, allowing them to keep pace with current SLR (Lovelock et al., 2015). In 7 
seagrass meadows, temperature is the main limiting range factor, and over the past decades there have been 8 
several global die-off events (Hoegh-Guldberg et al., 2018). The vulnerability of seagrasses to warming 9 
varies locally depending on soil accretion and herbivory (El-Hacen et al., 2018; Marbà et al., 2018; Vergés et 10 
al., 2018) and on the population assemblages (e.g. expansion at high latitudes) (Beca-Carretero et al., 2018; 11 
Duarte et al., 2018). The compounding effects of heat waves, hypersaline conditions and increased turbidity 12 
and nutrient levels associated with floods have been shown to cause negative changes in the composition and 13 
biomass of co-occurring seagrass species (Nowicki et al., 2017; Arias-Ortiz et al., 2018; Lin et al., 2018) 14 
(high confidence). For example, in Shark Bay, Western Australia, a marine heat wave in austral summer 15 
2010/2011 caused widespread losses (36 % of area) of seagrass meadows, with negative implications for 16 
carbon storage (Arias-Ortiz et al., 2018). The poleward expansion of tropical mangroves into subtropical 17 
saltmarshes as a result of increase in temperature has been also observed over the past half century on five 18 
continents (Saintilan et al., 2014; Saintilan et al., 2018) (high confidence); for example, in the Texas Gulf 19 
Coast (Armitage et al., 2015). The loss of open areas with herbaceous plants (saltmarshes) reduces food and 20 
habitat availability for resident and migratory animals (Kelleway et al., 2017a; Lin et al., 2018) (Section 21 
5.4.1.2).  22 
 23 
The ability of salt marshes to increase their elevation and withstand erosion under SLR depends on the 24 
development of new soil by the external supply of mineral sediments and organic accretion by local biota 25 
(Section 5.4.1, Figure 5.19) (Bouma et al., 2016). In some places, critical organic accretion rates are 26 
declining due to reduced plant productivity from stress by more frequent inundation, and increased plant and 27 
microbial respiration rates as a result of warming; consequently, the elevation of marshes from soil accretion 28 
is slower than the rate of rising sea level, resulting in reduction of saltmarsh area (Carey et al., 2017; Watson 29 
et al., 2017b). Vegetation loss rates were significantly negatively correlated with marsh elevation, suggesting 30 
inundation due to SLR since 1970 as the main driver, enhanced by storms and increased tidal range in back 31 
barrier marshes (Watson et al., 2017b). Plant species that are more sensitive to higher temperatures and 32 
increases in saltwater intrusion were found to be less abundant and in some cases replaced by salinity-33 
tolerant species (Janousek et al., 2017; Piovan et al., 2019). Plant community restructuring has resulted in 34 
biodiversity loss (Pratolongo et al., 2013; Raposa et al., 2017) and reduced above- and below-ground 35 
productivity (McLeod et al., 2011; Watson et al., 2017b). As a result of tidal flooding, saltmarsh soils do not 36 
dry out and high levels of carbon can accumulate under anaerobic conditions. This is coupled with generally 37 
low rates of methane emission which is strongly limited in saline marshes (Poffenbarger et al., 2011; Martin 38 
and Moseman-Valtierra, 2015; Kroeger et al., 2017; Tong et al., 2018) (high confidence). 39 
 40 
Non-climatic human pressures on wetland ecosystems, including overfishing (Crotty et al., 2017), 41 
eutrophication (Legault II et al., 2018), and invasive species (Zhang et al., 2016), interact with climate 42 
change drivers and affect wetlands composition and structure, with the impacts varying between regions and 43 
species (Tomas et al., 2015; O'Brien et al., 2017; Pagès et al., 2017; York et al., 2017). The intensity of 44 
herbivory on seagrasses is expected to increase with global warming, particularly in temperate areas, because 45 
of the migration of tropical herbivores into temperate seagrass meadows (Hyndes et al., 2016; Vergés et al., 46 
2018) (medium confidence, Section 5.2.3.1.1). Warming also reduces the fitness of seedlings by increasing 47 
necrosis and susceptibility to consumers and pathogenic pressure while reducing establishment potential and 48 
nutritional (Olsen et al., 2016b; Hernán et al., 2017). Because herbivores play a key role in modulating the 49 
biomass of plant communities, their more intense activity affects the provision of services in these 50 
ecosystems (Scott et al., 2018) (Section 5.4).  51 
 52 
Globally, between 20-90% of existing coastal wetland area is projected to be lost by 2100 (Blankespoor et 53 
al., 2014; Crosby et al., 2016; Spencer et al., 2016), depending on different SLR projections under future 54 
emission scenarios. These projected changes vary regionally and between different types of wetlands. 55 
Gaining area may be possible, at least locally, if vertical sediment accretion occurs together with lateral re-56 
accommodation (Brown et al., 2018b; Schuerch et al., 2018b) (Section 4.3.3.5.1). Local losses may also be 57 
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higher; for example, in New England, where regional rates of SLR have been as much as 50% greater than 1 
the global average (from 1 to 5.83 mm yr-1; 1979-2015) (Watson et al., 2017a) and where projections suggest 2 
that 40%–95% of saltmarshes will be submerged by the end of this century (Valiela et al., 2018). In some 3 
species of seagrasses, enhanced temperature-driven flowering (Ruiz-Frau et al., 2017) and greater biomass 4 
production in response to elevated CO2 (Campbell and Fourqurean, 2018) may increase resilience to 5 
warming. Nevertheless, severe habitat loss (70%) of endemic species such as Posidonia oceanica is 6 
projected by 2050 with the potential for functional extinction by 2100 under RCP8.5 climate scenario. For 7 
Cymodosea nodosa, the species with the highest thermal optima (Savva et al., 2018), warming is expected to 8 
lead to significant reduction of meadows (46% under RCP8.5) in the Mediterranean, although potentially 9 
compensated in part by future expansion into the Atlantic (Chefaoui et al., 2018).  10 
 11 
The mangrove habitats of small islands, with lack of rivers, steep topography, sediment-starved areas, 12 
groundwater extraction and coastal development, are particularly vulnerable to SLR. Although mangrove 13 
ecosystems may survive the increased storm intensity and sea levels projected until 2100 under RCP2.6 14 
(Ward et al., 2016), for RCP 8.5 they are only resilient up to 2050 conditions (Sasmito et al., 2016). Negative 15 
climate impacts will be exacerbated in cases where anthropogenic barriers cause further ‘coastal squeeze’ 16 
that prevents inland movement of plants and limits relocation of sediment (medium confidence) (Enwright et 17 
al., 2016; Borchert et al., 2018). 18 
 19 
In conclusion, substantial evidence supports with high confidence that warming and salinization of wetlands 20 
caused by SLR are causing shifts in the distribution of plant species inland and poleward, such as mangrove 21 
encroachment into subtropical saltmarshes (high confidence) or seagrass meadows contraction at low 22 
latitudes (high confidence). Plants with low tolerance to flooding and extreme temperatures are particularly 23 
vulnerable and may be locally extirpated (medium confidence). The flooded area of saltmarshes can become 24 
a mudflat or be colonized by more tolerant, invasive species, whose expansion is favoured by combined 25 
effects of warming, rising CO2 and nutrient enrichment (medium confidence). The loss of vegetated coastal 26 
ecosystems causes a reduction in carbon storage with positive feedbacks to the climate system (high 27 
confidence) (Section 5.4.1.2). SLR and warming are expected to continue to reduce the area of coastal 28 
wetlands, with a projected global loss of 20-90% by the end of the century depending on emission scenarios. 29 
High risk of total local loss is projected under the RCP8.5 emission scenario by 2100 (medium confidence), 30 
especially if landward migration and sediment supply is constrained by human modification of shorelines 31 
and river flows (medium confidence). 32 
 33 
5.3.3 Sandy Beaches  34 
 35 
Sandy beaches represent 31% of the world’s ice-free shoreline (Luijendijk et al., 2018).  They provide 36 
habitat for dune vegetation, benthic fauna and sea birds; also nesting area for marine turtles (Defeo et al., 37 
2009), as well as several key ecosystem services (Drius et al., 2019) (Section 5.4.1.2). Sandy beach 38 
ecosystems are physically dynamic, where sediment movement is a key driver of benthic flora and fauna 39 
zonation (Schlacher and Thompson, 2013; van Puijenbroek et al., 2017). In AR5 WGII (Wong et al., 2014b) 40 
and SR1.5 (Hoegh-Guldberg et al., 2018), climate impacts on sandy beach ecosystems were not assessed 41 
individually but together with other coastal systems that included beaches, barriers, sand dunes, rocky coasts, 42 
aquifers and lagoons. Those assessments concluded with high confidence that SLR, storminess, wave 43 
energy, and weathering regimes will continue to erode coastal shorelines and affect the soil accretion and 44 
land-based ecosystems, with highly site-specific effects (high confidence). Infrastructure and geological 45 
constraints reduce shoreline movement and cause coastal squeeze (high confidence). Assessment in Section 46 
4.3.3.3 supports the conclusions in AR5 and SR1.5 regarding the erosion of sandy coastlines. This section 47 
specifically assesses the combined climate and non-climatic impacts on sandy beach biodiversity, ecosystem 48 
structure and functioning. 49 
 50 
Worldwide, sandy beaches show vegetation transformations caused by erosion following locally severe 51 
wave events (Castelle et al., 2017; Delgado-Fernandez et al., 2019; Zinnert et al., 2019) (Table SM5.7). The 52 
original dense vegetation is replaced by sparser vegetation (Zinnert et al., 2019) and has a generally slow 53 
recovery (multiple years to decades) (Castelle et al., 2017). In some instances, the changes persist over 54 
decades, resulting in a regime shift in the beach morphology (Kuriyama and Yanagishima, 2018). Such 55 
changes in vegetation and beach morphology in response to local disturbances were also related to shifts in 56 
the associated fauna composition (Carcedo et al., 2017; Delgado-Fernandez et al., 2019). Direct attribution 57 
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of these observed events to climate change is not available despite early evidence (since the 1970) and an 1 
emerging literature (Section 4.3.3.1) (Table SM5.7). 2 
 3 
Sandy beaches show similar patterns of biogeographical shifts following warming, with increased 4 
dominance of species more tolerant to higher temperatures, as observed in other ocean ecosystems (5.2.3.1.1, 5 
Table SM5.7). Examples of these observed shifts in abundance and distribution of benthic fauna in sandy 6 
beaches are found in the Pacific and Atlantic coasts of North and South America, and in Australia, including 7 
increased mortality of clam populations close to their upper temperature limits with low population recovery 8 
(Orlando et al., 2019), and poleward expansion of crabs since the 1980s that were related to warming 9 
(Schoeman et al., 2015) (Table SM5.7). Also, mass mortalities of beach clams have occurred during warm 10 
phases of El Niño events (Orlando et al., 2019)( and Table SM5.7), parasite infestations on dense 11 
populations (Vázquez et al., 2016) and high wave exposure (Turra et al., 2016). 12 
 13 
Human disturbances have caused coastal squeeze and morphological changes in sandy beaches (Martínez et 14 
al., 2017; Rêgo et al., 2018; Delgado-Fernandez et al., 2019). Along with SLR and climate-driven 15 
intensification of waves and offshore winds, these hazards have increased erosion rates suggesting a reduced 16 
resilience due to insufficient sediment supply and accretion capacity (Castelle et al., 2017; Houser et al., 17 
2018; Kuriyama and Yanagishima, 2018). Narrow sandy beaches such as those in south California (Vitousek 18 
et al., 2017) or central Chile (Martínez et al., 2017) are particularly vulnerable to climate hazards when 19 
combined with human disturbances and where landward retreat of beach profile and benthic organisms is 20 
constrained due to increasing urbanization (Hubbard et al., 2014) (Section 4.3.2.3). 21 
 22 
Notwithstanding the uncertainty in projecting future interactions of SLR with other natural and human 23 
impacts on sandy shorelines (Le Cozannet et al., 2019; Orlando et al., 2019), they are expected to continue to 24 
reduce their area and change their topography due to SLR and increased extreme climatic erosive events.  25 
This will be especially important in low-lying coastal areas with high population and building densities 26 
(medium confidence, SM 4.2). Megafauna that use sandy beaches during vulnerable parts of their life cycles 27 
could be particularly impacted (Laloë et al., 2017). For example, the modelled incubation temperatures of 28 
green turtles have increased by 1°C since the mid-1970s, resulting in an average 20% increase in the 29 
proportion of female hatchlings over this period (Patrício et al., 2019). By 2100, global temperatures will 30 
approach lethal levels for incubation in existing nesting sites, and hatchling success is expected to drop to 31 
32% under RCP8.5 scenario, with 93% of the hatchlings expected to be female (76% under RCP4.5). A 32 
possible microhabitat adaptation such as shadowed vegetated areas, however, could allow for continued 33 
male production throughout the 21st century (Patrício et al., 2019). In addition, a projected global mean SLR 34 
of ~1.2 m under the upper likely range of RCP8.5 by 2100 implies a loss of 59% and 67% in the present 35 
nesting area of the green turtle and the loggerhead respectively in the Mediterranean (Varela et al., 2019), 36 
and a loss of 43% in the nesting area of green turtles in West Africa (Patrício et al., 2019). Moreover, benthic 37 
crustaceans of sandy beaches, including isopods, crabs and amphipods, generally follow the temperature-38 
body size gradient in which body size decreases towards warmer lower-latitude regions (Jaramillo et al., 39 
2017). Assuming that the physiological underpinning of the relationship between body size and temperature 40 
can be applied to warming (see 5.2.2, medium confidence), the body size of sandy beach crustaceans is 41 
expected to decrease under warming (low evidence, medium agreement). 42 
 43 
Overall, changes in sandy beach morphology have been observed from climate related events, such as storm 44 
surges, intensified offshore winds, and from coastal degradation caused by humans (high confidence), with 45 
impacts on beach habitats (e.g. benthic megafauna) (medium confidence). The direct influence of 46 
contemporary SLR on shoreline behaviour is emerging, but attribution of such changes to SLR remains 47 
difficult (Section 4.3.3.1). Projected changes in mean and extreme sea levels (Section 4.2.3) and warming 48 
(Section 5.2.1) under RCP8.5 are expected to result in high risk of impacts on sandy beach ecosystems by 49 
the end of the 21st century (medium confidence, Figure 5.16), taking account of the slow recovery rate of 50 
sandy beach vegetation, the direct loss of habitats and the high climatic sensitivity of some fauna. Under 51 
RCP2.6, the risk of impacts on sandy beaches is expected to be only slightly higher than the present-day 52 
level (low confidence, Figure 5.16). However, pervasive coastal urbanization lowers the buffering capacity 53 
and recovery potential of sandy beach ecosystems to impacts from SLR and warming and thus is expected to 54 
limit their resilience to climate change (high confidence). 55 
 56 
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5.3.4 Coral Reefs 1 
 2 
Human activities and warming have already led to major impacts on shallow water tropical coral reefs 3 
caused by species replacement, bleaching, and decreased coral cover while warming, ocean acidification and 4 
climate hazards will put warm-water corals at very high risk even if global warming can be limited to 1.5°C 5 
above pre-industrial level (Hoegh-Guldberg et al., 2018; Kubicek et al., 2019; Sully et al., 2019). While 6 
providing new evidence to support these previous assessments (Kleypas, 2019), this assessment focuses on 7 
evaluating the variations in sensitivities and responses of coral reefs and their associated biota to highlight 8 
comparative risks and resiliences.  9 
 10 
New evidence since AR5 and SR1.5 confirms the impacts of ocean warming (Kao et al., 2018; Jury and 11 
Toonen, 2019) and acidification (Jiang et al., 2018; Mollica et al., 2018; Bove et al., 2019) on coral reefs 12 
(high confidence), enhancing reef dissolution and bioerosion (high confidence), affecting coral species 13 
distribution, and leading to community changes (Agostini et al., 2018) (high confidence). The rate of sea 14 
level rise (primarily noticed in small reef islands) may outpace the growth of reefs to keep up although there 15 
is low agreement in the literature (Brown et al., 2011; Perry et al., 2018) (low confidence). Reefs are further 16 
exposed to other increased impacts, such as enhanced storm intensity (Lavender et al., 2018), turbidity and 17 
increased runoff from the land (Kleypas, 2019) (high confidence). Recovery of coral reefs resulting from 18 
repeated disturbance events is slow (Hughes et al., 2019a; Ingeman et al., 2019) (high confidence). Only few 19 
coral reef areas show some resilience to global change drivers (Fine et al., 2019) (low confidence).  20 
 21 
Globally, coral reefs and their associated communities are projected to change their species composition and 22 
biodiversity as a result of future interactions of multiple climatic and non-climatic hazards (Kleypas, 2019; 23 
Kubicek et al., 2019; Rinkevich, 2019) (high evidence, very high agreement, very high confidence). Multiple 24 
stressors act together to increase the risk of population declines or local extinction of reef-associated species 25 
through impacts of warming and ocean acidification on physiology and behaviours (Gunderson et al., 2017) 26 
(high confidence). Alteration of composition of coral reef-associated biota is exacerbated by changes in 27 
habitat conditions through increased sedimentation and nutrient concentrations from human coastal activities 28 
(Fabricius, 2005) (high confidence). Coral ecosystems in tropical small islands are also at high risk of being 29 
affected by extreme events, including storms, with their impacts exacerbated by sea level rise (Duvat et al., 30 
2017; Harborne et al., 2017) (high confidence). Such risks on coral reef-associated communities are 31 
substantially elevated when the level of these climatic and non-climatic hazards are above thresholds that 32 
may cause phase shifts in reef communities (McCook, 1999; Hughes et al., 2010; Graham et al., 2013; 33 
Hughes et al., 2018) (high confidence). A phase shift is characterized by an abrupt decrease in coral 34 
abundance or cover, with concurrent increase in the dominance of non-reef-building organisms, such as 35 
algae and soft corals (Kleypas, 2019). Such phase shifts have already been observed in many coral reefs 36 
worldwide (Wernberg et al., 2016; Kleypas, 2019). 37 
 38 
Notwithstanding the conclusion that coral reefs globally are projected to greatly decline at 2°C warming 39 
relative to pre-industrial level (Cacciapaglia and van Woesik, 2018; Dietz et al., 2018; Hoegh-Guldberg et 40 
al., 2018), climate impacts can be affected by variations in the sensitivity and adaptive capacity across coral 41 
species and coral reef ecosystems. Laboratory experiments show that some warm water corals possess the 42 
cellular, physiological or molecular machineries that could help them acclimatize or adapt to the effects of 43 
global change (medium confidence) (DeBiasse and Kelly, 2016; Gibbin et al., 2017; Wall et al., 2017; Camp 44 
et al., 2018; Donelson et al., 2018; Drake et al., 2018; Veilleux and Donelson, 2018; Hughes et al., 2019b). 45 
For example, there are species or genotypes that show less impacts by either ocean acidification or increased 46 
temperatures (Cornwall et al., 2018; Gintert et al., 2018). Some corals and their symbionts might be able to 47 
use epigenetic (heritable phenotype changes that do not involve alterations in the DNA sequences) 48 
mechanisms to reduce their sensitivity to temperature changes in their environment and to pass such traits to 49 
their offspring (Liew et al., 2017; Torda et al., 2017; Li et al., 2018b; Liew et al., 2018). The variations in 50 
sensitivity and adaptive capacity of coral species to warming and ocean acidification contribute to changes in 51 
species composition of coral reefs as they are exposed to climatic and non-climatic hazards (Ingeman et al., 52 
2019; Kleypas, 2019; Kubicek et al., 2019) (high confidence). However, it has not yet been established 53 
whether coral and coral-associated biota adaptation may hold beyond 1.5°C warming. The onset of coral 54 
bleaching in the last decade has occurred at higher sea surface temperatures (∼0.5°C) than in the previous 55 
decade, suggesting that coral populations that remain after preceding bleaching events may have a higher 56 
thermal threshold (Sully et al., 2019) (medium confidence), potentially as a result of the increased dominance 57 
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of species with lower sensitivity or higher adaptive capacity (Schulz et al., 2013; McClanahan et al., 2014; 1 
Mumby and van Woesik, 2014; Pandolfi, 2015; Folkersen, 2018) (medium confidence).  2 
 3 
Coral reefs in deeper or mesophotic waters (found in tropical/subtropical regions at 30-150 m depth) may 4 
serve as refuges and sources for larval supply to those reefs exposed to disturbances (e.g., bleaching, storms, 5 
floods from land, sedimentation, tourism impacts) (Bridge et al., 2013; Thomas et al., 2015; Lindfield et al., 6 
2016; Smith et al., 2016b; Bongaerts et al., 2017). Reefs exposed to local oceanographic characteristics that 7 
reduce warming, such as upwelling, may similarly provide refuges and larval sources (Tkachenko and 8 
Soong, 2017). However, recent evidence suggests that mesophotic coral reefs are at higher risk than 9 
previously indicated (Rocha et al., 2018). Monitoring of coral reefs worldwide shows that some areas in the 10 
eastern tropical Pacific Ocean (Smith et al., 2017), the Caribbean (Chollett and Mumby, 2013), the Red Sea 11 
(Fine et al., 2013; Osman et al., 2017), the Persian Gulf (Coles and Riegl, 2013) and the Great Barrier Reef, 12 
Australia (Hughes et al., 2010; Morgan et al., 2017) have recovered more rapidly after bleaching than the 13 
larger-scale average (medium confidence). There are regional differences in reef vulnerability when 14 
considering scales larger than 100 km or over latitudinal gradients (van Hooidonk et al., 2013; Heron et al., 15 
2016; Langlais et al., 2017; McClenachan et al., 2017) (high confidence). 16 
 17 
Based on findings from simulation modelling, SR1.5 concluded that “coral reefs are projected to decline by a 18 
further 70–90% at 1.5°C (very high confidence) with larger losses (>99%) at 2°C (very high confidence)”. 19 
The variations in exposure, sensitivity and adaptive capacity between coral populations and regions are 20 
further projected to cause large changes in the composition and structure of the remaining coral reefs, with 21 
large regional differences (van Hooidonk et al., 2016; Hoegh-Guldberg et al., 2018; Kleypas, 2019; Kubicek 22 
et al., 2019; Sully et al., 2019).  23 
�24 
5.3.5 Rocky Shores 25 
 26 
Rocky shore ecosystems span the intertidal and shallow subtidal zones of the world’s temperate coasts and 27 
are typically dominated by calcareous mussels or seaweeds (macro-algae). Other organisms that inhabit 28 
rocky shores are coralline algae (i.e., maerl beds), polychaetes, molluscs, bryozoans and sponges. Intertidal 29 
habitats are characterized by strong environmental gradients, and are exposed to marine and atmospheric 30 
climate regimes (Hawkins et al., 2016). IPCC AR5 (Wong et al., 2014a) concluded that rocky shores are 31 
among the better-understood coastal ecosystems in terms of potential impacts of climate variability and 32 
change. The high sensitivity of sessile organisms (e.g. barnacles, mussels) to extreme temperature events 33 
(e.g. mass mortality and drastic biodiversity loss of mussels beds), and to acidification (widely observed in 34 
manipulative experiments) gives high confidence that rocky shore species are at high risk of changes in 35 
distribution and abundance from these two drivers. SR1.5 (Hoegh-Guldberg et al., 2018) concluded that 36 
rocky coasts are already experiencing large-scale changes, and critical thresholds are expected to be reached 37 
at warming of 1.5°C and above (high confidence). 38 
 39 
More observational and empirical evidence since AR5 and SR1.5 confirms that climate change poses high 40 
risk to rocky shore ecosystems’ biodiversity, structure and functioning through warming, acidification, SLR 41 
and extreme events (Agostini et al., 2018; Duarte and Krause-Jensen, 2018; Ullah et al., 2018; Milazzo et al., 42 
2019). Immobile intertidal organisms are especially vulnerable to warming, due to the potential for extreme 43 
heat exposure during low tide emersion and prolonged desiccation events (Hawkins et al., 2016; Zamir et al., 44 
2018) (high confidence). This effect is expected to lower the upper vertical limit of intertidal communities 45 
(Hawkins et al., 2016), reducing their suitable habitat (Harley, 2011), and accompanied by temperature-46 
induced increases in predation by consumers (Sanford, 1999). While previous studies have documented a 47 
poleward shift in species distributions of rocky intertidal and reef algae (Duarte et al., 2013; Nicastro et al., 48 
2013) and faunal species (Barry et al., 1995; Mieszkowska et al., 2006; Lima et al., 2007), local extinctions 49 
at the equatorial or warm edge of species ranges are increasingly being attributed to climate change 50 
(Yeruham et al., 2015; Sorte et al., 2017) (high confidence). Extreme heat waves are expected to cause 51 
mortality among rocky shore species (Gazeau et al., 2014; Jurgens et al., 2015) and subsequent declines or 52 
losses in important species can have cascading effects on the whole intertidal community and the services it 53 
provides (Gatti et al., 2017; Sorte et al., 2017; Sunday et al., 2017). Coralline fauna adapted to narrow 54 
environmental conditions seem especially vulnerable to heat waves, with observed mass mortalities in the 55 
Adriatic Sea in response to extreme summer temperatures (Kružić et al., 2016). The loss of thermal refugia 56 
associated with continued warming could exacerbate the impacts of heat stress on rocky intertidal 57 
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communities (Lima et al., 2016). Nevertheless, experimental data indicate that some coralline algae that are 1 
well adapted to highly variable transitional environments can tolerate the warming projected for 2100 under 2 
RCP8.5; for these species, ocean acidification will constitute the main hazard (Nannini et al., 2015).  3 
 4 
Ocean acidification is expected to decrease the net calcification (high confidence) and abundance (medium 5 
confidence) of rocky intertidal and reef-associated species (Kroeker et al., 2013), and the dissolution of 6 
calcareous species has already been documented in tide-pool communities (Kwiatkowski et al., 2016; Duarte 7 
and Krause-Jensen, 2018). Recent experimental and field studies, however, have demonstrated the 8 
importance of food resources in mediating the effects of ocean acidification on vulnerable rocky shores 9 
species (Ciais et al., 2013; Ramajo et al., 2016), suggesting that species’ vulnerability to ocean acidification 10 
may be most pronounced in areas of high heat stress and low food availability (medium confidence) (Kroeker 11 
et al., 2017). There is increasing evidence that the interactions between multiple climate drivers will 12 
determine species vulnerability and the ecosystem impacts of climate change (Hewitt et al., 2016). 13 
 14 
Studies on naturally-acidified rocky reef ecosystems suggest ocean acidification will simplify rocky shore 15 
ecosystems, due to an overgrowth by macroalgae, a reduction in biodiversity, and a reduction in the 16 
abundance of calcareous species (medium confidence) (Kroeker et al., 2013; Linares et al., 2015). These 17 
shifts in community structure and function have been observed in CO2 seep communities (Hall-Spencer et 18 
al., 2008), already exposed to levels of pCO2 expected to generally occur by the end of the century (Agostini 19 
et al., 2018). Reductions in the abundance of calcareous herbivores that can create space for rarer species by 20 
grazing the dominant algae, are expected to contribute to the overgrowth of fleshy macroalgae on rocky 21 
shores (Baggini et al., 2015). This shift towards macroalgae is associated with a simplification of the food 22 
web at lower trophic levels (Kroeker et al., 2011).  23 
 24 
At the local scale, warming and ocean acidification are expected to change energy flows within rocky shores 25 
ecosystems (medium confidence). Experiments indicate that both climate drivers may boost primary 26 
productivity in some cases (Goldenberg et al., 2017); however, increased metabolic demands and greater 27 
consumption by predators under warmer temperature increase the strength of top-down control (predation 28 
mortalities of herbivores) and thus counteracts the effects of increased bottom-up productivity (Goldenberg 29 
et al., 2017; Kordas et al., 2017). Ocean acidification could also increase species energetic costs and the 30 
grazing rate of herbivores, affecting ecosystem responses to increased primary productivity (Ghedini et al., 31 
2015). Although these increasingly complex experiments have highlighted the potential for species 32 
interactions to mediate the effects of climate change, our understanding of the effects on intact, functioning 33 
ecosystems is limited. Despite predictions for increased production and herbivory with warming and 34 
acidification, an experimental study of a more complex food web revealed an overall reduction in the energy 35 
flow to higher trophic levels and a shift towards detritus-based food webs (Ullah et al., 2018). 36 
 37 
Overall, intertidal rocky shores ecosystems are highly sensitive to ocean warming, acidification and extreme 38 
heat exposure during low tide emersion (high confidence). More field and experimental evidence shows that 39 
these ecosystems are at a moderate risk at present and this level is expected to rise to very high under the 40 
RCP8.5 scenario by the end of the century (see Section 5.3.7). Benthic species will continue to relocate in 41 
the intertidal zones and experience mass mortality events due to warming (high confidence). Interactive 42 
effects between acidification and warming will exacerbate the negative impacts on rocky shore communities, 43 
causing a shift towards a less diverse ecosystem in terms of species richness and complexity, increasingly 44 
dominated by macroalgae (high confidence). 45 
 46 
5.3.6 Kelp Forests 47 
 48 
Kelp forests are three-dimensional, highly productive coastal ecosystems with a reported global net primary 49 
production between 1.02 ‒1.96 GtC yr–1 (Krause-Jensen and Duarte, 2016).  They cover about 25% of the 50 
world’s coastline (Filbee-Dexter et al., 2016), mostly temperate and polar (Steneck et al., 2003). Canopy-51 
forming macroalgae provide habitat for very many associated invertebrates and fish communities 52 
(Pessarrodona et al., 2019). This assessment synthesizes new evidence since SR1.5 on climate risks and 53 
impacts, and their interactions with non-climatic drivers on ecosystem biodiversity, structure and 54 
functioning. 55 
 56 
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Observational and experimental evidence since SR1.5 (Hoegh-Guldberg et al., 2018) supports that report’s 1 
conclusions that kelp forests are already experiencing large-scale changes, and that critical thresholds occur 2 
for some forests at 1.5°C of global warming (high confidence). Due to their low capacity to relocate and high 3 
sensitivity to warming, kelp forests are projected to experience higher frequency of mass mortality events as 4 
the exposure to extreme temperature rises (very high confidence). Moreover, changes in ocean currents have 5 
facilitated the entry of tropical herbivorous fish into temperate kelp forests decreasing their distribution and 6 
abundance (medium confidence). More evidence from model projections in the 21st century supports this 7 
observed range contraction of kelp forests at the warm end of their distributional margins and expansion at 8 
the poleward end with the rate being faster for high emission scenarios (high confidence). 9 
 10 
New global estimates show that the abundance of kelp forests has decreased at a rate of ~2 % per year over 11 
the past half century (Wernberg et al., 2019), mainly due to ocean warming and marine heat waves (e.g. in 12 
Western Australia a mean loss of 43 % in area followed a marine heat weave in summer 2010/2011 13 
(Wernberg et al., 2016), Section 6.4.2.1), as well as from other human stressors (high confidence) (Filbee-14 
Dexter and Wernberg, 2018). At some localities, human-driven environmental changes such as coastal 15 
eutrophication and pollution is causing severe deterioration of kelp forests adding to the loss of these 16 
ecosystems from warming, storms and heat weaves (Andersen et al., 2013; Filbee-Dexter and Wernberg, 17 
2018).  18 
 19 
Two global datasets and one dataset covering European coastlines (Araujo et al., 2016; Krumhans et al., 20 
2016; Poloczanska et al., 2016) identify large local and regional variations in kelp abundance over the past 21 
half century with 38% of these ecoregions showing a decline, 27% an increase and 35% no change 22 
(Krumhans et al., 2016). These data reflect the high spatio-temporal variability and resilience of kelp forests 23 
(Reed et al., 2016; Wernberg et al., 2018). For example, a 34 year dataset of kelp canopy biomass along the 24 
California coastline does not yet show a significant response to global warming because this ecosystem 25 
responds to low frequency marine climate oscillations (Bell et al., 2018c). However, between 1950 ‒ 2010 26 
regional warming caused consistent negative responses in abundance, phenology, demography and 27 
calcification of macroalgae for the northeast Atlantic and southeast Indian Ocean (Poloczanska et al., 2016). 28 
Declines in kelp forest abundance attributed to climate change and not related to sea urchin overgrazing 29 
(which is a major driver of decline and regime shift; Ling et al. (2014)) have been documented since the 30 
1970s and evidence has increased within the last two decades (Filbee-Dexter and Wernberg, 2018). Despite 31 
a lack of data from some regions such as South America (Pérez-Matus et al., 2017), observational evidence 32 
since SR1.5 supports with very high confidence that warming is driving a contraction of kelp forests at low 33 
latitudes (Franco et al., 2018b; Casado-Amezúa et al., 2019; Pessarrodona et al., 2019) and expansion in 34 
polar regions (medium confidence) (Section 3.2.3.1.2) (Bartsch et al., 2016; Paar et al., 2016).  35 
 36 
In many areas worldwide where the distribution range of kelp has contracted due to climatic and non-37 
climatic drivers, it has been replaced by a less diverse and less complex turf-dominated ecosystem (Filbee-38 
Dexter and Wernberg, 2018) (high confidence). Kelp supports other  ecosystem components by providing 39 
food, substrate for spawning and habitat that mediate trophic interactions (O'Brien et al., 2018); its 40 
degradation therefore reduces species richness, biomass production and dependent flora and fauna species 41 
(Teagle and Smale, 2018; Pessarrodona et al., 2019). In the north-east Atlantic, the warm water species 42 
Laminaria ochroleuca is expanding poleward into regions previously dominated by the cold-water species L. 43 
hyperborea which is retreating at its southern edge. These two kelp species are similar in morphology, but 44 
the cold water L. hyperborea hosts sessile communities of algae and invertebrates 12 times more diverse and 45 
richer in biomass than the warm water kelp species (Teagle and Smale, 2018). Climate-driven shifts in the 46 
species composition also affect carbon cycling, because warm-temperate kelps produce larger pools of 47 
organic matter than cold-temperate species, and their detritus is degraded faster (Pessarrodona et al., 2019). 48 
 49 
New empirical eco-physiological studies in combination with field surveys support the evidence for climate 50 
change causing kelp forest degradation and range-shifts (Franco et al., 2018b; Wernberg et al., 2018). For 51 
example, interactive effects of ocean warming and acidification cause kelp degradation and disease-like 52 
symptoms, with detrimental effects on photosynthetic efficiency (Qiu et al., 2019). Enhanced herbivory due 53 
to warming and the establishment of herbivorous fish species in temperate kelp forest has been observed to 54 
enhance ecosystem degradation (Vergés et al., 2016). However, invader seaweed species driven by warming 55 
can create more complex trophic interactions, reducing the consumption by herbivorous gastropods 56 
(Miranda et al., 2019). Increased physical stress by storm events also alters the kelps community, affecting 57 
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the recruitment time of kelp species. The resulting dominance of younger stages favors species with a year-1 
round spore production or an opportunistic life strategy, reducing the kelp canopy (Pereira et al., 2017). 2 
 3 
Projections of future distribution of kelp species based on their physiological thresholds show major species-4 
specific range shifts under different emission scenarios. For example, under RCP2.6, laminaria and other 5 
canopy-forming seaweed species in the Northwest Atlantic are projected to show northward range shifts at 6 
their southern (warm) edge of ≤40 km, with some equatorial range expansion from 2050 to 2100. That 7 
northward range shift increases to 406 km under RCP8.5 (at 13–19 km per decade, including contractions of 8 
their warmer edges) (Wilson et al., 2019). Whilst no changes in species richness are projected under RCP2.6,  9 
more than 50% richness loss is projected under RCP8.5 in some areas (Wilson et al., 2019). Overall, model 10 
projections show that worldwide range contractions of kelps can be expected to continue at the warm end of 11 
distributional margins and range expansions at their poleward end (high confidence) ((Raybaud et al., 2013; 12 
Assis et al., 2016; Assis et al., 2018; Wilson et al., 2019). 13 
 14 
In summary, kelp forests have experienced large-scale habitat loss and degradation of ecosystem structure 15 
and functioning over the past half century, implying a moderate to high level of risk at present conditions of 16 
global warming (high confidence) (Section 5.3.7). The loss of kelp forests is followed by the colonization of 17 
turfs, which contributes to the reduction in habitat complexity, carbon storage and diversity (high 18 
confidence). Kelp ecosystems are expected to continue to decline in temperate regions driven by ocean 19 
warming and intensification of extreme climate events (high confidence). The level of risk for the ecosystem 20 
is projected to rise to very high under RCP8.5 scenario by 2100 (high confidence).  21 
 22 
5.3.7 Risk Assessment for Coastal Ecosystems  23 

This section synthesizes the assessment of climate impacts on coastal ecosystems’ biodiversity, structure and 24 
functioning and the levels of risk under contrasting future conditions of global warming. As described in 25 
Section 5.2.5, the format for Figure 5.16 matches that of Figure 19.4 of IPCC AR5 (Oppenheimer et al., 26 
2015) and Figure 3.20 of SR1.5 (Hoegh-Guldberg et al., 2018), indicating the levels of additional risk as 27 
colours (white, yellow, red and purple). The elements or burning embers for coastal ecosystems (Figure 28 
5.16) indicate how risks increase with ocean warming, acidification, deoxygenation, sea level rise and 29 
extreme events with a comparison between present day conditions (2000s) and future conditions by the year 30 
2100 under low (RCP2.6) and high (RCP8.5) CO2 emission scenarios. The transition between the levels of 31 
risk for each type of coastal ecosystem is estimated from key evidence assessed in Sections 5.3.1 to 5.3.6. 32 
The embers are based on sea surface temperature which differs by 0.2 °C from global atmospheric 33 
temperature (Karl et al., 2015). The transition-values may have an error of ±0.3 °C depending on the 34 
consensus of expert judgment. The assessed confidence in assigning the levels of risk at present day and 35 
future scenarios are low, medium, high, and very high levels of confidence. A detailed account of the 36 
procedures involved in developing the ember for each type of coastal ecosystem is given in the 37 
Supplementary Material (SM5.3). This Supplementary Material includes the description of climate hazards, 38 
sensitivity of key biotic and abiotic components, natural adaptive capacity, and observed impacts and 39 
projected risks. The burning embers for seagrass meadows, warm water corals and mangrove forests are in 40 
agreement with the conclusions in SR1.5 (Hoegh-Guldberg et al., 2018). The more recent literature assessed 41 
here strengthens the overall confidence in the assignment of transition and the level of risk for each 42 
ecosystem.  43 

Detection and attribution studies show that climate change impacts began over the past 50 years in coastal 44 
ecosystems, indicating a transition from undetectable risk (white areas in Figure 5.16) to moderate risk 45 
below recent temperatures (high confidence). This transition occurs at lower global levels of warming for 46 
coral reefs (0.2‒0.4°C) (high confidence), seagrass meadows (0.5‒0.8°C) (very high confidence) and kelp 47 
forests (0.6‒0.8°C) (high confidence), with coral reefs already at high risk (0.4‒0.6°C) for the present day 48 
(very high confidence). Global common responses include large-scale coral bleaching events (Section 5.3.4) 49 
and contraction of seagrass meadows (Section 5.3.2) and kelp forests (Section 5.3.6) at low-latitudes (high 50 
confidence), in response to warming and marine heat waves. Degraded coral reefs and kelp forests have 51 
shifted to algal and turf-dominated ecosystem at several regions worldwide, causing loss of habitat 52 
complexity and biodiversity. 53 
 54 
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The transition from undetectable to moderate risk in saltmarshes (Section 5.3.2) and rocky shores (Section 1 
5.3.5) takes place between 0.7‒1.3°C of global warming (medium/high confidence), and between 0.9‒1.8°C 2 
(medium confidence) in sandy beaches (Section 5.3.3), estuaries (Section 5.3.1) and mangrove forests 3 
(Section 5.3.2) (Figure 5.16). In all these coastal ecosystems, the detection and attribution of changes in 4 
biodiversity, structure and functioning are not as robust as in coral, seagrass and kelp ecosystems that have 5 
been extensively studied over the past decades and are highly sensitive to extreme climate events. Estuaries 6 
and sandy beaches are highly dynamic in terms of hydrological and geomorphological processes, giving 7 
them more natural adaptive capacity to climate impacts. In these systems, sediment relocation, soil accretion 8 
and landward expansion of vegetation may mitigate against flooding and habitat loss in the context of sea 9 
level rise and extreme climate-driven erosion. Common global responses observed since 1970 include 10 
poleward expansion of mangrove forests due to warming; transformation of saltmarshes into mudflats; shifts 11 
in species composition in response to flooding and salinization; upstream migration of estuarine biota; and 12 
redistribution of macrobenthic communities in sandy beaches. Calcified organisms in intertidal rocky shores 13 
are highly sensitive to ocean warming and acidification, marine heat waves and heat exposure during low 14 
tide, with observed mass mortality events and reduced calcification. 15 
 16 
In all coastal ecosystems, multiple climate hazards will emerge from historical variability in the 21st century 17 
under RCP8.5 (Box 5.1), while the time of emergence will be later and with less climate hazard under 18 
RCP2.6. Non-climatic human impacts such as eutrophication add to, and in some cases, exacerbate these 19 
large-scale slow climate drivers beyond biological thresholds at local scale (e.g., deoxygenation).  20 
 21 
All coastal ecosystems will experience high to very high risk under RCP8.5 by the end of the 21st century. In 22 
particular, coral reefs, seagrass meadows and kelp forests will face high to very high risk even at 1.5°C 23 
above pre-industrial temperature (high confidence). The ecosystems expected to be at very high risk under 24 
the high emission scenario are coral reefs (transition from high to very high risk 0.6‒1.2°C) (very high 25 
confidence), seagrasses meadows (2.2‒3.0°C) (high confidence), kelp forests (2.5‒2.7°C) (high confidence) 26 
and rocky shores (2.9‒3.4°C) (medium confidence). These ecosystems have low to moderate adaptive 27 
capacity, as they are highly sensitive to ocean warming, marine heat waves and acidification. For example, 28 
kelp forests at low-latitudes and temperate seagrass meadows with endemic species will continue to retreat 29 
with more frequent extreme temperatures, and their low dispersal ability will elevate the risk of local 30 
extinction. Biogenic shallow reefs with calcified organisms (e.g., corals, mussels, calcified algae) are 31 
particularly sensitive to ocean acidification and compound effects with rising temperatures, deoxygenation, 32 
sea level rise and increasing extreme events, making these ecosystems highly vulnerable (with low 33 
resilience) to future emission scenarios. Furthermore, almost all coral reefs will greatly decline from their 34 
current levels, even if global warming remains below 2°C (very high confidence).  Any coral reefs that do 35 
survive to the end of the century will not be the same because of irreversible changes in habitat structure and 36 
functioning, including species extinctions and food web disruptions; these changes are already taking place 37 
(e.g. the Caribbean reefs).  The transition to new ecosystem states driven by unpredictable pulses of 38 
disturbance and progressive climate hazards will have negative impacts on ecosystem services (Section 5.4). 39 
 40 
The ecosystems at moderate to high risk under future emission scenarios (Figure 5.16) are mangrove forests 41 
(transition from moderate to high risk at 2.5‒2.7°C of global warming), estuaries and sandy beaches (2.3‒42 
3.0°C) and saltmarshes (transition from moderate to high risk at 1.8‒2.7°C and from high to very high risk at 43 
3.0‒3.4°C) (medium confidence). Mangrove forests and saltmarshes can initially cope with sea level rise by 44 
plant biomass accumulation, soil accretion and sediment relocation, but the evidence shows they are unlikely 45 
to withstand the sea level rise projected under RCP8.5. Moreover, pervasive coastal squeeze and human-46 
driven habitat deterioration will reduce the natural capacity of these ecosystems to adapt to climate impacts 47 
(high confidence). Projected warming and sea level rise by the end of the century will continue to expand 48 
salinization and hypoxia in estuaries with high risk of impacts for benthic and pelagic biota. These impacts 49 
will be more pronounced under RCP8.5 in more vulnerable eutrophic, shallow and microtidal estuaries in 50 
temperate and high latitudes. Erosion in sandy beach ecosystems will continue with global warming, rising 51 
sea level and more intense and frequent storm surges and marine heat waves. The risk of losing habitats for  52 
flora and fauna is expected to rise to high level under the high emission scenario by the end of the 21st 53 
century (medium confidence, Figure 5.16). By contrast, the risk of impacts is expected to be only slightly 54 
higher than present for a low emission scenario than today (medium confidence, Figure 5.16). 55 
 56 
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All types of ecosystems that have been assessed in the open ocean (Sections 5.2.3 and 5.2.4)  and coastal 1 
areas (Sections 5.3.1 to 5.3.6) show increased risk under both the low and the high emission scenarios 2 
(RCP2.6 and RCP8.5) compared with the present level of change (Figure 5.16). In all assessed cases with all 3 
of the factors considered (climate drivers and physiological understanding), RCP2.6 has a lower level of risk 4 
than RCP8.5 (very high confidence).  5 
 6 
 7 

 8 
Figure 5.16: Risk scenarios for open ocean (upper panel) and coastal (lower panel) ecosystems based on observed and 9 
projected climate impacts. ‘Present day’ corresponds to the 2000s, whereas the different greenhouse emissions 10 
scenarios: RCP2.6 and RCP8.5 correspond to year 2100. Multiple climatic hazards are considered, including ocean 11 
warming, deoxygenation, acidification, changes in nutrient, particulate organic carbon flux and sea level rise (see 12 
sections 5.2 and 5.3). The projected changes in sea surface temperature (SST) from an ensemble of general circulation 13 
models (left panels) indicates the level of ocean changes under RCP2.6 and RCP8.5 (see Cross Chapter Box 1 Table 14 
CB1 for the projected global average changes in average air temperature, SST and other selected ocean variables). 15 
Global average impacts/risks are represented. Regional variations of risks/impacts are described in Section 5.2.5, 5.3.7 16 
and the Supplementary Material (SM5.2 and SM5.5). Impact/risk levels do not consider human risk reduction strategies 17 
such as societal adaptation, or future changes in non-climatic hazards. The grey vertical bars indicate the transition 18 
between the levels of risks, with their confidence level based on expert judgment. Note: The figure depicts climate 19 
change impacts and risks on warm water corals taken from SR1.5, based on global models. Observed impacts on coral 20 
reefs ecosystems outlined in Section 5.3.4 and Box 5.5 reveal a more complex situation that may result in regional 21 
differences in confidence levels.  22 
 23 
 24 
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5.4 Changing Marine Ecosystem Services and Human Wellbeing  1 
 2 
Ecosystem services are the environmental processes and functions that have monetary or intrinsic value to 3 
human society; they render benefits to people and support human wellbeing (Tallis et al., 2010; Costanza et 4 
al., 2014). Marine ecosystem services are generated throughout the ocean, from shallow water to the deep 5 
sea (Armstrong et al., 2012; Thurber et al., 2014). Although all ecosystem services are interconnected 6 
(Leadley et al., 2014), they can be broadly divided into provisioning services, regulating services, supporting 7 
services and cultural services (Sandifer and Sutton-Grier, 2014), as considered below (Section 5.4.1) 8 
together with their implications for human wellbeing (Section 5.4.2). Ecosystem services have also been 9 
described as ‘nature’s contribution to people’ (Díaz et al., 2018).  10 
 11 
5.4.1 Changes in Key Ecosystem Services 12 
 13 
WGII AR5 concluded that climate change increases the risk of impacts on the goods and services derived 14 
from marine biodiversity and ecosystems (Pörtner et al., 2014). SR1.5 concluded that current ecosystem 15 
services from the ocean are expected to be reduced at 1.5°C of global warming, with losses being even 16 
greater at 2°C of global warming. These reductions in services are driven by decreasing ocean productivity, 17 
biogeographic shifts, damage to ecosystems, loss of fisheries productivity and changes to ocean chemistry 18 
(high confidence) (Hoegh-Guldberg et al., 2018). Building on these previous assessments, this section 19 
assesses new evidence on observed impacts and future risk of climate change on ecosystem goods and 20 
services from the open ocean (Section 5.2) and coastal ecosystems (Section 5.3). Chapter 3 assesses 21 
ecosystem services in polar oceans. 22 
 23 
5.4.1.1 Provisioning Services 24 
 25 
Fisheries are an important provisioning service from marine ecosystems, providing food, nutrition, income 26 
and livelihoods for many millions of people around the world (FAO, 2018b). Globally, total fish catches 27 
amount to 80‒105 MT annually in the 2000s (FAO, 2016; Pauly and Zeller, 2016; FAO, 2018a), directly 28 
generating over $80 billion USD of revenue (Sumaila et al., 2015).  Most global fisheries are considered to 29 
be fully- to over-exploited (FAO, 2018b). Over 80% of the global fish catch is estimated to be from coastal 30 
and shelf seas with less than 20% from the high seas (Sumaila et al., 2015) (Figure 5.17). 31 
 32 
 33 

 34 
Figure 5.17: Global distribution of fish catches (average 2010-2014, based on (Pauly and Zeller, 2016)), coastal 35 
habitats including seagrasses (UNEP-WCMC and FT, 2017) saltmarshes (Mcowen et al., 2017), mangroves (Spalding, 36 
2010), coral reefs (UNEP-WCMC and WRI, 2010) and an index (called Marine Focus Factor) for the inclusion of the 37 
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ocean in the Nationally Determined Contributions (NDCs) published by each country (Gallo et al., 2017). The higher 1 
the Marine Focus Factor, the more frequent use of ocean in the country’s NDCs.  2 
 3 
 4 

 5 
Figure 5.18: Historical and projected maximum sustainable yield (MSY) and maximum fish catch potential by region. 6 
Historical trends in MSY is based on time-series of fish stock assessment data (Free et al., 2019) represented as circles 7 
in panels (a) and (b). The size of the circle represents the number of assessed fish stocks while the number in the circle 8 
represents the estimated percent change in MSY since the 1930s. Projected changes in maximum catch potential by 9 
2050 (average between 2041–2060) relative to 2000 (1991–2010) under (a) RCP2.6 and (b) RCP8.5 scenarios from two 10 
models: Dynamic Bioclimate Envelope Model and dynamic size-spectrum foodweb model with the color in each ocean 11 
region representing the projected level of change and the shading representing where both models agree in the direction 12 
of change (Cheung et al., 2018a). Also presented is the scaling between projected global atmospheric warming (relative 13 
to 1950-1961) and (c) changes in maximum fish catch potential and (d) species turnover using the Dynamic Bioclimate 14 
Envelope Model and outputs from three CMIP5 ESMs (Cheung and Pauly, 2016). 15 
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 1 
 2 
Observed fish catches have been related to net primary production (NPP) and water temperature, with the 3 
direction and magnitude of the relationship varying between regions and fish stocks (Cheung et al., 2008; 4 
McOwen et al., 2015; Britten et al., 2016; Stock et al., 2017). The maximum catch potential of large marine 5 
ecosystems generally increases with their (NPP) and their energy transfer efficiency, but the relative 6 
importance of total NPP to fisheries production is lower in nutrient-poor systems with microbially-7 
dominated foodwebs (Section 5.2) and empirical relationships between NPP and fisheries production over-8 
estimate potential catches in polar regions (Stock et al., 2017) (Chapter 3). Here, potential fish catch or 9 
maximum catch potential refers to the potential of the fish stocks to provide long-term fish catches; it is 10 
considered a proxy of maximum sustainable yield. However, the actual catches realized by fisheries will 11 
depend strongly on past and present fishing effort and the exploitation status of the resources (Cheung et al., 12 
2018a; Barange, 2019). Observed variations between regions suggest that changes in temperature and NPP 13 
in the past (Section 5.2.2, 5.2.3) may have also affected maximum catch potential (medium evidence, high 14 
agreement, medium confidence). 15 
 16 
Changes in fish catches from 1998 to 2006 in 47 large marine ecosystems around the world were found to be 17 
significantly related to: changes in estimated cholorophyll a (a proxy for phytoplankton biomass) in 18 of 18 
these ecosystems (mostly tropical and eastern boundary upwelling systems); changes in sea surface 19 
temperature in 12 of these ecosystems (mostly mid-latitude); and changes in fishing intensity in 16 of these 20 
ecosystems (widely spread) (McOwen et al., 2015). Analysis of population data since the 1950s for 262 fish 21 
stocks across 39 large marine ecosystems and the high seas suggest that average recruitment to the stocks 22 
has declined by around 3% of the historical maximum per decade with variations between regions and stocks 23 
(Britten et al., 2016). The declines (69% of the studied stocks, 31 of the 39 assessed large marine 24 
ecosystems) are significantly related to estimated chlorophyll a concentration and the intensity of fishing, 25 
with the North Atlantic showing the steepest declines (Britten et al., 2016).  In addition, recent meta-analysis 26 
of population data from 235 fish stocks worldwide from 1930 to 2010 suggest that the maximum catch 27 
potential from these populations decreased by 4.1% (95% confidence span 9.0% decline to 0.3% increase) 28 
during this period with variations between fish stocks and regions (Free et al., 2019). Specifically, 29 
temperature is a significant factor explaining changes in catch potential of 12% of the fish stocks, with East 30 
Asian regions having the largest stock declines related to warming. In intermediate latitudes across the 31 
Atlantic, Indian and Pacific Oceans, catches of tropical tunas, including skipjack and yellowfin tuna, are 32 
significantly and positively related to increases in sea surface temperature, although the overall catches 33 
across latitudinal zones do not show significant change (Monllor-Hurtado et al., 2017). Observational 34 
evidence from spatial and temporal linkages between catches and oceanographic variables therefore supports 35 
the conclusions from WGII AR5 and SR1.5 that potential fisheries catches have already been impacted by 36 
the effects of warming and changing primary production on growth, reproduction and survival of fish stocks 37 
(robust evidence, high agreement, high confidence). 38 
 39 
There are substantial variations in the direction of changes and the attribution of climatic drivers between 40 
regions and fish stocks, and the availability of datasets is biased towards mid-latitude areas and epipelagic 41 
and coastal ecosystems.  As a result, quantitative attribution of climate impacts on the productivity of 42 
specific fish stocks has low confidence. Changes in catch potential for fish stocks and regions worldwide that 43 
were considered overfished were most sensitive to warming (Essington et al., 2015; Britten et al., 2016; Free 44 
et al., 2019). This suggest that climatic drivers and overfishing have interacted synergistically in impacting 45 
some fish stocks and their catches (high confidence). In addition, analysis of historical catch records since 46 
AR5 show further warming-related changes in species composition, with an increased dominance of warm-47 
water species in coastal and shelf seas since the 1970s (Cheung et al., 2013; Keskin and Pauly, 2014; 48 
Tsikliras et al., 2014; Maharaj et al., 2018). Many marine ecosystems worldwide have shown an increased 49 
dominance of warm-water species following increases in sea water temperature (5.2.3, 5.3), with parallel 50 
changes in the species composition of fish catches since the 1970s in many of the studied shelf seas (high 51 
confidence). 52 
 53 
Based on CMIP5 ESM projections of changes in temperature, net primary production, oxygen, salinity and 54 
sea ice extent, two marine ecosystem and fisheries models project a decrease in maximum catch potential 55 
under RCP 2.6 of 2.8–8.7% by 2050 and 2.8–9.1% by 2095 relative to 2000 (FAO, 2018a). Under RCP 8.5, 56 
the projected decrease was larger: 7.0–11.8% by 2050 and 16.2–25.5% by 2095 relative to 2000 (Figure 57 
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5.18). The trends agree with the projected changes in total marine animal biomass for the 21st century 1 
(Blanchard et al., 2017; Lotze et al., 2018) (Section 5.2.3). A single fisheries model with atmospheric 2 
warming projected a potential catch loss of 3.4 million tonnes and decreases of 6.4% of catch potential of the 3 
exploited species per degree Celsius atmospheric warming relative to 1951–1960 level (Cheung et al., 4 
2016b) (Figure 5.18). Interactions between temperature, net primary production and transfer efficiency of 5 
energy across the foodweb are projected to amplify these trends, with projected decreases greater than 50% 6 
in some regions by 2100 under high emissions scenarios (Stock et al., 2017). Thus, there is high model 7 
agreement that ocean warming and changes in net primary production in the 21st century will reduce the 8 
global maximum catch potential, particularly in tropical oceans (high confidence) and alter the distribution 9 
and composition of exploited species (high confidence). The projected risk of these fisheries impacts 10 
increases with increasing greenhouse gas emissions (high confidence). However, given the uncertainties of 11 
projected changes in ocean conditions from ESMs (Section 5.2.2), and that most global scale fisheries 12 
models are largely driven by changes in temperature and primary production while other changes in ocean 13 
biogeochemical changes are not explicitly considered (Tittensor et al., 2018), the quantitative magnitude of 14 
the projected changes in maximum catch potential is considered to have medium and low confidence at 15 
global and regional scales, respectively. Given the significant interactions between catch potential and level 16 
of fisheries exploitation, the realized catches in the 21st century would depend on future scenarios of fishing 17 
and fisheries governance (Section 5.4.2, 5.5). As a result, projections of realized catches have low 18 
confidence. 19 
 20 
Tropical oceans are projected to experience much larger impacts (three times or more decrease in catch 21 
potential) than the global average, particularly the western central Pacific Ocean, eastern central Atlantic 22 
Ocean and the western Indian Ocean, by the end of the 21st century under RCP 8.5 (Blanchard et al., 2017). 23 
For example, around the exclusive economic zones of the Pacific Islands states, more than 50% of exploited 24 
fishes and invertebrates are projected to become locally-extinct in many regions by 2100 relative to the 25 
recent past under RCP 8.5 (Asch et al., 2017). These factors cause 74% of the area to experience a projected 26 
loss in catch potential of more than 50%. Under RCP 2.6, the area of large projected catch loss is projected 27 
to be halved (Asch et al., 2017). However, while temperate commercially-important tunas species such as 28 
albacore, Atlantic and southern bluefin) are projected to shift poleward and decrease in abundance in the 29 
tropics, some tropical species such as skipjack tuna are projected to remain abundant, but with changes in 30 
distribution patterns in low-latitude regions by the mid-21st century, with some models projecting subsequent 31 
decrease under RCP8.5 (Lehodey et al., 2013; Dueri et al., 2014; Erauskin-Extramiana et al., 2019). Recent 32 
evidence therefore supports the conclusion from previous assessments  (Pörtner et al., 2014; Hoegh-33 
Guldberg et al., 2018) that low latitude fish catch potential are projected to have a high risk of climate 34 
impacts, which will be exacerbated by higher greenhouse gas emissions (medium evidence, high agreement, 35 
high confidence). Tropical fish catch potential of some species resilient to the changing environment may 36 
have lower climate risk in the near-term although their risk increases substantially further into the 21st 37 
century under RCP8.5 (medium confidence). In contrast, the catch potential in the Arctic is projected to 38 
increase, although with high inter-model variability (medium evidence, low agreement, low confidence) 39 
(Cheung and Pauly, 2016; Blanchard et al., 2017) (Chapter 3).  40 
 41 
Although demersal fisheries in the deep ocean represent a small proportion of global fisheries catches, they 42 
are economically valuable for some countries, and there is increasing commercial interest in mesopelagic 43 
(deep pelagic ocean) fisheries (St. John et al., 2016). Commercially-exploited fish and shellfish from deep 44 
sea ecosystems will be exposed to climate risks from physical and chemical changes in ocean conditions 45 
including warming, decreased oxygen, reduced aragonite saturation state, and decreased supply of 46 
particulate organic matter from the upper ocean (Section 5.2.3, 5.2.4) (FAO, 2019). These biogeochemical 47 
changes may reduce the growth, reproduction and survivorship of deep-ocean fish stocks, which will alter 48 
their distributions, in similar ways to those in the surface ocean, impacting their fish catch potential (FAO, 49 
2019). For example, in the eastern Pacific near-bottom oxygen concentration is positively correlated with 50 
biomass of commercially harvested species (Keller et al., 2010) and catch per unit effort (Banse, 1968; 51 
Rosenberg et al., 1983; Keller et al., 2015); some commercially harvested species only appear during 52 
oxygenation events associated with El Niño (Arntz et al., 2006). In the mesopelagic zone, expansion of the 53 
oxygen minimum zone (OMZ) results in habitat compression that can increase catchability of fish stocks 54 
such as tunas (Prince et al., 2010; Stramma et al., 2011). Also, as OMZ expands, the potential may exist for 55 
increased availability and harvest of hypoxia-tolerant species such as Humboldt squid (Dosidicus gigas), 56 
thornyheads (Sebastolobus spp.) or dover sole (Microstomus pacificus) (Gilly et al., 2013; Gallo and Levin, 57 
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2016). However, any expansion of the OMZ will interact with other climatic hazards such as warming, 1 
which then adds to the overall risk of impacts on fish stocks and their catches (Breitburg et al., 2018). 2 
Overall, the abundance of fisheries resources and potential catches from the deep sea will be at high risk of 3 
impacts in the 21st century under RCP 8.5 (low confidence), with reduced risk under RCP 2.6 (medium 4 
confidence).  5 
 6 
In addition to capture fisheries, mariculture (marine aquaculture) is also an important marine ecosystem 7 
provisioning service, contributing about 27.7 million tonnes of seafood in 2016 (FAO, 2018b). Recent 8 
projections of climate change impacts on mariculture, based on thermal tolerance and the effects of changing 9 
temperature, primary production and ocean acidification, suggest an overall decline in mariculture potential 10 
by 2100 under RCP 8.5 with large regional variations (Froehlich et al., 2018). Modelling analyses for farmed 11 
Atlantic salmon, cobia and seabream also suggest that climate change would reduce their growth potential in 12 
ocean areas where temperature is projected to increase to levels outside the thermal tolerance ranges of these 13 
species (Klinger et al., 2017). This decrease in growth could therefore translate into a decrease in the general 14 
productivity of the sector (limited evidence, low confidence); however, new potential areas and the use of 15 
more climate-resilient strains or species for mariculture may emerge that could reduce the risk of impacts on 16 
potential mariculture production (limited evidence, low confidence).  17 
 18 
 19 
[START OF BOX 5.3 HERE] 20 
 21 
Box 5.3: Responses of Coupled Human-Natural Eastern Boundary Upwelling Systems to Climate 22 

Change 23 
 24 
Eastern Boundary Upwelling Systems (EBUS) are among the world’s most productive ocean ecosystems 25 
(Kämpf and Chapman, 2016).  They directly support livelihoods in coastal communities and provide many 26 
wider benefits to human society (García-Reyes et al., 2015; Levin and Le Bris, 2015). The high productivity 27 
of EBUS is supported by the upwelling of cold and nutrient-rich waters, itself driven by equator-ward 28 
alongshore winds that cause the displacement of surface waters offshore and their replacement by deeper 29 
waters. Total annual fish catches from the four main EBUS (California Current, Humboldt Current, Canary 30 
Current and Benguela Current) were 16-24 tonnes per year in the 2000s, providing around 17% of the global 31 
catch (Pauly and Zeller, 2016). These catches are consumed locally, as well as being processed and exported 32 
as seafood, fish meals and oils to support aquaculture and livestock production. Upwelling of cold deeper 33 
water also increases the condensation of humid air in coastal areas, benefitting coastal vegetation and 34 
agriculture and suppressing forest fires (Black et al., 2014). The high concentration of marine mammals 35 
attracted by the productive upwelling ecosystem support lucrative eco-tourism, such as whale-watching in 36 
the California Current (Kämpf and Chapman, 2016). The total economic value of the goods and services 37 
provided by the Humboldt Current alone is estimated to be $19.45 billion USD per year (Gutiérrez et al.). 38 
Thus, although their area is small compared to other pelagic ecosystems, climate change impacts on EBUS 39 
will have disproportionately large consequences for human society (very high confidence). 40 
 41 
The coupled human-natural EBUS are vulnerable to the multiple effects of climate change with large 42 
regional variation (Blasiak et al., 2017). Observations and modelling analyses suggest that winds have 43 
intensified in most EBUS (except the Canary Current) during the last 60 years, with several hypotheses 44 
proposed to explain the mechanisms (Sydeman et al., 2014; García-Reyes et al., 2015; Rykaczewski et al., 45 
2015; Varela et al., 2015). ESMs predict reduction of wind and upwelling intensity in EBUS at low latitudes 46 
and enhancement at high latitudes for RCP8.5, with an overall reduction in either upwelling intensity or 47 
extension (Belmadani et al., 2014; Rykaczewski et al., 2015; Sousa et al., 2017). However, coastal warming 48 
and wind intensification may lead to variable countervailing responses to upwelling intensification at local 49 
scales (García-Reyes et al., 2015; Wang et al., 2015a; Oyarzún and Brierley, 2018; Xiu et al., 2018). Local 50 
winds and mesoscale oceanographic features (not resolved in most global ESMs) are thought to have a 51 
greater impact on regional productivity than large-scale wind patterns (Renault et al., 2016; Xiu et al., 2018).  52 
 53 
There is conflicting evidence in SST trends in recent decades, even among the same EBUS, due to varying 54 
spatio-temporal resolution of SST data and the superimposed effects of interannual to multi-decadal 55 
variability (García-Reyes et al., 2015). Some EBUS are close to important thresholds in terms of 56 
oxygenation and ocean acidification (Gruber et al., 2012; Franco et al., 2018a; Levin, 2018). Large-scale 57 
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coastal and offshore data for the California Current indicate that there have been decadal decreases in pH  1 
and dissolved oxygen affecting organisms and ecosystems (Alin et al., 2012; Breitburg et al., 2018; Levin, 2 
2018). Model projections for 2100 suggest strong effects of deoxygenation and reduced pH in the Humboldt 3 
Current and the California Current under RCP 8.5 (Gruber et al., 2012; García-Reyes et al., 2015), affecting 4 
seafloor habitats and invertebrate fisheries (Marshall et al., 2017; Hodgson et al., 2018). For instance, the 5 
Humboldt Current is projected to experience widespread aragonite undersaturation within a few decades 6 
(Franco et al., 2018a), with strong impacts on calcified organisms. Such ocean acidification could be 7 
worsened by synergistic effects of ocean warming and deoxygenation (Lachkar, 2014).  8 
 9 
The climate change impacts on ecosystem services from EBUS vary according to the biophysical and the 10 
socio-economic characteristics of the upwelling systems (García-Reyes et al., 2015) and supplementary 11 
material (SM5.4). The fisheries are not only highly sensitive to upwelling conditions but also by fishing 12 
effects on the exploited populations. For example, the anchoveta population collapsed in the Humboldt 13 
Current after an El Niño in the 1970s (Gutiérrez et al., 2017). Because small pelagic fisheries from upwelling 14 
regions are the main source of the global fishmeal market, decreases in their catches increase the 15 
international fishmeal price, increasing the price of other food commodities (like aquaculture-derived fish) 16 
that rely on fishmeal for their production (Merino et al., 2010; Carlson et al., 2017).  17 
 18 
Any decrease in fish catches in EBUS will affect regional food security. For example, coastal fisheries in the 19 
Canary Current are an important source of micronutrients to nearby West African countries (Golden et al., 20 
2016) that have particularly high susceptibility to climate change impacts and low adaptive capacity, because 21 
of their strong dependence on the fisheries resources, a rapidly growing population and regional conflicts. 22 
Decreased small pelagic fish stocks also increase the mortality and reduce reproduction of larger vertebrates 23 
such as hake (Guevara-Carrasco and Lleonart, 2008), whales and seabirds (Essington et al., 2015). Impacts 24 
on these organisms affect other non-fishing sectors that are dependent on EBUS, such as whale-watching in 25 
the California Current, and generally degrade their intrinsic value. 26 
 27 
Overall, EBUS have been changing with intensification of winds that drives the upwelling, leading to 28 
changes in water temperature and other ocean biogeochemistry (medium confidence). Three out of the four 29 
major EBUS have shown upwelling intensification in the past 60 years, with strongly increasing trends in 30 
ocean acidification and deoxygenation in the two Pacific EBUS in the last few decades (high confidence). 31 
The expanding oxygen minimum zone in the California EBUS has altered ecosystem structure and and 32 
fisheries catches (medium confidence). However, the direction and magnitude of observed changes vary 33 
among and within EBUS, with uncertainties regarding the driving mechanisms behind this variability. 34 
Moreover, the high natural variability of EBUS and their insufficient representation by global ESMs gives 35 
low confidence that these observed changes can be attributed to anthropogenic causes, which are predicted to 36 
emerge primarily in the second half of the 21st century (medium confidence) (Brady et al., 2017). Given the 37 
high sensitivity of the coupled human-natural EBUS to oceanographic changes, the future sustainable 38 
delivery of key ecosystem services from EBUS is at risk under climate change; those that are most at risk in 39 
the 21st century include fisheries (high confidence), aquaculture (medium confidence), coastal tourism (low 40 
confidence) and climate regulation (low confidence). For vulnerable human communities with a strong 41 
dependence on EBUS services and low adaptive capacity, such as those along the Canary Current system 42 
(Belhabib et al., 2016; Blasiak et al., 2017), unmitigated climate change effects on EBUS (complicated by 43 
other non-climatic stresses such as social unrest) have a high risk of altering their development pathways 44 
(high confidence).  45 
 46 
[END OF BOX 5.3 HERE] 47 
 48 
 49 
5.4.1.2 Regulating Services 50 
 51 
Regulating services are those ecosystem functions, like climate regulation, that allow the environment to be 52 
in conditions conducive to human wellbeing and development (Costanza et al., 2017). WGII AR5 concluded 53 
that climate change will alter biological, chemical and physical processes in the ocean that provide feedback 54 
on the climate system through their effects on atmospheric composition (high confidence) (Pörtner et al., 55 
2014). Sections 5.2 and 5.3 consider new evidence since AR5 regarding climate impacts on marine 56 
ecosystems and associated risks; their implications for regulating services are examined here. 57 
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 1 
A major regulating service provided by marine ecosystems is carbon sequestration. The observed net carbon 2 
uptake from the atmosphere to the global ocean varied between 1.0–2.5 GtC yr–1 between 2000 and 2012, 3 
with a very likely uptake of 30-38 Gt of anthropogenic C over the period 1994–2007 (Section 5.2.2.3, 4 
Gruber et al., 2019). Estimates of carbon sequestered in the deep ocean range from  0.4 GtC yr–1 (Rogers, 5 
2015) to 1.6 GtC yr–1 (Armstrong et al., 2010) with the annual burial rate (permanent removal to sediment) 6 
around 0.2 GtC yr–1 (Armstrong et al., 2010).  7 
 8 
Deep-sea ecosystems also contribute to the removal of methane released from the beneath the seabed 9 
through microbial anaerobic oxidation and the sequestration of methane-derived carbon in carbonate 10 
(Marlow et al., 2014; Thurber et al., 2014). In coastal ecosystems, carbon is biologically sequestered in 11 
coastal sediments, commonly known as ‘blue carbon’ (Section 5.5.1). Tidal wetlands play disproportionately 12 
important roles in coastal carbon budgets, forming critical linkages between rivers, estuaries, and oceans 13 
(Najjar et al., 2018). Mean carbon storage in the top meter of soil is estimated at 280 MgC ha–1 for 14 
mangroves, 250 MgC ha–1 for salt marshes, and 140 MgC ha–1 for seagrass meadows, with long-term rates of 15 
carbon accumulation in sediments of salt marshes, mangroves, and seagrasses ranging from 18 to 1713 gC 16 
m–2 yr–1 (Pendleton et al., 2012).  These values are, however, highly variable (Section 5.5.1.2). The large 17 
space and time scales mean that there is a long time-lag between seafloor change and detectable changes in 18 
carbon sequestration. These large lags, in turn render assessment of climate impacts on regulatory services in 19 
the deep ocean having low confidence.   20 
 21 
Under RCP 2.6, CMIP5 ESMs project a reduced net ocean carbon uptake by 2080, to around 1.0 GtC yr–1.  22 
Under RCP 8.5, net ocean carbon uptake increases to a net sink of around 5.5 GtC yr–1, but with variability 23 
between models (Lovenduski et al., 2016). Although the open ocean biological pump contributes only part of 24 
current carbon uptake (Boyd et al. 2019), the downward carbon flux at 1000 m is projected to decrease by 9-25 
16% globally under RCP 8.5 by 2100. A projected decrease in carbon sequestration in the North Atlantic by 26 
27-41% has been estimated to represent a loss of $170‒3000 billion USD in abatement (mitigation) costs and 27 
$23–401 billion USD in social costs (Barange et al., 2017). Others have highlighted the declining value of 28 
open ocean carbon sequestration in the eastern tropical Pacific (Martin et al., 2016b) and the Mediterranean 29 
(Melaku Canu et al., 2015). The open ocean therefore seems very likely to reduce its carbon uptake by the 30 
end of the 21st century, with the reduction very likely being greater under RCP 8.5 than for RCP 2.6; 31 
however, specific projections only have medium confidence due to uncertainties associated with the structure 32 
of the models and with the future behaviour of the biological carbon pump (Section 5.2.2.3.1, 5.2.3).  33 
 34 
Coastal blue carbon ecosystems provide climate regulatory services through their carbon removal and 35 
storage (Section 5.3.3). The current rates of loss of blue carbon ecosystems, partly due to climate change 36 
(Section 5.3) results in release of their stored CO2 to the atmosphere (Section 5.5.1.2.2).  However, increases 37 
in carbon sequestration are also possible; for example, temperature-driven displacement of saltmarsh plants 38 
by mangrove trees may increase carbon uptake in coastal wetlands (Megonigal et al., 2016). Different rates 39 
of sea level rise may have opposite effects, with potential increases in net carbon uptake for slowly rising sea 40 
levels (assuming inland habitat migration is possible), but net carbon release for more rapid sea level rise 41 
(Figure 5.19). Such contrasting feedbacks between scenarios arise from the different responses of plant 42 
biomass, sediment accretion and inundation that control the overall response of vegetated coastal ecosystems 43 
to rising sea level (Gonneea et al., 2019). Thus, under high emission scenarios, sea level rise and warming 44 
are expected to reduce carbon sequestration by vegetated coastal ecosystems (medium confidence); however, 45 
under conditions of slow sea level rise, there may be net increase in carbon uptake by some coastal wetlands 46 
(medium confidence).   47 
 48 
 49 
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 1 
Figure 5.19: Biogeomorphic climate feedbacks involving plant biomass, sediment accretion and inundation that control 2 
the response of vegetated coastal ecosystems to rising sea levels. (A) Under high rates of soil formation plants are able 3 
to offset gradual sea level rise and may produce a negative feedback by increasing the uptake of atmospheric CO2. In 4 
addition, below ground root production contributes to the formation of new soils and consolidates the seabed substrates. 5 
(B) Under low rate of soil formation, and when sea level rises and exceeds critical thresholds, plants become severely 6 
stressed by inundation leading to less organic accretion and below ground subsidence and decay producing a positive 7 
feedback by net CO2 outgassing. This figure does not consider landward movements, controlled by topography and 8 
human land-use. 9 
 10 
 11 
Coastal vegetation-rich ecosystems such as mangroves, coral reefs and saltmarshes reduce storm impacts, 12 
protect the coastline from erosion, and help buffer the impacts of sea level rise, wave action, and even 13 
moderate-sized tsunamis (Orth et al., 2006; Ferrario et al., 2014; Rao et al., 2015) (Section 5.5.2.2). Their 14 
loss or degradation under climate change (Sections 5.3) would therefore reduce the benefits of these 15 
regulatory services to coastal human communities (Perry et al., 2018), increasing the risk of damage and 16 
mortality from natural disasters (Rao et al., 2015) (high confidence). In some locations where climate-17 
induced range expansion of coastal wetlands occurs, regulatory services such as storm protection and 18 
nutrient storage may be enhanced; however, the replacement of an existing ecosystem by others (e.g. 19 
saltmarshes replaced by mangroves) may reduce habitat availability for fauna requiring specific vegetation 20 
structure and consequently other types of ecosystem services (Kelleway et al., 2017b; Sheng and Zou, 2017).    21 
 22 
5.4.1.3 Supporting Services 23 
 24 
Supporting ecosystem services are structures and processes, such as habitats, biodiversity and productivity, 25 
that maintain the ecosystem functions that deliver other services (Costanza et al., 2017). Marine supporting 26 
services include: primary and secondary production; habitat provision for feeding, spawning or nursery 27 
grounds, and refugia; and biodiversity. All these provide essential support for provisioning, regulating or 28 
cultural services (Haines-Young and Potschin, 2013; Bopp et al., 2017).  Therefore, climate change impacts 29 
on supporting services provided by marine ecosystems are directly dependent on the risks and impacts on 30 
their biodiversity and ecosystem functions, which are assessed in Sections 5.2.3, 5.2.4 and 5.3. Previously, 31 
WGII AR5 highlighted the importance of the potential loss or degradation of habitat forming calcifying 32 
algae and corals, and the projected changes in waterways for Arctic shipping (Pörtner et al., 2014). The latter 33 
topic is considered in Chapter 3 and Section 5.4.2.4.  34 
 35 
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Publications since AR5 provide further evidence that coastal habitats are at risk from sea level rise, warming 1 
and other climate-related hazards (see Section 5.3).  All these changes to supporting services have 2 
implications for other ecosystem services (Costanza et al., 2014), such as altering fish catches and their 3 
composition (Pratchett et al., 2014; Carrasquilla-Henao and Juanes, 2017; Maharaj et al., 2018) (Section 4 
5.4.1.1) and carbon sequestration (Section 5.4.1.2).  In the epipelagic ocean, climate change affects the 5 
pattern and magnitude of global net primary production (Section 5.2.2.6) and the export of organic matter; 6 
both these processes support ecosystem services in the deep ocean (Section 5.2.4) and elsewhere. Projected 7 
ocean acidification and oxygen loss will also affect deep ocean biodiversity and habitat support linked to 8 
provisioning services in the deep ocean (Section 5.2.3.2, 5.2.4).  Overall, there is high confidence that marine 9 
habitat loss and degradation have already impacted supporting services from many marine ecosystems 10 
worldwide. The confidence on the attribution of those impacts to climate change depends on the assessment 11 
of the ocean and coastal ecosystems (Section 5.2.3, 5.2.4, 5.3). Projected climate-driven alterations of marine 12 
habitats will increase the future risks of impacts on supporting services (high confidence). 13 
 14 
5.4.1.4 Cultural Services  15 
 16 
Cultural ecosystem services include recreation, tourism, aesthetic, cultural identity and spiritual experiences. 17 
These services are a product of humans experiencing nature and the availability of nature to provide the 18 
experiences (Chan et al., 2012).  There is increasing evidence to support the conclusion in WGII AR5 that 19 
the intrinsic values and cultural importance of marine ecosystems, such as indigenous culture, recreational 20 
fishing and tourism, that are dependent on biodiversity and other ecosystem functions, are at risk from 21 
climate change.  Since marine cultural services are inherently integrated with human wellbeing, their 22 
assessment is provided in Section 5.4.2.  23 
 24 
5.4.2 Climate Risk, Vulnerability and Exposure of Human Communities and their Wellbeing 25 
 26 
Human communities heavily depend on the ocean through the goods and services provided by marine 27 
ecosystems (Section 5.4.1) (Hilmi et al., 2015). The values of ocean-based economic activities are estimated 28 
to be trillions of USD, generating hundreds of millions of jobs (Hoegh-Guldberg, 2015; Spalding, 2016). As 29 
climate change is impacting marine biodiversity and ecosystem services (Section 5.3.1), human communities 30 
and their wellbeing will also be affected. This section is based on diverse types of information, from 31 
quantitative modelling to qualitative studies, using expert opinion, local knowledge and indigenous 32 
knowledge (Cross-Chapter Box 4 in Chapter 1). Projection and assessment of risk and vulnerabilities not 33 
only depend on climate change scenarios but are also strongly dependent on scenarios of future social-34 
economic development (Cross-Chapter Box 1 in Chapter 1).  35 
 36 
This assessment divides the linkages between ecosystem services and human communities and their 37 
wellbeing into the three pillars of sustainable development, as used by the World Commission on 38 
Environment and Development (WCED). The three pillars are social and cultural, economic and 39 
environmental. Table 5.6 lists the specific dimensions under these pillars that are assessed in this section. 40 
Synthesis of risks and opportunities of climate change on human communities and wellbeing is at the end of 41 
this section through the lens of ocean economy and the United Nations’ Sustainable Development Goals.  42 
 43 
 44 
Table 5.6: The social, cultural and economic dimensions assessed in Section 5.4.2. 45 

Dimensions Sections under 5.4.2  
Human and environmental health  
 

Water-borne diseases (5.4.2.1.1) 
Harmful algal blooms (Box 5.4) 
Interactions with contaminants (5.4.2.1.2) 
Food security (5.4.2.1.3) 
 

Culture and other social dimensions Cultural and aesthetic values (5.4.2.2.1) 
Potential conflicts in resource utilization (5.4.2.2.2) 
 

Monetary and material wealth 
 

Fisheries (5.4.2.3.1) 
Coastal and marine tourism (5.4.2.3.2) 
Property values and coastal infrastructure (5.4.2.3.3) 
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 1 
 2 
5.4.2.1 Human Health and Environmental Health 3 
 4 
5.4.2.1.1 Water-borne diseases 5 
SR1.5 concluded that climate change will result in an aerial expansion and increased risk of water-borne 6 
disease with regional differences (high to very high confidence)(Hoegh-Guldberg et al., 2018). WGII AR5 7 
concluded that warming, excessive nutrient and seawater inundation due to sea level rise are projected to 8 
exacerbate the expansion and threat of cholera (Pörtner et al., 2014) (medium confidence). This assessment 9 
focuses on health risks caused by Vibrio bacteria and Harmful Algal Blooms (HABs). Vibrio cholerae 10 
(causing cholera) is estimated to be responsible for around 760,000 and 650,000 cases of human illness and 11 
death respectively in the world in 2010 (Kirk et al., 2015). An assessment of HABs is given in Box 5.4.  12 

Vibrio species naturally occur in warm, nutrient-rich and low salinity coastal waters. Since IPCC AR5, 13 
analysis of the the Continuous Plankton Recorder dataset (Section 5.2.3) has shown a significant increase in 14 
Vibrio abundance in the North Sea over the period 1958‒2011 related to sea surface warming (Vezzulli et 15 
al., 2016). Other time-series data have confirmed a poleward expansion of Vibrio pathogens in mid- to high-16 
latitude regions, ascribed at least partly to climate change (Baker-Austin et al., 2013; Baker-Austin et al., 17 
2017). Extreme weather events such as flooding and tropical cyclones are also linked to increased incidences 18 
of Vibrio-related disease, suggested to be caused by the increased exposure of human populations to the 19 
pathogens during these extreme events (Baker-Austin et al., 2017). New evidence since AR5 therefore 20 
increases support for the linkages between warming, extreme weather events and increased risk of diseases 21 
caused by Vibrio bacteria (very high confidence). 22 
 23 
Extrapolating from the observed relationship between environmental conditions and current Vibrio 24 
distributions, coastal areas that experience future warming, changes in precipitation and increases in nutrient 25 
inputs can be expected to see an increase in prevalence of Vibrio pathogens. These effects have been 26 
simulated in a global-scale model that relates occurrences of Vibrio with sea surface temperature, pH, 27 
dissolved oxygen and chlorophyll a concentration under the SRES B1 scenario (Escobar et al., 2015). In the 28 
Baltic Sea, a nearly two-fold increase in the area suitable for Vibrio is projected between 2015 and 2050 for 29 
both RCP 4.5 and RCP 8.5 scenarios (relating to projected SST increase of 4°C to 5°C), resulting in an 30 
elevated risk of Vibrio infections (Semenza et al., 2017).  Projected conditions of increased coastal flooding 31 
from storm surges and sea level rise (Section 5.2.2) will also increase exposure to waterborne disease 32 
(Ashbolt, 2019), such as Vibrio (medium confidence). However, uncertainty in the socio-economic factors 33 
affecting the future vulnerabilities of human populations render quantitative projections of the magnitude of 34 
health impacts uncertain (Lloyd et al., 2016).  35 
 36 
 37 
[START BOX 5.4 HERE] 38 
 39 
Box 5.4: Harmful Algal Blooms and Climate Change  40 
 41 
Harmful algal blooms (HABs) are proliferations of phytoplankton (mostly dinoflagellates, diatoms and 42 
cyanobacteria) and macroaglae that have negative effects on marine environments and associated biota. 43 
Impacts include water discoloration and foam accumulation, anoxia, contamination of seafood with toxins, 44 
disruption of food webs, and massive large-scale mortality of marine biota (Hallegraeff, 2010; Quillien et al., 45 
2012; Quillien et al., 2015; Amaya et al., 2018; García-Mendoza et al., 2018; Álvarez et al., 2019). WGII 46 
AR5 concluded that harmful algal outbreaks had increased in frequency and intensity, caused partly by 47 
warming, nutrient fluctuations in upwelling areas, and coastal eutrophication (medium confidence); however, 48 
there was limited evidence and low confidence for future climate change effects on HABs (WGII AR5 49 
Chapters 5, 6) (Pörtner et al., 2014; Wong et al., 2014b). Since AR5, HABs have increasingly affected 50 
human society, with negative impacts on food provisioning, tourism, the economy and human health 51 
(Anderson et al., 2015; Berdalet et al., 2017). For example, HABs caused an estimated loss of $42 million 52 
USD for the tuna industry in Baja California, Mexico (García-Mendoza et al., 2018) and mortality of more 53 
than 40,000 tonnes of cultivated salmon in Chile (Díaz et al., 2019). This additional observational and 54 
experimental evidence has improved detection and attribution of HABs to climate change, demonstrating 55 
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that shifts in biogeography, increased abundance and increased toxicity of HABs in recent years have been 1 
partly or wholly caused by warming and by other, more direct human drivers. 2 
 3 
New studies since AR5 show range expansion of warm-water HAB species, such as Gambierdiscus that 4 
causes ciguatera fish poisoning  (Kohli et al., 2014; Bravo et al., 2015; Sparrow et al., 2017); contraction of 5 
cold-water species (Tester et al., 2010; Rodríguez et al., 2017); the detection of novel phycotoxins and toxic 6 
species (Akselman et al., 2015; Guinder et al., 2018; Paredes et al., 2019; Tillmann et al., 2019); and 7 
regional increases in the occurrence and intensity of toxic phytoplankton blooms (McKibben et al., 2017; 8 
Díaz et al., 2019) in relation to ocean warming. For example, growth of the toxic dinoflagellates 9 
Alexandrium and Dinophysis, producers of paralytic shellfish poisoning and okadaic acid, respectively, is 10 
enhanced by warmer conditions in the North Atlantic and North Pacific (Gobler et al., 2017), whilst 11 
environmental conditions linked with warm phases of ENSO are associated with blooms of toxic Pseudo-12 
nitzschia species in the Northern California Current (McKibben et al., 2017), with devastating effects on 13 
coastal ecosystems (McCabe et al., 2016; Ritzman et al., 2018). Regional variations of trends in HAB 14 
occurrences can be explained by spatial differences in climate drivers (temperature, water column 15 
stratification, ocean acidification, precipitation and extreme weather events), as well as non-climatic drivers, 16 
such as eutrophication and pollution (Hallegraeff, 2010; Hallegraeff, 2016; Glibert et al., 2018; Paerl et al., 17 
2018a).  18 
 19 
Experimental studies have provided additional evidence for the role of environmental drivers in inducing 20 
HABs and their degree of impact. These studies include those showing that toxin production can be affected 21 
by grazers (Tammilehto et al., 2015; Xu and Kiørboe, 2018) and changing nutrient levels (Van de Waal et 22 
al., 2013; Brunson et al., 2018). The biosynthesis of domoic acid by some Pseudo-nitschia species is induced 23 
by combined phosphate limitation and high CO2 conditions (Brunson et al., 2018), with their growth and 24 
toxicity enhanced by warming in incubation experiments (Zhu et al., 2017). Recent mesocosm experiments 25 
using natural subtropical planktonic communities found that simulated CO2 emission scenarios (between 26 
RCP 2.6 and RCP 8.5 by 2100) improved the competitive fitness of the toxic microalgae Vicicitus globosus 27 
for CO2 treatments above 600 µatm, and induced blooms above 800 µatm, with severe negative impacts for 28 
other components of the planktonic food web (Riebesell et al., 2018). Experiments with the toxic 29 
dinoflagellate Akashiwo sanguinea (hemolytic activity) have also shown that a combination of high CO2 30 
levels, warming and high irradiance stimulate the growth and toxicity of this HAB species (Ou et al., 2017).  31 
 32 
Given the worldwide distribution of the key toxic species of Alexandrium, Pseudo-nitzschia and Dinophysis, 33 
if the current relationship between warming and the occurrences of HABs associated with these species 34 
persists in the future (Gobler et al., 2017; Townhill et al., 2018) (medium confidence), the projected changes 35 
in ocean conditions can be expected to intensify HAB-related risks for coastal biodiversity and ecosystems 36 
services (high confidence). The greatest risk is expected for estuarine organisms (Section 5.3.1) because 37 
HABs occurrences are stimulated by riverine nutrient loads, and exacerbated by warming and the lower 38 
dissolved oxygen and pH in estuarine environments (Gobler and Baumann, 2016; Paredes-Banda et al., 39 
2018).  40 
 41 
Local scale sustained monitoring programs and early warning systems for HABs can alert resource managers 42 
and stakeholders of their potential occurrences so that they can take actions (e.g., toxic seafood alerts or 43 
relocation of activities) to reduce the impacts of HABs (Anderson et al., 2015; Wells et al., 2015) (high 44 
confidence). There is limited evidence in determining the degree to which reduction of non-climatic 45 
anthropogenic stressors can reduce risk of HABs (Section 5.5.2), although this approach may be effective in 46 
some areas (low confidence); for example, controlling nutrient inputs from human sources may reduce the 47 
risk of occurrence of HABs in the Baltic Sea. Other techniques such as active chemical and biological 48 
interventions are at experimental stage. 49 
 50 
Overall, the occurrence of HABs, their toxicity and risk on natural and human systems are projected to 51 
continue to increase with warming and rising CO2 in the 21st century(Glibert et al., 2014; Martín-García et 52 
al., 2014; McCabe et al., 2016; Paerl et al., 2016; Gobler et al., 2017; McKibben et al., 2017; Rodríguez et 53 
al., 2017; Paerl et al., 2018a; Riebesell et al., 2018) (high confidence). Moreover, poleward distributional 54 
shifts of HAB species are expected to continue as a result of warming (Townhill et al., 2018). The increasing 55 
likelihood of occurrences of HABs under climate change also elevates their risks on ecosystem services such 56 
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as fisheries, aquaculture and tourism as well as public health (Section 5.4.2, high confidence). Such risks will 1 
be greatest in poorly monitored areas (Borbor-Córdova et al., 2018; Cuellar-Martinez et al., 2018)  2 
 3 
[END BOX 5.4 HERE] 4 
 5 
 6 
5.4.2.1.2 Interactions between climate change and contaminants 7 
Climate change–contaminant interactions can alter the bioaccumulation and amplify biomagnification of 8 
several contaminant classes (Boxall et al., 2009; Alava et al., 2018). This section assesses two types of 9 
contaminants that are of concern to environmental and human health as examples of other contaminants with 10 
similar properties (Alava et al., 2017). These two types of contaminants are the toxic and fat-soluble 11 
persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the neurotoxic 12 
and protein-binding organic form of mercury, methylmercury (MeHg) (Alava et al., 2017). POPs and MeHg 13 
are bioaccumulated by marine organisms and biomagnified in food webs, reaching exposure concentrations 14 
that become harmful and toxic to populations of apex predators such as marine mammals (Desforges et al., 15 
2017; Desforges et al., 2018) (Figure 5.20). Human exposure to POPs and MeHg can lead to serious health 16 
effects (Ishikawa and Ikegaki, 1980; UNEP, 2013; Fort et al., 2015; Scheuhammer et al., 2015). 17 
 18 
 19 

 20 
Figure 5.20: The pathways through which scenario of climatic and pollutant hazards (orange boxes) and their 21 
interactions can lead to increases in exposure to hazards by the biota, ecosystems and people, sensitivity, their 22 
sensitivity (blue box) and the risk of impacts to ecosystem and human health and societies (red box). Such risks will 23 
interact with climate-pollutant risk management and policy. The synthesis is based on literature review presented in 24 
Alava et al. (2017). Adapted from Alava et al. (2017). 25 
 26 
 27 
Inorganic forms of mercury are more soluble in low pH water, while higher temperature increases mercury 28 
uptake and the metabolic activity of bacteria, thereby increasing mercury methylation, uptake by organisms 29 
and bioaccumulation rates (Scheuhammer, 1991; Celo et al., 2006; López et al., 2010; Macdonald and 30 
Loseto, 2010; Riget et al., 2010; Corbitt et al., 2011; Krabbenhoft and Sunderland, 2013; Roberts et al., 31 
2013; de Orte et al., 2014; McKinney et al., 2015), although there is limited evidence on the extent of 32 
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exacerbation by ocean acidification expected in the 21st century. Increased melting of snow and ice from 1 
alpine ecosystems and mountains (Chapter 2) can also increase the release of POPs and MeHg from land-2 
based sources into coastal ecosystems (Morrissey et al., 2005).  Modelling projections for the Faroe Islands 3 
region suggest increased bioaccumulation of methyl mercury under climate change, with an average 4 
increases in MeHg concentrations in marine species of 1.6% to 1.8% and 4.1% to 4.7% under ocean 5 
warming scenarios of +0.8°C and +2.0°C, respectively, with an associated increase in potential human intake 6 
of mercury beyond levels recommended by the World Health Organization (Booth and Zeller, 2005). 7 
Foodweb modeling for the northeastern Pacific projects that concentrations of MeHg and PCBs in top 8 
predators could increase by 8% and 3%, respectively, by 2100 under RCP 8.5 relative to current levels 9 
(Alava et al., 2018). Climate-related pollution risks are of particular concern in Arctic ecosystems and their 10 
associated indigenous communities because of the bioaccumulation of POPs and MeHg, causing long-term 11 
contamination of traditional seafoods (Marques et al., 2010; Tirado et al., 2010; Alava et al., 2017) of high 12 
dietary importance (Cisneros-Montemayor et al., 2016).  13 
 14 
Overall, climate change can increase the exposure and bioaccumulation of contaminants and thus the risk of 15 
impacts of POPs and MeHg on marine ecosystems and their dependent human communities as suggested by 16 
indirect evidence and model simulations (Marques et al., 2010; Tirado et al., 2010; Alava et al., 2017) (high 17 
agreement). However, there is limited evidence on observed increase in POPs and MeHg due to climate 18 
change. Apex predators and human communities that consume them, including Arctic communities and 19 
other coastal indigenous populations, are thus vulnerable to increase in exposure to these contaminants and 20 
the resulting health effects (medium evidence, medium agreement).  21 
 22 
The risk of microplastics has become a major concern for the ocean as they are highly persistent and have 23 
accumulated in many different marine environments, including the deep sea (Woodall et al., 2014a; Woodall 24 
et al., 2014b; GESAMP, 2015; van Sebille et al., 2015; Waller et al., 2017; de Sá et al., 2018; Everaert et al., 25 
2018; Botterell et al., 2019). There is limited evidence at present to assess their risk to marine ecosystems, 26 
wildlife and potentially humans through human consumption of seafood under climate change.  27 
 28 
5.4.2.1.3 Food security  29 
Seafood provides protein, fatty acids, vitamins and other micronutrients essential for human health such as 30 
iodine and selenium (Golden et al., 2016). Over 4.5 billion people in the world obtain more than 15% of 31 
their protein intake from seafood, including algae and marine mammals as well as fish and shellfish (Béné et 32 
al., 2015; FAO, 2017)). Around 1.39 billion people obtain at least 20% of their supply of essential 33 
micronutrients from fish (Golden et al., 2016). IPCC SR1.5 concluded that global warming poses large risks 34 
to food security globally and regionally, especially in low-latitude areas, including fisheries (medium 35 
confidence) (Hoegh-Guldberg et al., 2018). This section builds on the assessment on observed and projected 36 
climate impacts on fish catches (Section 5.4.1.1) and further assess how such impacts interact with other 37 
climatic and non-climatic drivers in affecting food security through fisheries. 38 
 39 
Many of populations that are already facing challenges in food insecurity reside in low latitude regions such 40 
as in the Pacific Islands and West Africa where maximum fisheries catch potential is projected to decrease 41 
under climate change security (Golden et al., 2016; Hilmi et al., 2017) (Section 5.4.1; Figure 5.21) and 42 
where land-based food production is also at risk (Blanchard et al., 2017) (medium confidence). Populations 43 
in these regions are also estimated to have the highest proportion of their micronutrient intake relative to the 44 
total animal sourced food (Golden et al., 2016). (Figure 5.21). This highlights their strong dependence on 45 
seafood as a source of nutrition that further elevates their vulnerability to food security from climate change 46 
impacts on seafood supply (high confidence). Modeling of seafood trade networks suggests that Central and 47 
West African nations are particularly vulnerable to shocks from decrease in seafood supply from 48 
international imports; thus their climate risks of seafood insecurity could be exacerbated by climate impacts 49 
on catches and seafood supply elsewhere (Gephart et al., 2016). In addition, experimental studies suggest 50 
that warming and ocean acidification reduce the nutritional quality of some seafood by reducing levels of 51 
protein, lipid and omega-3 fatty acids (Tate et al., 2017; Ab Lah et al., 2018; Lemasson et al., 2019).  52 
 53 
Non-climatic factors may exacerbate climate effects on seafood security. Over-exploitation of fish stocks 54 
reduces fish catches (Section 5.4.1.1) (Golden et al., 2016), whilst strong cultural dependence on seafood in 55 
many coastal communities may pose constraints in their adaptive capacity to changing fish availability 56 
(Marushka et al., 2019).  The shift from traditional nutritious wild caught seafood-based diets of coastal 57 
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indigenous communities, towards increased consumption of processed  energy-dense foods high in fat, 1 
refined sugar, and sodium, due to social and economic changes (Kuhnlein and Receveur, 1996; Shannon, 2 
2002; Charlton et al., 2016; Batal et al., 2017), has important consequences on diet quality and nutritional 3 
status (Thaman, 1982; Quinn et al., 2012; Luick et al., 2014). This has led to an increased prevalence of 4 
obesity, diabetes, and other diet-related chronic diseases (Gracey, 2007; Sheikh et al., 2011) as well as the 5 
related decrease in access to culturally or religiously significant food items. The risk of climate change on 6 
coastal communities through the ocean could therefore be increased by non-climatic factors such as 7 
economic development, trade, effectiveness of resource governance and cultural changes (high confidence).  8 
 9 
In summary, the food security of many coastal communities, particularly in low latitude developing regions, 10 
is vulnerable to decreases in seafood supply (medium confidence) because of their strong dependence on 11 
seafood to meet their basic nutritional requirements (medium confidence), limited alternative sources of 12 
some of the essential nutrients obtained from seafood (medium confidence), and exposure to multiple 13 
hazards on their food security (high confidence). Although direct evidence from attribution analysis is not 14 
available, climate change may have already contributed to malnutrition by decreasing seafood supply in 15 
these vulnerable communities (low confidence) and reduce coastal Indigenous communities’ reliance on 16 
seafood-based diets (low confidence). Projected decreases in potential fish catches in tropical areas (high 17 
confidence) and a possible decrease in the nutritional content of seafood (low confidence) will further 18 
increase the risk of impacts on food security in low latitude developing regions, with that risk being greater 19 
under high emission scenarios (medium confidence). 20 
 21 
 22 

 23 
Figure 5.21: Over the ocean the projected changes in catch potential (Section 5.4.1.1), and on land, each countries 24 
current proportion of fish micronutrient intake relative to the total animal sourced food (ASF) (Golden et al., 2016). The 25 
colour scale on land is the proportion of fish micronutrient intake relative to the total animal sourced food (ASF); the 26 
scale on the ocean is projected change in maximum catch potential under RCP8.5 by 2100 relative to the 2000s. 27 
 28 
 29 
5.4.2.2 Cultural and Other Social Dimensions 30 
 31 
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5.4.2.2.1 Cultural and aesthetic values 1 
Climate change threatens key cultural dimensions of lives and livelihoods (Adger et al., 2012), because 2 
people develop strong cultural ties and associate distinctive meanings with many natural places and biota in 3 
the form of traditions, customs and ways of life (Marshall et al., 2018). These impacts have been felt both by 4 
indigenous and non-indigenous peoples. Recent estimates suggest that there are more than 1900 indigenous 5 
groups along the coastline with around 27 million people across 87 countries (Cisneros-Montemayor et al., 6 
2016). WGII AR5 concluded that climate change will affect the harvests of marine species with spiritual and 7 
aesthetic importance to indigenous cultures (Pörtner et al., 2014). This section further assesses the effects of 8 
climate change on indigenous knowledge and local knowledge and their transmission and the implication for 9 
well-being of people, complementing the assessment for Arctic indigenous people in Chapter 3.  10 
 11 
Indigenous knowledge is passed and appreciated over timeframes ranging from several generations to a few 12 
centuries (Cross Chapter Box 4 in Chapter 1). The adjustment of the transmission and the network of 13 
indigenous knowledge on the ocean and coasts, and related perceptions and practice, implies a reworking of 14 
these knowledge systems where the individuals and the groups are actors in a narrative and historical 15 
construction (Roué, 2012; Alderson-Day et al., 2015). Sea level rise is already transforming the seascape, 16 
such as the shape of shores in many low-lying islands in the Pacific, leading to modification or 17 
disappearance of geomorphological features that represent gods and mythological ancestors (Camus, 2017; 18 
Kench et al., 2018). These changing seascape also affects the mobility of people and residence patterns, and 19 
consequently, the structure and transmission of indigenous knowledge (Camus, 2017). The fear of sea level 20 
rise and climate change encourage security measures and the grouping of local people to the safest places, 21 
contributing to the erosion of indigenous culture and their knowledge about the ocean (Bambridge and Le 22 
Meur, 2018), and impairment of opportunity for social elevation for some Pacific indigenous communities 23 
(Borthwick, 2016).   24 
 25 
Climate change is also projected to shift the biogeography and potential catches of fishes and invertebrates 26 
(5.2.3.1, 5.3, 5.4.1.1) that form an integral part of the culture, economy and diet of many indigenous 27 
communities, such as those situated along the Pacific Coast of North America (Lynn et al., 2013). 28 
Indigenous fishing communities that depend on traditional marine resources for food and economic security 29 
are particularly vulnerable to climate change through reduced capacity to conduct traditional harvests 30 
because of reduced access to, or availability of, resources (Larsen et al., 2014; Weatherdon et al., 2016). 31 
Overall, the transmission of indigenous culture and knowledge is at risk because of sea level rise affecting 32 
sea- and land-scapes, the availability and access to culturally important marine species, and communities’ 33 
reliance on the ocean for their livelihood and their cultural beliefs (low confidence). Strong attachment to 34 
traditional marine-based livelihoods has also been reported for non-indigenous communities in Canada 35 
(Davis, 2015), the USA (Paolisso et al., 2012), Spain (Ruiz et al., 2012) and Australia (Metcalf et al., 2015). 36 
Reduction in populations of fish species that have supported livelihoods for generations, and deteriorations 37 
of iconic elements of seascapes are putting the well-being of these communities at risk (high confidence). 38 
 39 
Other cultural values supported by the ocean are diverse. They include education, based on knowledge of 40 
marine environments. Such education can increase knowledge and awareness of climate change impacts and 41 
the efficacy of their mitigation (Meadows, 2011); it can also influence the extent to which stewardship 42 
activities are adopted (von Heland et al., 2014; Wynveen and Sutton, 2015; Bennett et al., 2018), and can 43 
help develop new networks between coastal people and environmental managers for the purposes of 44 
planning and implementing new adaptation strategies (Wynveen and Sutton, 2015). A critical element in 45 
reducing vulnerability to climate change is to educate people that they are an integral part of the Earth 46 
system and have a huge influence on the balance of the system. An important marine ecosystem service is to 47 
support such education (Malone, 2016). Thus, education can play a pivotal role in how climate change is 48 
perceived and experienced, and marine biodiversity and ecosystems play an important role in this. At the 49 
same time, climate change impacts on marine ecosystems (Sections 5.2.3, 5.2.4) can affect the role of the 50 
ocean in supporting such public education (medium evidence, high agreement, medium confidence). 51 
 52 
The aesthetic appreciation of natural places is one of the fundamental ways in which people relate to their 53 
environment. IPCC AR5 WGII noted that climate change may impact marine species with aesthetic 54 
importance that affect local and indigenous cultures, local economies and challenge cultural preservation 55 
(Pörtner et al., 2014). Evidence since AR5 confirms that aesthetically-appreciated aspects of marine 56 
ecosystems are important for supporting local and international economies (especially through tourism), 57 
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human wellbeing, and stewardship. For example, Marshall et al. (2018) found that aesthetic values are a 1 
critically important cultural value for all cultural groups, and are important for maintaining sense of place, 2 
pride, identity and opportunities for inspiration, spirituality, recreation and wellbeing. However, climate 3 
change induced degradation and loss of biodiversity and habitats (Section 5.2.3, 5.2.4, 5.3) can also 4 
negatively impact the ecosystem features that are currently appreciated by human communities, such as coral 5 
reefs, mangroves, charismatic species (such as some marine mammals and seabirds) and geomorphological 6 
features (e.g., sandy beaches). There are also aesthetic and inspirational values of marine biodiversity and 7 
ecosystems that are important to the psychological and spiritual well-being of people, including film, 8 
literature and art, and recreation (Pescaroli and Magni, 2015). Other cultural dimensions that are becoming 9 
more widely acknowledged as potentially disturbed by climate change include the appreciation of scientific, 10 
artistic, spiritual, and health opportunities, as well as appreciation of biodiversity, lifestyle and aesthetics 11 
(Marshall et al., 2018). Thus, climate change may also affect the way in which marine ecosystems support 12 
human well-being through cultural dimensions. However, the difficulties in evaluating the importance of 13 
aesthetic aspects of marine ecosystems, and in detecting and attributing of climate change impacts, result in 14 
such assessment having low confidence.  15 
 16 
Climate change affects human cultures and well-being differently. For example, (Marshall et al., 2018) 17 
assessed the importance of identity, pride, place, aesthetics, biodiversity, lifestyle, scientific value and 18 
wellbeing within the Great Barrier Reef region by 8,300 people across multiple cultural groups. These 19 
groups included indigenous and non-indigenous local residents, Australians (non-local), international and 20 
domestic tourists, tourism operators, and commercial fishers. They found that all groups highly rated all 21 
(listed) cultural values, suggesting that these values are critically associated with iconic ecosystems. Climate 22 
change impacts upon the Great Barrier Reef, through increased temperatures, cyclones and sea level rise that 23 
cumulatively degrade the quality of the Reef, are therefore liable to result in cultural impacts for all groups. 24 
However, survey that assess the emotional responses to degradation of the Great Barrier Reef by similar 25 
stakeholder groups reported different levels of impacts among these groups (Marshall et al., 2019). 26 
Therefore, many ocean and coastal dependent communities value marine ecosystems highly and climate 27 
impacts can affect their well-being, although the sensitivity to such impacts can vary among stakeholder 28 
groups (Marshall et al., 2019) (low confidence). 29 
 30 
Climate change may alter the environment too rapidly for cultural adaptation to keep pace. This is because 31 
the culture that forms around a natural environment can be so integral to people’s lives that disassociation 32 
from that environment can induce a sense of disorientation and disempowerment (Fisher and Brown, 2015). 33 
The adaptive capacity of people to moderate or influence cultural impacts, and thereby reduce vulnerability 34 
to such impacts, is also culturally determined (Cinner et al., 2018). For example, when a resource user such 35 
as a fisher, farmer, or forester is suddenly faced with the prospect that their resource-based occupation is no 36 
longer viable, they lose not only a means of earning an income but also an important part of their identity 37 
(Marshall et al., 2012; Tidball, 2012). Loss of identity can, in turn, have severe economic, psychological, and 38 
cultural impacts (Turner et al., 2008). Climate change can quickly alter the quality of, or access to, a natural 39 
resource through degradation or coastal inundation, so that livelihoods and lifestyles are no longer able to be 40 
supported by that resource. When people are displaced from places that they value, there is strong evidence 41 
that their cultures are diminished, and in many cases endangered. There are no effective substitutions for, or 42 
adequate compensation for, lost sites of significance (Adger et al., 2012). As sensitivity marine ecosystems 43 
such as coral reefs and kelp forest are impacted by climate change at rapid rate (Section 5.3), these can lead 44 
to the loss of part of people’s cultural identity and values beyond the rate at which identify and values can be 45 
adjusted or substituted (medium confidence). 46 
 47 
5.4.2.2.2 Potential conflicts in resource utilization  48 
Redistribution of marine species in response to direct and indirect effects of climate change may also disrupt 49 
existing marine resource sharing and associated governance (Miller and Russ, 2014; Pinsky et al., 2018).  50 
These effects have contributed to disputes in international fisheries management for North Atlantic mackerel 51 
(Spijkers and Boonstra, 2017) and Pacific salmon (Miller and Russ, 2014).  These disagreements have 52 
stressed diplomatic relations in some cases (Pinsky et al., 2018). Decreases and fluctuations in fish stock 53 
abundance and fish catches have also contributed to past disputes (Belhabib et al., 2016; Pomeroy et al., 54 
2016; Blasiak et al., 2017). Under climate change, shifts in abundance and distribution of fish stocks are 55 
projected to intensify in the 21st century (Sections 5.2.3, 5.3, 5.4.1.1). Stocks may locally increase and 56 
decrease elsewhere. New or increased fishing opportunities may be created when exploited fish stocks shift 57 
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their distribution into a country’s waters where their abundance was previously too low to support viable 1 
fisheries (Pinsky et al., 2018). The number of new transboundary stocks occurring in exclusive economic 2 
zones worldwide was projected to be around 46 and 60 under RCP 2.6 and RCP 8.5, respectively, by 2060 3 
relative to 1950-2014 (Pinsky et al., 2018). However, such alteration of the sharing of resources between 4 
countries would challenge existing international fisheries governance regimes and, without sufficient 5 
adaptation responses, increase the potential for disputes in resource allocation and management (Belhabib et 6 
al., 2018; Pinsky et al., 2018). Overall, projected climate change impacts on fisheries in the 21st century 7 
increase the risk of potential conflicts among fishery area users and authorities or between two different 8 
communities within the same country (Ndhlovu et al., 2017; Shaffril et al., 2017; Spijkers and Boonstra, 9 
2017) (medium confidence), exacerbated through competing resource exploitation from international actors 10 
and mal-adapted policies (low confidence). Such risks can be reduced by appropriate fisheries governance 11 
responses that are discussed in Sections 5.5.2 and 5.5.3. 12 
 13 
5.4.2.3 Monetary and Material Wealth 14 
 15 
5.4.2.3.1 Wealth generated from fisheries  16 
Global gross revenues from marine fisheries were around $150 billion in 2010 USD (Swartz et al., 2013; Tai 17 
et al., 2017). Capture fisheries provide full-time and part-time jobs for an estimated 260 ± 6 million people 18 
in the 2000s period, of whom 22 ± 0.45 million are small-scale fishers (Teh and Sumaila, 2013). Small-scale 19 
fisheries are important for the livelihood and viability of coastal communities worldwide (Chuenpagdee, 20 
2011). AR5 WGII concluded with low confidence that climate change will lead to a global decrease in 21 
revenue with regional differences that are driven by spatial variations of climate impacts on and the 22 
flexibility and capacities of food production systems (Pörtner et al., 2014). AR5 also highlighted the high 23 
vulnerability of mollusc aquaculture to ocean acidification. For example, the oyster industry in the Pacific 24 
has lost nearly $110 million USD in annual revenue due to ocean acidification (Ekstrom et al., 2015). This 25 
section examines the rapidly growing literature assessing the risks of climate change on fisheries and 26 
aquaculture sectors, and the potential interaction between climatic and non-climatic drivers on the economics 27 
of fisheries. However, new evidence on observed economic impacts of climate change on fisheries since 28 
AR5 is limited.   29 
 30 
Since AR5, projections on climate change impacts on the economics of marine fisheries have incorporated a 31 
broader range of social-economic considerations. Driven by shifts in species distributions and maximum 32 
catch potential of fish stocks (Section 5.4.1), if the ex-vessel price of catches remains the same, marine 33 
fisheries maximum revenue potential are projected to be negatively impacted in 89% of the world’s fishing 34 
countries under the RCP 8.5 scenario by the 2050s relative to the current status, with projected global 35 
decreases of 10.4% ±4.2% and  7.1% ±3.5% under RCP 8.5 and RCP 2.6, respectively, by 2050 relative to 36 
2000 (Lam et al., 2016). While the projected changes in revenues are sensitive to price scenarios (Lam et al., 37 
2016), future maximum revenue potential is reduced under high emission scenarios (Sumaila et al., 2019). 38 
For example, when the elasticity of seafood price in relation to their supply was modelled explicitly, 39 
fisheries maximum revenue potential under a 1.5°C atmospheric warming scenario was projected to be 40 
higher than for 3.5°C warming by 7.4% ($13.1 billion USD) ± 2.3%, across projections from three CMIP5 41 
models (Sumaila et al., 2019). Accounting for the subsequent impacts on the dependent communities and 42 
relative to the 1.5°C warming scenario, that study also projected a decrease in seafood workers’ incomes of 43 
7.8% (US $3.7 billion) ± 2.3%  and an increase in households’ seafood expenditure by the global population 44 
of  3.2% (US $6.3 billion) ± 3.9% annually under a 3.5°C warming scenario (Sumaila et al., 2019).   45 
 46 
Fisheries management strategies and fishing effort affect the realised catch and economic benefits of fishing 47 
(Barange, 2019). Modelling analysis of fish stocks with available data worldwide showed that for RCP 6.0, 48 
adaptation of fisheries by accommodating shifts in species distribution and abundance, as well as rebuilding 49 
existing overexploited or depleted fish stocks, is projected to lead to substantially higher global profits 50 
(154%), harvest (34%), and biomass (60%) in the future, relative to a no adaptation scenario. However, the 51 
total profit, harvest and biomass are negatively affected even with the full adaptation scenario under RCP 8.5 52 
(Gaines et al., 2018). Overall, climate change impacts on the abundance, distribution and potential catches of 53 
fish stocks (see Section 5.3.1) are expected to reduce the maximum potential revenues of global fisheries 54 
(high agreement, medium evidence, medium confidence). These impacts on fisheries will increase the risk of 55 
impacts on the income and livelihoods of people working in these economic sectors by 2050 under high 56 
greenhouse gas emission scenarios relative to low emission scenario (high confidence). Rebuilding 57 
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overexploited or depleted fisheries can help improve economic efficiency and reduce climate risk, provided 1 
that emissions are greatly reduced (medium confidence). 2 
 3 
The economic implications of climate change on fisheries vary between regions and countries because of the 4 
differences in exposure to revenue changes and the sensitivity and adaptive capacity of the fishing 5 
communities to these changes (Hilmi et al., 2015). Regions where the maximum potential revenue is 6 
projected to decrease coincide with areas where indicators such as human development index suggest high 7 
economic vulnerability to climate change (Barbier, 2015; Lam et al., 2016). Many coastal communities in 8 
these regions rely heavily on fish and fisheries as a major source of animal proteins, nutritional needs, 9 
income and job opportunities (FAO, 2018a). Negative impacts on the catch and total fisheries revenues for 10 
these countries are expected to have greater implications for jobs, economies, food and nutritional security 11 
than the impacts on regions with high Human Development Index (Allison et al., 2009; Srinivasan et al., 12 
2010; Golden et al., 2016; Blasiak et al., 2017). Climate change impacts to coral reefs and other fish habitats, 13 
as well as to targeted fish and invertebrate species themselves are expected to reduce harvests from small-14 
scale, coastal fisheries by up to 20% by 2050, and by up to 50% by 2100, under RCP8.5 (Bell et al., 2018a).  15 
Therefore, climate risk to communities that are strongly dependent on fisheries associated with ecosystems 16 
that are particularly sensitive to climate change such as coral reefs will have be particularly high (Cinner et 17 
al., 2016) (high confidence).  18 
 19 
Climate change may also worsen non-climate-related socio-economic shocks and stresses, and hence is an 20 
obstacle to economic developments (Hallegatte et al., 2015). Climate risk on the economics of fishing is 21 
projected to be higher for tropical developing countries where existing adaptive capacity to the risk is lower, 22 
thereby challenging their sustainable economic development (high confidence). However, observed impacts 23 
are not yet well documented (Lacoue-Labarthe et al., 2016) , and there are many uncertainties relating to 24 
how climate change would affect the dynamics of fishing costs, with consequent adjustment of fishing effort 25 
that might intensify or lessen the overcapacity issue. Studies have attempted to project how fishers may 26 
respond to changes in fish distribution and abundance by incorporating different management systems 27 
(Haynie and Pfeiffer, 2012; Galbraith et al., 2017). However, the impacts of climate change on management 28 
effectiveness and trade practices is still inadequately understood (Galbraith et al., 2017).  29 
 30 
5.4.2.3.2 Wealth generated from coastal and marine tourism sector  31 
Tourism is one of the largest sectors in the global economy. Between 1995-1998 and 2011-2014, the average 32 
total contribution of tourism to global GDP increased from $69 billion USD (6.8%) to $166 billion USD 33 
(8.5%) respectively, and generated more than 21 million jobs between 2011‒2014 (UNCTAD, 2018). 34 
Coastal tourism and other marine-related recreational activities contributes substantially to the tourism sector 35 
(Cisneros-Montemayor et al., 2013; O’Malley et al., 2013; Spalding et al., 2017; Giorgio et al., 2018; 36 
UNWTO, 2018). For example, it is estimated that around 121 million people a year participated in marine-37 
based recreational activities, generating $47 billion 2003USD in expenditures and supporting one million 38 
jobs (Cisneros-Montemayor and Sumaila, 2010). Tourism is one of the main industries that provides 39 
opportunities for social and economic development (Jiang and DeLacy, 2014), and marine tourism is 40 
particularly important for many coastal developing countries and Small Island Developing States (SIDS). 41 
WGII AR5 identified the tourism sector in the Caribbean region as particularly vulnerable to climate change 42 
effects, due to hurricanes, whilst IPCC SR1.5 concluded that warming will directly affect climate-dependent 43 
tourism markets on a worldwide basis (medium confidence) (Hoegh-Guldberg et al., 2018). This assessment 44 
provides updates since AR5 and SR1.5.  45 
 46 
Empirical modelling of future risks to tourism is based on projected climate impacts (Section 5.3) for 47 
relevant coastal ecosystems, including degradation or loss of beach and coral reef assets (Weatherdon et al., 48 
2016) (Section 4.3.3.6.2). These projections are developed from the relationship between the economic 49 
benefits generated from coral reef related tourism with observed characteristics of coral reefs, the 50 
characteristics of tourism activities. Based on scenarios of projected future warming and decreases in coral 51 
reef coverage, a global loss of tourism and recreation value in the near-future (2031-2050) of $2.57–2.95 52 
billion yr-1 2000USD is projected under RCP 2.6, and of $3.88‒5.80 billion yr-1 2000USD under RCP 8.5 53 
(Chen et al., 2015). Opinion surveys in four countries suggest that if severe coral bleaching persists in the 54 
Great Barrier Reef, tourism in adjacent areas could greatly decline, from 2.8 million to around 1.7 million 55 
visitors per year, equivalent to more than $1 billion AUS (~$0.69 billion USD using exchange rate in 2019) 56 
i.e., in tourism expenditure and with potential loss of around 10,000 jobs (Swann and Campbell, 2016).  57 
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 1 
Many coastal tourism destinations are exposed to risks of flooding, sea level rise and coastal squeeze on 2 
coastal ecosystems (Lithgow et al., 2019) (Section 5.3); there are also other climate related-risks. Droughts, 3 
which are projected to be more frequent, will also impact the tourism industry (and local food security) 4 
through water and food shortages (Pearce et al., 2018). If climate change and ocean acidification reduce the 5 
seafood supply, the attractiveness of coastal regions for tourists will also decrease (Wabnitz et al., 2017). 6 
North Atlantic hurricanes and tropical storms have increased in intensity over the last 30 years, with climate 7 
projections indicating an increasing trend in hurricane intensity (Chapter 6). Three major Caribbean storms, 8 
Harvey, Irma and Maria, occurred in 2017, with loss and damage to the tourism industries of Dominica, the 9 
British Virgin Islands, and Antigua and Barbuda estimated at US $2.2 billion, and environmental recovery 10 
costs estimated at US $6.8 million (UNDP, 2017).  Pacific tourist destinations, which tend to focus on 11 
nature-based and marine activities, are also at high risk of extreme events and other climate change impacts 12 
(Klint et al., 2015). However, global tourism has a high carbon footprint (flights, cruises, etc.) (Lenzen et al., 13 
2018), so any reduction in the intensity of this sector would help mitigate climate change.   14 
 15 
Evidence from recent studies on projected climate risks on recreational fishing is equivocal, with the 16 
direction of impacts depending on the location, species targeted and societal context. For example: poleward 17 
range shifts of marine fish (Section 5.2.3) could yield new opportunities for recreational fishing in mid- to 18 
high latitude regions (DiSegni and Shechter, 2013); projected increases in air temperature may enable longer 19 
fishing days in some area (Dundas and von Haefen, 2015); and extreme events may alter the composition of 20 
recreational fishing  catches (Santos et al., 2016).  Since climate risks to recreational fishing vary largely 21 
depending on the responses of the targeted species to climate-related pressures, there is low confidence in the 22 
overall risk to the activity.  23 
 24 
Overall, evidence since AR5 and SR1.5 confirms that climate impacts to coastal ecosystems would increase 25 
risks to coastal tourism, particularly under high emission scenarios (medium confidence). Economic impacts 26 
will be greatest for those developing countries where tourism is the main source of foreign revenue (medium 27 
to high evidence). 28 
 29 
5.4.2.3.3 Property values  30 
The integrity of ecosystems and their services can affect the value of human assets, particularly coastal 31 
properties and infrastructure (Hoegh-Guldberg et al., 2018). Climate change is expected to have negative  32 
impacts on coastal properties and their value through the loss and damage caused by sea level rise, increased 33 
storm intensity (hurricanes and cyclones), heat waves, floods, droughts and other extreme events, 34 
particularly in tropical SIDS (Chapter 4).  Natural disasters already cost Pacific Island Countries and 35 
Territories between 0.5‒ 6.6 % of GDP per year (World Bank, 2017), with localized damages and losses 36 
from individual storms far exceeding these estimates (e.g., 64% of Vanuatu’s GDP for Cyclone Pam in 37 
2015). The impacts of natural disasters on Jamaica’s coastal transport infrastructure are currently estimated 38 
to be a significant proportion of their GDP, and such costs are projected to increase substantially in the next 39 
few decades under climate change (UNCTAD, 2017; Monioudi et al., 2018). In 2015, tropical storm Erika 40 
devastated Dominica causing $483 million USD in damages and losses (mostly related to transport, housing 41 
and agriculture), equivalent to 90% of Dominica’s GDP (World Bank, 2017). For the USA, Ackerman and 42 
Stanton (2007) forecast that annual real estate losses due to climate change could increase from 0.17% of 43 
GDP in 2025 to 0.36% in 2100, with Atlantic and Gulf Coast states being the most vulnerable.  Other North 44 
American studies have shown that informed coastal property owners are willing to initially invest in 45 
infrastructure to counter climate change impacts (McNamara and Keeler, 2013); however, they would avoid 46 
further investment if adaptation costs increase substantially and there are greater risks of long-term impacts 47 
(Putra et al., 2015). 48 
 49 
The impacts of changing marine ecosystems and ecosystem services on the value of human assets need to 50 
consider the risk perception, future development and adaptation responses of human communities (Section 51 
5.5.2, Chapter 4) (Bunten and Kahn, 2014). For example, the potential for climate impacts on the value of 52 
coastal real estate will depend on the changing insurance market or the cost of adaptation measures, which in 53 
turn depend on the willingness to pay by asset holders and wider society, including local and national 54 
governments. Further research is needed to discount valuations for potential losses that may occur in the 55 
future but with uncertain occurrence, and to improve real estate loss estimates over local to regional scales.  56 
 57 
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Marine ecosystem services contribute to climate moderation and coastal defenses (5.4.1.2). However, while 1 
the above studies in this section acknowledge the contribution of many climate impacts on real estate and 2 
infrastructure through ecosystem losses and degradation, often they are not accounted for in quantitative 3 
economic impact assessments.  Overall, there is high confidence that sea level rise, increases in storm 4 
intensity and other extreme events will impact the values of coastal real estates and infrastructure, 5 
particularly in tropical SIDS, through the risk and impacts of direct physical damages. However, there is low 6 
confidence that impacts due to underlying loss and damage of ecosystems and their services are being 7 
similarly accounted for. 8 
 9 
5.4.2.4 Risk and Opportunities for Ocean Economy  10 
 11 
The ‘ocean economy’ refers to the sustainable use of ocean resources for economic growth, improved 12 
livelihoods and jobs, and ocean ecosystem health (World Bank, 2017). In SR1.5 (Hoegh-Guldberg et al., 13 
2018) and elsewhere here (Chapters 3 and 5), the risks and opportunities of specific sectors that contribute to 14 
the ocean economy under climate change are assessed.  The fishing industry is particularly important in this 15 
context.  As previously noted,  warming has already directly impacted coastal and open ocean fishing 16 
activities in some regions (5.4.1.1, 5.4.2.3.1); the risk of fishery impacts is exacerbated by the observed 17 
climate-driven changes to coral reefs and other coastal ecosystems that contribute to the productivity of 18 
exploited fish species (5.4.1.3, 5.4.2.3.1); and there are challenges to sustainable management of 19 
transboundary fisheries resources caused by species’ range shifts and associated governance challenges 20 
(5.4.2.2.2)..  21 
 22 
Fisheries-related national and local economies of many tropical developing countries are exposed high 23 
climate risks (5.4.2.3.1) (Blasiak et al., 2017), as a result of the projected large decrease in maximum catch 24 
and revenue potential under RCP 8.5 in the 21st century (5.4.1.1). Historical examples from fishery over-25 
exploitation indicate that a large decrease in catches for specific fish stocks have had substantial negative 26 
effects for dependent economies and communities (Brierley and Kingsford, 2009; Davis, 2015). Moreover, 27 
coastal economies that are dependent on marine tourism and recreational activities are also exposed to 28 
elevated risks from impacts on biota that are important for these sectors (5.4.2.3.2). Nevertheless, new 29 
opportunities for coastal tourism may occur in future for some regions as a result of species’ biogeographic 30 
shifts (5.4.2.3.2) and increased accessibility, such as in the Arctic (Chapter 3).  31 
 32 
Decrease in sea ice in the Arctic is opening up economic opportunities for the oil and gas exploration, 33 
mining industries and shipping that are currently important economic sectors in the ocean (Pelletier and Guy, 34 
2012; George, 2013) (Section 3.4.3; 3.5.3). Although the Arctic region has oil and gas reserves estimated to 35 
account for one-tenth of world oil and a quarter of global gas (U.S. Geological Survey released on 24 July 36 
2008), offshore oil and gas exploration with poor regulation or as a result of accidents poses additional risk 37 
of impacts on species, populations, assemblages, to ecosystems by modifying a variety of ecological 38 
parameters (e.g., biodiversity, biomass, and productivity) (Cordes et al., 2016) threatening the sensitive 39 
Arctic ecosystems and the livelihood of dependent communities (Section 3.5.3.3).  40 
 41 
Similarly, global warming and changing weather patterns may have a substantial impact on global trade and 42 
transport pathways (Koetse and Rietveld, 2009); for example, the reduction in sea ice in the Arctic Ocean 43 
during summer opens up the possibility for sea transport on the Northwest or Northeast Passage for several 44 
months per year  (Ng et al., 2018) (Section 3.5.3.2). Both routes may provide opportunities for more efficient 45 
transport between North America, Europe, Russia and China for fleets with established Arctic equipment, 46 
and may open up access to known natural resources which have so far been covered by ice (Guy and 47 
Lasserre, 2016). However, whether the Arctic shipping routes will be a realistic alternative depends not only 48 
on regulatory frameworks and economic aspects (such as infrastructure and reliability of the routes) but also 49 
on societal trends and values, demographics, and tourism demand (Prowse et al., 2009; Wassmann et al., 50 
2010; Pelletier and Guy, 2012; George, 2013; Hodgson et al., 2016; Pizzolato et al., 2016; Dawson, 2017) 51 
(Section 3.2.4.2, 3.4.3.3). Simultaneously, shipping routes through the Arctic pose additional risk from 52 
human impact such as pollution, introduction of invasive species and collision with marine mammals, and 53 
emission of  short-lived climate forcers that can amplify warming in the region and accelerate localized 54 
warming (Wan et al., 2016) (Section 3.5.3.2).  55 
 56 
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Existing governance may not be sufficient to limit the elevated risk on Arctic ecosystems and their 1 
dependent economies from increased shipping activities (Section 3.4.3, 3.5.3). Climate change may bring 2 
new economic opportunities, particularly for polar oil and gas development (medium confidence), shipping 3 
(medium confidence) and tourism (low confidence) although realization of these opportunities will pose 4 
uncertain ecological risks to sensitive ecosystems and biota, and the dependent human communities in the 5 
region (high confidence).  6 
 7 
Ocean renewable energy provides an emerging alternative to fossil fuels and comprises energy extraction 8 
from offshore winds, tides, waves, ocean thermal gradients, currents and salinity gradients  (Harrison and 9 
Wallace, 2005; Koetse and Rietveld, 2009; Bae et al., 2010; Jaroszweski et al., 2010; O Rourke et al., 2010; 10 
Hooper and Austen, 2013; Kempener and Neumann, 2014b; Kempener and Neumann, 2014a; Abanades et 11 
al., 2015; Astariz et al., 2015; Borthwick, 2016; Foteinis and Tsoutsos, 2017; Manasseh et al., 2017; Becker 12 
et al., 2018; Gattuso et al., 2018; Hemer et al., 2018; Dinh and McKeogh, 2019b; Dinh and McKeogh, 13 
2019a). Other potential sources of marine renewable energy include algal biofuels (Greene et al., 2010; 14 
Greene et al., 2016). While such approaches offers a way to mitigate climate change, changes in climatic 15 
conditions (such as waves and winds) may impact marine renewable energy installations and their 16 
effectiveness (Harrison and Wallace, 2005).  A more comprehensive assessment of these issues is expected 17 
to be provided by IPCC WGIII in the AR6 full report.   18 
 19 
Overall, some major existing ocean economy sectors such as fishing, coastal tourism and recreation are 20 
already at risk by climate change (medium confidence), and all sectors are expected to have elevated risks 21 
with high future emission scenarios (high confidence). The emerging demand for alternative energy sources 22 
is expected to generate economic opportunities for the ocean renewable energy section (high confidence), 23 
although their potential may also be affected by climate change (low confidence). 24 
 25 
5.4.2.5 Impacts of Changing Ocean on Sustainable Development Goals 26 
 27 
Climate change impacts will have consequences for the ability of human society to achieve sustainable 28 
development.  IPCC SR1.5 concludes that “Limiting global warming to 1.5°C rather than 2°C would make it 29 
markedly easier to achieve many aspects of sustainable development, with greater potential to eradicate 30 
poverty and reduce inequalities (medium evidence, high agreement)”. This assessment focuses on how 31 
climate change impacts on marine ecosystems would challenge sustainable development, using the United 32 
Nations Sustainable Development Goals (SDGs) as a framework to discuss the linkages between those 33 
issues.  34 
 35 
Climate impacts on marine ecosystems affect their ability to provide seafood and raw materials, and to 36 
support biodiversity, habitats and other regulating processes (Section 5.4.1), and these impacts on the ocean 37 
affect people directly and indirectly (Sections 5.4.2.1, 5.4.2.2, 5.4.2.3).  SDG 14 is the goal that is most 38 
directly relevant: “Life below water: including indicators for marine pollution, habitat restoration and 39 
protected areas, ocean acidification, fisheries, and coastal development.”  40 
 41 
Climate impacts in the ocean to other SDGs are mediated through social and economic factors when the 42 
SDG targets are affected (Singh et al. 2019). For example, climate impacts on marine ecosystem services 43 
related to primary industries that provide food, income and livelihood to people have direct implications for 44 
a range of SDGs. These SDGs include “no poverty” (SDG 1), “zero hunger” (SDG 2), “decent work and 45 
economic growth” (SDG 8), “reduced inequalities” (SDG 10) and “responsible consumption and 46 
production” (SGD 12) (Singh et al. 2019, Figure 5.22). These impacts relate to changing ocean under climate 47 
change that affect the pathways to build sustainable economies and eliminate poverty (Sections 5.4.2.4), 48 
eliminate hunger and achieve food security (Section 5.4.2.1.3), reduce inequalities (Sections 5.4.2.2) and 49 
achieve responsible consumption and production (Sections 5.4.2.3.1) (Carvalho et al., 2017; Castells-50 
Quintana et al., 2017). Climate change is also creating living conditions in coastal areas that are less suitable 51 
to human settlement and changing distributions of marine disease vectors (5.4.2.1.1, 5.4.2.3.3), reducing our 52 
chances of achieving the goal for good health and wellbeing (SDG 3) (Pearse, 2017; Wouters et al., 2017). 53 
Women are often engaged in jobs and livelihood sources that are more exposed to climate change impacts 54 
from the ocean such as impacts on fisheries (Section 5.4.2.3.1) and impacts of sea level rise on coastal 55 
regions (Chapter 6). For example, in Senegal, women disproportionately engage in rice crop cultivation in 56 
coastal flood plain (Linares, 2009), and are thus exposed to the risks on their livelihood from rising sea 57 
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levels and resulting salinization (Dennis et al., 1995). Flooding in Bangladesh has increased the vulnerability 1 
of women to harassment and abuse as the flooding upends normal life and increases crime rates (Azad et al., 2 
2013). As such, climate change may negatively affect our ability to achieve “gender equality” (SDG 5) 3 
(Salehyan, 2008). Impacts on living conditions as well as changing recreational, aesthetic, and spiritual 4 
experiences also affect our ability to achieve “sustainable cities and communities” (SDG 11) (Section 5 
5.4.2.2.1). The consequences of climate change in the ocean to achieving the remaining SDGs are less clear. 6 
However, the SDGs are interlinked, and achieving SDG 14, and especially the targets of increasing 7 
economic benefits to Small Island Developing States and Least Developed Countries, as well as eliminating 8 
illegal fishing and overfishing, will benefits all other SDGs (Singh et al., 2017). The interlinkages among 9 
SDGS mean climate change impact on the ocean will affect all other SDGs beside SDG14 in various ways, 10 
some possible direct and many indirect (low confidence).  11 
 12 
Overall, climate change impacts on the ocean will negatively affect the chance of achieving the Sustainable 13 
Development Goals and sustaining their benefits (medium confidence).  14 
 15 
 16 
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 1 
Figure 5.22: Summary of the types of relationships (negative, neutral and positive) between impacted marine 2 
ecosystem services (Provisioning, Regulating, Supporting and Cultural) and the Sustainable Development Goals based 3 
on literature review and expert-based analysis (Singh et al., 2019). Pie charts represent the proportion of targets within 4 
SDGs that a particular ocean SDG target contributes to according to the literature reviewed and expert-based analysis 5 
presented in Singh et al. (2019). 6 
 7 
 8 
5.5 Risk-reduction Responses and their Governance 9 
 10 
5.5.1 Ocean-based Mitigation 11 
 12 
5.5.1.1 Context for Blue Carbon and Overview Assessment 13 
 14 
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There is political and scientific agreement on the need for a wide range of mitigation actions to avoid 1 
dangerous climate change (UNEP, 2017; IPCC, 2018). Opportunities to reduce emissions by the greater use 2 
of ocean renewable energy are identified in Section 5.4.2.3.2.  Here, in accordance with the approved 3 
scoping of this report, the assessment of mitigation options is limited to the management of natural ocean 4 
processes, i.e. requiring policy intervention, with a focus on ‘blue carbon’. Natural processes per se, 5 
although important to the climate system and the global carbon cycle, are not a mitigation response.  Two 6 
management approaches are possible: first, actions to maintain the integrity of natural carbon stores, thereby 7 
decreasing their potential release of greenhouse gases, whether caused by human or climate-drivers; and 8 
second, through actions that enhance the longterm (century-scale) removal of greenhouse gases from the 9 
atmosphere by marine systems, primarily by biological means.  10 
  11 
These mitigation approaches match those proposed using terrestrial natural processes (Griscom et al., 2017), 12 
with extensive afforestation and reforestation included in all climate models that limit future warming to 13 
1.5⁰C (de Coninck et al., 2018). As on land, reliable carbon accounting is a critical consideration (Grassi et 14 
al., 2017), together with confidence in the longterm security of carbon storage. The feasibility of 15 
climatically-significant (and societally-acceptable) mitigation using marine natural processes therefore 16 
depends on a robust quantitative understanding of how human actions can affect the uptake and release of 17 
greenhouse gases from different marine environments, interacting with natural biological, physical and 18 
chemical processes. Whilst CO2 is the most important greenhouse gas, marine fluxes of methane and nitrous 19 
oxide can also be important, for both coastal regions and the open ocean (Arévalo-Martínez et al., 2015; 20 
Borges et al., 2016; Hamdan and Wickland, 2016). 21 
 22 
The term ‘blue carbon’ was originally used to cover biological carbon in all marine ecosystems (Nellemann 23 
et al., 2009). Subsequent use of the term has focused on carbon-accumulating coastal habitats structured by 24 
rooted plants, such as mangroves, tidal saltmarshes and seagrass meadows, that are relatively amenable to 25 
management (McLeod et al., 2011; Pendleton et al., 2012; Thomas, 2014; Macreadie et al., 2017a; Alongi, 26 
2018; Windham-Myers et al., 2018; Lovelock and Duarte, 2019). Comparisons across the full range of 27 
freshwater and saline wetland types are assisted by standardised approaches (Nahlik and Fennessy, 2016; 28 
Vázquez-González et al., 2017). Seaweeds (macroalgae) can also be considered as coastal blue carbon 29 
(Krause-Jensen and Duarte, 2016; Krause-Jensen et al., 2018; Raven, 2018), however, because of differences 30 
in their carbon processing, their climate mitigation potential is assessed separately within Section 5.5.1.2 31 
below. 32 
 33 
In the open ocean, the biological carbon pump is driven by the combination of photosynthesis by 34 
phytoplankton and downward transfer of particulate carbon by a variety of processes (Henson et al., 2010; 35 
DeVries et al., 2017); it results in large-scale transfer of around 10 GtC yr-1 carbon from near-surface waters 36 
to the ocean interior (Boyd et al., 2019). Most of this carbon is respired in the mesopelagic and contributes to 37 
the 37,000 GtC inventory of dissolved inorganic carbon, with around ~0.1 GtC yr-1 eventually being 38 
permanently removed in deep sea sediments (Cartapanis et al., 2018).  In addition, the microbial carbon 39 
pump (Jiao et al., 2010) produces refractory dissolved organic molecules throughout the water column at a 40 
rate of around  0.4 GtC yr-1 (Jiao et al., 2014b), which due to their residence time of hundreds to thousands 41 
of years maintain the 700 GtC inventory of dissolved organic carbon in the ocean (Jiao et al., 2010; Jiao et 42 
al., 2014a; Legendre et al., 2015; Jiao et al., 2018a). The natural removal of carbon by the various carbon 43 
pumps is closely balanced by upwelling and outgassing, with the ocean a moderate source of CO2 under pre-44 
industrial conditions (Ciais et al., 2013). The mitigation potential of managing natural processes in the open 45 
ocean is only briefly assessed here (Section 5.5.1.3). 46 
 47 
Gattuso et al. (2018)  provide an overview assessment of the environmental, technical and societal 48 
feasibilities of using a range of ocean management actions to reduce climate change and its impacts. Their 49 
results for nine actions based on natural processes are summarised in Figure 5.23, also including marine 50 
renewable energy (wind, wave and tidal) for comparison. Eight semi-quantitative criteria were used to assess 51 
each action: maximum potential effectiveness by 2100 in reducing climatic drivers (ocean warming, ocean 52 
acidification and sea level rise), assuming full theoretical implementation; technological readiness and lead 53 
time to full potential effectiveness (subsequently combined as technical feasibility); duration of benefits; co-54 
benefits; trade-offs (originally described as dis-benefits); cost-effectiveness; and governability (capability of 55 
implementation, and management of any associated conflicts). Here, governability is considered as a 56 
constraint (governability challenges) reversing the scoring scale used by Gattuso et al. (2018) 57 
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 1 
Global measures (circles in Figure 5.23) can be regarded as mitigation, reducing drivers; local measures 2 
(rectangles), are primarily ecosystem-based adaptation, reducing impacts (Section 5.5.2), although they may 3 
also contribute to mitigation; two actions were considered at both scales. Gattuso et al. (2018) did not 4 
consider the effects of actions on ocean oxygenation, notwithstanding the importance of deoxygenation as a 5 
component of climate change. Additional detail is given in Supplementary Material SM5.4.  6 
 7 

 8 
Figure 5.23: Summary of potential benefits and constraints of ocean-based risk-reduction options using natural 9 
processes, from literature-based expert assessments by Gattuso et al. (2018) . Mitigation effectiveness was quantified 10 
relative to RCP 8.5, assuming maximum theoretical implementation, with reduction of climate-related drivers 11 
considered at either global or local (< 100 km2) scale, shown as circles or rectangles respectively. Impact reduction, co-12 
benefits and trade-offs are in the context of eight sensitive marine ecosystems and ecosystem services. ‘Technical issues 13 
to overcome’ is based on scores for technological readiness, lead time for full implementation and duration of effects. 14 
Cost is based on USD per tonne of CO2 either not released or removed from the atmosphere (for global measures) or 15 
per hectare of coastal area with action implemented (for local measures). ‘Governance challenges’ shows the potential 16 
difficulty of implementation by the international community. NA, not assessed.  Additional information on scoring 17 
methods is given in Supplementary Material SM5.4, Tables SM5.9a and SM5.9b. 18 
 19 
 20 
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5.5.1.2 Climate Mitigation in the Coastal Ocean  1 
 2 
5.5.1.2.1 Opportunities and challenges relating to coastal carbon 3 
Estuaries, shelf seas and a wide range of other intertidal and shallow-water habitats (Section 5.3) play an 4 
important role in the global carbon cycle through their primary production by rooted plants, seaweeds 5 
(macroalgae) and phytoplankton, and also by processing riverine organic carbon. However, the natural 6 
carbon dynamics of these systems have been greatly changed by human activities (Regnier et al., 2013; 7 
Cloern et al., 2016; Day and Rybczyk, 2019) (high confidence). Direct anthropogenic impacts include 8 
coastal land-use change (Ramesh et al., 2015; Li et al., 2018a); indirect effects include increased nutrient 9 
delivery and other changes in river catchments (Jiao et al., 2011; Regnier et al., 2013), and marine resource 10 
exploitation in shelf seas (Bauer et al., 2013). There is high confidence that these human-driven changes will 11 
continue, reflecting coastal settlement trends and global population growth (Barragán and de Andrés, 2015).  12 
 13 
Policy recognition of the mitigation benefits of coastal ecosystems requires quantitative information on their 14 
actual and potential carbon uptake and storage at the local and national scale, within an international 15 
framework for carbon accounting (Crooks et al., 2011; Hejnowicz et al., 2015). Such methods are being 16 
developed for coastal habitats structured by rooted plants (Needelman et al., 2018; Troxler et al., 2018; 17 
Needelman et al., 2019), considered here as ‘coastal vegetation’, linked to protocols for verification of 18 
longterm carbon removal and financial incentives (Crooks et al., 2011; Hejnowicz et al., 2015) and building 19 
on techniques used for managing terrestrial carbon sinks (Ahmed and Glaser, 2016b; Aziz et al., 2016). 20 
Proposals to apply carbon accounting to seaweeds, the water column and shelf sea sediments (Krause-Jensen 21 
and Duarte, 2016; Zhang et al., 2017) are less well-developed.  22 
 23 
5.5.1.2.2 Coastal vegetation: mangrove, saltmarsh and seagrass ecosystems 24 
Mangrove, saltmarsh and seagrass habitats are widely recognized as blue carbon ecosystems with mitigation 25 
potential (Chmura et al., 2003; Duarte et al., 2005; Kennedy et al., 2010; McLeod et al., 2011). Although 26 
covering only ~0.1% of the Earth’s surface, these three ecosystems together have been estimated to support 27 
1–10% of global marine primary production (Duarte et al., 2017). More than 150 countries contain at least 28 
one of these ecosystems; 71 countries contain all three (Herr and Landis, 2016), and 74 countries mention 29 
such coastal wetlands (five specifically as blue carbon) in their Nationally Determined Contributions 30 
(NDCs) to the Paris Agreement (Martin et al., 2016a; Gallo et al., 2017). 31 
 32 
These three vegetated coastal habitats are characterized by high, yet variable, organic carbon storage in their 33 
soils and sediments on a per unit area basis (high confidence). In the humid tropics, mangrove below-ground 34 
organic carbon is typically 500–1000 tC ha–1 (Donato et al., 2011; Alongi and Mukhopadhyay, 2015; 35 
Howard et al., 2017)), although only ~50 tC ha–1 in arid regions (Almahasheer et al., 2017). Australian 36 
saltmarshes show particularly wide variation in organic carbon storage, ranging from 15 to 1000 tC ha–1 (top 37 
1 m) with mean of 165 tC ha–1 (Kelleway et al., 2016; Macreadie et al., 2017b). For seagrass meadows, 38 
storage values are typically 400–1600 tC ha–1 but can exceed 2000 tC ha–1 (Serrano et al., 2014). These 39 
accumulations have occurred over decadal to millennial timescales (McKee et al., 2007; Lo Iacono et al., 40 
2008). Such blue carbon stock values are similar to freshwater wetlands and peat, but higher than for most 41 
forest soils (Laffoley and Grimsditch, 2009; Pan et al., 2011) (high confidence).   42 
 43 
When vegetated coastal ecosystems are disturbed, a proportion of their stored carbon is released back to the 44 
atmosphere, along with other greenhouse gases (Marba and Duarte, 2009; Duarte et al., 2010; Pendleton et 45 
al., 2012; Lovelock et al., 2017). Globally, around 25–50% of vegetated coastal habitats have already been 46 
lost or degraded due to coastal agricultural developments, urbanization and other human disturbance during 47 
the past 100 years (McLeod et al., 2011). The highest historical losses (60-90%) have occurred in Europe 48 
and China (Jickells et al., 2015; Gu et al., 2018; Li et al., 2018a). Current losses are estimated at 0.2–3.0% 49 
yr-1, depending on vegetation type and location (Hiraishi et al., 2014; Alongi and Mukhopadhyay, 2015; 50 
Atwood et al., 2017) (medium confidence). Associated global carbon emissions are estimated at 0.04– 0.28 51 
GtC yr–1   (Pendleton et al., 2012); ; 0.06–0.61 GtC yr–1 (Howard et al., 2017); 0.10–1.46 GtC yr–1 (Lovelock 52 
et al., 2017); and 0.007 GtC yr–1 (mangroves only) (Taillardat et al., 2018). This range of values reflects 53 
uncertainties regarding the global rate of habitat loss, and the proportion of carbon remineralised to CO2. 54 
 55 
Mitigation through emission reduction can therefore be achieved by habitat protection, to greatly reduce or 56 
end the human-driven loss of mangrove, saltmarsh and seagrass ecosystems. Such action could potentially 57 
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produce nationally-significant mitigation (>1% of fossil fuel emissions) for several countries (Taillardat et 1 
al., 2018). However, there are still many uncertainties in quantifying carbon release due to habitat 2 
degradation and loss (Lovelock et al., 2017), and hence in determining emission reductions.  Furthermore, 3 
this mitigation option is not available to those countries where habitat loss is not currently occurring, e.g. 4 
Bangladesh (Taillardat et al., 2018). Since legal structures already exist in many countries to protect coastal 5 
wetlands, the main policy need may be the enforcement of national regulation and site-specific marine 6 
protected areas (Miteva et al., 2015; Herr et al., 2017; Howard et al., 2017). 7 
 8 
The alternative mitigation approach using coastal blue carbon ecosystems is to enhance the natural carbon 9 
uptake of such habitats, not only by increasing their spatial coverage through habitat restoration and new 10 
habitat creation, but also by taking management measures to maximise the carbon uptake and storage for 11 
existing coastal ecosystems. Such measures include reducing anthropogenic nutrient inputs and other 12 
pollutants; restoring hydrology, by removing barriers to tidal flow and sediment delivery; and reinstating 13 
predators (to reduce carbon loss caused by some bioturbators) (Macreadie et al., 2017a). Per unit area of 14 
habitat created, restored or rehabilitated, such actions may offer high rates of carbon removal: widely-quoted 15 
values are 226±39 gC m-1 yr-1 for mangroves, 218±24 gC m-1 yr-1 for saltmarsh and 138±38 gC m-1 yr-1 for 16 
seagrass ecosystems (McLeod et al., 2011; Isensee et al., 2019).  17 
 18 
Around 90 restoration and rehabilitation projects for mangroves have been documented (López-Portillo et 19 
al., 2017), with associated development of a range of restoration evaluation methods (Zhao et al., 2016a). 20 
Saltmarsh restoration is reviewed by Adam (2019) and seagrass restoration by van Katwijk et al. (2016). 21 
Consistent conclusions, supported by other studies (Bayraktarov et al., 2016; Wylie et al., 2016) are that: 22 
natural regeneration increases the likelihood of longterm survival; higher success rates are achieved with 23 
strong stakeholder engagement; and it is critical that the (human) factors causing original loss and 24 
degradation have been properly addressed (high confidence). 25 
 26 
Quantification of the climatic benefits of such actions is, however, not straightforward.  Measurements of 27 
carbon burial rates show high site-specific variability, being strongly affected by a wide range of 28 
environmental factors for mangroves (Adame et al., 2017; Schile et al., 2017), seagrasses (Lavery et al., 29 
2013) and salt marshes (Kelleway et al., 2017b). The reliable determination of sediment accumulation rates 30 
is a key consideration, with associated uncertainties not fully reflected in the (McLeod et al., 2011) estimates 31 
given above. In particular, geochemical-based studies have indicated that seagrass carbon burial may have 32 
been greatly overestimated (Johannessen and Macdonald, 2016). These issues are contentious (Johannessen 33 
and Macdonald, 2018a; Johannessen and Macdonald, 2018b; Macreadie et al., 2018; Oreska et al., 2018); 34 
their scientific resolution is highly desirable. Additional complexities relating to the mitigation role of 35 
coastal blue carbon ecosystems include the following: 36 
 37 
• Emissions of other greenhouse gases also need to be taken into account (Keller, 2019b). Methane release 38 

from mangrove habitats can reduce the scale of their climatic benefits by 18–22% (Adams et al., 2012; 39 
Chen and Ganapin, 2016; Chmura et al., 2016; Rosentreter et al., 2018; Cameron et al., 2019) and 40 
nitrous oxide and methane together may offset saltmarsh CO2 uptake by 24–31% (Adams et al., 2012). 41 
Nitrous oxide emissions are strongly affected by nutrient loading (Chmura et al., 2016); under pristine 42 
conditions, mangroves can provide a sink rather than a source (Maher et al., 2016). Note that values of 43 
the ‘offset’ depend on the metrics used for determining CO2 equivalents. 44 

• Carbonate formation, releasing CO2, may also reduce the benefits of carbon storage by similar 45 
proportions (Howard et al., 2017; Macreadie et al., 2017a; Kennedy et al., 2018; Saderne et al., 2019). 46 

• Lateral transfers are not well-quantified. Whilst some of the carbon stored in coastal marine sediments 47 
may be recalcitrant carbon from terrestrial or atmospheric sources (and should therefore be excluded) 48 
(Chew and Gallagher, 2018), export of dissolved organic carbon, inorganic carbon and alkalinity may be 49 
considered as additional sequestration (Maher et al., 2018; Santos et al., 2019).  50 

• The permanence of vegetated coastal systems, even if well-protected, cannot be assumed under future 51 
temperature regimes (Ward et al., 2016; Duke et al., 2017; Jennerjahn et al., 2017; Nowicki et al., 2017) 52 

• Responses to future sea level rise are also uncertain and complex  (Kirwan and Megonigal, 2013; 53 
Spencer et al., 2016) . However, impacts are not necessarily negative: carbon sequestration capacity may 54 
increase where totally new habitats are created (Barnes, 2017), or if mangroves replace salt marshes 55 
(Kelleway et al., 2016).  56 

 57 
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In summary, a combination of both conservation and restoration of mangrove, saltmarsh and seagrass 1 
habitats can contribute to in national mitigation effort for those countries with relatively large coastlines 2 
where such ecosystems naturally occur (Murdiyarso et al., 2015; Atwood et al., 2017). However, the 3 
associated current uncertainties in quantifying relevant carbon storage and flows are expected to be 4 
problematic for reliable measurement, reporting and verification (high confidence). 5 
 6 
At the global scale, synthesis studies have estimated the potential additional sequestration achieved by 7 
coastal blue carbon management as ~0.05 GtC yr–1 (Griscom et al., 2017) and 0.04 GtC yr–1 (National 8 
Academies of Sciences, Engineering, and Medicine, 2019), assuming that a relatively high proportion of 9 
vegetated ecosystems can be re-instated to their 1980–90 extents. These values compare to current net 10 
anthropogenic emissions from all sources of 10.0 GtC yr–1 (Le Quéré et al., 2018), and are consistent with 11 
the ‘very low’ scores by (Gattuso et al., 2018) for the climate mitigation benefits of conserving and restoring 12 
coastal vegetation (Figure 5.23). This assumed scale of restoration would be challenging, because of the 13 
semi-permanent and on-going nature of most coastal land-use change, such as human settlement, conversion 14 
to agriculture and aquaculture, shoreline hardening, and port development (Gittman et al., 2015; Li et al., 15 
2018a).   16 
 17 
Restoration costs could also be an important constraint for large-scale application. Based on published data 18 
from 246 observations, Bayraktarov et al. (2016) estimated median total costs for restoration of one hectare 19 
of mangrove, saltmarsh and seagrass habitat to be ~USD 2,508, USD 151,129 and USD 383,672 20 
respectively, in 2010 prices. For each ecosystem, there was high variability in costs according to the 21 
economy of the country where the restoration projects were carried out, and the restoration technique 22 
applied. Assessment of coastal conservation and restoration costs is also given in Section 4.4.2.3, in Box 5.5 23 
(in the context of coral reef restoration costs) and Section 5.5.2.5.  24 
 25 
Measures to protect and restore coastal blue carbon habitats provide many other societal benefits in addition 26 
to climate regulation (Section 5.4.1).  In particular, there is high confidence that coastal wetlands benefit 27 
local fisheries, enhance biodiversity, give storm protection, reduce coastal erosion, improve water quality, 28 
and support local livelihoods (Costanza et al., 2008; Spalding et al., 2014). Coastal ecosystems may keep 29 
pace with sufficiently gradual sea level rise, and may be more cost-effective in flood protection than hard 30 
infrastructure like seawalls (Temmerman et al., 2013; Möller, 2019). Coastal blue carbon can therefore be 31 
considered as a ‘no regrets’ mitigation option at the national level in many countries, in addition to (not a 32 
replacement for) more effective mitigation measures. Additional research is needed over the full range of 33 
environmental conditions to improve knowledge and understanding of the complex carbon dynamics of 34 
coastal vegetation and associated systems, to enable well-quantified and cost-effective carbon sequestration 35 
enhancement (Vázquez-González et al., 2017; Windham-Myers et al., 2018). 36 
 37 
5.5.1.2.3 Seaweeds (macroalgae)  38 
Seaweeds do not directly transfer carbon to marine sediments, unlike the rooted coastal vegetation 39 
considered above (Howard et al., 2017). Nevertheless, seaweed detritus can deliver carbon to sedimentary 40 
sites (Hill et al., 2015) and may provide a source of refractory dissolved organic (Krause-Jensen and Duarte, 41 
2016). Recent studies indicate that globally-important amounts of carbon may be involved in these processes 42 
(Krause-Jensen and Duarte, 2016; Krause-Jensen et al., 2018; Smale et al., 2018). There is, however, 43 
currently low confidence that enhancement of natural seaweed production can provide a significant 44 
mitigation response, due to large uncertainties relating to sequestration duration and effectiveness. Such 45 
considerations relate to transport pathways, the fate of material transported to deeper water, and the 46 
timescales of its subsequent return to the atmosphere over decadal to century timescales.  47 
 48 
Seaweed aquaculture is inherently more manageable as a mitigation response (N‘Yeurt et al., 2012; Chung et 49 
al., 2013; Chung et al., 2017; Duarte et al., 2017). If linked to biofuel or biogas production (N‘Yeurt and 50 
Iese, 2014; Moreira and Pires, 2016; Sondak et al., 2017), there would be potential to reduce emissions (as 51 
an alternative to fossil fuels); if also linked to carbon capture and storage (Hughes et al., 2012), it may be 52 
possible to achieve negative emissions (net CO2 removal from the atmosphere). Full life cycle analyses are 53 
needed to assess the energy efficiency of such approaches, and the viability of scaling them up to 54 
climatically-important levels, taking account of associated environmental and socio-economic implications. 55 
 56 
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A different mitigation option using seaweeds relates to their use as a dietary supplement for ruminants to 1 
suppress methane production. In vitro studies have given promising results (Dubois et al., 2013; Machado et 2 
al., 2016; Machado et al., 2018). However, because the potential scale of real-world benefits have yet to be 3 
quantified, there is low confidence in this approach as a mitigation option.  4 
 5 
5.5.1.2.4 Land-sea integrated eco-engineering 6 
Land-based nutrient management could, in theory, be used to enhance carbon storage in coastal 7 
seas and deeper waters, by increasing the amount of refractory dissolved organic carbon (Jiao et al., 8 
2011; Jiao et al., 2014b; Jiao et al., 2018b). This idea is supported by a statistical analysis of the 9 
relationship between organic carbon and nitrate in various natural environments (Taylor and 10 
Townsend, 2010) as well as by experimental results in estuarine and offshore waters (Yuan et al., 11 
2010; Jiao et al., 2011; Jiao et al., 2014b). Delivery of nutrients from agricultural fertilizers and 12 
sewage discharge to coastal waters may currently promote the microbial breakdown of river-13 
derived terrestrial dissolved organic carbon, reducing carbon storage (Liu et al., 2014). Thus 14 
reducing nutrient inputs in the future may expand carbon storage by favouring the microbial carbon 15 
pump, in addition to the multiple co-benefits of reduced nutrient loads related to harmful algal 16 
blooms, oxygenation and ocean acidification (Miranda et al., 2013; Jiao et al., 2018a; Zhang et al., 17 
2018). Although there is some evidence for the impact of dissolved organic carbon variations on 18 
global scale climate (Rothman et al., 2003) the benefits of this approach have yet to be determined 19 
quantitatively and uncertainties remain regarding the longevity of removal and associated carbon 20 
accounting (measurement, reporting and verification). Until such issues are better resolved, there is 21 
low confidence that stimulation of refractory dissolved organic carbon production could provide an 22 
operational long-term mitigation measure. 23 
 24 
5.5.1.2.5  Control of sediment disturbance, enhanced weathering and other geochemical approaches  25 
Anthropogenic sediment disturbance, through fishing, dredging and the installation of offshore 26 
structures, affects the security of carbon storage in shelf sea sediments (Hale et al., 2017). 27 
Management of such activities might therefore increase carbon retention, over relatively large areas 28 
of shelf seas (Avelar et al., 2017; Luisetti et al., 2019). However, there is a lack of data and 29 
understanding of the complex processes that affect carbon storage in the potentially-mobile fraction 30 
of marine sediments (van de Velde et al., 2018); exceptions are provided by Hu et al. (2016) and 31 
Diesing et al. (2017). Due to these uncertainties, there is currently low confidence that control of 32 
sediment disturbance can be used for climate mitigation. 33 
 34 
There is theoretically greater potential for carbon removal by ‘enhanced weathering’ using mineral additions 35 
to coastal waters (and the open ocean) (Rau, 2011; Renforth and Henderson, 2017). These approaches are 36 
based on increasing the naturally-occurring uptake of CO2 by carbonates (e.g., calcite and dolomite) or 37 
silicate minerals (such as olivine). Such rock-weathering currently sequesters ~0.25 GtC yr–1, on land and at 38 
sea (Taylor et al., 2015) and provides the longterm control of atmospheric CO2 concentrations. It could be 39 
enhanced by adding ground minerals to beaches (Montserrat et al., 2017) or the sea surface. Other 40 
geochemical approaches for adding alkalinity that are less directly based on natural processes (Rau et al., 41 
2012; GESAMP, 2019) are not considered here. 42 
 43 
Enhanced weathering methods might be used to reduce local impacts, e.g., for coral reefs (Albright et al., 44 
2016b; Feng et al., 2016), as well as contributing to wider mitigation of climate change. However, their 45 
climatic benefits would be difficult to quantify, with other constraints on their development and deployment 46 
relating to the governance, cost, and uncertain environmental impacts of large-scale application (Gattuso et 47 
al., 2018). The combination of these factors results in low confidence that enhanced weathering can provide 48 
a viable and acceptable climate mitigation approach. 49 
 50 
5.5.1.3 Climate Mitigation in the Open Ocean 51 
 52 
Recent reviews of the scope for using natural processes in the open ocean for climate mitigation are provided 53 
by Keller (2019a) and GESAMP (2019). The summary assessment given here is limited to direct and 54 
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indirect biologically-based approaches, consistent with the scoping of this report and the major governance 1 
constraints on the large-scale application of open ocean interventions.   2 
 3 
Current net primary production by marine phytoplankton is estimated to be 58 ± 7 GtC yr–1 (Legendre et al., 4 
2015), similar to terrestrial primary production and around 6 times greater than anthropogenic emissions (Le 5 
Quere et al. (2016). However, over 99% of the biologically-fixed carbon returns to the atmosphere over a 6 
range of timescales (Cartapanis et al., 2018). 7 
 8 
The direct method of increasing marine productivity involves adding land-derived nutrients that may 9 
currently limit primary production, particularly iron. This approach has been investigated experimentally, by 10 
modelling and by observations of natural system behaviour (Keller et al., 2014a; Bowie et al., 2015; 11 
Tagliabue et al., 2017). The thirteen experimental studies to date (seven in the Southern Ocean, five in the 12 
Pacific, and one in the sub-tropical Atlantic) have shown that primary production can be, but is not always, 13 
enhanced by the addition of iron (Boyd et al., 2007; Yoon et al., 2016; GESAMP, 2019).  14 
 15 
The difficulties arise in demonstrating the time-scale of additional carbon removal, and in obtaining 16 
information on the consequences of the fertilization for other marine ecosystem components, including 17 
ocean acidification and other potential side-effects (Williamson and Turley, 2012). Modelling studies 18 
(Aumont and Bopp, 2006) indicate that the climatic benefits could be relatively short-lived. Furthermore, 19 
public and political acceptability for ocean fertilization is low (Williamson et al., 2012; Boyd and Bressac, 20 
2016; Williamson and Bodle, 2016; Fuentes-George, 2017; McGee et al., 2018). Ocean iron fertilization is 21 
regulated by the London Protocol, with amendments prohibiting such action unless constituting legitimate 22 
scientific research authorized under permit (see Section 5.5.4.1). There are additional governance constraints 23 
for the Southern Ocean where ocean iron fertilization is theoretically considered to be most effective 24 
(Robinson et al., 2014). 25 
  26 
Open ocean fertilization by macro-nutrients (e.g., nitrate) has also been proposed, with modelled potential 27 
for gigaton-scale carbon removal (Harrison, 2017). Similar technical and governance considerations apply 28 
with regard to the quantification of mitigation benefits, the monitoring of potential adverse impacts, and the 29 
political acceptability of large-scale deployment.  This approach would also involve higher costs, because of 30 
the much greater quantities of nutrients required (Williamson and Turley, 2012). 31 
 32 
The indirect method of enhancing marine productivity uses physical devices to increase upwelling, thereby 33 
increasing the supply of a wide range of naturally-occurring nutrients from deeper water. This technique 34 
risks releasing additional CO2 to the atmosphere, reducing its potential for climate mitigation (Bauman et al., 35 
2014).  There may also be other undesirable climatic consequences, including disruption of regional weather 36 
patterns and long-term warming rather than cooling, if enhanced upwelling is deployed at large scale 37 
(Kwiatkowski et al., 2015). 38 
 39 
Because of the many technical, environmental and governance issues relating to marine productivity 40 
enhancement, by either direct fertilization or upwelling, there is low confidence that such open ocean 41 
manipulations provide a viable mitigation measure. 42 
 43 
5.5.2 Ocean-based Adaptation  44 
 45 
The IPCC Fifth Assessment Report (AR5) concluded, with high agreement but limited evidence, that climate 46 
change impacts on coastal human settlements and communities could be reduced through coastal adaptation 47 
activities (Wong et al., 2014a).  The limited evidence of the context-specific application of adaptation 48 
principles to support the assessment was highlighted as a knowledge gap for future research. This assessment 49 
reports progress made with developing such evidence and assesses human adaptation response to climate 50 
change in ecosystems, coastal communities and marine environments.   51 
 52 
Components of human adaptation responses include risk assessment, risk reduction, and pathways towards 53 
resilience (Cross-Chapter Box 2; Chapter 1.6). Residual risk remains where hazard, vulnerability and 54 
exposure intersect, subsequent to an adaptation pathway response. Here we focus on adaptation responses 55 
within ecosystems and in human systems, as framed in Chapter 1, and defined by:  56 
 57 
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• Nature-based or ecosystem-based adaptation (5.5.2.1). The use of biodiversity and ecosystem services as 1 
part of an overall adaptation strategy to help people to adapt to the adverse effects of climate change. 2 
Ecosystem-based adaptation uses the range of opportunities for the sustainable management, 3 
conservation, and restoration of ecosystems to provide services that enable people to adapt to the impacts 4 
of climate change (Narayan et al., 2016; Moosavi, 2017). 5 

 6 
• Human systems - Built environment adaptation (5.5.2.3.1) Adaptation solutions pertaining to coastal built 7 

infrastructure and the systems that support such infrastructure (Mutombo and Ölçer, 2016; Forzieri et al., 8 
2018). 9 

 10 
• Human systems - Socio-institutional adaptation (5.5.2.3) Adaptation responses within human social, 11 

governance and economic systems and sectors (Oswald Beiler et al., 2016; Thorne et al., 2017).  This 12 
includes, but is not limited to community-based adaptation by coastal communities (5.5.2.3.2) based on 13 
empowering and promoting the adaptive capacity of communities, through appropriate use of context, 14 
culture, knowledge, agency, and community preferences (Archer et al., 2014; Shaffiril et al., 2017) 15 

 16 
To avoid duplication, detailed consideration of adaptation responses to sea level rise and extreme events 17 
(including heat waves, and compound and cascading events) are avoided here, as they are covered by 18 
Chapter 4 and Chapter 6, respectively. Tables 5.7 and 5.8 provide a summary assessment of climate change 19 
impacts, human adaptation response and benefits in ecosystems and human systems respectively. Details of 20 
the assessed literature are in Supplementary Material Table 5.7. Climate drivers and impacts reported in the 21 
adaptation literature are consistent with those reported in Sections 5.2 and 5.3. Physical impacts include the 22 
disruption of physical coastal processes, like sediment dynamics, leading to, for example, erosion, flooding 23 
and coastal infrastructure damage (see Tables 5.7 and 5.8). Ecological impacts include the loss of 24 
ecosystems and biodiversity (Sections 5.2.3, 5.2.4, 5.3), which affected provision of ecosystem services, like 25 
coastal protection or food provision. The most commonly reported non-climate human drivers are growing 26 
human coastal populations (Elliff and Silva, 2017; van Oppen et al., 2017a; Gattuso et al., 2018) with poorly 27 
planned or managed urban development (Barbier, 2015; Wigand et al., 2017), land use change (Robins et al., 28 
2016a), loss of ecosystems (Runting et al., 2017), socio-economic vulnerability (Broto et al., 2015; Bennett 29 
et al., 2016) of many coastal communities, ineffective governance and knowledge gaps for implementation. 30 
 31 
5.5.2.1 Ecosystem-based Adaptation 32 
 33 
This section assesses adaptation response in coastal ecosystems, beginning with biological adaptation in 34 
species, and followed by a summary assessment of ecosystem-based adaptation as a response to climate 35 
change.  36 
 37 
5.5.2.1.1 Biological adaptation  38 
There are many studies on biological climate change adaptation responses (Crozier and Hutchings, 2014; 39 
Miller et al., 2017; Diamond, 2018). Sections 5.2.3 and 5.3.3 discuss three main types of biological 40 
adaptation, broadly defined: evolutionary (genetic) adaptation through natural selection; phenotypic 41 
plasticity (acclimatization), within an organism’s lifetime; and individual or population mobility towards 42 
more favourable conditions. There are, however, expected to be limits to such natural adaptation, and large 43 
variations between species and populations (Gienapp and Merilä, 2018).  44 
 45 
An accurate understanding of climate change impacts upon species, their sensitivity and adaptive capacity 46 
and consequent ecological effects (considering both indirect as well as direct impacts) is used to estimate 47 
extinction risk, so that an appropriate management response can be developed (Butt et al., 2016). Ecosystem 48 
based adaptation takes these complex interactions into account (Hobday et al., 2015), including the 49 
disruptive impacts of alien invasive species (Ondiviela et al., 2014; Wigand et al., 2017) .  Effective 50 
adaptation action, therefore, contains a broader consideration than historical conservation practices (medium 51 
evidence, high agreement), including the development of international collaborations and databases to 52 
improve ocean-scale understanding of climate change impacts (Okey et al., 2014; Young et al., 2015). A key 53 
knowledge gap relates to the critical thresholds for irreversible change for species (Powell et al., 2017). 54 
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Table 5.7: Summary of reported Adaptation responses (A), the Impacts (I) they aimed to address, and the expected Benefits (B) in coastal ecosystems within Physical, Ecological, 
Social, Governance, Economic and Knowledge categories. For further details of impacts on ecosystems see Section 5.3.  Legend: a + sign indicates robust evidence, a triangle 
indicates medium evidence and an underline indicates limited evidence. Dark blue cells indicate high agreement, blue indicates medium agreement and light blue indicates either low 
agreement (denoted by presence of a sign) if sufficient papers were reviewed for an assessment or no assessment (if less than three papers were assessed per cell). The papers used 
for this assessment can be found in Supplementary Material SM5.5. 
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Impacts (I) Adaptation responses (A) I A B I A B I A B I A B I A B I A B Benefits (B)
Coastal physical processes disrupted Supporting physical processes ∆ ∆ ∆ ∆ ⁺ ⁺ _ ∆ ⁺ _ ∆ ⁺ ⁺ Physical processes supported

Catchment physical processes disrupted Hard engineering responses _ Coastal infrastructure resil ience increased

Coastal infrastructure damage Soft engineering responses and buffers _ ∆ Improved infrastructure functionality

Disruption of urban systems Integrated hard and soft engineering ∆ Increased structural heterogeneity

Land subsidence Managed retreat and coastal realignment

Ecosystem degradation and loss Ecosystem restoration and protection ⁺ ∆ ⁺ ⁺ ⁺ ⁺ ∆ _ _ ∆ ∆ _ Ecosystem/ ecological resil ience supported

Biodiversity and genetic diversity loss Bioengineering ∆ _ Physical processes supported

Habitat range shifts Assisted evolution and relocation ∆ ∆ Coastal infrastructure resil ience increased

Sub-lethal species impacts Nature based solutions ∆ Increased biodiversity

Invasive alien species Habitat range shifts accommodated

∆ Improved organismal fitness

Genetic heterogeneity supported

Strengthened socio-ecological system

Decreased access to ecosystem services Improving access to/ storage of natural resources ∆ ⁺ ∆ Access to sustainable ecosystem services

Local decline in agriculture and fisheries Improving agricultural or fisheries practices Improved access to community services

Increasing l iving costs Supporting natured-based industries Increasing resil ience in human systems

Livelihoods impacts Sustainable resource use _ Improved socio-economic services

Increased food insecurity Maintaining or switching l ivelihoods _ Improved employment and livelihoods

Public health risks increased Community participatory programmes _ Improved health

Cultural and traditional knowledge impacts Developing adaptive networks Improved community participation

Gender-related impacts Sustainable household management Better informed communities

Increased social vulnerability Improving access to community services Improved integration of knowledge systems

Decreased access to local government services Empowering communities and addressing inequality Empowering women and children

Socio-economic entrapment and decline Building socio-ecological resil ience Increased adaptive capacity

Global declines in food stocks Improved disaster preparedness

Public areas access restrictions Empowered communities

Decline in perceived value of human systems Improved community cohesion

Conflict and migration Reduced inequality
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Impacts (I) Adaptation responses (A) I A B I A B I A B I A B I A B I A B Benefits (B)
Capacity challenges Adopting/ mainstreaming sustainability policies Political and institutional capacity developed
Increased geopolitical tensions Improving disaster response programmes Strengthened participatory governance
Growing inequalities Improving implementation and coordination of policies Better planning processes supported

Development controls Improved coordination and decision making
Evidence-based implementation Improved implementation and policies
Improving ICM/ MPAs Better communication
Horizontal/ vertical integration of governance Improved transparency and trust
Developing partnerships and building capacity Climate justice advanced
Improving access to community services Reduced conflict
Pursuing climate justice Improved security

Improved adaptive management
Development supported

Increased business and living costs Improving financial resources availability Increased revenue/ income
Business disruptions and losses Improving access to insurance products Increased financial resources available
Decreased value of assets/ products Economic diversification Reduced operational and capital costs

Improving access to international funding programmes Investment strengthened
Uncertainty for decision makers Better monitoring and modelling _ Informed decision making tools

Improving planning processes Improved co-production of knowledge
Improving forecasting and early warning systems Improved relevance of products 
Improving decision support frameworks Improved education and outreach
Improving participatory processes Improved awareness
Coordinating top down and bottom up approaches
Integrating knowledge systems ∆
Improving location and context specific knowledge
Improving scientific communication
Stakeholder identification, outreach and education _
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5.5.2.1.2 Adaptation in coral reefs 1 
Coral reefs are currently threatened by the continuous global degradation of warm-water coral reef 2 
ecosystems and the failure of traditional conservation actions to revive most of the degrading reefs 3 
(Rinkevich, 2008; Miller and Russ, 2014). Interventions to rehabilitate degraded coral reef ecosystems can 4 
be categorized as preventive (‘passive’ restoration) or adaptive (‘active’ restoration) (Miller and Russ, 2014; 5 
Linden and Rinkevich, 2017) (see Box 5.5).  6 
 7 
Inspired by silviculture (forestation) approaches to terrestrial ecosystem restoration, studies (Rinkevich, 8 
1995; Rinkevich, 2005; Rinkevich, 2006; Rinkevich, 2008; Bongiorni et al., 2011) have proposed a two-step 9 
restoration strategy for warm-water coral reefs termed gardening of denuded coral reefs. In the first step, a 10 
large pool of coral colonies (derived from coral nubbins and fragments, and from sexually derived spat) are 11 
farmed in underwater nurseries, preferably on mid-water floating devices installed in sheltered zones, in 12 
which coral material can be cultured for up to several years. In the second step, nursery-grown coral 13 
colonies, together with recruited associated biota, are transplanted to degraded reef sites (Shafir and 14 
Rinkevich, 2008; Mbije et al., 2010; Shaish et al., 2010b; Shaish et al., 2010a; Bongiorni et al., 2011; 15 
Horoszowski-Fridman et al., 2011; Linden and Rinkevich, 2011; Mbije et al., 2013; Cruz et al., 2014; 16 
Chavanich et al., 2015; Horoszowski-Fridman et al., 2015; Lirman and Schopmeyer, 2016; Montoya Maya 17 
et al., 2016; Ng Chin Soon et al., 2016; Lohr and Patterson, 2017; Rachmilovitz and Rinkevich, 2017). 18 
Active restoration of coral reefs, while still in its infancy and facing a variety of challenges (Rinkevich, 19 
2015b; Hein et al., 2017), has been suggested to potentially improve the ecological status of degraded coral 20 
reefs and the socio-economic benefits that the reefs provide (Rinkevich, 2014; Rinkevich, 2015b; Linden and 21 
Rinkevich, 2017).  22 
 23 
Ecological engineering approaches may promote coral reef adaptation (Rinkevich, 2014; Forsman et al., 24 
2015; Coelho et al., 2017; Horoszowski-Fridman and Rinkevich, 2017; Linden and Rinkevich, 2017; 25 
Rachmilovitz and Rinkevich, 2017). They also include: augmenting functional diversity, including that of 26 
the microbiome (Casey et al., 2015; Horoszowski-Fridman and Rinkevich, 2017; Shaver and Silliman, 27 
2017); transplantating whole habitats (Shaish et al., 2010b; Gómez et al., 2014); and enhancing genetic 28 
diversity (Iwao et al., 2014; Drury et al., 2016; Horoszowski-Fridman and Rinkevich, 2017). Active 29 
restoration can contribute to reef rehabilitation in all major reef regions (Rinkevich, 2014; Rinkevich, 30 
2015b). However, there is limited evidence on how resistant these manipulated corals are to global change 31 
drivers (Shaish et al., 2010b; Shaish et al., 2010a) or how the nursery time affects biological traits like 32 
reproduction in coral transplants (Horoszowski-Fridman et al., 2011). Coral epigenetics may also be used as 33 
an adaptive management tool for reef rehabilitation (low confidence), as suggested by studies on coral 34 
adaptation (Brown et al., 2002; Horoszowski-Fridman et al., 2011; Palumbi et al., 2014; Putnam and Gates, 35 
2015; Putnam et al., 2016).  36 
 37 
Research on active coral reef restoration (Box 5.5) suggests the potential to help rehabilitate degraded coral 38 
reefs, provided that the underlying drivers of the impacts are mitigated (high confidence). Ongoing and new 39 
research in active coral reef restoration may further improve active reef restoration outcomes (Box 5.5) (low 40 
confidence). However, these coral reef restoration options may be ineffectual if global warming exceeds 41 
1.5oC relative to pre-industrial levels (Hoegh-Guldberg et al., 2018; IPCC, 2018).    42 
 43 
 44 
[START BOX 5.5 HERE] 45 
 46 
Box 5.5: Coral Reef Restoration as Ocean-based Adaptation 47 
 48 
Anthropogenic global change is impacting all warm-water corals and the reef structures (Section 5.2.2.3.3; 49 
IPCC AR5 WGII). These impacts are rapidly increasing in scale and intensity, exposing coral reefs to 50 
enhanced degradation rates and diminishing capacities to maintain ecological resilience, to absorb 51 
disturbances, and to adapt to the changes (Box 5.1) (Graham et al., 2014; Rinkevich, 2015a; Harborne et al., 52 
2017). With the growing awareness that traditional reef conservation measures are insufficient to address 53 
climate change impacts on coral reefs (Section 5.2.2.1), adaptation interventions to enhance the resilience of 54 
coral reefs are being called for (Rinkevich, 1995; Rinkevich, 2000; Barton et al., 2017). Intervention 55 
strategies that are still at the ‘proof-of-concept’ stage, include: ‘assisted colonization’ - actively moving 56 
species that are confined to disappearing habitats (Hoegh-Guldberg et al., 2008; Chauvenet et al., 2013); 57 
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‘assisted evolution’ - developing corals resistant to climate change via accelerated natural evolution 1 
processes (van Oppen et al., 2015); assisted coral chimerism (Rinkevich, 2019); novel coral–symbiont 2 
associations (McIlroy and Coffroth, 2017); and coral microbiome manipulation (Bourne et al., 2016; Sweet 3 
and Bulling, 2017; van Oppen et al., 2017b). In contrast, the ‘coral gardening’ approach - coral farmed in 4 
nurseries and transplanted using a range of tactics to increase survivability, growth rates and reproduction 5 
(Rinkevich, 2006; Rinkevich, 2014) - is already in use. Other interventions that have already been 6 
implemented in some coral reefs, such as the use of artificial reefs (Ng Chin Soon et al., 2017) are limited in 7 
impacts, and all are also revealing considerable challenges (Riegl et al., 2011; Coles and Riegl, 2013; 8 
Ferrario et al., 2014).  9 
 10 
Many of the alternative interventions that aim to increase the climate-resilience of coral reefs involve 11 
culturing, selectively breeding and transplanting corals to enhance the adaptability of reef organisms to 12 
climate change, for example, by supporting the natural poleward range expansion of corals (West et al., 13 
2017; Vergés et al., 2019). Advances in reef restoration techniques have been made in the last two decades 14 
(Rinkevich, 2014; Lirman and Schopmeyer, 2016), but assessments of the effectiveness of these techniques 15 
have mostly focused on the short-term feasibility of the technique (Frias-Torres and van de Geer, 2015; 16 
Lirman and Schopmeyer, 2016; Montoya Maya et al., 2016; Jacob et al., 2017; Rachmilovitz and Rinkevich, 17 
2017), while longer-term evaluation in the context of all the pillars of sustainable development (Section 18 
5.4.2) is limited (Rinkevich, 2015b; Barton et al., 2017; Flores et al., 2017; Hein et al., 2017). These 19 
alternative interventions, primarily the coral gardening approach, face two challenges. The first is scaling up; 20 
currently, these interventions have been tested at scales of hundreds of meters, while application at larger 21 
scale is lacking (Rinkevich, 2014). The second challenge (Box 5.5, Figure 1) is the effectiveness of active 22 
reef restoration to mitigate or rehabilitate global change impacts (Shaish et al., 2010a; Schopmeyer et al., 23 
2012; Coles and Riegl, 2013; Hernández-Delgado et al., 2014; Rinkevich, 2015a; Wilson and Forsyth, 2018) 24 
and whether it can keep up with rising sea levels (Perry et al., 2018), especially in low lying ocean states.  25 
 26 
Altogether, coral reefs of the future will not resemble those of today because of the projected decline and 27 
changes in the composition of corals and associated species in the remaining reefs (Section 5.3.4, Box 5.5 28 
Figure 1) (Rinkevich, 2008; Ban et al., 2014) (high confidence). The very high vulnerability of coral reefs to 29 
warming, ocean acidification, increasing storm intensity and sea level rise under climate change (AR5 30 
WG2), including enhanced bioerosion (Schönberg et al., 2017) (high confidence) point to the importance of 31 
considering both mitigation (Section 5.5.1) and adaptation (section 5.3.3.6) for coral reefs. Extensive 32 
research has explored adaptation measures involving the cultivation and transplantation of corals; however, 33 
the literature contains limited evidence on the comprehensive analysis of the relative costs and benefits of 34 
these interventions across the economic, ecological, social and cultural dimensions (Bayraktarov et al., 2016; 35 
Flores et al., 2017; Linden and Rinkevich, 2017). 36 
 37 
 38 
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 1 
Box 5.5, Figure 1: Coral reef restoration as an ocean-based adaptation tool to climate change. The squiggly line 2 
represents non-linear ecological statuses along a trajectory and 5 reef states (circles 1-5; in varying ecological 3 
complexity [x-axis] and service levels [y-axis]) including two extreme statuses (a pristine versus a highly degraded 4 
state, circles 5 and 1, respectively). Two ‘restored reef-state’ scenarios (circles 2, 3), lead to the state of the restored 5 
‘reef of tomorrow’ (circle 4). The route from the state of the ‘reef of tomorrow’ (circle 4) to a pristine state (circle 5) is 6 
doubtful (the question mark) and is still at a theoretical level. The routes from the two ‘restored reef-state’ scenarios to 7 
the ‘reef of tomorrow’ are under investigations (the question marks). Based on Rinkevich (2014)(Figure 1). A-C 8 
represent different reef statuses. A = a denuded knoll at the Dekel Beach, Eilat, Israel before reef transplantation 9 
(November 2005; Photo: Y. Horoszowski-Fridman); B = the same knoll, restored (June 2016; photo by Shai Shafir). 10 
More than 300 nursery-grown colonies of 7 coral species were transplanted during three successive transplantations 11 
(years 2005, 2007, 2009). In 2016 the knoll was surrounded by reef inhabiting schools of fish. C = a pristine reef, not 12 
existing under current and anticipated reef conditions. Restoration scenarios are developed along paths from a degraded 13 
reef (low ecological complexity, minimal reef services) toward a healthy ‘reef of tomorrow’, passing through two 14 
restored reef states that are impacted by climate change (Shaish et al., 2010a; Schopmeyer et al., 2012; Hernández-15 
Delgado et al., 2014; Rinkevich, 2015a). The employment of ecological engineering approaches may help in moving 16 
the ecological states from either restored reef to the ‘reef of tomorrow’ status (medium confidence). 17 
 18 
[END BOX 5.5 HERE] 19 
 20 
 21 
5.5.2.1.3 Adaptation in mangroves and other coastal ecosystems 22 
Mangroves provide significant ecosystem services, including localized coastal protection from extreme 23 
storm events (Section 5.4.1), supporting services through increased sedimentation rates (Hayden and Granek, 24 
2015) and provisioning services for local communities, e.g. habitats for nurseries to support fisheries. 25 
Mangroves provide limited carbon mitigation, in terms of global emissions reduction, and substantial job 26 
creation (Table 5.7) co-benefits (for example through Reducing Emissions from Deforestation and Forest 27 
Degradation programs) when managed properly (5.4.1, 5.5.1.1), and there is evidence of their value in 28 
supporting aquaculture and fishery initiatives (Huxham et al., 2015; Ahmed and Glaser, 2016a).  29 
 30 
Mangrove ecosystem-based adaptation responses most commonly reported included ecosystem restoration 31 
(Sierra-Correa and Cantera Kintz, 2015; Romañach et al., 2018) and management such as mangroves re-32 
planting through community participation programmes (Nanlohy et al., 2015; Nguyen et al., 2017; Triyanti 33 
et al., 2017). Mangrove ecosystem-based adaptation has been reported to provide multiple co-benefits in 34 
terms of improvement in support for coastal physical processes, including: shoreline stabilisation (Hayden 35 
and Granek, 2015; Nanlohy et al., 2015); ecological functioning (Sierra-Correa and Cantera Kintz, 2015; 36 
Miller et al., 2017) with improved ecosystem services (Alongi, 2015; Nanlohy et al., 2015; Palacios and 37 
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Cantera, 2017); carbon mitigation (5.5.1.1); supporting livelihoods (Nanlohy et al., 2015; Nguyen et al., 1 
2017); and reductions in coastal infrastructure damage and community vulnerability to climate change 2 
impacts. Managed retreat to counter coastal squeeze (Section 5.3) through improved governance, creation of 3 
finance and land use planning can allow mangroves to move up the shoreline contour or down the latitudinal 4 
gradient (Sierra-Correa and Cantera Kintz, 2015; Ward et al., 2016; Romañach et al., 2018). Therefore, 5 
mangrove ecosystem-based adaptation responses can strengthen coastal ecosystem services through 6 
shoreline stabilization and provide multiple co-benefits for coastal communities, like job creation and 7 
improved access to ecosystem services (high confidence). 8 
 9 
There are, however, examples where community mangrove restoration projects have resulted in maladaptive 10 
outcomes, in which the resulting ecosystem degradation could not provide the ecosystem services required 11 
(Nguyen et al., 2017; Romañach et al., 2018). Such maladaptation can be a result of poor governance 12 
processes or a lack of community compliance with restoration plans. These examples emphasize the value of 13 
designing effective governance to implement adaptation responses with broad community participation to 14 
improve the climate risk reduction outcomes and co-benefits (Sierra-Correa and Cantera Kintz, 2015; 15 
Nguyen et al., 2017) (medium evidence, high agreement). 16 
 17 
Mangrove and other coastal ecosystems restoration and management can be applied through reducing non-18 
climatic hazards (Gilman et al., 2008; Ataur Rahman and Rahman, 2015; Sierra-Correa and Cantera Kintz, 19 
2015; Ahmed and Glaser, 2016a; Nguyen et al., 2017; Romañach et al., 2018). Coastal and catchment 20 
development, including wetland transformation and degradation (Miloshis and Fairfield, 2015; Schaeffer-21 
Novelli et al., 2016; Watson et al., 2017a; Schuerch et al., 2018a), the disruption of physical processes 22 
impacting sedimentation rates (Watson et al., 2017a) and coastal squeeze compound coastal climate change 23 
impacts like erosion, flooding and saltwater intrusion (Ondiviela et al., 2014; Miloshis and Fairfield, 2015; 24 
Schaeffer-Novelli et al., 2016; Wigand et al., 2017) (Section 5.3). This reduces the ability of these 25 
ecosystems to provide protection from wave and storm impacts, whilst positive feedbacks may occur that 26 
cause a net release of carbon into the atmosphere, e.g. in saltmarshes (Wong et al., 2014a) (Section 5.4.1). In 27 
some cases, effective inventions requires management at a broad spatial scale that includes a variety of 28 
ecosystems, for example, including ecosystems like mussel beds on the seaward side of seagrass beds to 29 
reduce wave energy and erosion (Ondiviela et al., 2014). Where sediment accretion matches the sea level 30 
rise rate, wetlands and salt marshes provide effective coastal protection and other important ecosystem 31 
services (high confidence). 32 
 33 
Coastal dune systems are widely transformed globally. Human disturbance and the limited stabilizing ability 34 
of dune vegetation are key causes of degradation (Onaka et al., 2015; Ranasinghe, 2016; MacDonald et al., 35 
2017; Pranzini, 2017; Salgado and Martinez, 2017; Vikolainen et al., 2017; Gracia et al., 2018), while 36 
restoration efforts can be supported by both hard (Sutton-Grier et al., 2015; Pranzini, 2017) and soft (Sutton-37 
Grier et al., 2015; Vikolainen et al., 2017) engineering responses. Reduced coastal erosion (Sánchez-Arcilla 38 
et al., 2016; Goreau and Prong, 2017; Vikolainen et al., 2017; Carro, 2018; Gracia et al., 2018) and flood 39 
risk (Onaka et al., 2015; MacDonald et al., 2017; Nehren et al., 2017) through maintaining dunes as natural 40 
buffers against wave energy (Nehren et al., 2017) can increase resilience to climate change impacts (Sutton-41 
Grier et al., 2015; Magnan and Duvat, 2018). Engineered responses and sand replenishment are considered 42 
complementary approaches (Onaka et al., 2015; Martínez et al., 2017). Section 4.4.4.1 provides an overview 43 
of sediment-based adaptation response measures, including cost estimates for beach nourishment and dune 44 
maintenance, a discussion of co-benefits and drawbacks of combining hard and soft infrastructure measures, 45 
and challenges with sourcing sediment for beach replenishment. In some cases dune restoration and sand 46 
replenishment projects have not been successful, due to fire damage (Shumack and Hesse, 2017) or the rapid 47 
loss of sand within replenishment schemes due to coastal processes and stakeholder rejection of adaptation 48 
activities (Pranzini, 2017). Coastal dune restoration and beach replenishment are effective responses against 49 
coastal erosion and flooding, where sufficient materials and space to implement are available (medium 50 
confidence). 51 
 52 
5.5.2.1.4 Ecosystem-based adaptation 53 
There is a growing body of literature regarding the effectiveness and economics of ecosystem-based 54 
adaptation (EBA). In addition to building resilience to climate change, EBA is expected to bring a wide 55 
range of co-benefits that include increasing ecological complexity, with multiple ecosystem services, and 56 
other economic co-benefits (Perkins et al., 2015; Perry, 2015; Moosavi, 2017; Scarano, 2017). The cost-57 
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effectiveness of EBA approaches varies between marine ecosystem types; for example, coral reefs  (Perkins 1 
et al., 2015; Beetham et al., 2017; Elliff and Silva, 2017; Beck et al., 2018; Comte and Pendleton, 2018) and 2 
salt-marshes (Ondiviela et al., 2014; Miloshis and Fairfield, 2015; Schaeffer-Novelli et al., 2016; Wigand et 3 
al., 2017) performed best at reducing wave heights, whilst salt-marshes and mangroves were two to five 4 
times cheaper than submerged breakwaters for wave heights of less than half a meter. Although low regrets, 5 
win-win approaches like EBA are supported in the literature (Watkiss et al., 2014; FAO, 2018b), syntheses 6 
of experience from context-specific practical implementation of EBA and assessment of their cost-7 
effectiveness are limited (Narayan et al., 2016). Therefore, EBA can be a cost-effective approach for 8 
securing climate change-related ecosystem services with multiple co-benefits (medium evidence, high 9 
agreement). 10 
 11 
The application of EBA approaches can be more effective when incorporating local knowledge and 12 
Indigenous knowledge and cultural practices into adaptation responses (Ataur Rahman and Rahman, 2015; 13 
Perkins et al., 2015; Sutton-Grier et al., 2015; Sánchez-Arcilla et al., 2016; van der Nat et al., 2016). The 14 
application of synergistic combinations of adaptation responses in multiple ecosystems can provide a range 15 
of co-benefits, and this approach is strengthened when combined with socio-institutional approaches 16 
(Kochnower et al., 2015; MacDonald et al., 2017).  Research to improve and refine EBA approaches and 17 
increase their specificity to local context is important for their effectiveness in reducing climate risks and 18 
generating co-benefits  (Sutton-Grier et al., 2015).  Conversely, a lack of inclusion of local communities and 19 
economic undervaluation of specific coastal and marine ecosystems, compounded by gaps in scientific data, 20 
can undermine the potential effectiveness of EBA approaches (Perkins et al., 2015; Hernández-González et 21 
al.; Narayan et al., 2016; Roberts et al., 2017). 22 
 23 
Despite the abundance of EBA examples in the literature, knowledge gaps pertaining to their implementation 24 
and limitations remain. Developing this literature could help with understanding context specific application 25 
of EBA and improve their effectiveness (medium confidence). 26 
 27 
5.5.2.2 Human Systems: 28 
 29 
Many of the world’s great cities lie within the coastal region, and climate change impacts put these cities, 30 
their inhabitants and their economic activities at risk. Section 5.5.2.2 assesses the impacts of climate change, 31 
adaptation response and benefits upon human systems, including coastal communities, built infrastructure, 32 
fisheries and aquaculture, coastal tourism, government and health systems. Table 5.8 provides a summary of 33 
the assessment, with citations provided in the Supplementary Material Table 5.7. 34 
 35 
Poorly planned (Ataur Rahman and Rahman, 2015), located (Abedin et al., 2014; Betzold and Mohamed, 36 
2017; Linkon, 2018) and managed urban settlements or human systems, driven by growing human coastal 37 
populations (Perkins et al., 2015; Moosavi, 2017; Carter, 2018) and compounded by the disruption of coastal 38 
and catchment physical processes (Nagy et al., 2014; Broto et al., 2015; Marfai et al., 2015; Kabisch et al., 39 
2017) and pollution (Zikra et al., 2015; Peng et al., 2017) are major human drivers of change compounding 40 
the impacts of climate change. 41 
 42 
Coastal Communities, Built Infrastructure and Fisheries and Aquaculture (Table 5.8) are likely to be 43 
significantly affected through the disruption of coastal physical processes (DasGupta and Shaw, 2015; 44 
Betzold and Mohamed, 2017; Hagedoorn et al., 2019) leading to coastal erosion, flooding, salt-water 45 
intrusion and built infrastructure damage (Dhar and Khirfan, 2016; Hobday et al., 2016a; Jurjonas and 46 
Seekamp, 2018) (robust evidence, high agreement). Ecosystem degradation and biodiversity loss will further 47 
compound impacts in Coastal Communities and Fisheries and Aquaculture (Ataur Rahman and Rahman, 48 
2015; Petzold and Ratter, 2015; Dhar and Khirfan, 2016), with sub-lethal species impacts like changes in the 49 
productivity and distribution of fisheries target species reported for the latter (Gourlie et al., 2018; Nursey-50 
Bray et al., 2018; Pinsky et al., 2018) (high confidence). This is likely to result in decreased access to 51 
ecosystem services (Asch et al., 2018; Cheung et al., 2018b; Finkbeiner et al., 2018) (medium evidence, high 52 
agreement), local declines in agriculture and fisheries (Cvitanovic et al., 2016; Faraco et al., 2016) (high 53 
confidence) and livelihood impacts (Harkes et al., 2015; Busch et al., 2016; Valmonte-Santos et al., 2016) 54 
(high confidence) in Coastal Communities and Fisheries and Aquaculture, particularly increased food 55 
insecurity and health risk in the latter (high confidence). These livelihood impacts are likely to increase 56 



FINAL DRAFT Chapter 5 IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute 
Subject to Copyedit 5-115 Total pages: 198 

social vulnerability (high confidence). Businesses within Coastal Communities are likely to experience 1 
disruptions and losses (robust evidence, high agreement). 2 
 3 
5.5.2.2.1 Coastal Communities 4 
This section describes a range of adaptation responses reported at the level of the individual or community. 5 
Hard engineering responses included small scale hard infrastructure coastal defenses (Betzold and 6 
Mohamed, 2017; Jamero et al., 2018), design responses at the household-level (Ataur Rahman and Rahman, 7 
2015; Linkon, 2018) and retreat (Marfai et al., 2015). Ecosystem restoration and protection, particularly in 8 
mangroves (Ataur Rahman and Rahman, 2015; Bennett et al., 2016; Jamero et al., 2018; Hagedoorn et al., 9 
2019) through community participation programmes (Barbier, 2015; Petzold and Ratter, 2015; Bennett et al., 10 
2016; Dhar and Khirfan, 2016; Jamero et al., 2018) was strongly supported in the literature as a means to 11 
improve access to or storage of natural resources (medium evidence, high agreement).  12 
 13 
 14 
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Table 5.8: Summary of reported Adaptation responses (A), the Impacts (I) they aimed to address, and the expected Benefits (B) in human systems within Physical, Ecological, 
Social, Governance, Economic and Knowledge categories. Legend: a + sign indicates robust evidence, a triangle indicates medium evidence and an underline indicates limited 
evidence. Dark blue cells indicate high agreement, blue indicates medium agreement and light blue indicates either low agreement (denoted by presence of a sign) if sufficient papers 
were reviewed for an assessment or no assessment (if less than three papers were assessed per cell). Papers used for this assessment can be found in supplementary material SM5.6. 
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Impacts (I) Adaptation responses (A) I A B I A B I A B I A B I A B I A B Benefits (B)
Coastal physical processes disrupted Supporting physical processes ⁺ ⁺ ⁺ Physical processes supported

Catchment physical processes disrupted Hard engineering responses ⁺ ⁺ ⁺ Coastal infrastructure resil ience increased

Coastal infrastructure damage Soft engineering responses and buffers ⁺ _ ⁺ _ Improved infrastructure functionality

Disruption of urban systems Integrated hard and soft engineering ∆ _ ⁺ Increased structural heterogeneity

Land subsidence Managed retreat and coastal realignment _
Ecosystem degradation and loss Ecosystem restoration and protection ⁺ ⁺ ⁺ ⁺ _ _ _ Ecosystem/ ecological resil ience supported

Biodiversity and genetic diversity loss Bioengineering ∆ ∆ ⁺ Physical processes supported

Habitat range shifts Assisted evolution and relocation Coastal infrastructure resil ience increased

Sub-lethal species impacts Nature based solutions _ ∆ _ ⁺ _ Increased biodiversity

Invasive alien species Habitat range shifts accommodated

Improved organismal fitness

Genetic heterogeneity supported

Strengthened socio-ecological system

Decreased access to ecosystem services Improving access to/ storage of natural resources ∆ ∆ ∆ ⁺ Access to sustainable ecosystem services

Local decline in agriculture and fisheries Improving agricultural or fisheries practices ⁺ _ ⁺ ⁺ Improved access to community services

Increasing l iving costs Supporting natured-based industries _ Increasing resil ience in human systems

Livelihoods impacts Sustainable resource use ⁺ _ _ ⁺ ∆ Improved socio-economic services

Increased food insecurity Maintaining or switching l ivelihoods _ _ ⁺ _ ⁺ Improved employment and livelihoods

Public health risks increased Community participatory programmes _ ⁺ ⁺ ⁺ _ Improved health

Cultural and traditional knowledge impacts Developing adaptive networks Improved community participation

Gender-related impacts Sustainable household management _ _ Better informed communities

Increased social vulnerability Improving access to community services ⁺ ⁺ Improved integration of knowledge systems

Decreased access to local government services Empowering communities and addressing inequality ∆ Empowering women and children

Socio-economic entrapment and decline Building socio-ecological resil ience ∆ Increased adaptive capacity

Global declines in food stocks Improved disaster preparedness

Public areas access restrictions _ Empowered communities

Decline in perceived value of human systems _ Improved community cohesion

Conflict and migration Reduced inequality
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Impacts (I) Adaptation responses (A) I A B I A B I A B I A B I A B I A B Benefits (B)
Capacity challenges Adopting/ mainstreaming sustainability policies ∆ _ _ Political and institutional capacity developed
Increased geopolitical tensions Improving disaster response programmes _ Strengthened participatory governance
Growing inequalities Improving implementation and coordination of policies ⁺ _ ⁺ _ Better planning processes supported

Development controls Improved coordination and decision making
Evidence-based implementation _ Improved implementation and policies
Improving ICM/ MPAs ⁺ ⁺ Better communication
Horizontal/ vertical integration of governance Improved transparency and trust
Developing partnerships and building capacity _ _ ∆ Climate justice advanced
Improving access to community services _ Reduced conflict
Pursuing climate justice Improved security

⁺ Improved adaptive management
Development supported

Increased business and living costs Improving financial resources availability _ Increased revenue/ income
Business disruptions and losses Improving access to insurance products ⁺ ⁺ Increased financial resources available
Decreased value of assets/ products Economic diversification Reduced operational and capital costs

Improving access to international funding programmes Investment strengthened
Uncertainty for decision makers Better monitoring and modelling ⁺ ⁺ ⁺ ∆ _ ∆ Informed decision making tools

Improving planning processes ∆ ∆ Improved co-production of knowledge
Improving forecasting and early warning systems ∆ Improved relevance of products 
Improving decision support frameworks ∆ ⁺ _ _ Improved education and outreach
Improving participatory processes ∆ ⁺ _ Improved awareness
Coordinating top down and bottom up approaches
Integrating knowledge systems ⁺ ∆
Improving location and context specific knowledge ∆
Improving scientific communication _
Stakeholder identification, outreach and education _ ∆ _
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Social responses include increasing climate change awareness, improving participatory decision-making 1 
through bottom-up approaches, community organization for action and engagements with local management 2 
authorities (Dutra et al., 2015; Tapsuwan and Rongrongmuang, 2015; Galappaththi et al., 2017; Ray et al., 3 
2017; Cinner et al., 2018; Hagedoorn et al., 2019). In coastal communities, and indeed in most other sectors, 4 
despite consensus on the importance of cooperation in tackling climate change (Elrick-Barr et al., 2016), 5 
adaptation progress may be hampered by competing economic interests and worldviews (Hamilton and 6 
Safford, 2015), which can be compounded by limited climate change knowledge (Nanlohy et al., 2015). 7 
Factors like home ownership and a general future planning ability support resilience (Elrick-Barr et al., 8 
2016). Climate change adaptation capacity is shaped by historical path dependencies, local context and 9 
international linkages, while action is shaped by science, research partnerships and citizen participation 10 
(Hernández-Delgado, 2015; Sheller and León, 2016). Locally-context-specific data to guide appropriate 11 
adaptation response remains a knowledge gap (Abedin and Shaw, 2015; Hobday et al., 2015; Lirman and 12 
Schopmeyer, 2016; Williams et al., 2016) 13 
 14 
Coastal and oceanic adaptation responses are greatly complicated by the presence of competing interests 15 
(either between user-groups, communities or nations), where considerations other than climate change need 16 
to be incorporated into cooperation agreements and policy (Wong et al., 2014a). The deployment of either 17 
built or natural protection systems, or adopting a ‘wait and see’ approach, is subject to the social acceptance 18 
of these approaches in communities (Poumadère et al., 2015; Sherren et al., 2016; Torabi et al., 2018). 19 
Similarly, the willingness to move away from climate change-impacted zones is dependent upon a range of 20 
other socio-economic factors like age, access to resources and crime (Bukvic et al.; Rulleau and Rey-Valette, 21 
2017). Adaptation to climate change includes a range of non-climatic and social variables that complicate 22 
implementation of adaptation plans (robust evidence, high agreement). 23 
 24 
Improving community participation and integrating knowledge systems (local, traditional and scientific) 25 
supports coastal community adaptation responses (high confidence), providing improved co-production of 26 
knowledge (medium evidence, high agreement), improved community awareness (medium evidence, medium 27 
agreement) and better-informed, more cohesive coastal communities (limited evidence, medium agreement). 28 
 29 
5.5.2.2.2 Built Infrastructure 30 
Built infrastructure impacts are most frequently addressed through hard engineering approaches including: 31 
construction of groins, seawalls, revetments, gabions and breakwaters (Friedrich and Kretzinger, 2012; 32 
Vikolainen et al., 2017); improving drainage and raising the height of roadways and other fixed-location 33 
infrastructure (Perkins et al., 2015; Becker et al., 2016; Colin et al., 2016; Asadabadi and Miller-Hooks, 34 
2017; Brown et al., 2018a); erosion control systems (Jeong et al., 2014); and the relocation of infrastructure 35 
(Friedrich and Kretzinger, 2012; Colin et al., 2016). Nature-based responses are increasingly being reported 36 
as complementary and supporting tools (van der Nat et al., 2016; Kabisch et al., 2017; Gracia et al., 2018) 37 
using ecological engineering (Perkins et al., 2015; van der Nat et al., 2016; Moosavi, 2017) combined with 38 
innovative construction strategies (Moosavi, 2017).  39 
 40 
When implemented together, hard and soft engineering responses provide social (Gracia et al., 2018) 41 
(Martínez et al., 2018; Woodruff, 2018) and ecological (Perkins et al., 2015; van der Nat et al., 2016; Gracia 42 
et al., 2018) co-benefits with reduced damage costs (Jeong et al., 2014). Constraints on implementation 43 
include the space and extra cost required by ecological infrastructure, sub-optimal performance when 44 
impacted by natural physical processes that are disrupted (Gracia et al., 2018) or restrictions associated with 45 
governance (Vikolainen et al., 2017). Adaptation planning including local communities can improve 46 
implementation and help fill knowledge gaps (Kaja and Mellic, 2017; Moosavi, 2017; Martínez et al., 2018; 47 
Mikellidou et al., 2018). Benefits include increased resilience in coastal infrastructure and better informed 48 
decision-making tools (medium confidence),  49 
 50 
5.5.2.2.3 Adaptation in fisheries and aquaculture 51 
Sixty percent of assessed species are projected to be at high risk from both overfishing and climate change 52 
by 2050 (RCP8.5), particularly tropical and sub-tropical species (Cheung et al., 2018b). Overfishing is one 53 
of the most important non-climatic drivers affecting the sustainability of fisheries (Islam et al., 2013; Heenan 54 
et al., 2015b; Faraco et al., 2016; Dasgupta et al., 2017; Cheung et al., 2018b; Harvey et al., 2018). Pursuing 55 
sustainable fisheries practices under a low emissions scenario would decrease risk by 63%. This highlights 56 
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the importance of effective fisheries management (Gaines et al., 2018). Eliminating overfishing would, 1 
however, require reducing current levels of fishing effort, with a potential short-term reduction in catches 2 
impacting livelihoods and the food security of coastal communities (Hobday et al., 2015; Dey et al., 2016; 3 
Rosegrant et al., 2016; Campbell, 2017; Finkbeiner et al., 2018). Despite consensus on the effectiveness of 4 
eliminating overfishing in supporting climate change adaptation in fisheries (robust evidence, high 5 
agreement), successful adaptation outcomes remain aspirational.  6 
 7 
Range shifts under ocean warming (Section 5.2.3) will alter the distribution of fish stocks across political 8 
boundaries, thus demand for transboundary fisheries management will increase. Redistribution of 9 
transboundary fish stocks between countries (Ho et al., 2016; Gourlie et al., 2017; Asch et al., 2018) could 10 
destabilize existing international fisheries agreements and increase the risk of international conflicts (Section 11 
5.4.2). Adaptation to reduce risks in international fisheries management could involve improving planning 12 
for cooperative management between countries informed by reliable predictions (Payne et al., 2017) and 13 
projections (Pinsky et al., 2018) of species shifts and associated uncertainties. Cooperative international 14 
fisheries arrangements, such as flexible fishing effort allocation and adaptive frameworks (Colburn et al., 15 
2016; Cvitanovic et al., 2016; Faraco et al., 2016) may also improve the robustness of fisheries management 16 
(Miller et al., 2013). Thus, although range shifts pose significant challenges to transboundary fisheries 17 
management, proactive planning and adjustment of fisheries management arrangements, informed by 18 
scientific projections, could help improve adaptive capacity (medium confidence). The effectiveness of 19 
incorporating MPAs as an adaptation strategy to climate change can be improved by considering climate 20 
impacts in the design of MPAs (medium, high agreement).   21 
 22 
Improving integrated coastal management and better planning for marine protected areas by incorporating 23 
projected shifting biological communities, abundance and life history changes (Álvarez-Romero et al., 2018) 24 
due to climate change could contribute towards improved fisheries adaptive management by, for example, 25 
increasing resilience of habitats, providing refugia for species with shifting distributions and by conserving 26 
biodiversity (Faraco et al., 2016; Valmonte-Santos et al., 2016; Dasgupta et al., 2017; Le Cornu et al., 2017; 27 
Roberts et al., 2017; Asch et al., 2018; Cheung et al., 2018b; Harvey et al., 2018; Jones et al., 2018; O'Leary 28 
and Roberts, 2018) (Sections 5.2.3, 5.3, 5.4.1), but MPAs may also reduce access to subsistence fishers, 29 
increasing their vulnerability to food insecurity (Bennett et al., 2016; Faraco et al., 2016). The global area of 30 
MPAs is rapidly increasing towards the United Nations’ target of 10% of the global ocean. While this is 31 
encouraging, it is estimated that only 2% of the ocean is well enough managed, as described in (Edgar et al., 32 
2014), to meet conservation goals (Sala et al., 2018).  Improving the implementation and coordination of 33 
policies, and improving integrated coastal management and MPAs have emerged in the literature as 34 
important adaptation governance responses (robust evidence, medium agreement). 35 
 36 
Governance responses to support adaptation in fisheries communities include conducting vulnerability 37 
assessments, improving monitoring of ecosystem indicators and evaluating management strategies (Himes-38 
Cornell and Kasperski, 2015b; Busch et al., 2016). Socio-economic factors like access to alternative income, 39 
mobility, gender and religion collectively shape a community’s adaptation response (Arroyo Mina et al., 40 
2016). In West Africa, the industrial fishery response to climate change-induced reductions in landings was 41 
the expansion of fishing grounds, which increased operational costs (Belhabib et al., 2016). This response is 42 
not available to artisanal and local fishing communities, who are considered highly vulnerable (Kais and 43 
Islam, 2017). Access to finance to support these communities or their governments could help them reach 44 
novel fishing grounds, and, therefore, potentially reduce their vulnerability. Food security linked to fisheries 45 
depends on stock recovery, but also on access to and distribution of the harvest, as well as gender 46 
considerations (Béné et al., 2015). Hence, granting preferential access to dependent coastal communities 47 
should be considered in examining policy options. Other adaptation responses include improved fishing gear 48 
and technology, use of Fish Aggregating Devices and uptake of insurance products (Zougmoré et al., 2016). 49 
See (FAO, 2018b) for a summary of possible adaptation responses. Community response as a part of climate 50 
change adaptation for local fisheries is an important element in assessing adaptive capacity (medium 51 
evidence, good agreement),  52 
 53 
Fisheries management strategies depend heavily upon data collection and monitoring systems. These include 54 
the accuracy of data collected in respect of predicting environmental conditions, over time scales from 55 
months to decades (Dunstan et al., 2017), effective monitoring and evaluative mechanisms (Le Cornu et al., 56 
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2017; Gourlie et al., 2018), controlling for aspects of fish population dynamics like recruitment success and 1 
fish movement (Mace, 2001). Seasonal to decadal climate prediction systems allow for skillful predictions of 2 
climate variables relevant to fisheries management strategies (Hobday et al., 2016b; Payne et al., 2017). 3 
Effective fisheries adaptation responses will require knowledge development including better monitoring, 4 
modelling and improving decision support frameworks (medium evidence, high agreement) and improving 5 
forecasting and early warning systems (medium evidence, medium agreement). 6 
 7 
In considering a participatory decision-making approach for fisheries management that responds to climate 8 
change, Heenan et al. (2015b) provided a number of key elements that contribute towards a successful 9 
outcome. These include expert knowledge of climate change threats to fish habitats, stocks and landings, the 10 
necessity of transdisciplinary collaboration and stakeholder participation, broadening the range and scope of 11 
fisheries systems and increased commitment of resources and capacity. This was considered in the context of 12 
the ability of developing countries to sustainably exploit fisheries resources and related ecosystems. More 13 
research is required on socio-ecological responses to climate change-impacts on fishery communities,  14 
including such aspect as like risk reduction, adaptive capacity through knowledge attainment and social 15 
networks, developing alternative skills and participatory approaches to decision-making (Dubey et al., 2017; 16 
Shaffril et al., 2017; Finkbeiner et al., 2018). Important fisheries adaptation responses in relation to 17 
knowledge management include improving participatory processes (robust evidence, high agreement), 18 
integrating knowledge systems (medium evidence, high agreement), and stakeholder identification, outreach 19 
and education (medium evidence, medium agreement). Ecosystem based adaptation, community 20 
participatory programs, and improving agricultural and fisheries practices are very strongly supported in the 21 
literature (high confidence). 22 
 23 
Less still is known about how climate change will affect the deep oceans and its fisheries (Section 5.2.3 and 24 
5.2.4), the vulnerability of its habitats to fishing disturbance and future effects on resources not currently 25 
harvested (FAO, 2019). Johnson et al. (2019) concluded that in a 20- to 50-year timeframe, the effectiveness 26 
of virtually all North Atlantic deep-water and open ocean area-based management tools can be expected to 27 
be affected. They concluded that more precise and detailed oceanographic data are needed to determine 28 
possible refugia, and more research on adaptation and resilience in the deep sea is needed to predict 29 
ecosystem response times.  30 
 31 
As with fisheries, community- and ecosystem-based adaptation responses, an integrated coastal management 32 
framework is considered useful for planning for anticipated challenges for aquaculture (Ahmed and Diana, 33 
2015b; FAO, 2018b). Where in-situ adaptation is not possible, translocation and polyculture (Ahmed and 34 
Diana, 2015a; Bunting et al., 2017) have been suggested as appropriate responses, but this would suit 35 
commercial rather than subsistence interests. Policy, economic, knowledge and other types of support are 36 
required to build socio-ecological resilience of vulnerable coastal aquaculture communities (Harkes et al., 37 
2015; Bunting et al., 2017; Rodríguez-Rodríguez and Bande Ramudo, 2017), which requires a deep 38 
understanding of the nature of stressors and a commitment for collective action (Galappaththi et al., 2017). 39 
Climate resilient pathway development (see Cross-Chapter Box 2) is considered a useful framework for Sri 40 
Lankan shrimp aquaculture (Harkes et al., 2015). Another example of successful aquaculture adaptation is 41 
the employment of near-real time monitoring technology to track the carbonate chemistry in water to reduce 42 
bio-erosion in shellfish from acidification (Barton et al., 2015; Cooley et al., 2016). Numerous adaptation 43 
responses are available for aquaculture, but some options, like translocation and technological responses 44 
may not be available to subsistence-based communities (medium evidence).  45 
 46 
An example of eco-engineering-based adaptation option in seaweed aquaculture under climate change is  47 
artificial upwelling, as shown by experiments and observations. Artificial upwelling powered by green 48 
energy (solar, wind, wave, or tidal energy) to seaweeds (Jiao et al., 2014b; Zhang et al., 2015; Pan and 49 
Schimel, 2016) can moderate the amount of deep water upwelled to the euphotic zone to just meet the 50 
demands of nutrients and DIC by the seaweed for photosynthesis, while avoiding the acidification and 51 
hypoxia that often occur in natural upwelling systems (Jiao et al., 2018a; Jiao et al., 2018b) (high 52 
confidence).  Such artificial upwelling based eco-engineering may also gradually release the ‘bomb’ of rich 53 
nutrients and hypoxia in the bottom water, which could otherwise breakout following storms (Daneri et al., 54 
2012) (high confidence).  55 
 56 
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5.5.2.3.4 Coastal Tourism 1 
The coastal tourism economic sector is highly sensitive to climate change. Tourism response, in terms of 2 
mitigating carbon emissions and adapting to climate change impacts, are assessed here. Coastal tourism is 3 
likely to be impacted by ecosystem degradation and loss (limited evidence, medium agreement), which 4 
underscores the importance of nature-based tourism. An example of coastal erosion in Latin America 5 
illustrates this, whereby sea level rise interacting with non-climate change impacts including sand mining, 6 
inappropriate development and habitat destruction (e.g. mangroves), resulted in declines in tourism  (Rangel-7 
Buitrago et al., 2015). The management recommendation was appropriate legislation with a marine spatial 8 
planning emphasis, enforcement, sustainable funding mechanisms and support networks for decision-9 
making. 10 
 11 
Climate change impacts upon tourism are nuanced and not restricted to just physical impacts on tourism 12 
establishments (Biggs et al., 2015). Understanding the drivers of tourist choices could help support 13 
adaptation in the industry through marine spatial planning processes (Papageorgiou, 2016). For example, in 14 
an survey ranking mitigation and adaptation responses in Greece, tourists prioritised rational energy use, 15 
energy efficiency and water saving measures (Michailidou et al., 2016b). Location specific information of 16 
tourist choices could help shape local industries. In one example from the Thailand dive industry, climate 17 
change adaptation responses of participants were reported to be based on misconceptions about climate 18 
change and personal observations (Tapsuwan and Rongrongmuang, 2015). To improve community-based 19 
adaptation, efforts aimed at broadening the level of awareness about climate change could improve decision-20 
making processes (Tapsuwan and Rongrongmuang, 2015). Tourist behaviour is shaped by changing ocean 21 
physical processes and degrading ecosystems at tourist destinations, which drive destination changes, 22 
economic flows and market share adjustments. (Bujosa et al., 2015; De Urioste-Stone et al., 2016).  23 
 24 
It is very likely that climate change will have direct and nuanced impacts upon coastal tourism. Improving 25 
decision support frameworks (low evidence, medium agreement) for better-informed decision making tools 26 
could contribute towards increasing resilience in coastal tourism (low evidence, limited agreement). 27 
 28 
5.5.2.2.5 Government responses 29 
Government responses included adopting and mainstreaming sustainability policies, including investments 30 
and policies for climate change (Aylett, 2015; Buurman and Babovic, 2016) and applying the precautionary 31 
principle in the absence of precise scientific guidance (Johnson et al., 2018).  Developing adequate 32 
governance and management systems (Johnson et al., 2018), strengthening capacity (Gallo et al., 2017; 33 
Paterson et al., 2017), increasing cooperation (Nunn et al., 2014; Gormley et al., 2015) and aligning policies 34 
of local authorities (Porter et al., 2015; Gallo et al., 2017; Rosendo et al., 2018) could help to improve 35 
implementation (Sano et al., 2015; Elsharouny, 2016). This includes planning for marine protected areas and 36 
improving integrated coastal management (Abelshausen et al., 2015; Roberts et al., 2017; Rosendo et al., 37 
2018)  by incorporating climate science (Hopkins et al., 2016; Johnson et al., 2018) to optimize priority 38 
marine habitats (Gormley et al., 2015; Jones et al., 2018). An advantage of integrated coastal management is 39 
that it helps manage the interactions between multiple climate and non-climatic drivers of coastal ecosystems 40 
and sectors. Incorporating stakeholder participation with Local Knowledge and Indigenous Knowledge could 41 
help to reduce the risk of maladaptation, and increase buy-in for implementation (Serrao-Neumann et al., 42 
2013). Improving participatory processes strengthens governance decision making and flexible risk 43 
management processes (Gerkensmeier and Ratter, 2018; Rosendo et al., 2018), while stimulating bi-44 
directional knowledge flow and improving social learning (Abelshausen et al., 2015). 45 
 46 
Technology for environmental monitoring, for example using drones (Clark, 2017), web-based coastal 47 
information systems (Mayerle et al., 2016; Newell and Canessa, 2017), the Internet of Things and Machine 48 
Learning solutions promise to improve the local scale knowledge base, which should improve climate 49 
adaptation planning and resilience effort and environmental management decisions (Conde et al., 2015). 50 
Where such knowledge gaps persist, the implementation of climate change adaptation measures could 51 
proceed on the basis of a set of general principals of best practice (Sheaves et al., 2016; Thorne et al., 2017). 52 
 53 
Benefits of effective government adaptation response includes the promotion of sustainable use, 54 
development and protection of coastal ecosystems (Rosendo et al., 2018) and the protection of biodiversity 55 
through setting appropriate conservation priorities (Gormley et al., 2015). Improved governance includes 56 
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consideration of social processes in risk management (Gerkensmeier and Ratter, 2018; Rosendo et al., 2018) 1 
and improved systematic conservation planning (Johnson et al., 2018). At a local level, this translates into 2 
sustained service delivery (Aylett, 2015), improved rationality and effective policy-making (Serrao-3 
Neumann et al., 2013; Rosendo et al., 2018). 4 
 5 
Improving the implementation and coordination of policies and improving integrated coastal management 6 
are both considered important climate change adaptation governance responses (robust evidence, high 7 
agreement), as are developing partnerships and building capacity (medium evidence, high agreement) and 8 
adopting or mainstreaming sustainability policies (limited evidence, medium agreement). Benefits include 9 
improved ecosystem resilience, better planning processes, implementation and policies (all limited evidence, 10 
medium agreement). 11 
 12 
5.5.2.3 Ocean-based Climate Change Adaptation Frameworks 13 
 14 
Adaptation action in pursuit of a climate resilient development pathway is likely to have a deeper 15 
transformative outcome than stepwise or ad hoc responses (Cross-Chapter Box 2 in Chapter 1). Recent 16 
literature highlighting the effectiveness of  components of adaptation planning includes quantitative 17 
assessments of vulnerability in ecosystems (Kuhfuss et al., 2016), species (Cheung et al., 2015; Cushing et 18 
al., 2018), and communities (Islam et al., 2013; Himes-Cornell and Kasperski, 2015b), and integrated 19 
assessments of all of the above (Peirson et al., 2015; Kaplan-Hallam et al., 2017; McNeeley et al., 2017; 20 
Ramm et al., 2017; Mavromatidi et al., 2018). Seasonal and decadal forecasting tools have improved rapidly 21 
since AR5, especially in supporting management of living marine resources (Payne et al., 2017) and 22 
modelling to support decision-making processes (Čerkasova et al., 2016; Chapman and Darby, 2016; Jiang 23 
et al., 2016; Justic et al., 2016; Joyce et al., 2017; Mitchell et al., 2017). Decision-making processes are 24 
supported by economic evaluations (Bujosa et al., 2015; Jones et al., 2015), evaluations of ecosystem 25 
services (MacDonald et al., 2017; Micallef et al., 2018), participatory processes (Byrne et al., 2015) and 26 
social learning outcomes, the development of adaptation pathways, frameworks and decision making 27 
(Buurman and Babovic, 2016; Dittrich et al., 2016; Michailidou et al., 2016a; Osorio-Cano et al., 2017; 28 
Cumiskey et al., 2018), and indicators to support evaluation of adaptation actions (Carapuço et al., 2016; 29 
Nguyen et al., 2016) through monitoring frameworks (Huxham et al., 2015). Climate change adaptation 30 
responses are more effective when developed within institutional frameworks that include effective planning 31 
and across-sector integration. 32 
 33 
Evidence-based decision-making for climate adaptation is strongly supported in the literature (Endo et al., 34 
2017; Thorne et al., 2017) through better understanding of coastal ecosystems and human adaptation 35 
responses (Dutra et al., 2015; Cvitanovic et al., 2016), as well as consideration of non-climate change-related 36 
factors.  Relevant research includes the topics of: multiple-stakeholder participatory planning (Archer et al., 37 
2014; Abedin and Shaw, 2015); trans-boundary ocean management (Gormley et al., 2015; Williams et al., 38 
2016); ecosystem-based adaptation (Hobday et al., 2015; Dalyander et al., 2016; McNeeley et al., 2017; 39 
Osorio-Cano et al., 2017); and community-based adaptation with socio-economic outcomes (Merkens et al., 40 
2016).  Research on applying ‘big data’ and high end computational capabilities could also help develop a 41 
comprehensive understanding of climate and non-climate variables in planning for coastal adaptation 42 
(Rumson et al., 2017). New knowledge from these research areas could substantially improve planning, 43 
implementation and monitoring of climate adaptation responses for marine systems, if research processes are 44 
participatory and inclusive (medium confidence). 45 
 46 
Despite such interest, evaluations of the planning, implementation and monitoring of adaptation actions 47 
remain scarce (Miller et al., 2017). In a global analysis of 401 local governments, only 15% reported on 48 
adaptation actions (mostly large cities in high income countries), and 18% reported on planning towards 49 
adaptation policy (Araos et al., 2016).  Thus, integrated adaptation planning with non-climate change related 50 
impacts remains an under-achieved ambition, especially in developing countries (Finkbeiner et al., 2018). 51 
Challenges reported for adaptation planning include uncoordinated, top-down approaches, a lack of political 52 
will, insufficient resources (Elias and Omojola, 2015; Porter et al., 2015), and access to information (Thorne 53 
et al., 2017). 54 
 55 
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Characteristics of successful adaptation frameworks include: a robust but flexible approach, accounting for 1 
deep uncertainty through well-coordinated participatory processes (Dutra et al., 2015; Jiao et al., 2015; 2 
Buurman and Babovic, 2016; Dittrich et al., 2016); well-developed monitoring systems (Barrett et al., 2015; 3 
Bell et al., 2018b); and taking a whole systems approach (Sheaves et al., 2016), with the identification of co-4 
benefits for human development and the environment (Wise et al., 2016). The coastal adaptation framework 5 
literature is dominated by Australian, North American and European cities, with fewer studies from African 6 
and Caribbean sites, least developed countries and small island developing states (Kuruppu and Willie, 2015; 7 
Torresan et al., 2016).   8 
 9 
In contrast with the many examples of proposed frameworks for climate-resilient coastal adaptation, few 10 
studies have assessed their success, possibly due to the time-lag between implementation, monitoring, 11 
evaluation and reporting. Nevertheless, there is substantial support for ‘no regrets’ approaches addressing 12 
both proximate and systematic underlying drivers of vulnerability (Sánchez-Arcilla et al., 2016; Pentz and 13 
Klenk, 2017; Zandvoort et al., 2017) with leadership, adaptive management, capacity and the monitoring and 14 
evaluation of actions considered useful in governance responses (Dutra et al., 2015; Doherty et al., 2016). 15 
More extensive learning processes could help build decision-makers’ capacity to tackle systemic drivers, 16 
guide pursuance climate change appropriate policies (FAO, 2018b) and to scrutinize potentially maladaptive 17 
infrastructural investments (Wise et al., 2016). More effective coordination across a range of stakeholders, 18 
within and between organizations, especially in developing countries, would strengthen the global coastal 19 
adaptation response (medium confidence). 20 
 21 
5.5.2.4 The Role of Education and Local Knowledge in Adapting to Climate Change. 22 
Education can help improve understanding of issues related to climate change and increase adaptive capacity 23 
(Fauville et al., 2011; Marshall et al., 2013; von Heland et al., 2014; Pescaroli and Magni, 2015; Tapsuwan 24 
and Rongrongmuang, 2015; Wynveen and Sutton, 2015). Participatory processes can facilitate the 25 
development of networks between coastal communities and environmental managers for the purposes of 26 
developing and implementing adaptation strategies (Wynveen and Sutton, 2015). Education, combined with 27 
other forms of institutional support empowers fisheries and aquaculture communities (Table 5.8) to make 28 
informed adaptation decisions and take action (medium evidence, medium agreement). 29 
 30 
Local knowledge and Indigenous knowledge systems can complement scientific knowledge by, for example, 31 
improving community ability to understand their local environment (Andrachuk and Armitage, 2015), 32 
forecast extreme events (Audefroy and Sánchez, 2017) and help to increase community resilience (Leon et 33 
al., 2015; Sakakibara, 2017; Cinner et al., 2018; Panikkar et al., 2018). Committing resources could 34 
strengthen local level adaptation planning (Alam et al., 2016; Novak Colwell et al., 2017) through the 35 
inclusion of cultural practices (Audefroy and Sánchez, 2017; Fatorić and Seekamp, 2017) and Indigenous 36 
Knowledge systems (Kuruppu and Willie, 2015; von Storch et al., 2015). Local Knowledge can, however, 37 
act as a barrier to adaptation where there is a strong dependency upon such knowledge for immediate 38 
survival, to the detriment of long-term adaptation planning (Marshall et al., 2013; Metcalf et al., 2015). 39 
There is evidence, however, to suggest that vulnerability in fisheries communities and coastal tourism 40 
operators with high levels of Local Knowledge is reduced where they have a correspondingly high level of 41 
adaptive capacity (Marshall et al., 2013). Resource users with high levels of Local Knowledge may also be 42 
able to identify signals of change within their environment, and recognize the need to adapt. In these 43 
instances, fishers with higher Local Knowledge are expected to demonstrate a higher adaptive capacity than 44 
fishers with lower Local Knowledge, and can be expected to progress towards developing new strategies to 45 
combat the impacts of climate change (Kittinger et al., 2012). In these instances, Local Knowledge acts to 46 
promote adaptation (medium confidence).  47 
 48 
Localized, individual-scale behaviors can aggregate rapidly and contribute to the global adaptation response. 49 
This can be supported by clear messaging that clarifies the role of individuals, households and local 50 
businesses in addressing climate change. Coastal communities can improve the co-production of climate 51 
change knowledge (medium evidence, good agreement) through the integration of knowledge systems (Table 52 
5.8). In fisheries and aquaculture, better-informed decision-making tools (medium evidence, medium 53 
agreement) are supported by improved participatory processes (high confidence), integrating knowledge 54 
systems (medium evidence, good agreement) and improving decision support frameworks (medium evidence, 55 
medium agreement).  56 
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 1 
5.5.2.5 Costs and Limits for Coastal Climate Change Adaptation 2 
 3 
Challenges persist in conducting economic assessments for built infrastructure adaptation due to complicated 4 
uncertainties such as the accuracy of climate projections and limited information regarding paths for future 5 
economic growth and adaptation technologies. Annual investment and maintenance costs of protecting 6 
coasts were projected to be USD 12 billion to USD 71 billion (Hinkel et al., 2014), which was considered 7 
significantly less than damage costs in the absence of such action. In an analysis of twelve Pacific island 8 
countries, 57% of assessed built infrastructure was located within 500m of coastlines, requiring a 9 
replacement value of USD 21.9 billion. Substantial coastal adaptation costs (and international financing) are 10 
likely to be required in these countries (medium confidence). 11 
 12 
In West African fisheries, loss of coastal ecosystems and productivity are estimated to require 5–10% of 13 
countries’ Gross Domestic Product in adaptation costs (Zougmoré et al., 2016). Similarly, for Pacific Islands 14 
and Coastal Territories, fisheries adaptation will require significant investment from local governments and 15 
the private sector (Rosegrant et al., 2016), with adaptation costs considered beyond the means of most of 16 
these countries (Campbell, 2017). In Small Island Developing States, tourism could provide the funding for 17 
climate change adaptation, but concerns with creating investment barriers, assumptions around cost-18 
effectiveness and consumer driven demand remain barriers (Hess and Kelman, 2017). Marine Protected 19 
Areas, with multiple co-benefits, are considered a cost-effective strategy (Byrne et al., 2015). In 2004, the 20 
annual cost of managing 20 – 30% of global seas as MPAs was estimated at between USD 5 – 19 billion, 21 
with the creation of approximately one million jobs (Balmford et al., 2004). 22 
 23 
Estimating adaptation costs is challenging because of wide ranging regional responses and uncertainty 24 
(Dittrich et al., 2016). Despite these challenges, the protection from flooding and frequent storms that coral 25 
reefs provide has been quantified by (Beck et al., 2018), who estimated that without reefs, damage from 26 
flooding and costs from frequent storms would double and triple respectively, while countries from 27 
Southeast Asia, East Asia and Central America could each save in excess of USD 400 million through good 28 
reef management. Although quantifying global adaptation costs remains challenging because of a wide range 29 
of regional responses and contexts, it is likely that managing ecosystems will contribute towards reducing 30 
costs associated with climate change associated coastal storms (medium confidence). Further research 31 
evaluating natural infrastructure is required (Roberts et al., 2017) to better understand costs and benefits of 32 
EBA. 33 
 34 
There is a broad range of reported barriers and limits to climate change adaptation for both ecosystems and 35 
human systems. Coastal ecosystem-based adaptation can be physically constrained by space requirements 36 
and coastal squeeze (Sutton-Grier et al., 2015; Robins et al., 2016a; Sánchez-Arcilla et al., 2016; Ahmed et 37 
al., 2017; Peña-Alonso et al., 2017; Salgado and Martinez, 2017; Triyanti et al., 2017; Schuerch et al., 38 
2018a), while the pace of climate change may exceed the adaptive capacity of ecosystems e.g. sea level rise 39 
may outpace the vertical reef accretion rate (Beetham et al., 2017; Elliff and Silva, 2017; Joyce et al., 2017). 40 
One technical limit for coral reef adaptation is that tools have not yet been developed for large-scale 41 
implementation (van Oppen et al., 2017a). Ecosystems may also have physiological and ecological 42 
constraints which are exceeded by climate change impacts (Miller et al., 2017; Wigand et al., 2017), and the 43 
recovery periods of natural systems (Gracia et al., 2018) and for ecological succession (Salgado and 44 
Martinez, 2017) may be outpaced by climate change impacts. The performance of ecosystems in EBA 45 
projects may be inhibited by the poor condition of the ecosystem (Nehren et al., 2017), highlighting the 46 
importance of effective implementation (Salgado and Martinez, 2017). 47 
 48 
Social and cultural norms with conflicting and competing values (Miller et al., 2017), public lack of 49 
knowledge on climate change and distrust of information sources (Wynveen and Sutton, 2015), as well as 50 
populations increasingly distanced from, and unconcerned about nature (Romañach et al., 2018), may 51 
constrain ecosystem-based adaptation response. Examples of governance adaptation constraints include: 52 
inadequate policy, governance and institutional structures (Sánchez-Arcilla et al., 2016; Miller et al., 2017; 53 
Wigand et al., 2017); limited capacity (Sutton-Grier et al., 2015; Thorne et al., 2017); ineffective 54 
implementation (Nguyen et al., 2017; Comte and Pendleton, 2018); and poor enforcement (Nguyen et al., 55 
2017). Governance constraints are compounded by lack of finances (Miller et al., 2017), financial costs of 56 
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design and implementation (Gallagher et al., 2015) and the high cost of coastal land (Gracia et al., 2018), 1 
although ecosystem-based adaptation is considered cheaper than man-made structures (Nehren et al., 2017; 2 
Salgado and Martinez, 2017; Vikolainen et al., 2017; Gracia et al., 2018). 3 
 4 
Knowledge limitations can include a lack of data (Sutton-Grier et al., 2015; Wigand et al., 2017; Romañach 5 
et al., 2018), for example, when an absence of baseline data may undermine coastline management (Perkins 6 
et al., 2015). Scale-relevant information may be required for local decision-making (Robins et al., 2016a; 7 
Thorne et al., 2017) and to comply with localized design requirements (Vikolainen et al., 2017). Other 8 
knowledge barriers include inherent uncertainties in models (Schaeffer-Novelli et al., 2016) and complexity 9 
of coastal systems (Wigand et al., 2017). A more nuanced knowledge barrier is the disconnect between 10 
scientific, community and decision-making processes (Romañach et al., 2018).   11 
 12 
Substantial knowledge gaps are reported for ecosystem-based adaptation, including: restoration of coral reef 13 
systems as an adaptation tool (Comte and Pendleton, 2018); managing mangrove and human response to 14 
climate change (Ward et al., 2016); advancing coastal EBA science by quantifying ecosystem services 15 
(Hernández-González et al.); and evaluating natural infrastructure (Roberts et al., 2017). Few syntheses of 16 
the context-specific application and cost-effectiveness of EBA approaches are to be found in the literature 17 
(Narayan et al., 2016). 18 
 19 
Human systems have similar limitations. Improved understanding of limitations in built-infrastructure, beach 20 
nourishment and nature-based adaptation responses, especially with respect to cost effectiveness and 21 
resilience, would substantially aid shoreline stabilisation attempts (Mackey and Ware, 2018). For artisanal 22 
fisheries, a range of physical and socio-institutional limits and barriers to adaptation have been reported, 23 
including increasing occurrence and severity of storms limiting fishing time, technologically poor boats and 24 
fishing equipment and lack of access to credit and markets, among others (Islam et al., 2013). Conflicting 25 
interests and values of stakeholders (Evans et al., 2016), the path-dependent nature of organisations and 26 
resistance to change (Evans et al., 2016) and inadequate collaboration and public awareness (Oulahen et al., 27 
2018) have been reported as socio-institutional barriers. A knowledge gap persists in understanding how 28 
such limits and barriers interact to suppress adaptation response. 29 
 30 
In some communities, climate change may not be prioritised in the face of chronic, daily challenges to 31 
secure livelihoods (Esteban et al., 2017; Fischer, 2018) or risk severity may be underestimated due to a high 32 
frequency of exposure in the recent past (Esteban et al., 2017). In a world with competing risks and urgent 33 
priorities, some local inhabitants appear to be unable to avoid, or are willing to carry, the risk associated with 34 
a climate impact in order to meet other, more pressing needs. This example reflects the reality of many poor, 35 
informal settlement dwellers in coastal areas around the world (medium confidence). Other human system 36 
barriers to effective adaptation action include insufficient climate change knowledge, inappropriate coping 37 
strategies, high dependency upon natural resources, level of exposure to hazards and weak community 38 
networks (Islam et al., 2013; Nanlohy et al., 2015; Lohmann, 2016; Koya et al., 2017; Senapati and Gupta, 39 
2017; Cumiskey et al., 2018). 40 
 41 
In summary, we conclude that the broad range of reported barriers and limits to climate change adaptation 42 
for ecosystem and human system adaptation responses (high confidence). Limitations include the space that 43 
ecosystems require, non-climatic drivers and human impacts that need to be addressed as part of the 44 
adaptation response, the lowering of adaptive capacity of ecosystems because of climate change, and slower 45 
ecosystem recovery rates relative to the recurrence of climate impacts, availability of technology, knowledge 46 
and financial support, and existing governance structures (medium confidence). (5.5.2.5) 47 
 48 
5.5.2.6 Summary 49 
 50 
There has been a substantial amount of literature focused on coastal and oceanic adaptation since AR5. 51 
Socio-institutional adaptation responses are the more numerous of the three types of adaptation responses 52 
assessed in this chapter. There is broad agreement that hard engineering responses are optimally supported 53 
by ecosystem-based adaptation approaches, and both approaches should be augmented by socio-institutional 54 
approaches for adaptation (high confidence) (Nicholls et al., 2015; Peirson et al., 2015; Sánchez-Arcilla et 55 
al., 2016; van der Nat et al., 2016; Francesch-Huidobro et al., 2017; Khamis et al., 2017). In planning 56 
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adaptation responses, awareness-raising and stakeholder engagement processes are important for buy-in and 1 
ownership of responses (robust evidence, high agreement) as is institutional capacity within local 2 
government organizations, whose importance in coastal adaptation initiatives has been emphasized in the 3 
recent literature (robust evidence, high agreement). With all three types of adaptation, basic good 4 
governance and effective implementation of service delivery processes are prerequisites for successful 5 
adaptation planning and response. 6 
 7 
 8 
5.5.3 Governance Across All Scales 9 
 10 
There are many global, regional, national and local governance structures with interests in climate-driven 11 
ocean warming, acidification, de-oxygenation and sea-level rise, and their impacts on marine ecosystems and 12 
dependent communities (Galland et al., 2012; Stephens, 2015; Fennel and VanderZwaag, 2016; Diamond, 13 
2018). The legal, policy and institutional response is therefore shared by many institutions developed for a 14 
number of distinct but inter-related fields, including governance regimes for ocean systems, climate change, 15 
marine environment, fisheries and the environment generally. A changing ocean poses several scale-related 16 
challenges for these governance institutions and processes, arising from:  17 
  18 

• The global and transboundary scales of the major changes to ocean properties (temperature, 19 
circulation, oxygen loss, acidification, etc.), with variability in their local expression; 20 

• The regional scales of changes in ecosystem services following from the changes in ocean properties 21 
(including services provided to humans living far from the coasts);  22 

• The global scales of land-based drivers of those changes (both greenhouse gas emissions and 23 
changes in ecosystems services), which often motivate policy responses (primarily at the national 24 
level) and behavioural responses (primarily at the community level);  25 

• The scale-dependent need for coordinated responses by the different governance structures, to  26 
ensure their overall effectiveness (see also Chapter 1) 27 
 28 

For all of these challenges, the scales of the climate-related issues may be poorly matched to the scales of 29 
most governance institutions and processes, making effective responses or proactive initiatives difficult. 30 
Sections 5.2 to 5.4 provide evidence, through case histories and thematic overviews, that illustrates these 31 
four types of challenges.  In some cases, more than one type of challenge is illustrated in a single example, 32 
such as when a change in an amount or availability of an ecosystem service is discussed in the context of 33 
factors influencing the vulnerability of socio-ecological systems to climate change (Sections 5.2. 5.3 and 34 
5.4).    35 
 36 
Existing ocean governance structures for the ocean already face multi-dimensional challenges because of 37 
climate change, and this trend of increasing complexity will continue (Galaz et al., 2012). Current 38 
international governance regimes and structures for fisheries and the ocean environment do not yet 39 
adequately address the issues of ocean warming, acidification and deoxygenation (Oral, 2018); Box 5.6). At 40 
the time of the initial development and adoption of these legal and governance regimes, minimal attention 41 
was given to climate change and the effects of carbon dioxide emissions on the ocean, with associated 42 
impacts on the interacting physical, chemical, biological properties of the ecosystems, and the resulting risks 43 
and vulnerabilities of dependent communities and economic sectors.  In particular, the governance of ocean 44 
areas beyond national jurisdiction (ABNJ) is a major challenge (Levin and Le Bris, 2015); the collaborative 45 
structures and mechanisms for environmental assessment in ABNJ need further development (Warner, 2018) 46 
(high confidence). Negotiations are currently ongoing regarding a new international agreement for marine 47 
biodiversity of ABNJ (UNEP, 2016).    48 
 49 
 50 
Table 5.9: Ocean Governance and Climate Change: Major Issues  51 

Area of 
Governance  

Major Legal 
Instruments  

Major Issues and Actions  

Marine 
Environment 
Generally  

UNCLOS, 
CBD, CITES, 
WHC, 

UNCLOS imposes obligations on state parties to take action to combat the main 
sources of ocean pollution. Tools and techniques in UNCLOS may need 
adjustment in response to the emerging challenges created by ocean climate 
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MARPOL and 
other IMO 
legal 
instruments, 
regional seas 
conventions 
and other legal 
instruments  

change (Redgwell, 2012). However, success of the umbrella regulatory 
framework of UNCLOS depends heavily on the further development, 
modification and implementation of detailed regulations by relevant international, 
regional and national institutions (Karim, 2015).   
 
The London Protocol to the London Convention was amended in 2006 to address 
the issue of carbon dioxide storage processes for sequestration. Two subsequent 
amendments concern sharing transboundary sub-seabed geological formations for 
sequestration projects, and ocean fertilization and other marine geoengineering. 
One of these new amendments prohibits ocean fertilization except for research 
purposes (Dixon et al., 2014).   
 
The issue of ocean acidification has been considered within the framework of the 
OSPAR Convention, the CCAMLR Convention (Herr et al., 2014), and the CBD 
(Hennige et al., 2014) ; this issue is discussed further in Box 5.6.   
 
The CBD has also considered regulatory issues relating to ocean fertilization and 
other (marine) geoengineering (Williamson and Bodle, 2016). In 2018, the CBD 
adopted Voluntary Guidelines for the Design and Effective Implementation of 
Ecosystem-Based Approaches to Climate Change Adaptation and Disaster Risk 
Reduction. However, even if Parties to the Convention choose to adopt the 
voluntary guidelines, there is no mechanism to implement them beyond their 
exclusive economic zones in the water column and their extended continental 
shelves (if recognized) in the seabed 
 
Most of the 29 world heritage listed coral reefs are facing severe heat stress 
(Heron, 2017) and the WHC may play a role for coral reef protection.  
 

Climate 
Change  

UNFCCC, 
Paris 
Agreement, 
MARPOL 
Convention 
and other legal 
instruments  

Existing international legal instruments do not adequately address climate change 
challenges for the open ocean and coastal seas (Galland et al., 2012; Redgwell, 
2012; Herr et al., 2014; Magnan et al., 2016; Gallo et al., 2017; Heron, 2017). 
Nevertheless, ocean and coastal areas will benefit from the overall UNFCCC goal 
for preventing dangerous interference with the climate system. A study of the 161 
national pledges for climate change mitigation and adaptation (NDCs) identified 
‘gaps between scientific [understanding] and government attention, including on 
ocean deoxygenation, which is barely mentioned’ (Gallo et al., 2017).  
 
In 2011, the MARPOL convention was amended to include technical and 
operational measures for the reduction of greenhouse gas emissions from ships. 
However, the effectiveness of these provisions depends on the national 
implementation by flag, port and coastal states, with no international enforcement 
authority (Karim, 2015). 
 

Fisheries UNCLOS,  UN 
Fish Stocks 
Agreement, 
FAO 
Compliance 
Agreement,  
FAO PSMA, 
Regional 
Fisheries 
Agreements 
and other legal 
instruments 

The impact of climate change on marine fisheries is expected to be very 
significant (Sections 5.3, 5.4) (FAO, 2018a; FAO, 2019), with adverse impacts 
on food security, livelihood and national development in many coastal countries; 
least developed countries seem particularly vulnerable (Blasiak et al., 2017). 
Regional fisheries management systems need to address these emerging 
challenges (Brooks et al., 2013).  The ecological and socio-ecological criteria and 
standards for performance can be set at regional levels where Regional Fisheries 
Management Organizations have been established, but their effectiveness is 
variable depending on the characteristics of regulatory instruments and other 
factors (Ojea et al., 2017). The current international regulatory framework for 
fisheries management has a responsiveness gap, since it does not fully 
incorporate issues related to the fluctuating and changing distribution of fisheries 
(Pentz and Klenk, 2017; Pinsky et al., 2018).   
 
However, some regional fisheries management organisations (RFMOs) have 
initiated processes to improve the equity of sharing fishery resources affected by 
climate change (Aqorau et al., 2018).  A climate-informed ecosystem-based 
fisheries governance approach has been suggested for enhancing climate change 
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resilience of marine fisheries in the developing world (Heenan et al., 2015a), but 
robust and effective management, policy, legislation and planning based on 
flexibility and scientific understanding will be required for coastal fisheries 
(Gourlie et al., 2017). The existing failing condition of many stocks, coupled with 
maladaptive responses to climate change, may create serious challenges for the 
sustainability of global fisheries; improved fisheries governance can offset some 
of these challenges (Gaines et al., 2018).  
 
The fisheries agreements and the provisions in UNCLOS have helped RFMOs to 
increase the sustainability of fisheries on stocks in or migrating through 
international waters, and equity of access to them. Because the distribution of 
many stocks changes with changes in physical oceanic conditions (particularly 
temperature and current regimes), many of the measures and access arrangements 
negotiated and adopted by the RFMOs have reduced effectiveness in a changing 
climate. New arrangements have been difficult to negotiate, in part because of 
concerns that the distributions and productivities will continue to change as 
climate change continues to drive changes on ocean conditions (Blasiak et al., 
2017; Ojea et al., 2017; Pentz and Klenk, 2017; Aqorau et al., 2018; Pinsky et al., 
2018).   
 

 1 
 2 
Acronyms and organizations: CBD, Convention on Biological Diversity; CCAMLR, Convention on the Conservation 3 
of Antarctic Marine Living Resources; CITES, Convention on International Trade in Endangered Species of Wild 4 
Fauna and Flora; IMO: International Maritime Organization; London Convention: Convention on the Prevention of 5 
Marine Pollution by Dumping of Wastes and Other Matter; London Protocol: 1996 Protocol to the Convention on the 6 
Prevention of Marine Pollution by Dumping of Wastes and Other Matter; MARPOL Convention: International 7 
Convention for the Prevention of Pollution from Ships; NDCs: Nationally Determined Contributions; OSPAR 8 
Convention: Convention for the Protection of the Marine Environment of the North-East Atlantic; UN Fish Stocks 9 
Agreement: The Agreement for the Implementation of the Provisions of the United Nations Convention on the Law of 10 
the Sea of 10 December 1982 relating to the Conservation and Management of Straddling Fish Stocks and Highly 11 
Migratory Fish Stocks; UNCLOS: United Nations Convention on the Law of the Sea; UNFCCC: United Nations 12 
Framework Convention on Climate Change; WHC, World Heritage Convention: Convention Concerning the Protection 13 
of the World Cultural and Natural Heritage; FAO Compliance Agreement: The Agreement to Promote Compliance 14 
with International Conservation and Management Measures by Fishing Vessels on the High Seas; FAO PSMA: The 15 
Agreement on Port State Measures  16 
 17 
The following changes in governance may improve the ability of governance institutions and processes to 18 
address the challenges identified above: 19 
• Cooperation on regional and global scales through various types of agreements of varying degrees of 20 

formality for States and other participants in governance  21 
• Increasing the voice and role in decision-making for non-governmental participants such as Indigenous 22 

Peoples, social and labour organizations  23 
• Increasing the horizontal integration of decision-making across industry and societal sectors, under 24 

processes such as “integrated management” and “marine spatial planning”  25 
• Increasing resource mobilisation at the community scale to enable communities to experiment and 26 

innovate to address the challenges, and then to share their experiences with other communities and build 27 
cooperative approaches to promote strategies with successful outcomes  28 

 29 
These governance innovation strategies have the potential to increase the ability of the governance 30 
institutions and processes to successfully respond to all four types of scale-related challenges listed earlier.  31 
However, any of them also have the potential to fail to address their intended concerns effectively if 32 
implemented inappropriately, or to create new challenges as the initial priorities are addressed. In some 33 
countries, lack of capacity of the existing governance institutions, lack of access to basic facilities, 34 
insufficient income diversification and illiteracy are major hindrance for ocean governance in a changing 35 
climate (Bennett et al., 2014; Salik et al., 2015; Weng et al., 2015; Karim and Uddin, 2019; Sarkodie and 36 
Strezov, 2019) (high confidence)  37 
 38 
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Additional considerations identified by recent studies of ocean-related mitigation and adaptation include the 1 
need for: early warning and precautionary management; multi-level and multi-sectorial governance 2 
responses; holistic, integrated and flexible management systems; integration of scientific and local 3 
knowledge as well as  natural, social and economic investigation;  identification and incorporation of a set of 4 
social indicators and checklists; adaptive governance; and incorporation of climate change effects in marine 5 
spatial planning (Hiwasaki et al., 2014; Kettle et al., 2014; Hernández-Delgado, 2015; Himes-Cornell and 6 
Kasperski, 2015a; Pittman et al., 2015; Colburn et al., 2016; Creighton et al., 2016; Hobday et al., 2016a; 7 
Audefroy and Sánchez, 2017; Gissi et al., 2019; Tuda et al., 2019). Diverse adaptations of governance are 8 
being tried, and some are producing promising results (Sections 5.2, 5.3 and 5.4). However, rigorous further 9 
evaluation is needed regarding the effectiveness of these adaptations in achieving their goals in addressing 10 
specific governance challenges. Robust conclusions on the effectiveness of specific types of governance 11 
adaptations in various socio-ecological contexts would require a targeted assessment of ocean (and 12 
terrestrial) governance in a changing climate, possible as a key part of IPCC AR6.  13 
 14 
 15 
[START BOX 5.6 HERE] 16 
 17 
Box 5.6: Policy Responses to Ocean Acidification: Is there an international Governance Gap? 18 
 19 
Ocean acidification is not specifically mentioned in the Paris Agreement on climate change (UNFCCC, 20 
2015) and has only been given limited attention to date in other UNFCCC discussions. Nevertheless, ocean 21 
acidification is widely considered to be part of the climate system: it is one of seven state-of-the-climate 22 
indicators used by the World Meteorological Organization (WMO, 2019); it featured strongly in IPCC AR5, 23 
being covered by both WGI and WGII; its impacts are assessed in many sections of this Chapter; and 24 
concerns regarding ocean acidification have been raised through many international governance structures, 25 
including the United Nations Convention on the Law of the Sea (UNCLOS), the Convention on Biological 26 
Diversity (CBD), the United Nations Environment Programme (UNEP), and  the Intergovernmental 27 
Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization (IOC-28 
UNESCO).  29 
 30 
Although many bodies have interests in ocean acidification, no unifying treaty or single instrument has been 31 
developed (Herr et al., 2014; Harrould-Kolieb and Hoegh-Guldberg, 2019) and there has been only limited 32 
governance action that is specific to the problem (Fennel and VanderZwaag, 2016; Jagers et al., 2018).  33 
Exceptions to this generalization are the development of coordinated monitoring through the Global Ocean 34 
Acidification Observing Network (Newton et al., 2015), with associated scientific support through the 35 
International Atomic Energy Agency (IAEA) (Osborn et al., 2017; Watson-Wright and Valdés, 2018); and 36 
UN Sustainable Development Goal 14.3, with its non-binding, and relatively general, commitment to 37 
‘minimise and address the impacts of ocean acidification, including through enhanced scientific cooperation 38 
at all levels’. 39 
 40 
One possible response to the fragmented responsibilities for ocean acidification governance would be the 41 
development of a new UN mechanism specifically to address ocean acidification (Kim, 2012).  This option 42 
would take time and political will, and has not been widely supported (Harrould-Kolieb and Herr, 2012). 43 
One pragmatic approach could be enhancing the involvement of UNFCCC with acidification governance 44 
(Herr et al., 2014) together with increased use of multilateral environment agreements (Harrould-Kolieb and 45 
Herr, 2012) (medium confidence).   46 
 47 
UNFCCC action to stabilize the climate by reducing CO2 emissions also necessarily addresses the problem 48 
of ocean acidification, which is primarily caused by anthropogenic CO2 dissolving in seawater and lowering 49 
pH.  Nevertheless, there are also distinct ocean acidification mitigation and adaptation issues, including: 50 
 51 
• Climate mitigation measures that might be focused on greenhouse gases other than CO2  52 
• pH-associated thresholds or tipping-points (Hughes et al., 2013; Good et al., 2018) that have implications 53 

for scenario-modelling of emission reductions (Steinacher et al., 2013) 54 
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• The large-scale use of bioenergy with carbon capture and storage (BECCS) as a mitigation option, if this 1 
involved sub-seafloor CO2 storage, with risk of leakage and hence ocean acidification impacts (Blackford 2 
et al., 2014) 3 

• The use of other CO2 removal techniques (negative emissions) such as ocean fertilization (Section 4 
5.5.1.3), or solar radiation management, without CO2 emission reductions; both approaches would 5 
worsen ocean acidification (Williamson and Turley, 2012; Keller et al., 2014a). 6 

 7 
Adaptation to climate change could also include a more integrated approach to reduce ocean acidification 8 
impacts (Section 5.5.2). Proposed adaptation actions for ocean acidification (Kelly et al., 2011; Billé et al., 9 
2013; Strong et al., 2014; Albright et al., 2016a)  include reduction of pollution and other stressors (thereby 10 
strengthening resilience); water treatment (e.g., for high-value aquaculture); and the use of seaweed 11 
cultivation and seagrass restoration to slow longterm pH changes (although short-term variability may be 12 
increased) (Sabine, 2018). These measures are generally applicable to relatively limited spatial scales; whilst 13 
they may succeed in ‘buying time’, their future effectiveness will decrease unless underlying global drivers 14 
are also addressed (high confidence). 15 
 16 
[END BOX 5.6 HERE] 17 
 18 
 19 
5.6 Synthesis 20 
 21 
This chapter has documented an extraordinary array of observed changes in the open ocean, deep-sea and 22 
coasts. It draws on evidence from thousands of references from the literature, millions of observations and 23 
hundreds of simulations of the past and future scenarios. The ocean climate and its state, ecosystems and 24 
human systems have changed (Section 4.2.2.6, 5.2, 5.3, 5.4, Figure 5.24) and are projected to change further. 25 
The ocean is a highly connected environment allowing water and living organisms to move freely.  Change 26 
is observed across physical conditions that pose hazards to ecosystems in all regions from the surface to the 27 
deepest parts (Figure 5.24). All types of human and managed systems that have been covered in this chapter 28 
have evidence of mostly negative impacts but also some positive, some very significantly, some less so 29 
(Figure 5.24). Overall the multiple lines of evidence from the literature and the assessment in this chapter’s 30 
Executive Summary point to profound and pervasive changes on regional and global scales (Figure 5.24). 31 
 32 
The level of knowledge and confidence of the changes in the marine environment that are particularly 33 
relevant to ecosystems and human systems ranges from virtually certain to low confidence (see Figure 5.24). 34 
Many of the observed changes in some variables can be directly attributed to human influence from rising 35 
greenhouse gases and other anthropogenic forcings (Section 5.2.2 and 5.2.3). For other variables and in some 36 
systems the evidence is less direct, but the cascading of risks from changing ocean, marine ecosystems and 37 
dependent communities remains robust when considered as a whole. The observed and projected changes in 38 
the ocean systems that are covered in this chapter are consistent with our understanding of ocean chemistry 39 
and circulation, and our knowledge of the ecosystems responses. In many cases, the assessments of risk level 40 
of ecosystems for the recent past and long term future are based on multiple lines of evidence, combining 41 
ecological and physiological knowledge (from experiments, direct observations and model projections) with 42 
the major climate drivers (e.g., Sections 5.2.5 and 5.3.4). Globally, all the marine ecosystems assessed here 43 
have elevated risk for biodiversity, ecosystem function, structure and services with increasing greenhouse 44 
gas emissions (Figure 5.16) (high confidence). These risks result from ocean warming, stratification, 45 
acidification, deoxygenation, sea level rise and associated changes as well as interactions with non-climatic 46 
human drivers. Most importantly, all the coastal ecosystems that were assessed, where linkages between 47 
natural systems and human communities are the strongest, had increased risk, and none saw a risk reduction 48 
from a warming climate (high confidence). 49 
 50 
 51 
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 1 
Figure 5.24: Synthesis of regional consequences and impacts in ocean regions assessed in Chapter 5. For each region, 2 
physical changes (red boxes), impacts on key ecosystems (green boxes), and impacts on human sectors and ecosystem 3 
services (blue boxes) are shown.  Physical changes shown are attributable to rising greenhouse gas concentrations at 4 
either global or regional scales with the indicated confidence; attribution is less certain at regional scales due to higher 5 
internal variability. Physical changes refer to averages for each of the named regions. For physical changes, + or – 6 
refers to an increase or decrease in amount or frequency in the measured parameter. For impacts on ecosystems, human 7 
sectors and ecosystems services, + or – depicts a positive or negative impact, respectively. A dot represents both 8 
positive and negative impacts are observed. The underlying information is given for ocean regions in SM 5.11. {4.2.2.6, 9 
5.2.2, 5.2.3, 5.3.3, 5.4,5.6}  10 
 11 
 12 
The observed and projected changes in the open ocean and coastal seas have consequences on human 13 
communities and affect all aspects of wellbeing and have social, economic and environmental costs (Section 14 
5.4, high confidence). The range and diversity of impacts is striking, with varying consequences for the 15 
wider community when analysed across the key marine ecosystems services. These consequences clearly 16 
affect the capacity for human society to achieve the Sustainable Development Goals (e.g., Figure 5.22).  The 17 
evidence of climate change in the ocean is a pervasive thread through all types of coupled human-natural 18 
systems and projections amplify these observed impacts with the least impact from lower emission 19 
scenarios.  20 
 21 
Risk-reduction responses and their governance through adaptation at the local scale are the most common 22 
responses to climate change from ocean systems (Section 5.5.2). It is clear that there are many choices for 23 
reducing risk of climate change. Many of the actions have benefits and relatively few dis-benefits, while 24 
others have large dis-benefits and marginal effectiveness (Section 5.5.1, Figure 5.23, Table 5.7 and Table 25 
5.8). Many of the risk reduction approaches are limited in their capacity to reduce the risks of climate 26 
change, or are at best temporary solutions, which is a significant challenge to adapting to climate change 27 
(high confidence). In particular, the effectiveness of the assessed risk reduction measures are minimal under 28 
high greenhouse gas emission scenarios, highlighting the critical importance of mitigation. The assessment 29 
points to the increased effectiveness and importance of a portfolio of different types of mitigation and 30 
adaptation options. Governance is also a critical element in the portfolio of options and occurs at local, 31 
national and international scales. Such responses can be more effective with the support of scientific 32 
information, Local knowledge and Indigenous knowledge, and the consideration of local context and the 33 
inclusion of stakeholders. 34 
 35 
 36 
5.7 Key Uncertainties and Gaps 37 
 38 
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This chapter was designed around three guiding questions (Section 5.1). These guiding questions mean that 1 
the report covers both regional and global scales of the ocean and many aspects of human systems, including 2 
governance and institutions, and adaptation pathways for dependent communities. This assessment is new 3 
linking together a broad and complex set of ocean disciplines and therefore also provides a unique 4 
perspective on key uncertainties and gaps in these systems. These gaps limit the extent of the assessments 5 
that were possible in this report. Notable outstanding uncertainties and gaps from this assessment include the 6 
following: 7 
 8 
Physical and biogeochemical processes: While the Earth system is better monitored and the relevant data 9 
are more accessible than the other areas of assessment there is considerable room to improve these 10 
capabilities. For example, gaps remain in predictive modelling of climate change in coastal areas, deep ocean 11 
temperature and salinity measurements for sea-level and closure of the energy budget, and oxygen and 12 
carbon measurements dense enough to measure de-oxygenation of the world ocean and track the 13 
mechanisms driving the ocean carbon cycle. Our capacity to understand and model net primary productivity 14 
and the rates of carbon burial in coastal sediments are also significant weaknesses. Projections of future 15 
changes in the Earth system depend on the use of Earth System Models (ESM), in which there are 16 
uncertainties arising from physical or ecological processes that are either omitted or incompletely 17 
understood. Most ESMs still rely on relatively simple representations of ocean biogeochemical cycling and 18 
the linkages to ocean ecosystem structure and function (Section 5.2.3). Other examples of under-assessed 19 
biogeochemical process in the ocean that may have implications for the Earth system under climate change 20 
include the fate of methane in the deep ocean (Section 5.2.4). Open ocean primary productivity and its 21 
projections requires critical corroborating measurements and improved understanding of its drivers to project 22 
changes in ocean productivity with higher confidence (Sections 5.2.2 and 5.2.3).  23 
Biological processes and monitoring: There are a number of marine environments (e.g., on the deep sea 24 
floor) and ecosystem components (e.g., viruses and protists) where insufficient scientific understanding 25 
limits the assessments of risks to low confidence or no assessment. Examples of gaps include the narrow 26 
range of climate and non-climatic hazards and their interactions in simulation models, the linkages between 27 
single organisms to communities of organisms, knowledge of climate feedbacks in biological systems 28 
(Section 5.3.4, Section 5.2.4), and the capacity and limits of biological adaptation for many ecosystems 29 
(Section 5.2.2, 5.2.3, 5.2.4, 5.3). Increasing observational capacity can help provide the data to improve 30 
understanding and modelling of these important biophysical responses to climate change. 31 
 32 
Variance in human systems and effectiveness of responses: The wide range of contributing factors 33 
(physical, social and economic) that interact with localised climate projections  make projecting site-specific 34 
costs of impacts and benefits of adaptation difficult. There were few examples in the literature evaluating 35 
implemented adaptation actions, and there was low confidence in their reliability and provenance, thus 36 
largely precluding any assessments of their cost effectiveness. This lack of evidence on costs and benefits 37 
particularly affected assessments in Section 5.4 and 5.5. Adaptation responses to climate change have been 38 
undertaken by communities, industry and governments. However, their effectiveness for mitigating the risks 39 
of climate change (e.g., different types of adaptation response on the coasts, Section 5.5.2) is largely 40 
unassessed here, and consequently precludes a global understanding of the capacity in the world to address 41 
the risks of climate change in coastal seas, open ocean and the deep sea. A partial solution would be 42 
establishing an appropriate ocean and coasts database, including costs-benefits, for these types of studies. 43 
 44 
 45 
 46 
  47 
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[START FAQ5.1 HERE]  1 
 2 
FAQ5.1: How is life in the sea affected by climate change? 3 
 4 

Climate change poses a serious threat to life in our seas, including coral reefs and fisheries, with impacts on 5 
marine ecosystems, economies and societies, especially those most dependent upon natural resources. The 6 
risk posed by climate change can be reduced by limiting global warming to no more than 1.5°C. 7 

 8 
Life in most of the global ocean, from pole to pole and from sea surface to the abyssal depths, is already 9 
experiencing higher temperatures due to human-driven climate change. In many places, that increase may be 10 
barely measurable. In others, particularly in near-surface waters, warming has already had dramatic impacts 11 
on marine animals, plants and microbes. Due to closely-linked changes in seawater chemistry, less oxygen 12 
remains available (in a process called ocean deoxygenation). Seawater contains more dissolved carbon 13 
dioxide, causing ocean acidification. Non-climatic effects of human activities are also ubiquitous, including 14 
over-fishing and pollution. Whilst these stressors and their combined effects are likely to be harmful to 15 
almost all marine organisms, food-webs and ecosystems, some are at greater risk (FAQ5.1, Figure 1). The 16 
consequences for human society can be serious unless sufficient action is taken to constrain future climate 17 
change. 18 
 19 
Warm-water coral reefs host a wide variety of marine life and are very important for tropical fisheries and 20 
other marine and human systems. They are particularly vulnerable, since they can suffer high mortalities 21 
when water temperatures persist above a threshold of between 1 – 2°C above the normal range. Such 22 
conditions occurred in many tropical seas between 2015 and 2017 and resulted in extensive coral bleaching, 23 
when the coral animal hosts ejected the algal partners upon which they depend. After mass coral mortalities 24 
due to bleaching, reef recovery typically takes at least 10–15 years. Other impacts of climate change include 25 
sea level rise, acidification and reef erosion. Whilst some coral species are more resilient than others, and 26 
impacts vary between regions, further reef degradation due to future climate change now seems inevitable, 27 
with serious consequences for other marine and coastal ecosystems, like loss of coastal protection for many 28 
islands and low-lying areas and loss of the high biodiversity these reefs host. Coral habitats can also occur in 29 
deeper waters and cooler seas, and more research is needed to understand impacts in these reefs. Although 30 
these cold water corals are not at risk from bleaching, due to their cooler environment, they may weaken or 31 
dissolve under ocean acidification, and other ocean changes.  32 
 33 
Mobile species, such as fish, may respond to climate change by moving to more favorable regions, with 34 
populations shifting poleward or to deeper water, to find their preferred range of water temperatures or 35 
oxygen levels. As a result, projections of total future fishery yields under different climate change scenarios 36 
only show a moderate decrease of around 4% (~3.4 million tons) per degree Celsius warming. However, 37 
there are dramatic regional variations. With high levels of climate change, fisheries in tropical regions could 38 
lose up to half of their current catch levels by the end of this century. Polar catch levels may increase 39 
slightly, although the extent of such gains is uncertain, because fish populations that are currently depleted 40 
by over-fishing and subject to other stressors may not be capable of migrating to polar regions, as assumed 41 
in models. 42 
 43 
In polar seas, species adapted to life on or under sea-ice are directly threatened by habitat loss due to climate 44 
change. The Arctic and Southern Oceans are home to a rich diversity of life, from tiny plankton to fish, krill 45 
and seafloor invertebrates to whales, seals, polar bears or penguins. Their complex interactions may be 46 
altered if new warmer-water species extend their ranges as sea temperatures rise. The effects of acidification 47 
on shelled organisms, as well as increased human activities (e.g., shipping) in ice-free waters, can amplify 48 
these disruptions.  49 
 50 
Whilst some climate change impacts (like possible increased catch levels in polar regions) may benefit 51 
humans, most will be disruptive for ecosystems, economies and societies, especially those that are highly 52 
dependent upon natural resources. However, the impacts of climate change can be much reduced if the world 53 
as a whole, through inter-governmental interventions, manages to limit global warming to no more than 54 
1.5°C.  55 
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 1 
 2 

 3 
FAQ5.1, Figure 1: Summary schematic of the impacts and resulting consequences of climate change (warming, 4 
acidification, storminess and deoxygenation) and other human impacts, on coral reefs, polar seas and fisheries, 5 
discussed in this FAQ. 6 
 7 
 8 
[END FAQ5.1 HERE]  9 
 10 
  11 
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SM5.1 Ocean Heat Content 
 
The assessed rate of increase in ocean heat content is given in Section 5.2.2 (Table 5.1).  The table below (Table SM5.1) is the supplementary information to 
support the new observational assessment in the two depth layers 0-700 m and 700-2000 m and their very likely ranges. Fluxes in Wm-2 are averaged over the 
Earth’s entire surface area. The four periods cover earlier and more recent trends; the 2005-2017 period has the most complete interior ocean data coverage and 
the greatest consistency between estimates, while longer trends are better for distinguishing between forced changes and internal variability. These 
observationally-estimated rates come from an assessment of the recent research.   
 
Section 5.2.2 (Table 5.1) also has estimates of the spread of the ocean heat content change for the same periods as the observational assessments and the 
background for that part of Table 5.1 is in the second table below (Table SM5.2).  The CMIP5 ESM estimates are based on a combined 28-member ensemble of 
historical, RCP2.6 and RCP8.5 simulations. 
 
Table SM5.1: NaN means missing value, in effect the depth layer is unavailable for this ocean heat content product. The data sets are drawn from  range of websites or other 
sources and are estimates of ocean heat uptake that have been updated from published methods.  The references are from (Palmer et al., 2007; Domingues et al., 2008; Roemmich 
and Gilson, 2009; Hosoda et al., 2010; Levitus et al., 2012; Lyman and Johnson, 2014; Von Schuckmann et al., 2014; Cheng et al., 2017; Ishii et al., 2017; Johnson et al., 2018). 
 
 

Ocean Heat Content Changes                       

W m-2 Earth surface (averaged over 
Earth's surface: 5.1*1014 m2)                      

Paper on Ocean Heat Content Units 

Long term 
trend period  
(1970-2017) 

Ocean 
Heat 
Content 
estimate 
(0-700) 
m layer 

90% 
confidence 
level or 
range 

Ocean 
Heat 
Content 
estimate 
(700-
2000) 
m layer 

90% 
confidence 
level 

Short or near 
term trend 
period (2005-
2017) 

Ocean 
Heat 
Content 
estimate 
(0-700) 
m layer 

90% 
confidence 
level or 
range 

Ocean 
Heat 
Content 
estimate 
(700-
2000) 
m layer 

90% 
confidence 
level 

period 
(1993-
2017) 

Ocean 
Heat 
Content 
estimate 
(0-700) 
m layer 

90% 
confidence 
level or 
range 

Ocean 
Heat 
Content 
estimate 
(700-
2000) 
m layer 

90% 
confidence 
level 

period 
(1969-
1993) 

Ocean 
Heat 
Content 
estimate 
(0-700) 
m layer 

90% 
confidence 
level or 
range 

Ocean 
Heat 
Content 
estimate 
(700-
2000) 
m layer 

90% 
confidence 
level 

(Cheng et al., 2017) (from Cheng 
website, latest version) 

W m-2 
Earth 
surface 

1970-2017  0.28 0.06 0.14 0.03 2005-2017 0.32 0.05 0.2 0.02 1993-2017 0.39 0.04 0.18 0.01 1969-1993 0.15 0.05 0.05 0.03 

(Ishii et al., 2017) (from Ishii 
website, latest version) 

W m-2 
Earth 
surface 

1970-2017 0.26 0.03 0.16 0.04 2005-2017 0.35 0.05 0.28 0.05 1993-2017 0.36 0.04 0.25 0.04 1969-1993 0.19 0.04 0.09 0.02 

(Domingues et al., 2008) (updated 
to presente and udated after 2018) 

W m-2 
Earth 
surface 

1970-2017  0.3 0.05 NaN NaN 2005-2017 0.35 0.05 0.28 0.05 1993-2017 0.41 0.05 NaN NaN 1970-1993 0.29 0.08 NaN NaN 

(Ishii et al., 2017; Johnson et al., 
2018) (BAMS SoC) MRI/JMA 

W m-2 
Earth 
surface  

          

1993-
2017(use 
the values 
above, 
Ishii et al. 
most 
updated 
version) 

0.36 0.06 0.22 0.06      
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(Domingues et al., 2008; Johnson et 
al., 2018) (BAMS SoC) 
CSIRO/UTAS 

W m-2 
Earth 
surface 

          

1993-2017 
(use the 
values 
above, 
Domingues 
et al.) 

0.4 0.07 NaN NaN      

(Lyman and Johnson, 2014; 
Johnson et al., 2018) (BAMS SoC) 
PMEL/JPL/JMAR 

W m-2 
Earth 
surface 

          1993-2017 0.4 0.07 0.35 0.03      

(Levitus et al., 2012; Johnson et al., 
2018) (BAMS SoC) NCEI 

W m-2 
Earth 
surface  

1970-
2016 (Pentadal 
time series 
used, end at 
2016) 

0.23 0.05 0.11 0.04 

2005-
2016 (Pentadal 
time series 
used, end at 
2016) 

0.33 0.05 0.26 0.02 1993-2017 0.38 0.07 0.19 0.07 

1969-
1993 (from 
NCEI 
website, 
Pentadal 
time 
series) 

0.18 0.09 0.05 0.04 

(Johnson et al., 2018) (BAMS SoC) 
Hadley Centre. (Palmer et al., 2007) 

W m-2 
Earth 
surface  

          1993-2017 0.4 0.18 NaN NaN      

(Cheng et al., 2017; Johnson et al., 
2018) (BAMS SoC) ICCES 

W m-2 
Earth 
surface  

          

1993-2017 
(use the 
values 
above, 
Cheng et 
al. most 
updated 
version) 

0.4 0.06 0.19 0.01      

Argo product: (Roemmich and 
Gilson, 2009) 

      2005-2017 0.3 0.06 0.2 0.03           

Argo product: JAMSTEC : (Hosoda 
et al., 2010) 

      2005-2017 0.32 0.03 0.27 0.02           

Argo product:(Schuckmann and 
Traon, 2011) (up-date) 

      2005-2017 0.35 0.1 0.28 0.1 1993-2017          

Copernicus Marine Service (von 
Schuckmann et al., 2018), 
http://marine.copernicus.eu/science-
learning/ocean-monitoring-
indicators/catalogue/            1993-2017 0.6 0.2        

 
 
Table SM5.2:  The CMIP5 ESM estimates are based on a combined 28-member ensemble of historical, RCP2.6 and RCP8.5 simulations to make times series that cover all of the 
periods in Table 5.1. The mean value of the ensemble models with the half range of the 90% certainty spread was used in Table 5.1 because this presentation of the ensemble 
models spread is most similar to the presentation of the mean observed heat content change and their associated confidence interals. The models are CESM, CMCC-CMS, 
CNRM-CM5, CSIRO-Mk3, CanESM2, FGOALS-S2.0, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadGEM2-AO, HadGEM2-CC, HadGEM2-
ES, INM-CM4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC-ESM, MIROC5, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, and NorESM1-M. Up to 3 
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ensemble members or variants were included per model, and all changes are relative to a control run with an identical initial condition but with preindustrial forcing. A table with 
a description and citations for each of these models, along with more detailed discussion of the use of ESM output, can be found in  (Flato et al., 2013)  

Global Ocean Heat Content 
Change (ZJ/yr)     

From combined 
RCP2.6 and 
RCP8.5 ensemble          

  0-700m     
700-
2000m       

Time Period Ens size 5th pct. 95th pct. 50th pct. mean 

5-95% 
half-
range 5th pct. 95th pct. 

50th 
pct. mean 

5-95% 
half-
range   

1969-1993 28 1.71 5.54 3.78 3.6 1.915 -0.38 2.6 1.31 1.32 1.49   

1993-2017 28 5.39 9.57 7.34 7.37 2.09 1.08 3.9 2.89 2.72 1.41   

1970-2017 30 3.74 7.54 5.66 5.64 1.9 0.32 3.34 1.94 1.99 1.51   

2005-2017 27 4.97 10.38 8.04 7.85 2.705 1.12 4.61 3.47 3.33 1.745   

              

              
Global Ocean Heat Uptake 
average over Earth's surface 
(W m-2)     

From combined 
RCP2.6 and 
RCP8.5 ensemble          

  0-700m     
700-
2000m       

Time Period  5th pct. 95th pct. 50th pct. mean 

5-95% 
half-
range 5th pct. 95th pct. 

50th 
pct. mean 

5-95% 
half-
range   

1969-1993  0.106 0.344 0.235 0.224 0.119 -0.024 0.162 0.081 0.082 0.093   

1993-2017  0.335 0.595 0.456 0.458 0.130 0.067 0.242 0.180 0.169 0.088   

1970-2017  0.232 0.468 0.352 0.350 0.118 0.020 0.208 0.121 0.124 0.094   

2005-2017  0.309 0.645 0.500 0.488 0.168 0.070 0.286 0.216 0.207 0.108   
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Assessed Real-world Global 
Ocean Heat Uptake from 
Observational Estimates 
(ZJ/yr)               

  0-700m     
700-
2000m     

8-Values 
RMS: 1.194 

Time Period  Mean 
5-95% half-
range  

Squared 
CMIP-OBS 
diff.  Mean 

5-95% 
half-
range  

Squared 
CMIP-OBS 
diff.    

1969-1993  3.22 1.61  0.1444  0.97 0.64  0.1225    

1993-2017  6.28 0.48  1.1881  3.86 2.09  1.2996    

1970-2017  4.35 0.8  1.6641  2.25 0.64  0.0676    

2005-2017  5.31 0.48  6.4516  4.02 0.97  0.4761    

     RMS: 1.5369    RMS: 0.701   

Earths surface area 5.10E+14 
Second 
per year 31557600 J to ZJ 1E+21  

6.21E-
02       
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Table SM5.3: Compiled information on the rate of pH change from various time series, ship reoccupations and Pacific 
Ocean moorings. Modified after Table in Williams et al. (2015) with additional datasets. 

Region pH change uncertainty Study Study period Study type 
 (pH units per decade)    

Irminger Sea -0.026 0.006 
(Bates et al., 
2014) 1983–2012 Time series 

N. Atlantic 
(BATS) -0.017 0.001 

(Bates et al., 
2014) 1983–2012 Time series 

N. Atlantic 
(BATS) -0.018 0.002 

(Takahashi et 
al., 2014) 1983–2010 Time series 

Iceland Sea -0.023 0.003 
(Olafsson et 
al., 2009) 1985–2008 Time series 

N. Pacific 
(ALOHA) -0.018 0.001 

(Dore et al., 
2009) 1988–2007 Time series 

N. Pacific (HOT) -0.016 0.001 
(Bates et al., 
2014) 1988–2012 Time series 

N. Pacific (HOT) -0.018 0.001 
(Takahashi et 
al., 2014) 1988–2009 Time series 

N.W. Pacific -0.02 na 
(Ishii et al., 
2017) 1994–2008 Time series 

Mediterranean 
(Dyfamed) -0.03 0.01 

(Yao et al., 
2016) 1995-2011 Time series 

Mediterranean 
(Gibraltar) −0.044 

0.0006 
 

(Flecha et al., 
2015) 2012-2015 Time-series 

N. Atlantic 
(ESTOC) -0.018 0.002 

(Bates et al., 
2014) 1995–2012 Time series 

N. Atlantic 
(ESTOC) -0.017 0.001 

(González-
Dávila et al., 
2010) 1995–2004 Time series 

Caribbean 
(CARIACO) -0.025 0.004 

(Bates et al., 
2014) 1995–2012 Time series 

N. Atlantic 
(ESTOC) -0.02 0.004 

(Takahashi et 
al., 2014) 1996–2010 Time series 

S.W. Pacific 
(Munida) -0.013 0.003 

(Bates et al., 
2014) 1998–2012 Time series 

      

Atlantic Ocean -0.013 0.009 
(Kitidis et al., 
2017) 1995-2013 

Merged ship 
occupations 

E. Equatorial 
Indian -0.016 0.001 

(Xue et al., 
2014) 1962–2012 

Merged ship 
occupations 

Polar Zone 
Southern Ocean -0.02 0.003 

(Midorikawa et 
al., 2012) 1963–2003 

Merged ship 
occupations 

N.W. Pacific -0.015 0.005 
(Midorikawa et 
al., 2010) 1983–2007 

Merged ship 
occupations 

N. Pacific -0.017 NA 
(Byrne et al., 
2010) 1991–2006 

Merged ship 
occupations 

Pacific Southern 
Ocean (S4P) -0.022 0.004 

(Williams et 
al., 2015) 1992–2011 

Merged ship 
occupations 

S. Pacific -0.016 NA 
(Waters et al., 
2011) 1994–2008 

Merged ship 
occupations 

Pacific Southern 
Ocean (P16S) -0.024 0.009 

(Williams et 
al., 2015) 1995–2011 

Merged ship 
occupations 

Southern Ocean 
(SR03) 

−0.031 
 

0.004 
 

(Pardo et al., 
2017) 1995-2011 

Merged ship 
occupations 

Drake (PZ) -0.015 0.008 
(Takahashi et 
al., 2014) 2002–2012 

Merged ship 
occupations 

Drake (SAZ) -0.023 0.007 
(Takahashi et 
al., 2014) 2002–2012 

Merged ship 
occupations 

      
WHOTS (23N, 
158W) 

-0.02 
0.003 

(Sutton et al., 
2017) 2004-2013 Mooring 

Stratus (20S, 
86W) 

-0.02 
0.003 

(Sutton et al., 
2017) 2006-2015 Mooring 
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KEO (32N, 
144E) 

-0.01 
0.005 

(Sutton et al., 
2017) 2007-2014 Mooring 

Papa (50N, 
145W) 

-0.01 
0.005 

(Sutton et al., 
2017) 2007-2014 Mooring 

 
 
Table SM5.4: Models and variables used. Black crosses indicate data over the period 1861 to 2100 following the 
RCP8.5 scenario, black circles indicate data following the RCP2.6 scenario, and numbers indicate the length of the 
control simulation. The models are also used in Frolicher et al. (2016). 

Model Surface pH SST O2 (100-600) 

 

NPP (0-100m) NO3 (0-100m) References 

 

CanESM2 xo996 xo996    (Arora et al., 2013) 

CNRM-CM5  xo850    (Voldoire et al., 2013) 

IPSL-CM5A-LR xo1000 xo1000 xo1000 xo1000 xo1000 (Dufresne et al., 2013) 

IPSL-CM5A-MR xo300 xo300 xo300 xo300 xo300 (Dufresne et al., 2013) 

IPSL-CM5B-LR x300  x300 x300 x300 (Dufresne et al., 2013) 

MIROC-ESM     xo630 (Watanabe et al., 

2011) 

MPI-ESM-LR xo1000  xo1000 xo1000 xo1000 (Giorgetta et al., 2013) 

MPI-ESM-MR xo560 xo1000 xo650 xo1000 xo1000 (Giorgetta et al., 2013) 

CCSM4  xo1051    (Gent et al., 2011) 

NorESM1-ME  xo252    (Bentsen et al., 2013) 

GFDL-ESM2G xo500 xo500 xo500 xo500  (Dunne et al., 2012) 

GFDL-ESM2M xo500 xo500  xo500  (Dunne et al., 2012) 

GISS-E2-H  xo281    (Shindell et al., 2013) 

GISS-E2-R  xo531    (Shindell et al., 2013) 

CESM1-CAM5  xo319    (Meehl et al., 2011) 

BCC_CSM1-1  xo500    (Wu et al., 2014) 

BCC-CSM1-1-m  x400    (Wu et al., 2014) 

Total 8/7/8 14/13/14 6/5/6 7/6/7 6/5/6  

 
 
Table SM5.5: Table of evidence of observed effects and projected impacts of climate hazards on cold water corals (in 
support of Box 5.2 Cold-water Corals and Sponges)  

Species Locations Evidence type Key findings Reference 
Lophelia pertusa* 
Note recently 
renamed to 
Demophyllum 
pertussum  

Northeast Atlantic Experiment Acidification 
exposure over 12 
months will cause 
the biomineralized 
aragonite skeleton 
of L. pertusa to 
exhibit less 
organization, a 
longer and thinner 
growth form, and 
reduced structural 
integrity of the 
exposed skeletal 

(Hennige et 
al., 2015) 
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framework which 
forms the base of 
cold-water coral 
reefs and a 
significant 
proportion of the 
habitat 

Desmophyllum 
dianthus 

Fjords of Northern 
Patagonia 

Observations Thrives under 
natural low pH 
conditions (down 
to 7.4) 

(Fillinger and 
Richter, 2013) 

Desmophyllum 
dianthus 

Mediterranean Sea Experiment Elevated 
pCO2 (750 ppm 
CO2) when 
combined with 
elevated 
temperatures (from 
13°C to 15°C) 
reduces 
calcification and 
respiration rates 
and shifts 
metabolic 
substrates from a 
mixture of protein 
and 
carbohydrate/lipids 
to a less efficient 
protein-dominated 
catabolism  

(Gori et al., 
2016) 

Desmophyllum spp., 
Lophelia pertusa, 
Madrepora oculata, 
Acanella arbuscula, 
and Paragorgia 
arborea 

Northwest Atlantic Habitat suitability 
model 
 

Habitat suitability 
analyses suggest 
that food supply 
(POC flux) is a 
critical variable  

(Morato et al., 
2006; Levin, 
2018) 

Desmophyllum spp., 
Lophelia pertusa, 
Madrepora oculata 

Northwest Atlantic  Habitat suitability 
model 
 

Dissolved oxygen 
is critical in 
defining habitat 
suitability 

(Morato et al., 
2006; Levin, 
2018) 

Lophelia pertusa, 
Madrepora oculata 

Mediterranean Sea Experiment Net calcification 
and respiration  of 
both species was 
unaffected by the 
levels 
of pCO2 of 350 to 
1000 μatm during 
both short and 
long-term (9 mo) 
exposure 
 
 

(Maier et al., 
2013) 

Madrepora oculata Mediterranean Sea Experiment Energy demand to 
maintain 
calcification at 800 
μatm is 2 times 
that required for 
calcification at 
ambient pCO2, but 
only 1% of that of 
respiratory 
metabolism.  
 

(Maier et al., 
2016) 
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Lophelia pertusa Northeast Atlantic Experiment  Capable of 
calcifying under 
elevated CO2 
(800μatm) 
and temperature 
(12oC), its 
condition (fitness) 
is more strongly 
influenced by food 
availability rather 
than changes in 
seawater chemistry 
 

(Büscher et al., 
2017) 

Lophelia pertusa Gulf of Mexico Experiment Some genotypes 
were able to 
calcify at pH 7.6 
and aragonite 
undersaturation for 
2 mo but all 
exhibited reduced 
calcification after 
6 mo exposure 

(Kurman et al., 
2017) 

Desmophyllum 
dianthus 

Global ocean Paleo record Populations waxed 
and waned over 
the last 40,000 
years as the global 
ocean was 
influenced by 
glacial advances 
and retreats and 
changing 
concentrations of 
CO3-2, O2, and 
surface 
productivity 

(Thiagarajan et 
al., 2013) 

Desmophyllum 
dianthus 

Seamounts in the North 
Atlantic and Southwest 
Pacific Oceans 

Paleo record Populations on 
altered their depth 
distribution in 
response 
to changes in the 
aragonite 
saturation depth, 

(Thiagarajan et 
al., 2013) 

Lophelia pertusa 
and Madrepora 
oculata 
 

Mediterranean Sea  Experiment No effect of pH 
7.81 on skeletal 
growth 
rate, microdensity 
and porosity after 
6 mo exposure  
 

(Movilla et al., 
2014) 

Probably 
Solenosmilia  and 
Enalopsammia 
 

North Pacific  Observation Live scleractinian 
reefs persist on six 
seamounts at 
depths of 535–732 
m and aragonite 
saturation state 
(Ωarag) values of 
0.71–1.33, 
suggesting little 
influence of the 
aragonite 
saturation horizon 
 

(Baco et al., 
2017) 
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Antipathes 
fiordensis (black 
coral) 

New Zealand fjords Observation Shallow 
occurrence in a 
low salinity fjord. 

(Jiang et al., 
2015) 

Lophelia pertusa Northwest Atlantic 
Gulf of Mexico 

Experiment 
In situ observation 

Upper lethal limit 
is 15oC 

(Brooke et al., 
2013) 

Lophelia pertusa, 
Madrepora oculata 

Mediterranean Sea Experiment Species-specific 
thermal 
adaptations may 
regulate tolerance 
to future 
conditions.  L. 
pertusa shows 
thermal 
acclimation in 
respiration and 
calcification but 
M. oclulata does 
not 

(Naumann et 
al., 2014) 

Lophelia pertusa North Atlantic Experiment, 
Model 

The long 
planktonic 
duration (8-9 wk) 
and upward 
swimming of 
larvae make 
connectivity of 
cold water coral 
populations likely 
to be sensitive to 
future changes in 
the state of North 
Atlantic 
Oscillation (NAO) 
in the NE Atlantic 

(Larsson et al., 
2014; Fox et 
al., 2016) 

Geodia barrette North Atlantic Experiment Sponge and its 
microbiome 
tolerate a 5oC 
increase in 
temperature, 
accompanied by 
rise in respiration, 
nitrogen efflux and 
cellular stress 

(Strand et al., 
2017) 

Radiella sp., 
Polymastia sp 

Northwest Atlantic  Experiment Ocean 
acidification (pH 
7.5) reduces the 
feeding of 
demosponge taxa 

(Robertson et 
al., 2017) 

Solenosmilia 
variabilis 

Southern Australia, 
Seamounts 

Observation, Habitat 
Suitability Modeling 

Limited to Ωarag) 
of > 2.5 and 
temperature > 
7oC. 
By the end of the 
century low 
carbonate 
saturation levels 
and upper temp. 
limit eliminates all  
areas with a 
habitat suitability 
>40%; at RCP8.5, 
 
 

(Thresher et 
al., 2015) 

 



FINAL DRAFT Chapter 5 Supplementary Material IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute SM5-11 Total pages: 110 

 
SM5.2 Risk Assessment of Open Ocean Ecosystems in Support of Section 5.2.5 
 
The deep seafloor and pelagic embers are generated based on earth system model projection of climate 
variables to the seafloor under RCP 2.6 and RCP 8.5 scenarios, and then translated to RCP- associated 
change in SST. The assessed confidence in assigning the levels of risk at present day and future scenarios are 
low, medium, high, and very high levels of confidence. A detailed account of the procedures involved in the 
ember for each type of ecosystem, such as their exposure to climate hazards, sensitivity of key biotic and 
abiotic components, natural adaptive capacity, observed impacts and projected risks, and regional hotspots of 
vulnerability is provided in Table SM5.6 (below) and Table 5.5. 
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Table SM5.6: Shows the main factors in the assessment of the deep seafloor and pelagic embers. 

Deep Sea Floor 
Ecosystem  

Water 
Depth (m) 

Ecosystem 
Component 

Main 
Climate 
Hazard 

Sensitivity Adaptive 
Capacity 

Vulnerability 
(Risk) 

Other 
Hazards 

Impacts and 
Risks Hotspots 

Cold-water corals 
200-1600 m 
(forming 
reefs) 

BI, F, CWC, 
sponges 

warming, 
acidification 
(especially 
aragonite 
undersatura
tion), 
deoxygenati
on, 
particulate 
organic 
carbon 
(POC) flux 

SST> CWC- 
moderate (obs., exp, 
HSM, proj) 

Moderate:  
Corals can 
survive for 
1000s years and 
appear tolerant 
of elevated 
CO2, but not 
significant 
warming or loss 
of oxygen. 
Genetic 
variability 
underpins 
adaptation to 
current 
conditions. 

Moderate/High 
under rcp85 : 
Tolerance  to 
declining pH and 
omega.  Drastic 
reduction in 
fitness under 
combined T, DO 
and pH/omega 
stress.  Aragonite 
undersaturation 
weakens CWC 
skeletons and 
increases 
vulnerability to 
bioerosion by 
sponges, 
annelids, fungi.  

Physical 
disturbance 
from fishing 
(bottom 
trawling and 
longlining ), 
oil spills, 
potential for 
minerals 
mining 
disturbance 

Loss of CWC 
habitat through 
dissolution of 
non-living 
components of 
reefs under 
aragonite 
undersaturation, 
loss of fish 
habitat. Loss of 
resiliance 
through 
changes in food 
supply (as POC 
flux decline) or 
mediated by 
migrating 
plankton. 

Greatest 
vulnerabili
ty to 
aragonite 
undersatur
ation and 
loss of 
habitat 
suitability  
in the 
north 
Atlantic, 
and on 
south 
Australia 
seamounts 

pH/CO2/omega(ara
g)>  CWC -  medium 
(obs, exp, proj) 
POC flux> CWC  
(proj) 

DO> CWC, BI - 
high (obs, exp, proj) 

  

  

Bathyal features: 
Seamounts, canyons, 
slopes 

200-3000 m BI, F, Protozoa,  

deoxygenati
on, 
acidification, 
warming, 
POC flux 

DO> BI, F, Protozoa 
- moderate/high  
(obs.paleo, exp, proj) 

Moderate:   
Mostly 
unknown. 
Adults  are 
exposed to wide 
range of 
conditions 
naturally. Fish 
and BI can 
migrate upslope 
or downslope to 
reach suitable 
conditions 

Moderate  under 
rcp8.5, low under 

rcp2.6.  
Tolerance to 
declining DO 
and omega on 

upwelling 
margins but not 

everywhere.  
Lack of studies 

on sublethal 
responses 

Coincident 
human 

activities on 
seamounts, 
canyons and 
slopes  such 

as cable 
laying, 
bottom 

fishing, oil 
and gas 

extraction/sp
ills, waste 

disposal/deb
ris 

accumulatio
n can create 
cumulative 

stress.  
Altered 

precipitation 
and winds 
on land can 

Loss of 
biodiversity, 
changes in 

trophic 
pathways and 

carbon cycling, 
reduction in 
biomass and 

habitat 
compression of 

Fish and BI 
under 

decliningDO. 
Effects of 

acidification are 
poorly known 
for deep water 

species, but 
some hypoxia 

and 
acidification-
tolerant taxa 
will expand 

Largest 
declines in 

pH and 
POC flux 

in the 
Northeast 
Atlantic 
may lead 

to 
alteration 
of canyon 

and 
seamount 

ecosystems
;  

expanding 
OMZs  

will create 
biodiversit
y loss and 

habitat 
compressio

n at 

pH/CO2, omega 
(arag). BI, F - 
low/moderate (obs., 
paleo, exp. Proj) 

SST> BI, F - low 
(obs., proj) 
POC flux> BI low 
(proj)  
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alter bentho-
pelagic 

coupling.  

distributions.  
Protozoan and 

metazoan 
meiofauna 

show different 
responses in 

different 
regions, but 

more tolerant 
than macro- or 

megafauna.  

suboxic 
thresholds 
on EBU 
slopes 

(Northeast 
Pacific) . 

Epipelagic (low-latitude) 0-200  P, Z, F, MM, 
NPP,EF 

warming, 
stratificacio
n, 
acidification, 
deoxygenati
on, nutrient 
concentratio
n 

SST> P, Z, F 
(high),MM 
(moderate) high 
confidence (obs.,  
proj.) 

Moderate: 
Plankton, F and 
MM can 
migrate 
poleward, 
following 
thermal and 
productivity 
gradients to 
reach suitable 
conditions. 
Poleward shifts 
of Z may be 
limited by the 
seasonality of 
light cycle at 
high latitudes 
that drives the P 
cycle. 
Geographic 
barriers such as 
land 
boundaries, or 
barriers related 
climate driven 
processes (e.g. 
low oxygen 
waters), may 
limit the range 
shift and 
migration 
patterns of F 
and MM. P may 
genetically 
adapt to 

High under 
rcp8.5, moderate 
under 2.6.  
Uncertain effects 
and tolerance of  
planktonic 
organisms 
(calcified vs non-
calcified) and 
fishes on 
declining oxygen 
and pH, with 
temperature  
exacerbating 
acidification and 
deoxygenation. 
Major risk on 
declining 
productivy and 
fish biomass in 
low latitudes 
(tropical waters), 
as well as lower 
export flux in 
subtropical and 
tropical waters.  

 Enhanced 
decline of 
fish biomass  
due to 
overfishing 
with 
extended 
impact on 
large-bodied 
animals 

Poleward shifts 
of plankton and 
fish organisms, 

following 
expanding 

thermal 
gradients,  with 

changes in 
community 

structure 
towards small-
size organisms 
in low latitutes. 
Earlier timing 

of spring 
phenology in Z 

and F, with 
cascading 

effects on the 
ecosystem. 
Enhanced 

stratification 
due to surface 
warming leads 

to reduced 
nutrient 

availability and 
lower NPP, 

with moderate 
to high  Z and F 

biomass 
declines, and 
lower carbon 

export 
production to 

Greatest 
impact on 
decline of 
NPP in 
equatorial 
regions. 
Projections 
from 
multiple 
fish 
species 
distributio
n models 
show 
hotspots of 
decrease in 
species 
richness in 
the Indo-
Pacific 
region, and 
semi-
enclosed 
seas such 
as the Red 
Sea and 
Arabian 
Gulf 

 pH/CO2 -  P, Z, F, 
(low/moderate) 
medium confidence 
(obs, exp, proj) 
EF> (low) low 
confidence  (proj) 
DO>  Z, F, 
(moderate) medium 
confidence (obs, exp, 
proj) 
NPP> (low) low 
confidence  (proj) 

Nut> P, Z, F (high), 
MM (moderate) 
medium confidence 
(obs.,  proj.) 
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changing 
climate 
conditions.  
Marine 
ectotherms have 
some capacity 
for 
physiological 
adjustment and 
evolutionary 
adaptation that 
lowers their 
sensitivity to 
warming and 
decrease in 
oxygen, but 
adaptation not 
always suffices 
to mitigate 
projected 
impacts. 

the deep 
ocean.The 
combined 
effects of 

warming, ocean 
deoxygenation 

and 
acidification in 
the 21st century 
are projected to 
exacerbate the 
impacts on the 

growth, 
reproduction 

and mortality of 
fishes, and 

consequently 
increases their 

risk of 
population 

decline  

Eastern boundary 
upwelling system 0-200  P, Z, F, NPP  

warming, 
upwelling 
intensificatio
n, 
acidification 
(especially 
aragonite 
undersatura
tion), 
deoxygenati
on,  nutrient 
concentratio
n 

SST> P, Z,- 
(low/moderate) 
medium confidence 
(obs.,  proj.) 

Moderate:    
Plankton and F 
are exposed to 
large natural 
variability, so 
would be able 

to adapt to  
changing 
climate 

conditions.  
Calcified 
plankton 

species (e.g. 
pteropods, 

forams) unable 
to adapt to 

undersaturated 
carbonate 

(calcite and 
aragonite ) 

thresholds, will 
be under serius 

risk of 
dissapearence.  

Moderate  under 
rcp8.5, low under 

rcp2.6.  High 
resilience of 

EBUS to 
changing climate 

conditions. 
Uneven effects 

on the four 
EBUS. Major 

risk on 
deoxygenation 
(expansion of 

OMZ) and  
acidification 
(carbonate 

undersaturations) 
in the two Pacific 

EBUS 

Non climatic 
stressors like 
overfishing 
and coastal 
pollution 
alter 
ecosytems' 
resilience. 
Changes in  
wind 
intensificatio
n and coastal 
precipitation 
alter 
upwelling 
intensity and 
local 
oceanograph
ic conditions 

 EBUS are 
rather close to a 

number of 
important 

thresholds in 
terms of 

increasing 
deoxygenation 

and ocean 
acidification, 
enhanced by 

ocean warming. 
Regional 

fisheries highly 
sensitive to 

local upwelling 
projected to 

increase due to 
wind 

intesification in 
three of the four 
EBUS (except 

the Canary 
Current EBUS). 

The direction 

Model 
projections 
for the end 

of the 
century 
suggest 
strong 

effects of 
deoxygena

tion and 
reduced 

pH in the 
Humboldt 
Current 
and the 

California 
Current 
EBUS 
under 

RCP8.5, 
the 

Humboldt 
Current  

transitionin
g toward 

pH/CO2/omega 
(arag)  BI none/low 
(obs)   

POC flux> BI - low 
( obs) 
DO>  BI - moderate 
(obs, proj) 
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and magnitude 
of observed 

changes vary 
between and 
within EBUS 

with 
mechanisms 
explaining 

these 
variabilities not 

fully 
understood yet. 
Given the high 
sensitivity of 
the coupled 

human-natural 
EBUS to 

oceanographic 
changes, the 

future 
sustainable 

delivery of key 
ecosystem 
services  

(fisheries, 
aquaculture, 

coastal tourism 
and climate 

regulations)  is 
at risk under 

climate change 

widespread 
undersatur

ated 
conditions 
with regard 

to 
aragonite 
within a 

few 
decades. 
Observed  

and 
projected 

warming in 
the Canary 

Current 
EBUS, 
with a 
strong 

dependenc
e on EBUS 

services 
and low 
adaptive 
capacity  

Cold-water corals 
200-1600 m 
(forming 
reefs) 

BI, F, CWC, 
sponges 

warming, 
acidification 
(especially 
aragonite 
undersatura
tion), 
deoxygenati
on, 
particulate 
organic 
carbon 
(POC) flux 

SST> CWC- 
moderate (obs., exp, 
HSM, proj) 

Moderate:  
Corals can 
survive for 
1000s years and 
appear tolerant 
of elevated 
CO2, but not 
significant 
warming or loss 
of oxygen. 
Genetic 
variability 
underpins 
adaptation to 

Moderate/High 
under rcp85 : 
Tolerance  to 
declining pH and 
omega.  Drastic 
reduction in 
fitness under 
combined T, DO 
and pH/omega 
stress.  Aragonite 
undersaturation 
weakens CWC 
skeletons and 
increases 
vulnerability to 

Physical 
disturbance 
from fishing 
(bottom 
trawling and 
longlining ), 
oil spills, 
potential for 
minerals 
mining 
disturbance 

Loss of CWC 
habitat through 
dissolution of 
non-living 
components of 
reefs under 
aragonite 
undersaturation, 
loss of fish 
habitat. Loss of 
resiliance 
through 
changes in food 
supply (as POC 
flux decline) or 

Greatest 
vulnerabili
ty to 
aragonite 
undersatur
ation and 
loss of 
habitat 
suitability  
in the 
north 
Atlantic, 
and on 
south 

pH/CO2/omega(arag
)>  CWC -  medium 
(obs, exp, proj) 
POC flux> CWC  
(proj) 
DO> CWC, BI - 
high (obs, exp, proj) 
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current 
conditions. 

bioerosion by 
sponges, 
annelids, fungi.  

mediated by 
migrating 
plankton. 

Australia 
seamounts 

Bathyal features: 
Seamounts, canyons, 
slopes 

200-3000 m BI, F, Protozoa,  

deoxygenati
on, 
acidification, 
warming, 
POC flux 

DO> BI, F, Protozoa 
- moderate/high  
(obs.paleo, exp, proj) 

Moderate:   
Mostly 
unknown. 
Adults  are 
exposed to wide 
range of 
conditions 
naturally. Fish 
and BI can 
migrate upslope 
or downslope to 
reach suitable 
conditions 

Moderate  under 
rcp8.5, low under 

rcp2.6.  
Tolerance to 
declining DO 
and omega on 

upwelling 
margins but not 

everywhere.  
Lack of studies 

on sublethal 
responses 

Coincident 
human 

activities on 
seamounts, 
canyons and 
slopes  such 

as cable 
laying, 
bottom 

fishing, oil 
and gas 

extraction/sp
ills, waste 

disposal/deb
ris 

accumulatio
n can create 
cumulative 

stress.  
Altered 

precipitation 
and winds 
on land can 
alter bentho-

pelagic 
coupling.  

Loss of 
biodiversity, 
changes in 

trophic 
pathways and 

carbon cycling, 
reduction in 
biomass and 

habitat 
compression of 

Fish and BI 
under 

decliningDO. 
Effects of 

acidification are 
poorly known 
for deep water 

species, but 
some hypoxia 

and 
acidification-
tolerant taxa 
will expand 

distributions.  
Protozoan and 

metazoan 
meiofauna 

show different 
responses in 

different 
regions, but 

more tolerant 
than macro- or 

megafauna.  

Largest 
declines in 

pH and 
POC flux 

in the 
Northeast 
Atlantic 
may lead 

to 
alteration 
of canyon 

and 
seamount 

ecosystems
;  

expanding 
OMZs  

will create 
biodiversit
y loss and 

habitat 
compressio

n at 
suboxic 

thresholds 
on EBU 
slopes 

(Northeast 
Pacific) . 
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Table SM5.7: A summary of available evidence to document the potential effects of climate change in Western and 
Eastern American sandy beach macrobenthic communities. Based on the theoretical framework detailed in Parmesan et 
al. (2013). Adapted from McLachlan and Defeo (2017). The numbers indicate the source references. 

 Lines of evidence Attribution process  References 
 Long-term 

observations and 
resurveys 

Mass mortality events of Mesodesma clams in South 
America consistently follow warm sea surface 
temperature events (e.g., El Niño)1 in the Pacific (M. 
donacium in Perú and Northern Chile) and occurred 
sequentially in a north-south direction in the Atlantic 
(M. mactroides in Brazil, Uruguay and Argentina), 
following oceanographic shifts, increasing SST and 
isotherms moving poleward2.  
 
30 years of systematic sampling in Uruguay2 and 
resurveys in Brazil and Argentina3 across the 
distribution range of the clam M. mactroides document 
declines and local extirpations related to increasing 
SST and associated factors. 

 1. (Riascos et al., 
2009) 
2. (Ortega et al., 
2013; Ortega et 
al., 2016) 
3. (Herrmann et 
al., 2009; Adams 
et al., 2011; 
Herrmann et al., 
2011) 
 

 Fingerprints 
 

Population extirpations along the northern (trailing) 
range edge and lowest levels of impact along southern 
(leading) range boundaries1, 2, 4, uniquely consistent 
with regional warming in the Pacific and Atlantic 
oceans and not with local human-caused stresses. 
Drastic long-term demographic changes in the 
population of M. mactroides in sandy beaches from 
Uruguay are associated with changes in primary 
production driven by a climatic shift from a cold to a 
warm phase and increasing offshore winds, where 
reduced harvesting allow the population recovery.11 
 
Mass mortalities of the yellow clam Amarilladesma 
mactroides occurred during warmer seasons throughout 
its entire distribution range 5, concurrently with 
accelerating SST warming. 

 4. (Riascos et al., 
2011) 
5. (Fiori et al., 
2004; Vázquez et 
al., 2016) 

 Meta-analyses: 
global coherence of 
responses across 
taxa and regions 

Mass mortalities observed across Pacific and Atlantic 
sandy beaches of South America, particularly during El 
Niño events and recorded oceanographic shifts1, 2.  
 
Drastic changes in the composition of the suspension-
feeder assemblages, with coherent responses across 
taxa and regions. Mesodesma clams were virtually 
extirpated at their northern range edges, being partially 
replaced by Donax clams and Emerita mole crabs 
(tropical affinities) in both Pacific6, 7 and Atlantic8, 9, 10 
sandy beaches. Impoverished macrofaunal 
communities and Mesodesma species never reached 
biomasses at pre-mortality levels6, 9, 15 

 
Species introduction from adjacent areas in benthic 
macrofauna communities of surf zones driven by storm 
surges.12 

 
Changes in spatial zonation of benthic macrofauna 
along the profile of mesotidal sandy beaches due to 
sediment movement in response to winds and storm 
surges.13  
 
Parasites were found in clams, and also necrosis in gills 
and stomachs, during mortality events in the Atlantic 
(Argentina4 and Uruguay2) and in the Pacific during 
strong El Niño events6.  
Mass mortality events of the yellow clam 
Amarilladesma mactroides (considered a vulnerable 

 6. (Riascos et al., 
2011) 
7. (Arntz et al., 
1987; Arntz et 
al., 2006) 
8. (Celentano and 
Defeo, 2016) 
9. (Dadon, 2005) 
10. (Herrmann et 
al., 2009) 
11. (Lercari et al., 
2018) 
 
 
 
 
 
12.(Carcedo et 
al., 2015; 
Carcedo et al., 
2017) 
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species since the mid-1990s) likely in response to high 
population densities and pathogenic infections by 
Vibrio sp.5. 
 

Body downsizing towards warmer latitudes was 
consistently observed for the guilds of intertidal 
suspension feeders and benthic crustaceans including 
isopods, crab and amphipod species in sandy beaches 
from the SW Atlantic2, 8 and the NE and SE Pacific 
(USA and Chile) 1, 4, 14. 

 Experiments Controlled in-vitro experiments showed that D. 
obesulus (tropical affinities) was tolerant to El Niño 
temperatures, whereas M. donacium (temperate) was 
sensitive to both El Niño and La Niña extreme 
conditions, with sublethal and lethal effects15 

 14. (Jaramillo et 
al., 2017) 
15. (Carstensen et 
al., 2010) 

 
 
SM5.3 Risk Assessment of Coastal Ecosystems  
 
The level of vulnerability to climate hazards of each type of coastal ecosystem assessed in Sections 5.3.1 to 
5.3.6 depends on their sensitivity and adaptive capacity. The ecosystem sensitivity is assessed by 
discriminating the distinct responses to climate hazards of the main biotic and abiotic components that define 
each ecosystem, such as vegetation, benthic fauna, plankton, biogeochemical gradients (e.g. salinity, 
nutrients) and geomorphology. The level of exposure of each type of coastal ecosystem to climate hazards 
depends on the ecosystem (1) geographical distribution and (2) topographic characteristics i.e., intertidal or 
submerged, and (3) the level of local human impacts, e.g. eutrophication, aquaculture and coastal 
infrastructure. For example, estuaries (Section 5.3.1) and sandy beaches (Section 5.3.3) are distributed all 
across the global coastlines that are experiencing diverse range of changes in climate hazards, while 
mangroves (Section 5.3.2) are restricted to temperate and tropical/subtropical regions (Figure 5.14) where 
their exposure to climate hazards is generally similar in nature. Likewise, kelp forests (Section 5.3.6) and 
most seagrass meadows (Section 5.3.2) are submerged ecosystems, while all the other ecosystems defined 
here are intertidal, except rocky reefs (Section 5.3.5) and coral reefs (Section 5.3.4) that can be both, 
intertidal and submerged. Intertidal ecosystems are more threatened by flooding and erosive processes due to 
SLR and storm surges than submerged ecosystems; which are more affected by ocean warming, acidification 
and marine heat waves. Furthermore, the pervasive anthropogenic habitat degradation exacerbates climate 
vulnerabilities of coastal systems. Common examples of these compounding effects are the expansion of 
hypoxic zones enhanced by eutrophication in estuaries, and the reduction of the adaptive capacity of 
wetlands to flooding and salinization by coastal squeezing, which constrains the landward migration of 
vegetated forms. 
 
The common ecosystem responses to global warming (Sections 5.3.1 to 5.3.6) are habitat contraction, 
migration and loss of functionality and biodiversity. At the species level, the main biological responses are 
similar to those in pelagic ecosystems (Section 5.2.3), including shifts in species distribution towards the 
poles or specific physicochemical gradients (e.g. salinity and type of substrate) that result in species range 
expansions and local extinctions. Unique biological responses in coastal areas include the potential for inland 
migration of benthic fauna and littoral vegetation in response to increased sea water intrusion. Consequently, 
the restructuring of coastal ecosystems will negatively affect their functioning and services such as carbon 
storage, sediment stability, storm protection and provisioning of foraging and nursery sites (Section 5.4.1). 
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Table SM5.8: Tidal exposure: IT: intertidal; S: submerged. Ecosystem component: R-S: river-sea transition. GM: geomorphology. BGQ: biogeochemistry. BI: Benthic 
invertebrates. P: Plankton. V: Vegetation. F: Fishes. MM: Marine mammals. SB: Sea birds. SE: Soil elevation. T: turtles. MA: Macroalgae. 

Coastal 
Ecosystem 

Tidal 
exposure 

Ecosystem 
component 

Main climate 
hazard Sensitivity Adaptive 

capacity 
Vulnerability 

(Risk) Other hazards Impacts and risks Hotspots 

Estuaries  

R-S, BGQ, 
BI, P, V, F, 

MM 

SLR, 
warming, 

deoxygenation
. 

SST > BGQ, BI, P, 
V, F, MM- 

medium (obs+proj) 
pH/CO2 > BI, F- 

low (proj) 
SLR > BGQ, GM, 
V- high (obs+proj) 
DO > BGQ, P, F - 
medium (obs+proj) 
Precipitation/rive

r runoff 
(droughts/floods) 

> BGQ, BI, V 
(obs+proj). 

Moderate/High 
(High resilience, 
especially deep, 

macrotidal 
estuaries with high 
exchange with the 

open ocean).  

Moderate 
(medium 

confidence) 

Habitat degradation 
due to human 

activities: 
aquaculture, 
agriculture, 

urbanization. 
Eutrophication. 

Pollution. 
Overfishing. 

Shipping/Dredging. 
Sedimentation/mout

h closure.             

Salinization, increase in 
nutrient and sediment 

loads. Changes in 
circulation patterns.  

Upstream redistribution of 
brackish and marine 
benthic and pelagic 

species, depending on 
their tolerance range to 

salinity and substrate type.  
Organic matter 

accumulation. Increased 
bacterial respiration. 
Hypoxia and anoxia. 

Occurrence of harmful 
algal blooms (HABs) and 

pathogenic outbreaks. 
Increased mortality of 

invertebrates  and fishes. 
Polward migration of low 
latitude flora and fauna 

species between estuaries. 

Microtidal, 
shallow and 
eutrophic 

estuaries in 
mid and high 
latitudes are 

more 
vulnerable to 

SLR, warming, 
deoxigenation 

and 
acidification. 
Salinization 
due to SLR 

and warming 
will intensify 
in estuaries in 

drough 
regions. 

Salt 
marshes 

 V, SE, F, SB SLR, 
warming. 

SST > V, F- 
medium 

(obs+exp+proj) but 
positive/negative 

effects. 
pH/CO2 > V- low 
(obs+proj+exp) but 
positive/negative 

effects 
SLR > V, SE, SB- 
high (obs+proj). 
Increased storm 
disturbance (but 
positive/negative 
effects depending 

on sediment 
supply) > V, SE  

(obs+proj). 

Moderate 
(Saltmarshes are 

initially resilient to 
SLR due to soil 

accretion (biomass 
accumulation and 

sediment 
deposition) but 
system wont be 

able to withstand 
SLR  after 60 years 

under RCP 8.5. 

High 
(medium 

confidence) 

Coastal 
development 

causing squeeze and  
altered flushing 
regimes. Species 

invasions. 
Mangrove 

encroachment. 
Eutrophication. 

Land use change for 
agriculture. 
Dredging. 

Overfishing.                                 

Reduction in  above- and 
belowground plant 

biomss, carbon storage 
and soil elevation. 

Tolerance to inundation 
and salinization depends 

on plant species and 
organic accretion.  Shifts 

in plant species, local  
extictions. Habitat 

restructuration from 
saltmarshes to mudflats, 

biodiversity loss. 
Reduction in sediment 
stability. Reduction in 
foraging and nursery 

services. The projected 
loss in global coastal 

wetlands (20-60 %) is in 

Saltmarshes in 
microtidal 

estuaries in dry 
areas, with low 

sediment 
supply and low 
soil accretion 
capacity, are 
exposed to 

high 
salinization 
due to SLR 

and warming. 
Saltmarshes in 

sub-tropical 
areas are 

threatened by 
expansion of 

mangrove 
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part  counterbalanced by 
some increase in arid and 
sub-tropical marshes (3-

6%) under low SLR 
scenario and lateral 
reacomodation of 
sediments (if not 

constricted by human 
constructions) . 

forests. 
Migration 
inland of 

salmarshes is 
limited in areas 

with coastal 
human 

development .  

Mangrove 
forests 

 V, SE, F, SB 
SLR, 

warming, 
deoxygenation 

SST > V, F- 
low/medium 

(obs+proj) but 
positive/negative 

effects 
pH/CO2  > V- low 
(obs+exp+proj) but 
positive/negative 

effects 
SLR > V, SE, SB- 

high (obs+proj) 
Increased storm 
disturbance (but 
positive/negative 
effects depending 

on sediment 
supply) > V, SE 

(obs+proj). 

Low/Moderate 
(Long-living, 

large-size plants. 
Initially resilient to 

SLR due to soil 
accretion. 

Ecosystem under 
intense human 

impacts. 
Rehabilitation 
practices can 
stimulate soil 

elevation). 

Moderate 
(medium 

confidence) 

Coastal 
development 

causing squeezing. 
Habitat degradation 

due to human 
activities: 

Deforestation, 
aquaculture, 
agriculture, 

urbanization. 

Hydro-geomorphological 
settings play important 

role in mangrove 
responses to SLR. Soil 
accretion can cope with 
low SLR scenario (RCP 
2.6) throughout the 100 
years projection period, 

but only up to mid century 
under RCP 8.5. Fringe 
mangroves are more 

vulnerable to SLR than 
basin magroves. 
Mangroves under 

microtidal regime with 
low soil accretion capacity 
are also more vulnerable. 

Mangrow 
forests in low-
lying coastal 

areas with low 
soil accretion 
capacity are 

highly 
vulnerable to 

SLR. 
Migration 
inland of 
mangrove 
forests is 

limited in areas 
with coastal 

human 
development.  

Seagrass 
meadows 

 

V, F, MM, 
SB, T 

Warming and 
heatwaves. 

SST > V, F, MM, 
T- high 

(obs+exp+proj) 
pH/CO2 > V- high 

but 
positive/negative 

effects 
(obs+exp+proj) 

SLR > V, SB- low 
(obs+proj) 

Increased storm 
disturbance > V  

(obs+proj).  

Low/Moderate 
Very high 
 (very high 
confidence) 

Eutrophication,  
habitat degradation, 
biological invasions. 

Reduction in plant fitness 
due to temperature stress 

and reduction in 
underwater light levels 

due to turbidity and SLR. 
Mass mortality events due 
to heatweaves. Spread of 
invasive tropical species. 
Severe habitat loss of the 

endemic Posidonia 
oceanica in the 

Mediterranean,  70% by 
2050 and potential 

extinction by 2100 under 
RCP 8.5. Warming will 

lead to significant 

Seagrasses 
meadows in 
low latitudes 

and in  coastal 
seas with 
limited 

expansion 
capacity of 
endemic 

species (e.g. 
Mediterranena
n), and those 
exposed to 

extreme 
temperature 
events and 
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reduction of Cymodosea 
nodosa meadows (46 %) 
in the Mediterranean, and 

expansion into the 
Atlantic. Increased 

herbivory by tropical 
consumers on temperate 
seagrasses, ecosystem 

biodiversity loss. 

invasion of 
tropical 

herbivorous 
species.  

Sandy 
beaches 

 

GM,  BI, V, 
P, T 

SLR, 
warming, 
storms. 

SST > BI, P, T- 
high (obs+proj) 

pH/CO2 > BI, P -
low (obs+proj) 

SLR > GM, BI, V, 
T- high (obs+proj) 
Increased storm 

disturbance, 
runoff > GM, BI, 

V (obs+prj).     

Moderate 
Moderate 
 (medium 

confidence) 

Infrastructure 
development 

causing squeezing, 
habitat degradation. 

Increasing 
erosion/sediment loss 

related to storms, waves 
and SLR. Changes in 

beach morphology, dune 
scarping, vegetation loss, 
reduction in beach area 
and turtle nesting sites. 

Poleward shifts in 
macrobenthic 

communities, reduction in 
body size with warming, 
mass mortality of clams. 

Limitation in the landward 
migration of the beach 
profile  due to human 

development. 

Sandy beaches 
in  the SW 

Atlantic and 
SE Pacific 

(Chile, South 
Brasil, 

Uruguay and 
Argenina) aree 

exposed to 
compound 

effects of SLR, 
storm surges, 
warm phases 

of El Niño and 
changes in 

tidal 
amplitudes.  

Coral reefs  

BGQ, BI, P, 
F 

Warming, 
acidification, 
SLR,  storms. 

SST > BGQ, BI, P, 
F-high 

(obs+exp+proj) 
pH/CO2 > BGQ, 

BI, P-high 
(obs+exp+proj) 
SLR > GM, BI- 

high 
(obs+exp+proj)  

Increased storm 
disturbance > 

GM, BI 
(obs+proj). 

Low/Moderate 
(some populations 
seem adapted to 
climate changes) 

Very high  
(very high 

confidence) 

Habitat degradation, 
eutrophication, 

overfishing, 
pollution. 

Species-specific responses 
to multiple-climate 

drivers. Coral bleaching, 
mass mortality. Drastic 

reduction in coral fitness 
(growth, reproduction) 

due to combined effects of 
warming, acidification and 
SLR. Spread of invasive 
species. Reef dissolution 
and bioerosion. Shift in 
habitat structure from 

calcified corals towards 
algal or soft, slow growing 

coral dominated reefs. 
Ecosystem biodiversity 
loss. Only a few reefs 

The highest 
probability of 

coral bleaching 
occurs at 

tropical mid-
latitude sites 

(15-20 degrees 
north and 

south of the 
Equator). 

However, coral 
bleaching is 
less common 
in localities 
with a high 
variance in 

SST anomalies 
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worldwide have shown 
resilience to recent global 

change impacts. 
Limitation in the dispersal 
of organisms due to e.g. 
ocean currents, enhances 

the alterations in coral reef 
communities driven by 

climate warming. 

and ecological 
settings.  
Reduced 

calcification 
and enhanced 
SLR render 

few reefs with 
the capacity to 

track SLR 
projections. 

 

Rocky reefs 

 

 BI, MA, F, 
SB 

Warming, 
acidification, 

SLR. 

SST > BI, MA, F- 
high (obs+exp) 
pH/CO2 > BI, 

MA- high 
(obs+exp) 

SLR > BI, MA, 
SB- medium (proj) 

Uncertain 
High  

(medium 
confidence) 

Eutrophication. 
Coastal 

development 
causing squeezing. 

Poleward shifts of benthic 
fauna and algal species 
due to warming. Heat 

exposure during low tide 
and SLR constrict the area 

for relocation of the 
intertidal benthic 

communities. 
Simplification of the food 

web structure at low 
trophic levels due to 

warming and acidification. 
Dissolution of calcareous 

species and increased 
grazing on them. 

Reduction in habitat 
complexity (shift from 
calcareous species to 

weedy algae). Macroalgae 
responses to acidification 
and warming depend on 
light and nutrient levels. 
Ecosystem biodiversity 

loss.  

Local 
extinctions at 
the equatorial 
or warm edge 

of species 
ranges, and 

mass mortality 
of intertidal 
rocky reef 

organisms due 
to heatwaves. 

This 
vulnerability to 
heat stress will 

be 
exhacerbated 
in areas where 

coastal 
acidification 

will reduce the 
biodiversity of 
intertidal and 

rocky reef 
ecosystems 

dominated by 
calcareous 

species. 
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Kelp forests  MA, MM, F Warming, 
heatwaves.  

SST > MA, MM, 
F- high 

(obs+exp+proj) 
pH/CO2 > MA- 
low (exp+proj) 

SLR (nd) 
Increased 

heatwaves and 
storm 

disturbances > 
MA- high 

(obs+exp+proj). 

Low (kelps are 
highly sensible to 
warming and have 

low dispersal 
capacity) 

Very High  
(very high 

confidence) 

Habitat degradation 
by human activities. 
Overgrazing by sea 

urchins. 

Mass mortality of kelps 
due to hetwaves combined 

with high irradiance; 
eutophication delays the 
re-establishment. Global 

range contractions of 
kelps at the warm end of 

distributional margins and 
expansions at the 

poleward end, spread of 
invasive species. 

Reduction in habitat 
complexity (from kelps to 

turfs). Macroalgae 
responses to acidification 
and warming depend on 
light and nutrient levels. 
Ecosystem biodiversity 

loss. In polar fjords, kelp 
fitness is reduced by 

warming and increased 
turbidity due to ice-

melting. 

Kelp forests in 
the higher rage 
of temperature 

distribution 
will experience 

the larger 
reduction due 
to warming, 

and those 
exposed to 
increased 

heatweaves 
events, such as 
kelp forests in 

Australia.  
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SM5.4 Additional Information Relating to ‘Ocean Solutions’ in Section 5.5.1.1 
 
Details are given in Tables SM5.9a and SM5.9b below on the ten potential ocean-based actions that provide 
the rows of Figure 5.23, and on the associated five benefits and four constraints that provide the columns of 
that figure.  Additional information, including more than 500 supporting references, is given in Gattuso et al. 
(2018). 
 
Table SM5.9a: Descriptions of ocean-based actions assessed in Figure 5.23. Global scale assumes worldwide 
implementation (at maximum theoretical level); local scale is based on implementation at less than ~100 km2.  Three 
global-scale actions considered by Gattuso et al. (2018) are excluded here: land-ocean hybrid methods, marine cloud 
brightening, and increased surface ocean albedo.  

Action Description Scale 
Marine renewable 
energy (physical 
processes) 

The production of energy using offshore wind turbines and harvesting of energy 
from tides, waves, ocean currents, and thermal stratification.  This action is 
included for comparison of its benefits and constraint to those of others. 

Global 

Ocean fertilisation 
(open ocean) 

The artificial increase in the ocean’s primary production and carbon uptake by 
phytoplankton, achieved primarily by adding soluble iron to surface waters 
where it is currently lacking. 

Global 

Enhanced weathering 
(alkalinisation) 

The addition of a variety of minerals or other alkaline substances that consume 
CO2 and/or neutralize acidity, usually involving raising the concentration of 
carbonate or hydroxide ions.  

Global 
and 
local 

Restoring and 
conserving coastal 
vegetation 

Management of coastal ‘blue carbon’ ecosystems, primarily saltmarshes, 
mangroves and seagrasses, to enhance their carbon sink capacity and avoid 
emissions from the degradation or loss of their existing carbon stocks.   

Global 
and 
local 

Marine protected 
areas  

The conservation of habitats and ecosystems, in order to increase the abundance 
of marine species and thereby help protect natural populations against climate 
impacts.  

Local 

Reducing pollution 
(including nutrients) 

The decreased release of harmful substances that increase the sensitivity of 
marine organisms and ecosystems to climate-related drivers, or those that can 
directly exacerbate ocean acidification and hypoxia. 

Local 

Restoring 
hydrological regimes 

The maintenance and restoration of marine hydrological conditions, including 
the tidal and riverine delivery of water and sediments, to alleviate local changes 
in climate-related drivers. 

Local 

Eliminating over-
exploitation 

Management action to ensure that living resources are sustainably harvested 
(within biologically safe limits and maintaining ecosystem function) and that 
the extraction of non-living resources (e.g., sand and minerals) is at levels that 
avoid irreversible ecological impacts. 

Local 

Assisted evolution The large-scale genetic modification, captive breeding and release of organisms 
with enhanced stress tolerance. 

Local 

Relocation and 
restoration 
(reef systems) 

The restoration and/or active relocation of degraded coral and oyster reefs, with 
the potential creation of new habitats and use of more resilient species or 
strains.   

Local 

 

 

Table SM5.9b: The scoring schemes for the benefits and constraints relating to ocean-based actions described in Table 
SM5.9a above and summarised in Figure 5.23, assuming worldwide implementation for global scale actions, and 
implementation at less than ~100 km2 for local scale. The 1 to 5 (very low to very high) scoring scale is based on 
combined assessments of the positive or negative consequences relating to four marine ecosystems and habitats (coral 
reefs, mangroves and saltmarshes, seagrass habitats and Arctic biota) and four marine ecosystem services (fin fisheries, 
finfish aquaculture, bivalve fisheries and aquaculture and coastal protection) arising from deployment of each action at 
its maximum physical capacity, with quantification based on a comprehensive literature review combined with expert 
judgement. Scores for benefits indicate the potential for reducing the difference in climatic impacts on between 
emissions scenarios RCP 8.5 and RCP 2.6 by 2100. Scores for constraints indicate the potential for adverse 
consequences or other issues that would need to be addressed for full-scale implementation. These scoring schemes 
follow those used in Gattuso et al. (2018), although the scores for constraints are reversed in scale. 

Benefits Scoring scheme  Scale 
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Impact reduction: 
warming 

Scoring scale: 1, cumulative carbon mitigation (reduction or removal) potential of 
0 to 250 GtC to 2100; 2, mitigation potential of 250 to 500 GtC; 3, mitigation 
potential of 500 to 750 GtC; 4, mitigation potential of 750 to 1000 GtC; 5, 
mitigation potential of  >1,000 GtC.  Scale based on cumulative emission 
difference of 1400 GtC between RCP 2.6 and RCP 8.5, over the period 2012-
2100. 

Global 

Scores from assessment of effectiveness of local impact reduction, based on 
comparing projected warming impacts to 2100 of RCP 8.5 and RCP 2.6.  

Local 

Impact reduction: 
ocean acidification 

Scores based on carbon mitigation, allowing for specificities of actions with 
regard to their effects on seawater carbonate chemistry, and assuming a difference 
of 0.25pH units between RCP2.6 and RCP 8.5 for mean global surface seawater.  

Global 

Scores from assessment of effectiveness of local impact reduction, based on 
comparing projected ocean acidification impacts of RCP 8.5 and RCP 2.6 to 2100 

Local 

Impact reduction: 
sea level rise 

Scores as for global warming mitigation less 1, to allow for inherent inertia of sea 
level response 

Global 

Scores from assessment of effectiveness of local impact reduction, based on 
comparing projected sea level rise impacts of RCP 8.5 and RCP 2.6 to 2100 

Local 

Impact reduction: 
warming, ocean 
acidification and 
sea level rise 
combined 

Mean score of mitigation for all three drivers of climate change. Global 
Scores from assessment of effectiveness of local impact reduction, based on 
comparing projected warming, ocean acidification and sea level rise impacts f 
RCP 8.5 and RCP 2.6 to 2100 

Local 

Co-benefits Scores for literature-based expert judgement of potential non-climatic benefits at 
global scale, including improvement of ecosystem status and the generation of 
ecosystem services. 

Global 

Scores for literature-based expert judgement of potential non-climatic benefits at 
local scale, including improvement of ecosystem status and the generation of 
ecosystem services. 

Local 

Constraints Scoring scheme Scale 
Trade-offs Scores for literature-based expert judgement of potential adverse impacts for 

ecosystems and ecosystem services arising as a result of the action.  Societal 
effects (e.g. inequity) that depend on socio-economic scenarios are excluded.  
[Note that trade-offs are considered as ‘dis-benefits’ in Gattuso et al. (2018)]  

Global 

As above, considered at local scale Local 
Technical issues to 
overcome 

A combined score for technological readiness (with range between fully ready for 
deployment and conceptual-only); lead time for full potential effectiveness (days/ 
months to decades), and (im)permanence of effect (duration of effect once 
implemented), each assessed on 1-5 scale with higher scores indicating greater 
technological barriers.   

Global 

As above, considered at local scale Local 
Cost (for warming 
mitigation) 

Mean values for carbon removal or emission reduction determined from the range 
of literature costs for implementation of actions.  Scoring scale: 1, <10 US$ per 
tonne CO2 removed; 2, 10-60; 3, 60-110; 4, 110-160; 5, >160. 

Global 

Mean values on a per unit area basis determined from the range of literature costs 
for implementation of actions.  Scoring scale: 1, <100 US$ per ha; 2, 100-200; 
3,200-300; 4, 300-400; 5, >400. 

Local 

Governability 
challenges 

Assessment of the capability of the global community of nation states and other 
international actors to implement actions through cooperation and coordination, 
based on semi-quantified biophysical factors (e.g., distribution of benefits and 
dis-benefits) and occurrence of formal and informal institutional arrangements.  
Sub-national governance challenges were also recognised as important by Gattuso 
et al. (2018), but were not scored.  

Global 

As above.  For actions considered at both global and local scales, the same score 
was applied.   

Local 
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SM5.5 Supplementary Information Supporting Table 5.7 
 
Summary of reported Adaptation responses (A), the Impacts (I) they aimed to address, and the expected 
Benefits (B) in coastal ecosystems within Physical, Ecological, Social, Governance, Economic and 
Knowledge categories. The Summary is presented in Table 5.7 and the papers used to support that 
assessment is found below. 
 
Ecosystems: Coral Reefs  

Climate drivers  

Sea level rise 

Increased storm wave energy and frequency 

Ocean acidification 

Anthropogenic co-drivers  

Physical: 

Dense urban development (Osorio-Cano et al., 2017; Beck et al., 2018; Gattuso et al., 2018) with coastal 
built infrastructure (Perkins et al., 2015) to accommodate population growth (Beck et al., 2018) 

Physical damage from shipping (van Oppen et al., 2017), mining (Beck et al., 2018), dredging (Wynveen 
and Sutton, 2015), sedimentation (Wynveen and Sutton, 2015; Elliff and Silva, 2017) and destructive fishing 
techniques (van Oppen et al., 2017; Gattuso et al., 2018) 

Pollution (Gallagher et al., 2015; Elliff and Silva, 2017; van Oppen et al., 2017; Gattuso et al., 2018) 

Ecological: 

Overharvesting (Wynveen and Sutton, 2015; van Oppen et al., 2017; Gattuso et al., 2018) 

Social: 

Marine tourism (Wynveen and Sutton, 2015) 

Impact  

Physical: 

Coastal physical processes disrupted 

Loss of coastal protection services (Lirman and Schopmeyer, 2016) resulting in coastal flooding (Perkins et 
al., 2015; Beetham et al., 2017; Elliff and Silva, 2017; Beck et al., 2018; Comte and Pendleton, 2018) 

Habitat loss (Perkins et al., 2015; Gattuso et al., 2018 ) via increased wave energy (Beetham et al., 2017) 

Ecological:  

Ecosystem degradation and loss 

Decreasing hydrodynamic roughness (Osorio-Cano et al., 2017) 

Deteriorating quality of reef habitat (Lirman and Schopmeyer, 2016; van Oppen et al., 2017) including coral 
bleaching (Wynveen and Sutton, 2015; Elliff and Silva, 2017; Osorio-Cano et al., 2017; van Oppen et al., 
2017; Beck et al., 2018; Comte and Pendleton, 2018; Gattuso et al., 2018) 

Biodiversity and genetic diversity loss 

Loss of reef-building taxa (Lirman and Schopmeyer, 2016) and biodiversity impacts (Lirman and 
Schopmeyer, 2016) 

Habitat range shifts 

Habitat range shifts (Gallagher et al., 2015; Miller et al., 2017) 

Sub-lethal species impacts 
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Species level impacts (growth and reproduction) (Gallagher et al., 2015) 

Invasive alien species 

Social: 

Local decline in agriculture and fisheries 

Declining fisheries (Lirman and Schopmeyer, 2016) 

Adaptation responses  

Physical: 

Supporting physical processes 

Pollution reduction (Gattuso et al., 2018) 

Restoring hydrology (Gattuso et al., 2018) 

Hard engineering responses 

Watershed management (Lirman and Schopmeyer, 2016) 

Ecological:  

Ecosystem restoration and protection 

Protection and maintenance of coral reefs (Elliff and Silva, 2017; Comte and Pendleton, 2018; Gattuso et al., 
2018) 

Coral gardening and reef restoration (Lirman and Schopmeyer, 2016) 

Bioengineering 

Bioengineering by increasing habitat complexity on coastal structures (Perkins et al., 2015) 

Assisted evolution and relocation 

Assisted colonization (Gallagher et al., 2015; Lirman and Schopmeyer, 2016) and evolution (van Oppen et 
al., 2017; Gattuso et al., 2018) 

Relocation (Gattuso et al., 2018) 

Social: 

Switching livelihoods 

Fisheries engaging in alternative livelihoods (Miller et al., 2017) 

Stakeholder involvement, including access to information, technology and funding (Miller et al., 2017) 

Community participatory programmes 

Building trust through community participation to increase buy-in for adaptation response (Wynveen and 
Sutton, 2015) 

Sustainable resource use 

Eliminating overexploitation (Gattuso et al., 2018) 

Sustainable fishing practices (Lirman and Schopmeyer, 2016) 

Governance: 

Horizontal/ vertical integration of governance 

Horizontal and vertical integration of organisations and policies (Miller et al., 2017) 

Developing partnerships and building capacity 

Engaging in tourism partnerships with other industries (Miller et al., 2017) 

Improving implementation and coordination of policies 

Interdisciplinary and cross-jurisdictional approaches (Miller et al., 2017) 
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Improving ICM/ MPAs 

MPA establishment (Lirman and Schopmeyer, 2016) 

Multiple adaptation responses used 

Synergistic application of multiple responses supported (van Oppen et al., 2017) 

Coral gardening and reef restoration need to be used with other tools such as watershed management, 
sustainable fishing practices, MPA establishment (Lirman and Schopmeyer, 2016) 

Benefits  

Physical:  

Physical processes supported 

Coastal protection (Perkins et al., 2015; Elliff and Silva, 2017; Comte and Pendleton, 2018) from flooding 
(Beetham et al., 2017; Beck et al., 2018) 

Ecological: 

Ecosystem/ ecological resilience supported 

Improved ecosystem functioning (Perkins et al., 2015; Miller et al., 2017; Comte and Pendleton, 2018) 

Restoration of coral reefs (Lirman and Schopmeyer, 2016; van Oppen et al., 2017) with increased reef 
resilience (Gattuso et al., 2018) 

Increased biodiversity 

Increased biodiversity (Gallagher et al., 2015; Perkins et al., 2015) 

Improved organismal fitness 

Increased reef resilience (Gattuso et al., 2018) including inter-habitat connectivity (Perkins et al., 2015; 
Lirman and Schopmeyer, 2016), vertical reef accretion (Beetham et al., 2017), stress tolerance (van Oppen et 
al., 2017) a 

Social: 

Access to sustainable ecosystem services 

Reduced social vulnerability (through provisioning services) (Beck et al., 2018) 

Improved ecosystem service provision (Perkins et al., 2015; Miller et al., 2017; Comte and Pendleton, 2018) 

Improved employment and livelihoods 

Improved livelihoods (Lirman and Schopmeyer, 2016) 

Increased adaptive capacity 

Reduced social vulnerability (through provisioning services) (Beck et al., 2018) 

Improved coping and adaptive capacity (Beck et al., 2018) 

Governance: 

Developing partnerships and building capacity 

Stakeholder-management trust encourages adoption of pro-environmental behaviour (Wynveen and Sutton, 
2015) 

Economic: 

Increased revenue/ income 

Revenue from tourism (Lirman and Schopmeyer, 2016; Comte and Pendleton, 2018) 

Knowledge: 

Improved education and outreach 

Provide scientific information, education and outreach opportunities (Lirman and Schopmeyer, 2016) 
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Co-benefits  

Constraints and limitations  

Physical:  

Site availability (Gallagher et al., 2015) 

Reefs with low resilience from anthropogenic drivers are less likely to adapt to climate change impacts. 
(Elliff and Silva, 2017) 

Tools not developed yet for large-scale implementation (van Oppen et al., 2017) 

Ocean acidification as a limiting factor in warm water adaptation (Lirman and Schopmeyer, 2016; Miller et 
al., 2017) 

Ecological:  

Failure of some species to colonize restored reef (Gallagher et al., 2015) 

Sea level rise may outpace reef vertical accretion (Beetham et al., 2017; Elliff and Silva, 2017) 

Restoration efforts may not support intertidal communities (Perkins et al., 2015) 

Natural systems with organismal thermal tolerance and limits with biochemical characteristics (Miller et al., 
2017) 

Coral predator abundances, disease impacts on out planted populations and nurseries and genetic impacts on 
extant nurseries (Lirman and Schopmeyer, 2016)  

Social: 

Social and cultural norms with conflicting and competing values (Miller et al., 2017), including loss of local 
support (Lirman and Schopmeyer, 2016) and vandalism and physical damage to nursery resources (Lirman 
and Schopmeyer, 2016) 

Public lack of knowledge on climate change and distrust of information sources (Wynveen and Sutton, 2015) 

Governance: 

Effective implementation challenges (Comte and Pendleton, 2018) 

Cross border coordination challenges (Gallagher et al., 2015) 

Inadequate governance and institutional structures (Miller et al., 2017) 

Turnover on personnel (Lirman and Schopmeyer, 2016) 

 Economic:  

Economic undervaluation of ecosystems and the services they provide (Perkins et al., 2015) 

Financial costs of design (Gallagher et al., 2015) 

Lack of finances (Miller et al., 2017), including sustained funding beyond nursery stage (Lirman and 
Schopmeyer, 2016) 

Knowledge:  

Absence of baseline data may undermine coastline management (Perkins et al., 2015) 

Knowledge gap on restoration of coral reef systems as an adaptation tool (Comte and Pendleton, 2018) 

Public knowledge gaps and distrust of information sources (Wynveen and Sutton, 2015) 

Costs  

Physical:  

Site availability (Gallagher et al., 2015) 

Reefs with low resilience from anthropogenic drivers are less likely to adapt to climate change impacts. 
(Elliff and Silva, 2017) 
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Tools not developed yet for large-scale implementation (van Oppen et al., 2017) 

Ocean acidification as a limiting factor in warm water adaptation (Miller et al., 2017) 

Coastal protection from flooding reducing annual expected costs by $4 billion (Beck et al., 2018) 

Social: 

social and cultural norms with conflicting and competing values (Miller et al., 2017) 

Ecological:  

Failure of some species to colonize restored reef (Gallagher et al., 2015) 

Sea level rise may outpace reef vertical accretion (Beetham et al., 2017; Elliff and Silva, 2017) 

Restoration efforts may not support intertidal communities (Perkins et al., 2015) 

Natural systems with organismal thermal tolerance and limits with biochemical characteristics  (Miller et al., 
2017) 

Economic:  

Economic undervaluation of ecosystems and the services they provide (Perkins et al., 2015) 

Financial costs of design (Gallagher et al., 2015) 

Lack of finances (Miller et al., 2017) 

Governance: 

Effective implementation challenges (Comte and Pendleton, 2018) 

Cross border coordination challenges (Gallagher et al., 2015) 

Inadequate governance and institutional structures (Miller et al., 2017) 

Knowledge:  

Absence of baseline data may undermine coastline management (Perkins et al., 2015) 

Knowledge gap on restoration of coral reef systems as an adaptation tool (Comte and Pendleton, 2018) 

Ecosystem: Mangroves 

Climate drivers  

Sea level rise  

Increased storm wave energy and frequency 

Extreme high tide events 

Changed ocean circulation patterns 

Drought and changes in rainfall patterns and intensity 

Rising global temperatures in oceans and air 

Anthropogenic co-drivers  

Physical:  

Dense urban development due to human population growth (Sierra-Correa and Cantera Kintz, 2015; Feller et 
al., 2017; Romañach et al., 2018) 

Habitat transformation through coastal reclamation (Triyanti et al., 2017), mangrove in-filling (Gilman et al., 
2008), conversion for agriculture, such as rice farming (Romañach et al., 2018) and aquaculture (Gilman et 
al., 2008; Feller et al., 2017; Nguyen et al., 2017; Romañach et al., 2018)  

Over-exploitation of resources (Sierra-Correa and Cantera Kintz, 2015) such as timber (Nanlohy et al., 2015; 
Romañach et al., 2018) causing deforestation (Alongi, 2015), groundwater extraction (Triyanti et al., 2017), 
salt harvesting (Romañach et al., 2018) 

Pollution  (Gilman et al., 2008; Romañach et al., 2018) 
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Ecological: 

Invasive species (Romañach et al., 2018) 

Governance: 

Poorly planned development (Sierra-Correa and Cantera Kintz, 2015) 

Weak governance controls (Sierra-Correa and Cantera Kintz, 2015) 

Impact  

Physical: 

Coastal physical processes disrupted 

Coastal flooding (Alongi, 2015; Sierra-Correa and Cantera Kintz, 2015; Triyanti et al., 2017) causing 
increased erosion (Gilman et al., 2008) 

Saline intrusion (Ward et al., 2016) 

Loss of mangroves with releases of Greenhouse gases (Gilman et al., 2008), decreased accretion rates of 
inorganic sediments (Gilman et al., 2008), peat collapse and soil compression (Gilman et al., 2008) and 
reduced estuarine and coastal water quality (Gilman et al., 2008) 

Increased sulphide soil toxicity (Gilman et al., 2008) 

Ecological:  

Ecosystem degradation and loss 

Mangrove migration constrained by coastal squeeze (Feller et al., 2017) 

Loss of mangroves (Nitto et al., 2014; Nanlohy et al., 2015; Sierra-Correa and Cantera Kintz, 2015; Feller et 
al., 2017) 

Decreased habitat quality (Sierra-Correa and Cantera Kintz, 2015) including nursery habitats (Gilman et al., 
2008), with changes in community composition (Gilman et al., 2008) including local extinctions (Gilman et 
al., 2008) due to salinity (Ward et al., 2016) 

Biodiversity and genetic diversity loss 

Biodiversity (Gilman et al., 2008; Alongi, 2015) and mangrove species genetic structure (Gilman et al., 
2008) impacts 

Habitat range shifts 

Mangrove migration across a latitudinal gradient (Gilman et al., 2008; Alongi, 2015; Miller et al., 2017; 
Romañach et al., 2018) and landwards (Gilman et al., 2008; Nitto et al., 2014; Alongi, 2015; Nanlohy et al., 
2015; Romañach et al., 2018) 

Sub-lethal species impacts 

Changes in reproduction and dispersion (Miller et al., 2017; Romañach et al., 2018), seedling survival 
(Gilman et al., 2008) and changes to propagule dispersal 

Higher temperatures are likely to increase growth, reproduction, phenology (Gilman et al., 2008; Miller et 
al., 2017), photosynthesis and respiration rates (Alongi, 2015) with potential species richness and inter-
specific interactions increasing (Miller et al., 2017) 

Increased salinity causing decreasing net primary productivity and growth (Nanlohy et al., 2015) 

Mangrove species specific differences in resilience to climate change due to morphology and anatomy 
(Alongi, 2015) including leaf anatomy, vascular vessel densities, diameter, grouping and length and fibre 
wall thickness (Alongi, 2015) 

Invasive alien species 

Social: 

Loss of ecosystem services 
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Impacts on coastal protection (Ataur Rahman and Rahman, 2015; Ahmed and Glaser, 2016) 

Local decline in agriculture and fisheries 

Agricultural (Nanlohy et al., 2015) and fisheries production impacts through declines in catch and size of 
catch (Nanlohy et al., 2015) 

Increased community vulnerability 

Increased community vulnerability (Sierra-Correa and Cantera Kintz, 2015) 

Adaptation responses  

Physical: 

Supporting physical processes 

Ensure sediment supply to mangroves to support elevation (Sierra-Correa and Cantera Kintz, 2015) 

Managing catchment activities that affect mangrove sediment elevation (Gilman et al., 2008) 

Support mangrove sediment deposition and erosion processes to adjust to sea level change (Ward et al., 
2016; Romañach et al., 2018) 

Hard engineering responses 

Hard engineering infrastructure to halt erosion (Gilman et al., 2008) including backlines to reduce flooding 
from sea (Sierra-Correa and Cantera Kintz, 2015) 

Improving drainage systems (Sierra-Correa and Cantera Kintz, 2015) 

Managed retreat and coastal realignment 

Managed retreat allowing mangroves to migrate and retain their natural functional processes (Gilman et al., 
2008) 

Ecological: 

Ecosystem restoration and protection 

Eliminate conversion and support reclamation of wetlands. (Romañach et al., 2018) 

Protection and maintenance of mangroves (Sierra-Correa and Cantera Kintz, 2015; Romañach et al., 2018) 
and mangrove restoration (Feller et al., 2017) 

Ecosystem management interventions supporting positive surface elevation gains compared to sea level rise 
and salinity (Ward et al., 2016; Romañach et al., 2018) 

Social: 

Sustainable resource use 

Sustainable resource use through harvesting only mature trees (Nguyen et al., 2017) 

Community participatory programmes 

Improved community participation in mangrove management programmes (Nanlohy et al., 2015) 

Mangrove planting programmes (Triyanti et al., 2017) using contracts with local community members 
(Nguyen et al., 2017) 

Governance: 

Adopting/ mainstreaming sustainability policies 

Increased political will to conserve (Gilman et al., 2008) 

Improving implementation and coordination of policies 

Interactive governance (Triyanti et al., 2017) 

Better synergism between monitoring and implementation programmes (Gilman et al., 2008) 

Finance: 
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Improving financial resources availability 

Improve mangrove bonding social capital (Triyanti et al., 2017) 

Knowledge: 

Better monitoring and modelling 

Regional monitoring networks (Gilman et al., 2008), improving data collection. (Romañach et al., 2018) and 
use of technologies and innovation (Nanlohy et al., 2015) 

Improving planning processes 

Improving site and land use planning (Gilman et al., 2008) using buffer areas (Sierra-Correa and Cantera 
Kintz, 2015) for managed retreat 

Improving decision support frameworks 

Establishing baselines (Gilman et al., 2008) 

Improving scientific communication 

Improving communication between scientists (Romañach et al., 2018) in multi-disciplinary teams (Nanlohy 
et al., 2015) 

Stakeholder identification, outreach and education 

Outreach and education to empower decisions makers and communities to make informed decisions (Gilman 
et al., 2008; Nanlohy et al., 2015; Romañach et al., 2018) 

Multiple adaptation responses used 

Addressing climate change impacts by reducing anthropogenic co-drivers (Gilman et al., 2008; Sierra-Correa 
and Cantera Kintz, 2015; Romañach et al., 2018) 

Benefits  

Physical: 

Physical processes supported 

Mangrove restoration may delay or buffer climate impacts  (Romañach et al., 2018) by providing shoreline 
protection  (Gilman et al., 2008; Alongi, 2015; Sierra-Correa and Cantera Kintz, 2015; Doughty et al., 2017; 
Nguyen et al., 2017; Sheng and Zou, 2017; Romañach et al., 2018), erosion protection (Triyanti et al., 2017) 
through shoreline stabilization (Nanlohy et al., 2015), raising sediments heights (Hayden and Granek, 2015) 
and inundation protection (Triyanti et al., 2017; Romañach et al., 2018) from storm surge and tsunamis 
through wave attenuation (Romañach et al., 2018) 

Improved water quality (Gilman et al., 2008) 

Vertical sediment accumulation may allow mangroves to outpace sea level rise (in areas of higher elevation 
and relatively low tidal range) (Romañach et al., 2018) 

Sediment trapping (Kamal et al., 2017) including sequestration of nutrients and contaminants  (Alongi, 2015) 
and carbon storage (Alongi, 2015; Nanlohy et al., 2015; Kelleway et al., 2016; Yando et al., 2016; 
Romañach et al., 2018) 

Ecological: 

Ecosystem/ ecological resilience supported 

Increased structural heterogeneity (Romañach et al., 2018) 

Improved biodiversity and ecological functioning (Triyanti et al., 2017) of nursery grounds (Sierra-Correa 
and Cantera Kintz, 2015; Miller et al., 2017; Romañach et al., 2018) and breeding sites (Alongi, 2015) 
supporting improved fisheries (Benzeev et al., 2017; Goecke and Carstenn, 2017) 

Increased mangrove resilience and recovery (Romañach et al., 2018) 

Improved organismal fitness 

Increased primary production (Triyanti et al., 2017) 
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Social: 

Access to sustainable ecosystem services 

Improved fisheries (Benzeev et al., 2017; Goecke and Carstenn, 2017) 

Sustained ecosystem services, including timber and fuelwood (Alongi, 2015; Nanlohy et al., 2015; Palacios 
and Cantera, 2017) 

Improved cultural services (Triyanti et al., 2017; Romañach et al., 2018) including recreation and aesthetic 
experience  (Triyanti et al., 2017) 

Human systems supported 

Supporting aquaculture (Huxham et al., 2015; Ahmed and Glaser, 2016) 

Improved employment and livelihoods 

Supporting coastal livelihoods (Triyanti et al., 2017) providing a source of income for communities 
(Nanlohy et al., 2015; Nguyen et al., 2017) 

Increased adaptive capacity 

Reduced vulnerability in communities (Gilman et al., 2008; Sierra-Correa and Cantera Kintz, 2015) 

Co-benefits  

Social: 

Supporting coastal livelihoods (Triyanti et al., 2017) providing a source of income for communities  
(Nanlohy et al., 2015; Nguyen et al., 2017) 

Constraints and limitations  

Physical: 

Insufficient mitigation of Greenhouse Gases will make adaptation more difficult. (Sierra-Correa and Cantera 
Kintz, 2015) 

Mangroves occupy a range of tidal settings making it difficult to offer simple solutions  (Alongi, 2015) 

Social: 

People are increasingly distanced from nature and may be less concerned about nature conservation 
(Romañach et al., 2018) 

Governance: 

Ineffective mangrove protection due to poor implementation of maintenance programmes (Nguyen et al., 
2017) 

Poor law enforcement and technical guidance (Nguyen et al., 2017)  

Administrative and settlement boundaries do not always align with natural boundaries. (Triyanti et al., 2017) 

Human adaptation response has not been keeping pace with sea level rise. (Gilman et al., 2008) 

Inadequate governance and institutional structures, lack of finances, lack of information access, social and 
cultural norms, conflicting and competing values (Miller et al., 2017) 

Economic: 

Replanting and restoration communities may be more motivated by financial reward than ecological interest 
(Romañach et al., 2018) 

Knowledge: 

Perception of exclusion from resource harvesting due to poor understanding of mangrove protection services 
(Romañach et al., 2018) 

Translating good science and strong community engagement into effective policy can be difficult due to 
disconnect between scientific, community and decision-making processes (Waite et al., 2015; Romañach et 
al., 2018) 



FINAL DRAFT Chapter 5 Supplementary Material IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute SM5-35 Total pages: 110 

Lack of data, funding and institutional trust (Torres and Hanley, 2017; Romañach et al., 2018) 

Knowledge gaps in mangrove ecological and human management response to climate change (Ward et al., 
2016) 

Costs  

Ecosystem: Salt marshes and wetlands 

Climate drivers  

Sea level rise 

Ocean warming and changes in wave regimes 

Changes in precipitation and storm patterns  

Increased frequency and intensity of extreme events 

Anthropogenic co-drivers  

Physical: 

Increase in human populations, development and infrastructure (Schuerch et al., 2018) and anthropogenic 
threats (Ondiviela et al., 2014) 

Eutrophication (Watson et al., 2017; Wigand et al., 2017) 

Mechanical damage of wetland meadows (e.g., dredging) (Ondiviela et al., 2014) 

Impact  

Physical: 

Coastal physical processes disrupted 

Increased coastal flooding (Wigand et al., 2017), changing sediment dynamics (Schaeffer-Novelli et al., 
2016) with decreased sediment inputs (Watson et al., 2017), shoreline erosion (Ondiviela et al., 2014; 
Wigand et al., 2017) and salt water intrusion (Ondiviela et al., 2014; Miloshis and Fairfield, 2015; Schaeffer-
Novelli et al., 2016) 

Deterioration of water quality (nutrient loading, pollution and suspended material) (Ondiviela et al., 2014) 

Ecological: 

Ecosystem degradation and loss 

Loss of wetlands (Schuerch et al., 2018), wetland degradation (Miloshis and Fairfield, 2015) and destruction 
of vegetation cover (Schaeffer-Novelli et al., 2016; Watson et al., 2017) including loss of root biomass 
(Schaeffer-Novelli et al., 2016) 

Biodiversity and genetic diversity loss 

Loss of biodiversity (Schuerch et al., 2018) including IUCN extinction list of 4 species (Ondiviela et al., 
2014) 

Increased rates of edge erosion (Watson et al., 2017) 

Sub-lethal species impacts 

Seasonal and geographic changes in abundance and distribution (Ondiviela et al., 2014; Schaeffer-Novelli et 
al., 2016), declines in macrophyte productivity (Watson et al., 2017), impacts on sea grass metabolism 
(Schaeffer-Novelli et al., 2016) and decreased crab herbivory (Watson et al., 2017) resulting in increased 
marsh vulnerability (Wigand et al., 2017) 

Increased dissolved CO2 concentrations promote growth (Ondiviela et al., 2014) 

Increase in water velocity may contribute to plant productivity in some areas (Ondiviela et al., 2014) 

Invasive alien species 

Invasive species (Ondiviela et al., 2014)  



FINAL DRAFT Chapter 5 Supplementary Material IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute SM5-36 Total pages: 110 

Social: 

Decreased access to ecosystem services 

Loss of ecosystem services (Schuerch et al., 2018), including shoreline protection (Ondiviela et al., 2014) 

Adaptation responses  

Physical: 

Supporting physical processes 

Shoreline protection by raising the elevation of the marsh (Ondiviela et al., 2014) and increasing marsh 
drainage (Watson et al., 2017) 

Dam removal (Wigand et al., 2017) allowing hydrologic remediation with restoration of sediment supplies 
(Watson et al., 2017) 

Sediment diversion to reduce land conversions on flood plains and deltas (Miloshis and Fairfield, 2015) 

Integrated hard and soft engineering 

Artificial measures (construction of structures, beach nourishment or coastal realignment, hard structures), 
vegetation fields (mangroves or willow forests) and restoration of bay areas (Ondiviela et al., 2014) 

 

Managed retreat and coastal realignment 

Facilitating marsh upland migration (Schaeffer-Novelli et al., 2016; Wigand et al., 2017) 

Ecological: 

Ecosystem restoration and protection 

Bioengineering 

Eco-engineering using organisms (Ondiviela et al., 2014; Miloshis and Fairfield, 2015) 

Reductions in edge losses using biomaterials (Watson et al., 2017) 

Economic: 

Improving financial resources availability 

Interventions such as sediment subsidies (Watson et al., 2017) 

Knowledge: 

Improving planning processes 

Spatial planning for wetland protection and management (Schuerch et al., 2018) 

Multiple adaptation responses used 

Benefits  

Physical: 

Physical processes supported 

Vertical sediment accretion, which may outpace sea level rise (Schuerch et al., 2018) 

Coastal flood protection (Miloshis and Fairfield, 2015; Wigand et al., 2017) through wave attenuation 
(Ondiviela et al., 2014; Schaeffer-Novelli et al., 2016) 

Water quality improvement (Schaeffer-Novelli et al., 2016; Wigand et al., 2017; Schuerch et al., 2018) 
including improved water transparency, increased light availability and quality through trapping and sorting 
solid particles and dissolved nutrients (Ondiviela et al., 2014) 

Sequestering carbon dioxide through burial or exporting offshore (Schaeffer-Novelli et al., 2016) 

Ecological: 

Ecosystem/ ecological resilience supported 
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Ecosystem engineers facilitating trophic transfer to adjacent habitats (Ondiviela et al., 2014) 

Habitat sustainability providing support for species of concern (Wigand et al., 2017) 

Improved primary productivity (Ondiviela et al., 2014) and a source of carbon to the detrital pool (Ondiviela 
et al., 2014) 

Increased biodiversity 

Increased biodiversity (Ondiviela et al., 2014; Miloshis and Fairfield, 2015) 

Habitat range shifts accommodated 

Facilitated marsh-upland migration. (Watson et al., 2017) 

Social: 

Access to sustainable ecosystem services 

Support for fisheries (Ondiviela et al., 2014; Miloshis and Fairfield, 2015; Schaeffer-Novelli et al., 2016; 
Schuerch et al., 2018) 

Improved ecosystem services like carbon sequestration (Schuerch et al., 2018) and climate regulation 
(Miloshis and Fairfield, 2015), nutrient sequestration (Wigand et al., 2017) and cycling (Miloshis and 
Fairfield, 2015), sediment and biomatter accumulation and the provision of a vegetative buffer to reduce 
flow velocities during tidal and storm surges (Miloshis and Fairfield, 2015) 

Co-benefits  

Constraints and limitations  

Physical: 

Constraints on the inland migration of coastal wetlands due to adverse human-modified soil conditions, 
unsuitable geomorphological characteristics or elevation constraints  (Schuerch et al., 2018) 

Areas with high sediment input from riverine sources are likely to accommodate a 1m rise in sea level 
(Miloshis and Fairfield, 2015) 

Ecological: 

Genetic diversity could help the plants adapt to higher temperatures through individual thermal tolerances if 
changes occur at a slow enough rate (Ondiviela et al., 2014) 

Governance: 

Balancing adaptation expenses against pervasive marsh loss (Watson et al., 2017) 

Knowledge: 

Inherent uncertainties in models (Schaeffer-Novelli et al., 2016) 

Costs  

Ecosystem: Estuaries 

Climate drivers  

Sea level rise 

Increased ocean temperature 

Changes in wave action and storm surge 

Increased storm frequency and severity 

Changes in rainfall and evapotranspiration patterns  

Ocean acidification 

Anthropogenic co-drivers  

Physical: 
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Increasing coastal populations (Runting et al., 2017) combined with inappropriate development and 
infrastructure (Barbier, 2015b; Peirson et al., 2015; Wigand et al., 2017), resulting in habitat loss and 
alteration (Peirson et al., 2015) 

Dam emplacement (Wigand et al., 2017), freshwater diversions (Peirson et al., 2015), catchment agriculture  
(Robins et al., 2016; Sheaves et al., 2016), deforestation (Wigand et al., 2017) and dredging (Peirson et al., 
2015) 

Poorly planned and managed aquaculture and shellfish fisheries (Robins et al., 2016), fisheries over-
exploitation (Peirson et al., 2015) 

Organic carbon loading (Peirson et al., 2015), nutrient enrichment (Peirson et al., 2015) and eutrophication 
(Thorne et al., 2017; Wigand et al., 2017) 

Ecological: 

Alien invasive species (Peirson et al., 2015) 

Impact  

Physical: 

Coastal physical processes disrupted 

Increased coastal flood risk (Monbaliu et al., 2014; Robins et al., 2016; Wigand et al., 2017) with extreme 
water levels and changes in flood current velocity (Seiffert and Hesser, 2014), increased tidal range 
(Monbaliu et al., 2014; Peirson et al., 2015) and tidal dynamics (Seiffert and Hesser, 2014) 

Shoreline erosion (Robins et al., 2016; Wigand et al., 2017) increased due to wetland loss 

Decreased freshwater flow (Peirson et al., 2015), salinity intrusion (Robins et al., 2016{Seiffert, 2014 #107), 
nutrient enrichment and eutrophication (Robins et al., 2016) resulting in deteriorating water quality (Robins 
et al., 2016) 

Increased hypoxia (Robins et al., 2016) 

Coastal infrastructure damage 

Damage to coastal infrastructure (Thorne et al., 2017) and property with increased vulnerability (Barbier, 
2015b; Robins et al., 2016) 

Ecological: 

Ecosystem degradation and loss 

Wetlands lost through inundation (Runting et al., 2017; Wigand et al., 2017) 

Habitat modification (Robins et al., 2016) including vegetation type changes and soil moisture reductions 
(Robins et al., 2016) resulting changes in coastal wetland distribution (Runting et al., 2017) and marsh 
vulnerability (Wigand et al., 2017)  

Biodiversity and genetic diversity loss 

Habitat range shifts 

Habitat modification (Robins et al., 2016) including vegetation type changes and soil moisture reductions 
(Robins et al., 2016) resulting changes in coastal wetland distribution (Runting et al., 2017) and marsh 
vulnerability (Wigand et al., 2017) causing changes in breeding grounds (Peirson et al., 2015) and species 
composition (Peirson et al., 2015; Thorne et al., 2017) 

Sub-lethal species impacts 

Changes in breeding grounds (Peirson et al., 2015) and species composition (Peirson et al., 2015; Thorne et 
al., 2017) 

Invasive alien species 

Increased invasive species (Robins et al., 2016) 

Social: 
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Public health risks  

Harmful algae blooms (Robins et al., 2016) 

Adaptation responses  

Physical: 

Supporting physical processes 

Adaptive sediment management (Seiffert and Hesser, 2014) 

Catchment dam removal (Wigand et al., 2017) supported by appropriate built infrastructure (Barbier, 2015b) 

Hard engineering responses 

Hydraulic engineering structures, including barriers narrowing the estuaries mouth to dampen storm surge 
(Seiffert and Hesser, 2014) 

Catchment dam removal (Wigand et al., 2017) supported by appropriate built infrastructure (Barbier, 2015b) 

Managed retreat and coastal realignment 

Facilitate landward migration (Runting et al., 2017; Wigand et al., 2017)  

Ecological: 

Ecosystem restoration and protection 

Restoration (Barbier, 2015b; Wigand et al., 2017) 

Expanding the coastal reserve network to accommodate wetlands response (Runting et al., 2017)  

Governance: 

Adopting/ mainstreaming sustainability policies 

Local planning authorities pre-emptively limit development in dry land areas that are likely to transition to 
wetlands under climate change (Runting et al., 2017)  

Development controls 

Local planning authorities pre-emptively limit development in dry land areas that are likely to transition to 
wetlands under climate change (Runting et al., 2017)  

Knowledge: 

Better monitoring and modelling 

Improve estuarine modelling (Monbaliu et al., 2014) and long term monitoring effort (Robins et al., 2016) 

Improve monitoring of estuary hydrology and dynamics (Wigand et al., 2017) 

Stakeholder identification, outreach and education 

Improve stakeholder identification and engagement to improve systems knowledge (Peirson et al., 2015) 

Multiple adaptation responses used 

Physical: 

Catchment dam removal (Wigand et al., 2017) supported by appropriate built infrastructure (Barbier, 2015b) 

Benefits  

Physical: 

Physical processes supported 

Protection (Wigand et al., 2017) against storms and coastal floods (Robins et al., 2016), mainly through 
wave attenuation (Barbier, 2015b; Runting et al., 2017) 

Nutrient retention (Runting et al., 2017; Wigand et al., 2017) and cycling of organic (Robins et al., 2016; 
Runting et al., 2017) and suspended particulate matter (Robins et al., 2016) 
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Water quality maintenance (Peirson et al., 2015) 

Ecological: 

Ecosystem/ ecological resilience supported 

Water quality improvement (Peirson et al., 2015) supporting habitat for wildlife (Wigand et al., 2017), 
including improving nursery areas (Sheaves et al., 2016; Runting et al., 2017) for commercial fisheries 
(Peirson et al., 2015) or breeding areas for terrestrial animals like birds (Robins et al., 2016) 

Increased biodiversity 

Support optimal biodiversity (Sheaves et al., 2016) 

Social: 

Access to sustainable ecosystem services 

Improved water supply for agriculture (Peirson et al., 2015) and aquaculture (Peirson et al., 2015) 

Human systems supported 

Improved water supply for tourism, heritage and recreational water uses (Peirson et al., 2015; Robins et al., 
2016) 

Improved health 

Healthy human living environments (Sheaves et al., 2016) 

Knowledge: 

Improved education and outreach 

Social learning during vulnerability assessments can play a key role in climate change adaptation planning 
through stakeholder engagement, learning and sharing of best practices (Thorne et al., 2017) 

Co-benefits  

Constraints and limitations  

Physical: 

Landward estuarine migration constraints (Robins et al., 2016) 

Inherent complexity of coastal systems and climate change make it difficult to predict specific shoreline 
changes (Wigand et al., 2017) and requires an adaptive management strategy (Wigand et al., 2017) 

Ecological: 

Physical and ecological constraints on restoration actions (Wigand et al., 2017) 

Biodiversity and community composition changes and the emergence of novel ecosystems will make 
protecting some species and ecosystems  difficult (Wigand et al., 2017) 

Governance:  

Opportunity costs associated with retreat are borne immediately whereas the benefits take much longer to 
materialize (Runting et al., 2017)  

Time, money and staff resources (Thorne et al., 2017) 

Complex governance landscape (Sheaves et al., 2016) 

Barriers include lack of funding, policy and institutional constraints and precise information on climate 
change projections (Wigand et al., 2017) 

Knowledge: 

Scale-relevant information for local decision making (Thorne et al., 2017) 

Continuously evolving and large body of scientific publications about climate change (Thorne et al., 2017) 

Rural areas require local adaptation strategies that rely on soft engineering and improved community 
awareness (Robins et al., 2016) 
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Costs  

Additional resources are required to expand the wetlands reserve network to allow for wetland migration 
depending on future climate scenario (Runting et al., 2017). Despite these higher costs, payments for 
ecosystem services have the potential to substantially reduce the net cost of expanding. (Runting et al., 2017) 

Ecosystem: Multiple Ecosystems 

Climate drivers  

Sea level rise 

Ocean warming 

Storm frequency and intensity 

Anthropogenic co-drivers  

Physical: 

Habitat loss (Williams et al., 2016) or fragmentation (Hernández-González et al.) due to urbanisation 
(Hernández-González et al.; Williams et al., 2016) and development, including conversion of estuarine land 
to agriculture , compounded  by poor agricultural practices (Hernández-González et al.) or aquaculture 
(Hernández-González et al.)  

Agricultural, industrial and tourist activities impact aquaculture species composition (Williams et al., 2016) 

Unsustainable exploitation of resources (Jiao et al., 2015; Williams et al., 2016) including mangrove harvest 
(Hernández-González et al.), overfishing and destructive fishing (Hernández-González et al.) 

Intensive irrigation and dams (Hernández-González et al.) 

Pollution (Jiao et al., 2015) including eutrophication (Williams et al., 2016), effluent from aquaculture 
(Williams et al., 2016) 

Impact  

Physical: 

Coastal physical processes disrupted 

Coastal erosion (Hernández-González et al.) causing increased flooding of low-lying lands and salinization 
of groundwater (Hernández-González et al.) 

Coastal infrastructure damage 

Impacts on shoreline developments (Williams et al., 2016) compounded by coastal squeeze (Hernández-
González et al.) 

Ecological: 

Ecosystem degradation and loss 

Degradation of marine and coastal ecosystems (Jiao et al., 2015), causing impaired ecosystem functioning 
(Williams et al., 2016), shifts in ecological communities  (Williams et al., 2016) and loss of biodiversity 
(Williams et al., 2016) 

Social: 

Increased food insecurity 

Food security impacts (Williams et al., 2016) 

Adaptation responses  

Physical: 

Integrated hard and soft engineering 

Ecosystem-based coastal defines structures, green: coastal defences selecting more tolerant species or strains 
and protecting key habitats under expanding aquaculture (Williams et al., 2016) 
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Incorporate proven management interventions (such as hybrid engineering structures) (Hernández-González 
et al., 2016) 

Managed retreat and coastal realignment 

Incorporate proven management interventions (such as managed realignment) (Hernández-González et al., 
2016) 

Ecological: 

Ecosystem restoration and protection 

Marine EBA: maintaining the balance and health of ecosystems (Jiao et al., 2015) 

Incorporate proven management interventions (such as habitat restoration) (Hernández-González et al., 
2016) 

Social: 

Sustainable resource use 

Building resilience of socio-economic and ecological systems through sustainable management of natural 
resources (Hernández-González et al., 2016) 

Building socio-ecological resilience 

Building resilience of socio-economic and ecological systems through sustainable management of natural 
resources (Hernández-González et al., 2016) 

Governance: 

Adopting/ mainstreaming sustainability policies 

Implement policies to support environmental integrity (Hernández-González et al., 2016) 

Bring ecosystems into mainstream decision-making processes (Hernández-González et al., 2016) 

Incorporate proven management interventions (such as MPAs, habitat restoration, managed realignment and 
hybrid engineering structures) (Hernández-González et al., 2016) 

Improving ICM/ MPAs 

Incorporate proven management interventions (such as MPAs) (Hernández-González et al., 2016) 

Developing partnerships and building capacity 

Build capacity for implementation (Hernández-González et al., 2016) 

Economic: 

Economic diversification 

Building resilience of socio-economic and ecological systems through economic diversification (Hernández-
González et al., 2016) 

Knowledge: 

Better monitoring and modelling 

Develop regional, fine scale databases to identify possible winners or losers species for use in green coastal 
defences (Williams et al., 2016) 

Developing evidence of climate related declines in foundational species and their associated marine 
ecosystems.  (Williams et al., 2016) 

Improving decision support frameworks 

Consider ecosystems in vulnerability assessments of coastal communities (Hernández-González et al., 2016) 

Improving participatory processes 

Engage stakeholders (Hernández-González et al., 2016) 

Integrating knowledge systems 
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Evidence for improving application of EBA responses through integrating traditional infrastructure (Perkins 
et al., 2015; Sutton-Grier et al., 2015; Sánchez-Arcilla et al., 2016; van der Nat et al., 2016) 

Multiple adaptation responses used 

EBA and CBA (Hernández-González et al., 2016) 

Benefits  

Physical: 

Physical processes supported 

Protection from storms surge (Williams et al., 2016) and coastal erosion prevention (Williams et al., 2016) 
by reducing wave energy (Hernández-González et al., 2016) 

Increasing sedimentation and movement of sediment (Hernández-González et al., 2016) and contaminant 
filtration (Williams et al., 2016) 

Ecological: 

Ecosystem/ ecological resilience supported 

Improved nursery grounds (Williams et al., 2016) 

Social: 

Increasing resilience in human systems 

Aquaculture benefits providing food security (Williams et al., 2016) 

Co-benefits  

The co-benefits of ‘soft’ engineering options common for the ecosystems assessed include increasing 
ecological complexity, with multiple services provided, many economic benefits, and resilience to climate 
change (Perkins et al., 2015; Perry, 2015; Moosavi, 2017; Scarano, 2017) 

The application of synergistic combinations of ecosystems can provide a range of co-benefits, and this 
approach is strengthened when combined with socio-institutional approaches (Kochnower et al., 2015; 
MacDonald et al., 2017) 

Constraints and limitations  

Ecological: 

Multiple simultaneous stressors induce highly variable species responses impacting upon effectiveness of 
EBA response (Williams et al., 2016) 

Coastal habitats such as salt marshes and mangroves may have an advantage over engineered coastal 
defences if they increase in elevation and grow with SLR 

Knowledge:  

There is a need to advance coastal protection science by quantifying ecosystem services (Hernández-
González et al., 2016) 

Developing scenarios and tools to model complex combined risks to build decision-support systems for 
communities(Hernández-González et al., 2016) 

Few syntheses of the context-specific application and cost-effectiveness of EBA approaches are to be found 
in the literature (Narayan et al., 2016) 

Further research evaluating natural infrastructure is required (Roberts et al., 2017) 

Costs  

Physical: 

Green coastal defence structures are expensive to maintain  (Williams et al., 2016) 

Ecological: 
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Coastal ecosystems can play an important and cost-effective role in reducing vulnerability (Hernández-
González et al., 2016) 

Ecosystem: Sandy beaches and dune systems 

Climate drivers  

Sea level rise 

Increased storminess and storm surge 

Extreme winds 

Changes in rainfall 

Anthropogenic co-drivers  

Physical: 

Increasing human coastal populations (Poumadère et al., 2015; Ranasinghe, 2016; Sánchez-Arcilla et al., 
2016) leading to coastal development (Onaka et al., 2015; Ranasinghe, 2016; Ciccarelli et al., 2017; 
MacDonald et al., 2017; Pranzini, 2017; Salgado and Martinez, 2017; Vikolainen et al., 2017; Gracia et al., 
2018)  with vegetation clearing (Ciccarelli et al., 2017; Magnan and Duvat, 2018) and loss of sediment 
(Salgado and Martinez, 2017) 

Unsustainable resource exploitation (Nehren et al., 2017) 

Social: 

Tourism (Onaka et al., 2015)  

Governance: 

Mismanagement practices (Carro, 2018) 

Lack of integrated coastal management (Nehren et al., 2017) 

Impact  

Physical: 

Coastal physical processes disrupted 

Coastal squeeze (Villatoro et al., 2014) and erosion (Onaka et al., 2015; Poumadère et al., 2015; Ranasinghe, 
2016; Sánchez-Arcilla et al., 2016; Goreau and Prong, 2017; Nehren et al., 2017; Pranzini, 2017; Salgado 
and Martinez, 2017; Vikolainen et al., 2017; Gracia et al., 2018) of sandy beaches, dunes, and bluffs 
(MacDonald et al., 2017; Shumack and Hesse, 2017; Carro, 2018; Magnan and Duvat, 2018)  

Flooding (Villatoro et al., 2014; Poumadère et al., 2015; Sutton-Grier et al., 2015; Sánchez-Arcilla et al., 
2016; Goreau and Prong, 2017; Nehren et al., 2017; Salgado and Martinez, 2017; Vikolainen et al., 2017) 

Ecological: 

Ecosystem degradation and loss 

Fire and vegetation removal (Shumack and Hesse, 2017) 

Social: 

Decreased access to ecosystem services 

Reduced ecosystem services (Nehren et al., 2017) 

Adaptation responses  

Physical: 

Supporting physical processes 

Recovery of natural buffer (100m unbuilt strip of vegetation) (Magnan and Duvat, 2018) 

Hard engineering responses 

Hard defences, including submerged breakwaters and groins (Sutton-Grier et al., 2015; Pranzini, 2017) 
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Soft engineering responses and buffers 

Soft sand engineering (sandscaping) (Sutton-Grier et al., 2015; Vikolainen et al., 2017) 

Artificial dune/beach sand replenishment (Pranzini, 2017) 

Vegetation planting (Magnan and Duvat, 2018) 

Integrated hard and soft engineering 

Hybrid hard and soft engineering solutions (Sutton-Grier et al., 2015; Martínez et al., 2017) 

Sustainable drainage systems (Salgado and Martinez, 2017; Carro, 2018) 

Managed retreat and coastal realignment 

Shoreline natural readjustment and coastal managed realignment (MacDonald et al., 2017)  

Ecological: 

Ecosystem restoration and protection 

Recovery of natural buffer (100m unbuilt strip of vegetation) (Magnan and Duvat, 2018) 

Shoreline protection (Salgado and Martinez, 2017) through the creation and restoration of coastal 
ecosystems (e.g., dunes, sandy beaches and bluffs (Carro, 2018) and re-vegetation for dune regeneration 
(Salgado and Martinez, 2017; Carro, 2018) 

Conserving, sustainably managing, and restoring (Nehren et al., 2017) 

Social: 

Sustainable resource use 

Reduction of human use pressures (Salgado and Martinez, 2017; Carro, 2018) 

Sustainable coastal management where old railways were transformed into walking and cycling routes and 
the railway embankment became a promenade (Pranzini, 2017) 

Governance: 

Adopting/ mainstreaming sustainability policies 

Integrate management of ecology, recreation and land use with other aspects of coastal management 
(Vikolainen et al., 2017; Gracia et al., 2018) 

Developing partnerships and building capacity 

Capacity development in coastal protection and rehabilitation in Mauritius (Onaka et al., 2015) 

Knowledge: 

Improving decision support frameworks 

Conceptual assessment design of the ecosystem (Gracia et al., 2018) 

Integration of indicators and tools (Gracia et al., 2018) 

Development of decision support systems (Gracia et al., 2018) 

Multiple adaptation responses used 

Physical: 

Reduction of human use pressures (Salgado and Martinez, 2017; Carro, 2018) 

Benefits  

Physical: 

Physical processes supported 

Reduced coastal erosion (Sánchez-Arcilla et al., 2016; Goreau and Prong, 2017; Vikolainen et al., 2017; 
Carro, 2018; Gracia et al., 2018) through maintaining dunes (Pranzini, 2017) as natural buffers to wave 
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energy (Nehren et al., 2017), reducing flood risk (Onaka et al., 2015; MacDonald et al., 2017; Nehren et al., 
2017) and increasing resilience to climate change impacts (Sutton-Grier et al., 2015; Gattuso et al., 2018) 

Carbon sequestration (Gracia et al., 2018) 

Ecological: 

Ecosystem/ ecological resilience supported 

Stimulate natural dune growth (Vikolainen et al., 2017) 

Secure sustainable natural resources (Vikolainen et al., 2017; Gracia et al., 2018; Magnan and Duvat, 2018) 
like dunes (Onaka et al., 2015) to improve ecosystem capacity to cope with climate change impacts (Gracia 
et al., 2018) 

Increased biodiversity 

Stimulating biodiversity conservation (Gracia et al., 2018) 

Natural infrastructure provides additional goods and services to humans, as opposed to built infrastructure 
which only provides coastal flood protection (Sutton-Grier et al., 2015) 

Strengthened socio-ecological system 

Strengthening resilience of both natural and human systems to coastal erosion effect (Gracia et al., 2018) 

Social:  

Access to sustainable ecosystem services 

Secure ecosystem services (Nehren et al., 2017) 

Improved community participation 

Encouraging community participation (Gracia et al., 2018) 

Improved socio-economic services 

Socio-economic services maintained (MacDonald et al., 2017) with increase in nature-based recreation 
(MacDonald et al., 2017) 

Governance: 

Political and institutional capacity developed 

Capacity building of municipal staff and stakeholders (Carro, 2018) 

Improved adaptive management 

Incorporation of EBA by subnational-level coastal governments (Carro, 2018) 

Improved implementation and policies 

Policy gaps addressed (Pranzini, 2017) 

Knowledge: 

Improved co-production of knowledge 

Knowledge development and innovation (Pranzini, 2017; Vikolainen et al., 2017) 

Improved education and outreach 

Knowledge exchange with national decision makers and scientists (Carro, 2018) 

Opportunity for ecological and conservation scientists to interact with social, economic and political 
scientists on ecosystem-based adaptation research (Scarano, 2017) 

Co-benefits  

Ecological: 

Stimulating biodiversity conservation (Gracia et al., 2018) 
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Natural infrastructure provides additional goods and services to humans, as opposed to built infrastructure 
which only provides coastal flood protection  (Sutton-Grier et al., 2015) 

Constraints and limitations  

Physical: 

Space requirements (Sutton-Grier et al., 2015; Sánchez-Arcilla et al., 2016; Salgado and Martinez, 2017)  

Natural vegetation cannot always protect shorelines in every location and/or situation (Salgado and 
Martinez, 2017) 

Level of flood and erosion protection is limited by the condition of the dune system (Nehren et al., 2017) 

Natural and hybrid infrastructure can take a lot longer to build than hard infrastructure (Sutton-Grier et al., 
2015).  

Ecological: 

Slow recovery periods of natural systems (Gracia et al., 2018) and for ecological succession (Salgado and 
Martinez, 2017) 

Governance: 

Policy (Sánchez-Arcilla et al., 2016) and regulations can constrain this kind of restoration (Vikolainen et al., 
2017) 

Public and policy need to redefine dune protection in the context of sustainable development (Nehren et al., 
2017) 

Lack of expertise to implement hybrid solutions (Sutton-Grier et al., 2015) 

Economic:  

Economic constraints include cost of implementation and high cost of coastal land (Gracia et al., 2018) 

Cheaper than man-made structures. (Nehren et al., 2017; Salgado and Martinez, 2017; Vikolainen et al., 
2017; Gracia et al., 2018) 

Knowledge: 

Local conditions-compliant design requirement (Vikolainen et al., 2017) 

Knowledge of which plant species to use (Salgado and Martinez, 2017) 

Ecosystem-based adaptation research takes place within the socio-ecological systems framework, which is 
often carried out in isolation from socio-technical systems research. These should be integrated (Scarano, 
2017) 

Lack of data for cost-benefit analysis (Sutton-Grier et al., 2015).  

Costs  

Net annual provision of services is £262,935 (£1460.75/ha) at Hesketh Outmarsh West and £93,216 
(£574.70/ha) at Inch of Ferryton (MacDonald et al., 2017) 

Natural resilience larger for more energetic coasts, lower for littorals with milder drivers (Poumadère et al., 
2015) 

 

SM5.6  Supplementary Information Supporting Table 5.8 
 

Summary of reported Adaptation responses (A), the Impacts (I) they aimed to address, and the expected 
Benefits (B) in human systems within Physical, Ecological, Social, Governance, Economic and Knowledge 
categories. The Summary is presented in Table 5.8 and the papers used to support that assessment is found 
below. 
 

Human System: Coastal Communities 
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Climate drivers  

Sea level rise 

Coastal Flooding 

Saline intrusion 

Drought 

Extreme rainfall events and rainfall variability 

Ocean warming 

Increased frequency of climate change disasters 

Increased monsoon intensity  

Anthropogenic co-drivers  

Physical: 

Population growth (Marfai et al., 2015; Nursey-Bray et al., 2015; Wise et al., 2016) and rapid coastal 
urbanisation (Abedin et al., 2014; Lieske et al., 2014; Ataur Rahman and Rahman, 2015; Karlsson and 
Hovelsrud, 2015; Hobday et al., 2016; Betzold and Mohamed, 2017; Hagedoorn et al., 2019), including 
increases in daytime populations (Esteban et al., 2017), industrialization (Ataur Rahman and Rahman, 2015) 

Landscape land use change, including hardened impermeable surfaces (with poor drainage and low 
infiltration) (Broto et al., 2015) and reclaimed agricultural land (Jones and Clark, 2014) 

Settlement location in low lying areas (Linkon, 2018) , for example, the majority of people in SIDS live 
below the 4 meter contour, which is 2m above the present day high tide mark) (Hagedoorn et al., 2019) 

Poorly planned  (Ataur Rahman and Rahman, 2015) and inappropriately located (Abedin et al., 2014) 
construction and poorly maintained infrastructure (Abedin et al., 2014) including land reclamation (Betzold 
and Mohamed, 2017), land use change (Nagy et al., 2014; Marfai et al., 2015), embankments, polderization 
and unplanned afforestation (Ataur Rahman and Rahman, 2015), coastal squeeze (Betzold and Mohamed, 
2017) 

Pollution (DasGupta and Shaw, 2015; Marfai et al., 2015; Bennett et al., 2016; Hobday et al., 2016; Betzold 
and Mohamed, 2017; Hagedoorn et al., 2019), including solid waste (Broto et al., 2015; Marfai et al., 2015; 
Bennett et al., 2016; Betzold and Mohamed, 2017), contamination of ground and surface water (Ataur 
Rahman and Rahman, 2015) e.g. arsenic contamination (Abedin et al., 2014) 

Increased waste (Dhar and Khirfan, 2016; Betzold and Mohamed, 2017) and pollution (Ataur Rahman and 
Rahman, 2015; Betzold and Mohamed, 2017) 

Reduction of freshwater flow due to abstraction (Ataur Rahman and Rahman, 2015); Groundwater extraction 
(leading to land subsidence) (Marfai et al., 2015) 

Fire damage (Bennett et al., 2016) 

Informal settlements (located in areas with high flood risk; unregulated; lack infrastructural services; poor 
sanitation and drainage) (Broto et al., 2015; Marfai et al., 2015) 

Geographic remoteness of islands (DasGupta and Shaw, 2015; Karlsson and Hovelsrud, 2015) 

Impacts on sea ice and Artic ecology (Ford et al., 2016) 

Ecological: 

Unsustainable exploitation (Cinner et al., 2018) of mangroves (Ataur Rahman and Rahman, 2015) and 
dependence on natural resources (Cinner et al., 2018) 

Habitat transformation (Hobday et al., 2016; Cinner et al., 2018) including forests and wetlands for rice 
agriculture (Ataur Rahman and Rahman, 2015; Marfai et al., 2015), mangrove forests (DasGupta and Shaw, 
2015; Leon et al., 2015), reefs, sea grass and mangroves (Dhar and Khirfan, 2016), traditionally managed 
floodplains and coastal ecosystems (Ataur Rahman and Rahman, 2015) causing biodiversity loss (Nursey-
Bray et al., 2015; Hagedoorn et al., 2019) 
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Low sand production (due to damaged ecosystems) impacting beach erosion (Dhar and Khirfan, 2016) 

Illegal farming and deforestation in the Morass, which is slowly drying out (losing its basic functions, 
including flood alleviation, filtering nutrients and chemicals) (Dhar and Khirfan, 2016) causing increasing 
ecosystem vulnerability (Dhar and Khirfan, 2016) 

Removal of coastal vegetation (Barbier, 2015a) 

Social: 

Socio-economic conditions (Smith and Rhiney, 2016; Jamero et al., 2018), including poverty (Jurjonas and 
Seekamp, 2018) food insecurity; housing shortage and poverty (Jamero et al., 2018), aging demographics 
(Jurjonas and Seekamp, 2018) and out-migration (Nursey-Bray et al., 2015; Jurjonas and Seekamp, 2018) in 
for example, Inuit communities (Ford et al., 2016) 

Growing exposure of marginalised communities with limited power and agency (Wise et al., 2016) 

Increased vulnerability on coastal floodplains from growing populations and industrialization (Ataur 
Rahman and Rahman, 2015), high levels of dependency on agriculture and fishing (Nagy et al., 2014; 
DasGupta and Shaw, 2015; Hobday et al., 2016; Smith and Rhiney, 2016) and over-fishing (Ataur Rahman 
and Rahman, 2015; Hobday et al., 2016) 

Excessive use of resources (Dhar and Khirfan, 2016), including groundwater for irrigation (prime reason for 
arsenic contamination) (Abedin et al., 2014) and shrimp farming (Abedin et al., 2014), compounded by 
community reliance on groundwater for drinking, resulting in groundwater depletion (Abedin et al., 2014) 

Unregulated sand mining (Ataur Rahman and Rahman, 2015; Karlsson and Hovelsrud, 2015; Betzold and 
Mohamed, 2017), including marine sand (Betzold and Mohamed, 2017) and weak enforcement measures 
(Betzold and Mohamed, 2017) compounded by a heavy dependency upon sand mining as an important 
source of income in Comoros (Betzold and Mohamed, 2017) 

Social, political, economic, demographic and environmental changes occurring at local and national scales 
compound these changes. Some coastal communities are struggling to adapt to these changes with an 
increase in their vulnerability (Bennett et al., 2016) 

Low access to health-sustaining resources (Ford et al., 2016) 

Livelihoods in coastal communities have shifted away from subsistence fishing and agriculture towards 
dependence upon employment in the fisheries, agriculture, plantation and tourism sectors (Bennett et al., 
2016) 

Lack of loss of traditional practices and knowledge (Ataur Rahman and Rahman, 2015), for example in 
disaster and risk management (Audefroy and Sánchez, 2017) 

Loss of ecosystem services means that these communities cannot respond to crises (DasGupta and Shaw, 
2015) 

Social fragmentation (Petzold and Ratter, 2015) 

Modernization of villages (become reliant on capitalist activities) (Sakakibara, 2017) 

Inability of different socio-economic groups to anticipate and respond to climate threats (Smith and Rhiney, 
2016) 

Governance: 

Misuse of resources (Ataur Rahman and Rahman, 2015) 

Coastal Zone Policy does not include ICZM (Ataur Rahman and Rahman, 2015) and is not informed by local 
knowledge (Ataur Rahman and Rahman, 2015) or local ecosystems (Ataur Rahman and Rahman, 2015) and 
is poorly implemented (Ataur Rahman and Rahman, 2015) 

There is a disconnect between the national agencies and local level implementation in communities (Ataur 
Rahman and Rahman, 2015) with top-down decision making (Ataur Rahman and Rahman, 2015), political 
institutional barriers (Ataur Rahman and Rahman, 2015) and centralised risk and disaster policies (Audefroy 
and Sánchez, 2017), resulting in local communities, who are poorly adapted to climate change impacts  
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Poor enforcement (Marfai et al., 2015) of coastal setbacks, settlement planning and land use guidelines 
(Dhar and Khirfan, 2016) 

Wide-ranging institutional challenges  in community planning and health care provision (Ford et al., 2016) 

Legacy of colonisation transforming traditional practices (Ford et al., 2016) 

Poor government services provision (Jamero et al., 2018) 

Gap between policy development and implementation (Karlsson and Hovelsrud, 2015) 

Limited institutional support for local communities (Smith and Rhiney, 2016) 

Economic: 

Increasing reliance on erratic markets, facilitating foreign investment in national and local markets and 
liberalisation of national economic policies have led to the development of new technologies that change 
behaviour away from traditional harvest practices, affect market productivity and influence consumption 
demands (Bennett et al., 2016) 

High levels of poverty (DasGupta and Shaw, 2015) 

Economic disadvantages on the global market (Petzold and Ratter, 2015) 

assets in flood prone areas (Marfai et al., 2015) 

Possibilities of maladaptation (due to poor governmental coordination, lack of stakeholder awareness) (Wise 
et al., 2016) 

Development planning is often captured by political elites and governmental officials (community needs are 
not met; lack of procedural justice; corruption) (Wise et al., 2016) 

Knowledge: 

Insufficient focus on the mapping of social and financial vulnerabilities at the local level (Audefroy and 
Sánchez, 2017) 

Low levels of awareness of vulnerability (Esteban et al., 2017) 

Lack of general awareness of adaptation efforts (Lieske et al., 2014; Smith and Rhiney, 2016) 

Mismatches between top-down interventions and local cultural practices (Wise et al., 2016) 

Impacts 

Physical: 

Coastal physical processes disrupted 

Coastal erosion (Jones and Clark, 2014; Lieske et al., 2014; DasGupta and Shaw, 2015; Karlsson and 
Hovelsrud, 2015; Leon et al., 2015; Marfai et al., 2015; Nursey-Bray et al., 2015; Petzold and Ratter, 2015; 
Betzold and Mohamed, 2017; Hagedoorn et al., 2019) compounds saltwater intrusion (Abedin et al., 2014; 
Jurjonas and Seekamp, 2018) through soil loss (Ataur Rahman and Rahman, 2015) and buffering (Betzold 
and Mohamed, 2017) 

Flooding (Jones and Clark, 2014; Nagy et al., 2014; DasGupta and Shaw, 2015; Marfai et al., 2015; Nursey-
Bray et al., 2015; Dhar and Khirfan, 2016; Hobday et al., 2016; Jamero et al., 2018; Linkon, 2018; 
Hagedoorn et al., 2019) and breached embankments (with livelihood impacts) (Lieske et al., 2014; DasGupta 
and Shaw, 2015; Jamero et al., 2018) 

Saline intrusion (Leon et al., 2015; Marfai et al., 2015; Petzold and Ratter, 2015; Jurjonas and Seekamp, 
2018; Linkon, 2018) and variation (causing a reduction of mangrove diversity) (DasGupta and Shaw, 2015) 

Sediment transportation processes affected (Karlsson and Hovelsrud, 2015) 

 

Catchment physical processes disrupted 

Coastal infrastructure damage 
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Loss of infrastructure and housing (Nursey-Bray et al., 2015; Hobday et al., 2016; Jurjonas and Seekamp, 
2018; Linkon, 2018), including world heritage sites (Perry, 2015) 

Communal toilets damaged (Jamero et al., 2018) 

Disruption of urban systems 

Disruption to roads (Leon et al., 2015) and transportation processes (Ataur Rahman and Rahman, 2015) 

Interruptions to electricity supply (Jamero et al., 2018) 

Rainwater supply depleted (Jamero et al., 2018) 

Recreation or tourism opportunities supported by reef ecosystems or regional fisheries (Cooley et al., 2016) 

Land subsidence 

Land subsidence caused by groundwater extraction, loading of buildings and other constructions on 
compressible soils, natural consolidation of the alluvial soil or tectonic subsidence (Esteban et al., 2017) 

Ecological: 

Ecosystem degradation and loss 

Loss of ecosystems (Ataur Rahman and Rahman, 2015; Petzold and Ratter, 2015; Dhar and Khirfan, 2016) 
including mangroves (Ataur Rahman and Rahman, 2015; DasGupta and Shaw, 2015; Leon et al., 2015) (e.g., 
the world heritage Sundarbans mangroves), wetlands (Leon et al., 2015; Marfai et al., 2015), beaches (Dhar 
and Khirfan, 2016; Betzold and Mohamed, 2017), and degradation of medicinal plants (Abedin et al., 2014) , 
a reduction in soil fertility (Abedin et al., 2014) and coral bleaching (Petzold and Ratter, 2015; Hagedoorn et 
al., 2019) leading to a loss of reefs and beach erosion (Dhar and Khirfan, 2016) 

Climate change impacts on Artic residents includes transformed homelands (Sakakibara, 2017) 

Biodiversity and genetic diversity loss 

Loss of biodiversity (Abedin et al., 2014; Jones and Clark, 2014; Ataur Rahman and Rahman, 2015) 

Habitat range shifts 

Shifts in distribution, abundance and seasonal migrations of commercially valuable marine species (changes 
harvested fish abundance) (Hobday et al., 2016) 

Sub-lethal species impacts 

Shifts in reproductive patterns of commercially valuable marine species (changes harvested fish abundance) 
(Hobday et al., 2016) 

Reduced growth and survival of species (Cooley et al., 2016) and loss of fish stocks (Hagedoorn et al., 2019)  

Lack of predator avoidance of several finfish (Cooley et al., 2016) 

Bivalve shellfish impacts caused by ocean acidification (Cooley et al., 2016) 

Likely to enhance the biological effect of other simultaneous global changes (temperature increase, 
deoxygenation) (Cooley et al., 2016) 

Invasive alien species 

Social: 

Decreased access to ecosystem services 

Loss of marine ecosystem services (Cooley et al., 2016) 

Reduced access to freshwater (Abedin et al., 2014; Dhar and Khirfan, 2016; Smith and Rhiney, 2016) 

Coastline protection by coral reefs (Cooley et al., 2016) 

Local decline in agriculture and fisheries 

Impaired food production (Abedin et al., 2014), with impacts on fisheries and agriculture (Abedin et al., 
2014; Nagy et al., 2014; Ataur Rahman and Rahman, 2015; Jamero et al., 2018; Jurjonas and Seekamp, 
2018) 
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Fishing days and jobs lost due to rough seas (Ataur Rahman and Rahman, 2015) 

Movement of fishing vessels into other areas (Hobday et al., 2016) 

Ocean acidification impacts marine harvests (Cooley et al., 2016) 

Fisheries closures (Bennett et al., 2016) 

MPAs may impact communities through Fisheries closures (Bennett et al., 2016) 

Increasing living costs 

Communities forced to buy food they normally produce (Smith and Rhiney, 2016) and increases in food 
prices (Smith and Rhiney, 2016) 

Increases in price of imported water (Jamero et al., 2018) 

Livelihoods impacts 

Livelihood impacts (Abedin et al., 2014; Nagy et al., 2014; Leon et al., 2015; Dhar and Khirfan, 2016; Smith 
and Rhiney, 2016) 

Livelihoods have shifted away from fishing and rice farming towards agriculture and tourism (Nagy et al., 
2014; Bennett et al., 2016) 

Increased food insecurity 

Damage to crops and infrastructure (Cinner et al., 2018), food security (Smith and Rhiney, 2016; Hagedoorn 
et al., 2019) 

Public health risks increased 

Health problems (Abedin et al., 2014) e.g. diarrhoea and skin infections (Marfai et al., 2015),  prevalence of 
diseases (Ataur Rahman and Rahman, 2015) 

Mental health (Ford et al., 2016) 

Cultural and traditional knowledge impacts 

Increases in infrastructure and technology (communications, media, social services, disaster warning systems 
and transportation modes) have changed traditional communities (Bennett et al., 2016), with changing 
demographics in communities due to an influx of outside organisations and migrants and efflux of youth 
(Bennett et al., 2016) 

Gender-related impacts 

Gender bias due to water collection by females (Abedin et al., 2014), including harassment (Abedin et al., 
2014) 

Increased social vulnerability 

Vulnerability (Broto et al., 2015; Bennett et al., 2016) to tropical cyclones and floods (Ataur Rahman and 
Rahman, 2015), especially within low lying (Ataur Rahman and Rahman, 2015; Broto et al., 2015; Leon et 
al., 2015) settlements (Marfai et al., 2015), resulting in loss of lives (Ataur Rahman and Rahman, 2015; 
Linkon, 2018) 

Serious socio-economic and cultural impacts (weakening of social fabric, marginalization, unemployment 
and destruction of property by erosion) (Ataur Rahman and Rahman, 2015) 

Decreased access to local government services 

Impacts on education (Abedin et al., 2014) including closure of schools (Marfai et al., 2015) 

Socio-economic entrapment and decline 

Affecting mostly poor developing communities through poverty-environment trap (Barbier, 2015a) 

Through an increase in government and outside organisation supporting communities, there is a perception 
that the collective have limited control over changes (locus of power is outside of individuals) (Bennett et al., 
2016) 
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Habitat loss compounds damage to infrastructure and weakens the social fabric of coastal communities 
(Bennett et al., 2016) 

Global declines in food stocks 

Public areas access restrictions 

Decline in perceived value of human systems 

Decrease in sea ice impacting culture and economy of Inuit (Sakakibara, 2017) 

Conflict and migration 

Social conflict (Abedin et al., 2014) 

Large-scale migration (Abedin et al., 2014) 

Impacting mostly rural areas (Abedin et al., 2014) 

Conflicts between coastal resource users (Ataur Rahman and Rahman, 2015) 

Governance: 

Increased geopolitical tensions 

Increased economic and geopolitical tensions and instabilities (Abedin et al., 2014) 

Economic: 

Increased business and living costs 

Financial costs for infrastructure repair and loss of archaeological sites (Sakakibara, 2017) 

Rising prices of goods and declining incomes (Bennett et al., 2016) 

Business disruptions and losses 

Increasing financial losses (Audefroy and Sánchez, 2017) 

Economic loss (Linkon, 2018) of tourism revenue from beach erosion (Dhar and Khirfan, 2016) 

Increases in coastal flooding causing economic losses (Esteban et al., 2017) 

Disruption of economic activities (price increases) (Marfai et al., 2015) 

Decreased value of assets/ products 

 Adaptation responses  

Physical: 

Hard engineering responses 

Includes seawalls, breakwaters and land reclamation (Jamero et al., 2018), coastal dykes (Esteban et al., 
2017), artificial reefs (Bennett et al., 2016) 

Coastal defence structures (Betzold and Mohamed, 2017) are often poorly designed and constructed increase 
erosion and reducing long term sustainability of beaches (Betzold and Mohamed, 2017) 

(Location specific knowledge) including orientation of houses for sunlight (Ataur Rahman and Rahman, 
2015), housing design (raising floors; natural windbreaks, bamboo in houses for wind protection) (Ataur 
Rahman and Rahman, 2015) 

Building design, location, orientation, elevation, construction materials and reinforcement measures 
implemented (Linkon, 2018) 

Adaptation responses included Raising the level of the house and building of houses with additional floors, 
building small dykes (using low quality building materials were cost was a factor, development of communal 
works systems to clear drainage around settlements and access to micro-finance (Marfai et al., 2015) 

Paper focuses on perceptions of seawalls, which have been favoured, but implemented in an ad hoc manner. 
Communities favour these with little awareness of alternative approaches, despite problems caused by 
seawalls (Betzold and Mohamed, 2017) 
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Soft engineering responses and buffers 

Beach nourishment, reef conservation or relocation (Betzold and Mohamed, 2017) 

Planting design and selection of trees (raising of crops to prevent water-logging; seasonal planting for wet 
and dry season) (Ataur Rahman and Rahman, 2015) 

Monitoring of beach profiles and coastal erosion along the Uruguayan coastal and incorporation of climate 
issues in the lagoon's management plan(Nagy et al., 2014)  

Integrated hard and soft engineering 

Traditional landscaping (building homesteads on a raised mound) (Ataur Rahman and Rahman, 2015), 
wooden platforms on excavated earth - with 2 or 3 ponds (conservation of floodplain) (Ataur Rahman and 
Rahman, 2015) 

Hard engineered and soft ecological adaptation responses (Dhar and Khirfan, 2016) 

Ecological: 

Ecosystem restoration and protection 

Habitat conservation (Petzold and Ratter, 2015) and restoration (Barbier, 2015a) in savannah (Bennett et al., 
2016), mangroves (Bennett et al., 2016; Jamero et al., 2018), beach nourishment (Dhar and Khirfan, 2016) 
and coral reef management (Jamero et al., 2018) 

Sundarbans mangrove forest provides protection from storms (Ataur Rahman and Rahman, 2015) 

Community EbA measures identified include the establishment of marine and terrestrial protected areas 
(Hagedoorn et al., 2019) 

Restoring coastal forests (Hagedoorn et al., 2019) through a participatory mangrove plantation programme 
(Ataur Rahman and Rahman, 2015)  

Monitoring protected areas (Hagedoorn et al., 2019) 

Ecosystem-based adaptation (favouring no or low regret adaptation options) (Dhar and Khirfan, 2016) 

Nature based solutions 

Invasive species management (Hagedoorn et al., 2019) 

Implementing a riparian buffer (Hagedoorn et al., 2019) 

Planting trees (Hagedoorn et al., 2019) 

Compile a list of migratory birds and endangered species, use of soft coastal bio-physical protection 
measures such as beach and dune vegetation, and wind fencing (Nagy et al., 2014) 

Social: 

Improving access to/ storage of natural resources 

Water conservation practices (Abedin et al., 2014), including rainwater harvesting and storage (Abedin et al., 
2014; Ataur Rahman and Rahman, 2015; Bennett et al., 2016; Jamero et al., 2018), personal filtration 
devices (for arsenic) (Abedin et al., 2014), water boiling (Abedin et al., 2014), collection from distant, but 
safe sources (Abedin et al., 2014) 

Stop groundwater extraction in Jakarta suggested to stop land subsidence (Esteban et al., 2017) 

Improving agricultural or fisheries practices 

Improving animal husbandry, increasing agricultural and seafood production and processing to improve 
livelihoods (Bennett et al., 2016) 

Improving fishing community adaptation efforts by predicting future coastal-marine food resources, and co-
developing adaptation options (Hobday et al., 2016) 

Introduction of climate resistant crops (Hagedoorn et al., 2019) 

Crop diversification (Hagedoorn et al., 2019) and changing harvesting techniques (Hagedoorn et al., 2019) 
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Screening of tube well water for contamination (Abedin et al., 2014) 

Sustainable resource use 

Waste management (Bennett et al., 2016) 

Improved waste management to reduce pressure on ecosystems. (Hagedoorn et al., 2019) 

Reducing resource extraction (Hagedoorn et al., 2019) 

Sustainable technologies (Ataur Rahman and Rahman, 2015) 

Sustainable household management 

Cleaning community areas and the prevention of weeds/ pests (Hagedoorn et al., 2019) 

Local foods, materials and structures were used to strengthen housing, provide alternative food sources, 
adopt adapting practices (like stilts), mangrove restoration for protection and observations of the 
environment for storm prediction (Hiwasaki et al., 2015) 

Small-scale response strategies by communities to flooding included moving household possessions to 
higher levels; evacuation of children and elderly to mosques, but  this was uncoordinated; receiving food 
parcel support (but lacked medicines)  (Marfai et al., 2015) 

Maintaining or switching livelihoods 

Maintaining traditional fisheries livelihoods and supporting alternative livelihoods (Bennett et al., 2016) like 
nature based tourism (Bennett et al., 2016) 

Community participatory programmes 

Common currency or time banking systems where individuals are incentivised to volunteer (Cinner et al., 
2018) 

Empowering communities through participatory processes such as adaptive co-management (Cinner et al., 
2018) 

Use of adaptive, participatory, and transformative methods (Perry, 2015) 

Participatory urban planning in Maputo incorporating highly technical knowledge from climate scenarios 
focussing on informal settlements (Broto et al., 2015) 

Adaptation responses were based on top-down and bottom-up knowledge(Nagy et al., 2014)  

Using participatory methods and community-based approaches so they are useful and implementable 
(Bennett et al., 2016) 

Multi-stakeholder, participatory planning process  prioritising rural livelihood adaptation strategies (Wise et 
al., 2016) 

Developing adaptive networks 

Formation of community water committees to address drought (Abedin et al., 2014) 

Access to networks (Cinner et al., 2018) 

Improving access to community services 

National government: Providing construction materials for housing repair and acquisition of new water 
tanks, build new seawalls; Municipal: relocate island residents to mainland, provide funds for road 
maintenance; NGO: build temporary classrooms, donate stilted houses, elevate floors of classrooms, create 
rice cooperatives, establish microfinance; Barangay Council: elevate and extend roads, repair and elevate 
damaged infrastructure like seawalls, acquire large evacuation boats, increase electricity supply; 
Community: clean shared spaces after tidal flooding (Jamero et al., 2018) 

Empowering communities and addressing inequality 

Societal organisation to enable (or inhibit) cooperation, collective action and knowledge sharing (Cinner et 
al., 2018) 
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Empowering communities through removing barriers that may inhibit people's ability to exercise agency 
(Cinner et al., 2018) 

Building socio-ecological resilience 

Build capacity of tropical coastal communities to adapt to climate change (Cinner et al., 2018) 

Factors contributing to higher vulnerability included a lack of coordination, poor environmental conditions, 
poor infrastructure maintenance and lack of public concern.  

Building social capital (Cinner et al., 2018) 

Governance: 

Adopting/ mainstreaming sustainability policies 

Improving disaster response programmes 

Increased focus on vulnerability (looking at stressors, sensitivity to change, adaptive capacity (Bennett et al., 
2016) 

Improving implementation and coordination of policies 

Switching between adaptation strategies  through flexibility in policies and the removal of barriers (Cinner et 
al., 2018) 

Developing partnerships and building capacity 

Institutional support to legitimise and sustain adaptation through capacity building (Broto et al., 2015) 

Social investments for sustaining livelihoods (Cinner et al., 2018) 

Design of an agreed participatory multi-criteria model to manage a lagoon sand bar(Nagy et al., 2014) 

Improving access to community services 

Government programme to improve tap water (Bennett et al., 2016) 

Pursuing climate justice 

Adoption of a climate justice framework (Smith and Rhiney, 2016) 

Factors driving vulnerability within communities are a function of centuries of economic neglect and 
political marginalization  (Smith and Rhiney, 2016) 

Economic: 

Improving financial resources availability 

Engaging with economic programmes e.g. the King of Thailand's sufficiency economy (Bennett et al., 2016) 

Improving access to insurance products 

Building assets could improve access affordable credit and insurance (Cinner et al., 2018) 

Knowledge: 

Improving planning processes 

Increased focus on vulnerability (looking at stressors, sensitivity to change, adaptive capacity (Bennett et al., 
2016) 

Spectrum of adaptive capacity (from vulnerable to resilient) (Jurjonas and Seekamp, 2018) 

Improving forecasting and early warning systems 

Improved planning for disasters (Bennett et al., 2016) 

Improving decision support frameworks 

Consideration of 'futures' planning methodologies (visioning, backcasting and scenario planning) (Bennett et 
al., 2016) 
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Resilience assessment framework for coastal rural communities in low lying Asian mega-deltas (DasGupta 
and Shaw, 2015) 

Coordinating top down and bottom up approaches 

Combine top-down scientific models and bottom-up approaches involving community participatory action 
research using design charrettes. 

Framework to foster resilience dialogue during community conversations; spark adaptive capacity from the 
bottom-up. 

Integrating top down with bottom-up approaches (Hagedoorn et al., 2019) 

Top-down and bottom-up approaches to identify adaptation options (Nagy et al., 2014) 

Integrating knowledge systems 

Observations using traditional knowledge to forecast extreme events may increase the resilience of coastal 
communities (Audefroy and Sánchez, 2017) 

Integrating scientific and indigenous knowledge (Cinner et al., 2018) 

Local and indigenous knowledge related to climate-related hazards, including folklore, rituals and 
ceremonies that reinforce religious, customary and traditional beliefs, which can strengthen community 
resilience (Hiwasaki et al., 2015) 

Integration of local knowledge and traditional practices with scientific approaches in disaster risk reduction 
(Audefroy and Sánchez, 2017) 

Humanistic research and community based projects in rural and indigenous communities often produce 
understandings of climate and climate change that are incompatible with statistical finds of climate science  
(Sakakibara, 2017) 

Participatory model integrates traditional/local and scientific knowledge (Leon et al., 2015) 

Increasing vulnerability assessments incorporating local and scientific knowledge (Bennett et al., 2016) 

Vulnerable Arctic communities confront uncertainty through reinforcing traditional cultural practices and 
cultural response (Sakakibara, 2017) 

Individual adaptation during building of dwelling units using indigenous knowledge (Linkon, 2018) 

Building agency in communities by incorporating local or customary knowledge, skills, and management 
into both science and policy  (Cinner et al., 2018) 

Call for indigenous people to be primary actors in the monitoring of and adaptation to climate change  
(Smith and Rhiney, 2016) 

Improving location and context specific knowledge 

Need to understand structural inequalities (Broto et al., 2015) 

Developing and understanding alternative community adaptation options (Hobday et al., 2016) 

Improved use of local knowledge and traditional practices to strengthen the resilience of communities to 
climate change (Audefroy and Sánchez, 2017) 

Perceptions of measures to increase resilience in Jakarta include build stronger and bigger dykes or a giant 
sea wall, plant mangroves, elevate  districts adjacent to dykes and relocation of properties (Esteban et al., 
2017) 

Improving scientific communication 

Access to information / knowledge  (Cinner et al., 2018) 

Stakeholder identification, outreach and education 

Building regional skill-sets to understand, predict and communicate coastal vulnerability (Hobday et al., 
2016) 
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Improving education (Bennett et al., 2016), in environment (Bennett et al., 2016), English language training 
(Bennett et al., 2016) 

Ocean acidification responses include education/ outreach to inform policymakers, evidence-based action 
and policy (Cooley et al., 2016) 

Multiple adaptation responses used 

Synergistic adaptation responses: 

Combines natural and traditional adaptation practices and defence mechanisms (Ataur Rahman and Rahman, 
2015) 

Complementary  actions for managing the environment, community livelihoods and adapting to climate 
change (Bennett et al., 2016) 

Synergize EbA with community-based adaptation (Scarano, 2017) to capitalise on the experiential 
knowledge of local communities in adapting to climate change (Dhar and Khirfan, 2016).  

Fisheries management interventions and CBA (Hobday et al., 2016) 

multiple adaption pathways (Wise et al., 2016) 

Benefits  

Physical: 

Physical processes supported 

Protection from wind, saltwater intrusion, landslides and erosion (Hiwasaki et al., 2015) 

Coastal infrastructure resilience increased 

Flood protection (Betzold and Mohamed, 2017) 

Ecological: 

Physical processes supported 

Coastal forests attenuate wave and wind speed and bind soils for erosion protection) (Ataur Rahman and 
Rahman, 2015) 

Increased biodiversity 

Morass (wetland - biodiversity resource; protects species) (Dhar and Khirfan, 2016) 

Social: 

Access to sustainable ecosystem services 

Traditional disaster reduction methods and location specific knowledge (Ataur Rahman and Rahman, 2015) 
helps secure protection against tidal surges and strong winds; landsides (Ataur Rahman and Rahman, 2015) 

Improved water security (when in drought) (Hiwasaki et al., 2015)  

Plants for medicinal purposes (Ataur Rahman and Rahman, 2015) 

Improved access to resources 

Provide alternative food sources (Hiwasaki et al., 2015)  

Human systems supported 

Improved socio-economic services 

Building social capital (bonding, bridging and linking) (Cinner et al., 2018). 

Creation of social capital (trust-building, creation of social norms) (Hagedoorn et al., 2019) 

Strengthening of social capital to improve community resilience  (Smith and Rhiney, 2016) 

Improved employment and livelihoods 

Improved health 
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Improved community participation 

Promotes participatory discussion-making and agency (Jurjonas and Seekamp, 2018) 

Better informed communities 

CBA benefits include practical information and benefits; future focus; evaluation; accountability across 
scales (Ford et al., 2016) 

Better prediction of natural hazard events (Hiwasaki et al., 2015) 

Identified barriers to capacity building (Jurjonas and Seekamp, 2018) 

Improved integration of knowledge systems 

Traditional disaster reduction methods and location specific knowledge (Ataur Rahman and Rahman, 2015) 
helps secure protection against tidal surges and strong winds; landsides (Ataur Rahman and Rahman, 2015) 

Empowering women and children 

Empowerment of women and children in a male dominated society (Leon et al., 2015) 

Increased adaptive capacity 

Increased community perception of resilience (Jurjonas and Seekamp, 2018) 

Social learning helps communities adapt to change (Nursey-Bray et al., 2015) 

Improved disaster preparedness 

Communities are better prepared for disasters and are improved in their risk management (Audefroy and 
Sánchez, 2017) 

Empowered communities 

Improved community cohesion 

Strengthening networks, building trust, enhanced volunteerism, social cohesion (Cinner et al., 2018) 

Strengthen social relations to build community resilience  (Hiwasaki et al., 2015) 

Community consensus on climate threats (Jurjonas and Seekamp, 2018) 

Reduced inequality 

Building socially just and robust coastal management strategies (Nursey-Bray et al., 2015) 

Governance: 

Political and institutional capacity developed 

Build capacity (Ford et al., 2016; Hobday et al., 2016) 

Strengthened participatory governance 

Promotes citizenship and collective rights, empowerment and decentralising power (promotes the co-
construction of knowledge) (Broto et al., 2015) 

Better planning processes supported 

Participation in development planning (Wise et al., 2016) 

Improved coordination and decision making 

Building political and institutional relationships (Broto et al., 2015) 

Improved implementation and policies 

Initiated discussions on other things like service provision (Broto et al., 2015) 

Better communication 

Improved transparency and trust 

Climate justice advanced 
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Climate justice below the national scale (linked to developmental context)  (Smith and Rhiney, 2016) 

Reduced conflict 

Improved security 

Improved adaptive management 

Can improve efforts in disaster risk reduction - as it can help develop coping mechanisms for inhabitants in 
flood-prone areas (Marfai et al., 2015) 

Development supported 

Economic: 

Increased revenue/ income 

Assets can improve market accessibility and catalyse other types of development (Cinner et al., 2018) 

Increased financial resources available 

Reduced operational and capital costs 

Investment strengthened 

Knowledge: 

Informed decision making tools 

Promotes adaptive co-management (Nagy et al., 2014) 

Improved co-production of knowledge 

Communities identified what is important to them (local knowledge). The process led to co-learning with 
potential to lead to more localised action (Bennett et al., 2016) 

Co-production of knowledge to empower low income communities (Broto et al., 2015; Hobday et al., 2016) 

Co-production of knowledge (Nagy et al., 2014) 

Utilise indigenous/local knowledge (Ford et al., 2016) 

Local knowledge included community engagement (Leon et al., 2015) 

Improved relevance of products  

Improved education and outreach 

Improved awareness 

Better understanding of structural inequalities in relation to climate change (Broto et al., 2015) 

Better understanding of risk and acceptance of adaptation response (Lieske et al., 2014) 

Empowers stakeholders (Nagy et al., 2014) 

Addressing the climate knowledge gap  (Smith and Rhiney, 2016) 

 Co-benefits  

Co-benefits for human development and adaptive capacity (Wise et al., 2016) 

Constraints and limitations  

Physical: 

Seawalls were typically poorly designed and constructed, and when compounded by sand winning, disrupted 
dynamic beach processes, and in so doing increased coastal erosion and the ability of the beach processes to 
respond to changing ocean conditions (Betzold and Mohamed, 2017) 

Engineering solutions in SIDS are sometimes problematic, being characterised by poor design and 
construction, especially in rural areas, limited access to human, technical and financial capacity and a lack of 
data on site-specific conditions resulting in failure after short time periods (Betzold and Mohamed, 2017) 
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Seawalls negatively affect beach erosion within increased erosion at edges or bottom of seawalls leading to 
collapse and abandonment, while increasing or displacing beach erosion (Betzold and Mohamed, 2017) 

Impacts are increasingly complex and unpredictable through direct and downstream effects of climate 
change (Bennett et al., 2016) 

Dykes as hard defences in Jakarta are threatened by continual subsidence and possible but communities 
underestimate the level of vulnerability (Esteban et al., 2017) 

Ecological: 

Species selected (exotic) for mangrove plantations have not always been  appropriate for location, and 
combined with poor planting methods have exacerbated damage (Ataur Rahman and Rahman, 2015) 

Beach nourishment disturbed natural processes and adversely affected beach ecosystems (Betzold and 
Mohamed, 2017) 

Undermining the long-term sustainability of coastal ecosystems trade-offs in adaptation strategies catalysing 
socio-ecological (Cinner et al., 2018) and poverty-environment (Barbier, 2015a) traps 

Lack of synergy between EBA and CBA at regional scales (especially in practice) (Dhar and Khirfan, 2016) 

Social: 

Thick shelter beds protect the coastal zone but have shifted wind damage to interior regions (Ataur Rahman 
and Rahman, 2015) 

Factors that impede individual or community response to coastal erosion and flooding include lack of 
resources, knowledge and capacity (Betzold and Mohamed, 2017) 

Lack of capacity and resources impedes alternative measures that are adapted to local conditions, or the 
enforcement of rules and regulations such as a ban on sand mining (Betzold and Mohamed, 2017) 

Considerable socioeconomic barriers to adaptation at various scales (Ford et al., 2016) 

CBA is not a panacea: Not all communities want to have the level of engagement implied by CBA, there 
may be general participation problems with entrenchment of personal views and local power dynamics may 
shape the process causing tensions, resistance and withdrawal (Ford et al., 2016) 

Maintaining a climate adaptation focus (communities have more other pressing issues that require attention 
(Ford et al., 2016) 

Younger generation are abandoning rituals and practices (Hiwasaki et al., 2015) 

Low levels of participation in planned measures, addressing symptoms and not causes and lack of local 
consultation (Jamero et al., 2018) 

Existing communities' traditional coping mechanisms may be overwhelmed and not be able to respond 
(Smith and Rhiney, 2016) 

Multi-level participatory approach limitations include: the structured social learning process failed to expose 
and address the systemic causes of vulnerability, stakeholders may have recognised systemic issues, but 
were unwilling to challenge them due to lack of confidence or capacity, or gave precedence to meeting 
immediate livelihood needs (Wise et al., 2016) 

Governance: 

Lack of enforcement of rules (Betzold and Mohamed, 2017) 

New environmental management measures e.g. MPAs may impact communities through fisheries closures 
(Bennett et al., 2016) 

Limitation like systemic issues, power relations and elite capture persisted despite participatory process 
(Broto et al., 2015) 

Institutional support dwindled after the project finished (Broto et al., 2015), but participatory processes 
require support (Broto et al., 2015) 

Lack of flexibility in governance processes  (Jamero et al., 2018) 
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Planned measures were not enough  (Jamero et al., 2018) 

Maladaptation in autonomous measures include negative environmental consequences for elevating floors of 
classrooms  using coral stones and using trash as foundation for new houses (Jamero et al., 2018) 

The Belize national climate adaptation policy has not been implemented. With typically top-down hard and 
soft engineering measures such as sea-walls, land use planning, ecosystem conservation, building codes, 
insurance schemes and managed retreat of settlements, the strategies were ineffective; individual properties 
were submerged; the communal beach area reduced and tourism development area destroyed (Karlsson and 
Hovelsrud, 2015) 

The implementation of pro-active, planned adaptation to reduce community vulnerability is strongly 
dependent upon people's perception of the threat posed to their communities at the local scale (Lieske et al., 
2014) 

Uncoordinated responses during flood events produces greater exposure to hazards, and notes that 
community responses remain below the ideal with a risk of maladaptation (Marfai et al., 2015) 

Very few transformative strategies were identified to address deeper systemic issues (Wise et al., 2016) 

Economic: 

Limited local resources, therefore important role of donors (Betzold and Mohamed, 2017) 

Access to a significant amount of financial resources and the transfer of technologies  (Smith and Rhiney, 
2016) 

Knowledge: 

A persisting perception exists that traditional knowledge is socially constructed and difficult to integrate with 
scientific and institutional information. It is reinforced by communication in a top-down manner (Audefroy 
and Sánchez, 2017) 

Scenario planning capacity limitations related to local understanding of climate change and its local 
implications (Bennett et al., 2016)  

Data availability (Broto et al., 2015) 

People underestimate the severity of vulnerability due to their regular exposure (Esteban et al., 2017) 

Conflict at the interface of Western and local/indigenous knowledge within a specific cultural context, which 
may compromise long-term sustainability (Ford et al., 2016) 

The multifaceted role of the researcher to go beyond standard academic practice (Ford et al., 2016) 

Potential for tokenistic engagement of communities, consultation fatigue, and imbalance between Western 
and indigenous knowledge in this work (Ford et al., 2016) 

Developing comparative approaches across regions that differ in political institutions, socio-economic 
community demographics, resource dependency and research capacity is challenging (Hobday et al., 2016) 

Social learning has not made the transition from theory to practice (Nursey-Bray et al., 2015) 

Costs  

Economic costs due to acute ocean acidification events in the Pacific Northwest, USA have jeopardized the 
$270 million, 3200 jobs/year shellfish aquaculture industry in Washington State (Cooley et al., 2016) 

Large projected economic costs associated with ocean acidification include $75-187 million a year for 
shellfish harvests in USA; global shellfish harvests at $6 billion a year; coral reef impacts at $0-900 billion a 
year (Cooley et al., 2016) 

Costs associated with management options for the coastline: accommodating sea level rise and flooding 
include tax burdens on citizens, high maintenance costs and possible biodiversity loss and with management 
retreat include loss of properties without compensation, flooding of agricultural land, loss of species and 
recreational activities (Jones and Clark, 2014) 

Risk of maladaptation from substitution of materials to build additional floors by low income households, 
which were structurally weak (Marfai et al., 2015) 



FINAL DRAFT Chapter 5 Supplementary Material IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute SM5-63 Total pages: 110 

 Human System: Built infrastructure 

Anthropogenic co-drivers  

Physical: 

Growing coastal populations (Perkins et al., 2015; Moosavi, 2017; Carter, 2018), urbanization (Kabisch et 
al., 2017) 

Hard engineering structures  (Gracia et al., 2018) 

Hardening of surfaces and run-off impacts (Kabisch et al., 2017) 

Pollutants (Zikra et al., 2015; Peng et al., 2017) including Nitrogen & Sulphur (Kaja and Mellic, 2017) 

Industrial activities (Martínez et al., 2018) 

fires (Martínez et al., 2018) 

Ecological: 

Loss and degradation of natural areas (Kabisch et al., 2017) 

Social: 

Social vulnerabilities (Woodruff, 2018) 

Governance: 

Insufficient or inappropriate planning and policy (Becker et al., 2015) 

poor governance (Vikolainen et al., 2017) and less public participation (Martínez et al., 2018) 

 Impacts 

Physical: 

Coastal physical processes disrupted 

Coastal flooding (Villatoro et al., 2014; Shope et al., 2016; Kaja and Mellic, 2017; Brown et al., 2018; 
Elshorbagy et al., 2018) 

Urban land use changes (Carter, 2018) 

Coastal erosion (Moosavi, 2017; Martínez et al., 2018), including accelerated bottom erosion in front of the 
structure and down drift scouring  (Gracia et al., 2018) 

Large morphological changes to island coastlines (Shope et al., 2016) 

Disturbance of sediments supply and beach reduction  (Gracia et al., 2018) in communities down drift 
(Vikolainen et al., 2017) 

Alteration of alongshore sediment transport (Gracia et al., 2018) 

Ground water saline intrusion (Shope et al., 2016) 

Catchment physical processes disrupted 

Coastal infrastructure damage 

Damage to infrastructure (Villatoro et al., 2014; Shope et al., 2016; Asadabadi and Miller-Hooks, 2017), 
including transport (Colin et al., 2016; Forzieri et al., 2018), freight, and equipment  (Becker et al., 2015), 
energy (Brown et al., 2018), hydropower generation (Forzieri et al., 2018; Mikellidou et al., 2018) and water 
infrastructure (Friedrich and Kretzinger, 2012; Elshorbagy et al., 2018) 

Salt mobilization and crystallization in buildings(Kaja and Mellic, 2017) 

Wind damage (Kaja and Mellic, 2017) 

Deterioration of marine steel (Peng et al., 2017) 

Disruption of urban systems 

Flooding can affect the quality of coal (Mikellidou et al., 2018) 
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Biological infestation in buildings(Kaja and Mellic, 2017) 

Systemic disruptions (relate to system function, capability or capacity) (Rahimi et al., 2014) 

Land subsidence 

Landslide/debris (Jeong et al., 2014) 

Social: 

Decreased access to ecosystem services 

hydropower generation impacts through reduced flow (Antwi-Agyeia et al., 2018) 

Local decline in agriculture and fisheries 

Shortened growing season with implications for the agricultural and fisheries sectors (Forzieri et al., 2018)  

Extensive damage to crops and livestock leading to famine (Antwi-Agyeia et al., 2018) 

Increasing living costs 

Livelihoods impacts 

Increased food insecurity 

Food insecurity (Elshorbagy et al., 2018; Martínez et al., 2018) 

Extensive damage to crops and livestock leading to famine (Antwi-Agyeia et al., 2018) 

Public health risks increased 

Potential risk to bathers (Gracia et al., 2018) 

Health (Martínez et al., 2018) 

Cultural and traditional knowledge impacts 

Gender-related impacts 

Increased social vulnerability 

Increased social vulnerabilities (inequality) (Woodruff, 2018) 

Decreased access to local government services 

Restricted public access (Gracia et al., 2018) 

Socio-economic entrapment and decline 

Global declines in food stocks 

Public areas access restrictions 

Decline in perceived value of human systems 

Economic: 

Increased business and living costs 

Clean up costs (Becker et al., 2015) 

Business disruptions and losses 

Loss of business and delays in commerce (Becker et al., 2015)  

Reduced hydropower generation efficiency (Mikellidou et al., 2018) 

Loss of economic activity due to damaged/ destructed infrastructure (Mikellidou et al., 2018) 

Decreased value of assets/ products 

 Adaptation responses  

Physical: 

Supporting physical processes 
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Erosion control system/Framework (Jeong et al., 2014) 

Hard engineering responses 

Construction of groins, seawalls, revetments, gabions and breakwaters (Friedrich and Kretzinger, 2012; 
Moosavi, 2017; Vikolainen et al., 2017; Wadey et al., 2017) 

Elevating infrastructure and improving drainage (Perkins et al., 2015; Becker et al., 2016; Colin et al., 2016; 
Asadabadi and Miller-Hooks, 2017; Brown et al., 2018) 

Construction of an artificial island named Hulhumale (Wadey et al., 2017) 

Soft engineering responses and buffers 

Integrated hard and soft engineering 

Ecologically enhanced hard engineered infrastructure (Perkins et al., 2015; van der Nat et al., 2016; 
Moosavi, 2017) 

Hard engineering structures with EBA approaches (Jeong et al., 2014; Perkins et al., 2015; Gracia et al., 
2018) 

Managed retreat and coastal realignment 

Relocation of infrastructure (Friedrich and Kretzinger, 2012Colin, 2016 #27; Wadey et al., 2017) 

Ecological: 

Ecosystem restoration and protection 

Land banking to secure spaces to implement green infrastructure (Carter, 2018) 

Bioengineering 

Sandscaping (Vikolainen et al., 2017) with EBA approaches (Jeong et al., 2014; Perkins et al., 2015; Gracia 
et al., 2018) 

Assisted evolution and relocation 

Nature based solutions 

Nature-Based Solutions (urban green infrastructure and ecosystem-based adaptation (van der Nat et al., 
2016; Kabisch et al., 2017; Gracia et al., 2018) 

Landscape-based approach (Kaja and Mellic, 2017) 

Developing approaches to empower local communities to adopt and manage green infrastructure sites 
(Carter, 2018) 

 

Social: 

Community participatory programmes 

Stakeholder involvement  (Becker et al., 2015) 

Developing adaptive networks 

Adaptation networks (Woodruff, 2018) 

Empowering communities and addressing inequality 

Developing approaches to empower local communities to adopt and manage green infrastructure sites 
(Carter, 2018) 

Governance: 

Adopting/ mainstreaming sustainability policies 

Policy development (Becker et al., 2015), including zoning policies (Carter, 2018) and government 
adaptation policies (Woodruff, 2018) 

Consolidate a system of environmental governance (Martínez et al., 2018) 
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ICM (Rosendo et al., 2018) 

Developing partnerships and building capacity 

Increase adaptive capacity (Martínez et al., 2018) 

Knowledge: 

Better monitoring and modelling 

Assessing model and solution frameworks (Asadabadi and Miller-Hooks, 2017) and simulation models 
(Jeong et al., 2014), scenario development and land use modelling methods (Carter, 2018) 

Data-model integration approach. The multi-hazard risk framework includes climate sensitivity of critical 
infrastructures, risk integration and adaptation scenarios (Forzieri et al., 2018) 

Coupled Model Inter-comparison Project Phase 5 (CMIP5)and global climate models (GCMs) (Shope et al., 
2016) 

Improving planning processes 

Infrastructure Planning Support System (Espinet et al., 2016)  

Climatic design for critical infrastructure (Mikellidou et al., 2018) 

Hindcasting and climate modelling (Villatoro et al., 2014) 

Hydro-economic models. Intensity–duration–frequency (IDF) curves and design storms in various regions 
(Elshorbagy et al., 2018) 

 

Improving decision support frameworks 

Risk (Colin et al., 2016) and vulnerability assessment tools e.g. ARCoES DST (Brown et al., 2018) 

Minimum assumption credible design (Becker et al., 2016) 

A standard climate narrative is essential to assess port risk, vulnerability and resilience (Mutombo and Ölçer, 
2016) 

Sustainable engineered systems (SES) and early warning systems (Rahimi et al., 2014) 

Integrating knowledge systems 

Local communities understanding the local knowledge systems (Kaja and Mellic, 2017) 

 A consistent analysis framework, provided by the SPRC approach (Villatoro et al., 2014) 

Multiple adaptation responses used 

Physical: 

Benefits  

Physical: 

Physical processes supported 

Increase mitigation and coastal erosion co-benefits (Gracia et al., 2018) 

Coastal infrastructure resilience increased 

Protection of waste water infrastructure (Friedrich and Kretzinger, 2012) 

Critical infrastructure is resilient to climate change impacts (Moosavi, 2017; Wadey et al., 2017; Mikellidou 
et al., 2018) 

Engineered systems are built, maintained and eventually recycled within its larger embodied ecological 
systems(ecosystems) (Rahimi et al., 2014) 

Improved infrastructure functionality 

Improve the functionality of critical infrastructure   (Mikellidou et al., 2018) 
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Increased structural heterogeneity 

Ecological: 

Ecosystem/ ecological resilience supported 

Stimulate the resilience of natural systems (Gracia et al., 2018) 

Improves ecosystem-based management (van der Nat et al., 2016) 

Physical processes supported 

Providing ecological defines against coastal erosion (Gracia et al., 2018) 

Increased biodiversity 

Stimulate biodiversity conservation (Perkins et al., 2015; Gracia et al., 2018) 

Creating habitat and protection of biodiversity (Vikolainen et al., 2017) 

Social: 

Access to sustainable ecosystem services 

Important ecosystem services secured (Perkins et al., 2015) 

Improved health 

Improved health and social benefits (Kabisch et al., 2017) 

Empowered communities 

Cultural change and higher empowerment of society around urban problems related to ecosystems and 
nature (Martínez et al., 2018) 

Inspiring and encouraging community participation in coastal erosion management processes 

Increased adaptive capacity 

Stimulate the resilience of human society to coastal erosion effects (Gracia et al., 2018) 

Improved community cohesion 

Develop common goals (Woodruff, 2018) 

Improved community cohesion  (Woodruff, 2018) 

Reduced inequality 

Reduction of health inequalities (Kabisch et al., 2017) 

Governance: 

Political and institutional capacity developed 

Help governments with lack of technical expertise, staff time and funding (Woodruff, 2018) 

Better planning processes supported 

Greater emphasis on resilience planning (Becker et al., 2015) 

Economic: 

Increased revenue/ income 

Increased tourism (Vikolainen et al., 2017) 

Increased financial resources available 

Attract investment (Woodruff, 2018) 

Reduced operational and capital costs 

Reduce damage costs from future extremes (Jeong et al., 2014) 

Reduced costs of adaptation (Woodruff, 2018) 
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Knowledge 

Informed decision making tools 

Make resource forecast for adaptation projects more transparent, widely accessible, highlights shortfalls of 
current engineering (Becker et al., 2016) 

Monitors future coastal vulnerabilities (sea-level rise &storms) (Brown et al., 2018) 

Scenario planning can support decision makers in understanding and responding to the implications of 
divergent development pathway and contrasting future land use patterns on urban adaptive capacity (Carter, 
2018) 

Help managers and planners with tools to develop adaptation strategies (Colin et al., 2016) 

Provides stakeholders with a roadmap for planned investments in building resilience to future change in sea 
level and extreme events (Brown et al., 2018) 

Significant guidance for design engineers when factoring climate change in infrastructure design calculations 
(Mutombo and Ölçer, 2016) 

improved coastal storm predictions such that the timing, intensity and other important storm variables can be 
forecast quite accurately up to approximately three days in advance (Villatoro et al., 2014) 

The hydrometeorological research community has made significant strides in the direction of quantifying 
possible climate change impacts on precipitation, stream flow, temperature, reservoir operation, flood risks 
and droughts (Elshorbagy et al., 2018) 

Hydro-economic models assess the economic impacts of climate change and water shortage on society 
(Elshorbagy et al., 2018) 

Improved co-production of knowledge 

Shared learning (Woodruff, 2018) 

Improved education and outreach 

increase awareness and facilitate information flow (Woodruff, 2018) 

 Co-benefits  

Constraints and limitations  

Ecological: 

Ecosystems demand space to flourish, and sometimes require more space than conventional hard structures 
(Gracia et al., 2018) 

Furthermore, development of the ecosystem and its functionality depends on the coastal setting, 
hydrodynamics, structure, and habitat dimensions, together with the severity of coastal erosion (Gracia et al., 
2018) 

Nature-based solutions still need to be developed, but they do have a strong action focus (problem rooted in 
climate change solving) (Kabisch et al., 2017) 

The science of sustainability requires a deep understanding of ecological complexity. In addition, others 
believe ecological systems to be the prototypical complex adaptive systems (CAS) with emergent behaviours 
and feedback that influences subsequent interactions (Rahimi et al., 2014) 

Economic: 

Multiple benefits of Sandscaping are hard to calculate and link to funding paths, so the project partners focus 
on what would help to attract more money and make the project possible. (Vikolainen et al., 2017) 

Governance: 

This alone leaves municipalities with unanswered questions regarding the translation of the estimated change 
(e.g., 15% increase in extreme rainfall) to the urban storm water management infrastructure and its temporal 
storage capacity.  Therefore, till such issues are addressed, it is difficult to convince decision-makers of the 
real impacts of climate change on water resource systems and infrastructure (Elshorbagy et al., 2018) 
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Knowledge: 

Does not account for other social benefits derived from preventing flooding occurrences, such as property 
damage averted and reductions in lives lost on flooded roadways, lower risk to emergency personnel, 
avoided evacuations, reduced utility service losses and dampened local or regional, short- and long-term 
economic losses. (Asadabadi and Miller-Hooks, 2017) 

The sample size looked at in the study was relatively small, making it difficult to compare how different 
sectors of stakeholders felt concern about different types of impacts or how different types of stakeholders 
perceived strategies differently  (Becker et al., 2015) 

Pathway that the design follows does not consider any other variables outside of optimization of materials. 
Thus, it is most likely not an optimal alignment to mitigate local wave dynamics and may cut through other 
important infrastructure, densely populated areas, critical habitat, or historic landmarks (Becker et al., 2016) 

Detailed understanding of the local processes also allows the limitations of the ‘static’ morphology within 
the DST to be put in context thought the identification of how uncertainty within the mapped results could 
occur (Brown et al., 2018) 

This study does not account for important climate change related factors including sea level rise, flooding, 
and other extreme events (Espinet et al., 2016) 

The assumptions used in the case study are rather simple in approach due to data limitations (Jeong et al., 
2014) 

knowledge of coastal erosion management by means of ecosystems is, in part, little known and less applied 
and very few studies exist (Gracia et al., 2018) 

Requires longer time frames to establish and needs research to understand dynamic processes (Moosavi, 
2017) 

While successful at increasing biodiversity, as neither baselines nor additional ecological parameters (e.g. 
ecosystem functions) were quantified for these systems, proportional and absolute ecological gains through 
mitigation remain unknown and mitigation effectiveness unquantified. For soft engineering options where 
mitigation outcomes have far greater potential, before-and-after quantifications are limited. (Perkins et al., 
2015) 

Ecological criteria used are rather general and based only on the literature on ecosystem-based management.  
Moreover, the method presented here evaluates flood protection systems based on ecological and 
engineering parameters alone. Lacking financial, political and social aspects, the method can only contribute 
to part of the total evaluation needed to choose a certain design concept. The method ignores the potential 
negative effects of the inherently large footprint of some design concepts. (van der Nat et al., 2016) 

Adaptation networks may be limited in their ability to distribute knowledge and resources to cities that need 
the greatest support. (Woodruff, 2018) 

Each port is unique and located in distinctive geographical locations therefore it is difficult to develop a 
climatic representation using GCMs that fit all port geographical and climatic conditions (Mutombo and 
Ölçer, 2016) 

Understanding of long-term climate risks is limited by the lack of in-depth knowledge on the impacts of 
climate hazards, due to the absence of harmonized loss data recording. Also subject to bias (Forzieri et al., 
2018) 

Diffraction and wind interruption from the small islands within the model domain were not resolved due to 
the coarse spatial resolution of the WW3 domain. Additionally, the effects of ENSO were not considered 
(Shope et al., 2016) 

This study lacks a detailed and up-to-date scientific assessment that considers sea levels, waves and coastal 
floods (Wadey et al., 2017) 

Due to the short time scales covered by the majority of the available records, this often meant ignoring 
longer term trends, such as those resulting from climate variability and human induced sea level rise 
(Villatoro et al., 2014) 

 Costs  
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Ecological: 

Construction based protection system in coastal erosion have proven to be more costly than ecosystem-based 
approaches (Moosavi, 2017; Gracia et al., 2018) 

Economic loss of intertidal ecosystem functions and services can outweigh reclamation (Perkins et al., 2015) 

Sandscaping is the most cost-effective compared to other adaptation measures (Vikolainen et al., 2017) 

Governance: 

Adaptation measures put in place can result in high costs in public services especially water and electricity 
(Martínez et al., 2018) 

Cities participate in adaptation networks if transactional costs are outweighed by benefits  

Economic: 

Different approaches vary in costs but sea walls have proven to be much more costly  (Asadabadi and 
Miller-Hooks, 2017) 

The assessment of flooding and erosion risk on the coast is a complex problem, due to the large spatial 
variability of marine dynamics, geological, ecological and urban coastal environments, defences and 
protection measures, etc. (Villatoro et al., 2014) 

Human System: Fisheries and Aquaculture 

Adaptation responses  

Physical: 

Supporting physical processes 

Prevent ocean mining (Jones et al., 2018)  

Manage catchment vegetation to reduce sedimentation (Bell et al., 2018) 

Hard engineering responses 

Construction of earthen dams and coastal embankments to protect shrimp farms (Ahmed and Diana, 2015) 

Netting, fencing, and higher dikes around shrimp farms (Ahmed and Diana, 2015) 

Soft engineering responses and buffers 

Integrated hard and soft engineering 

Managed retreat and coastal realignment 

Ecological: 

Ecosystem restoration and protection 

Retention of marine wilderness (Jones et al., 2018) 

Ecosystem based adaption measures (Heenan et al., 2015; Hobday et al., 2015; Cheung et al., 2018), 
including restoration of essential habitats (Roberts et al., 2017; Cheung et al., 2018) 

Mangrove plantation and conservation of the Sundarbans for breeding grounds of shrimp (Ahmed and Diana, 
2015) 

Precautionary ecosystem-based integration measures (Ho et al., 2016) 

Improving fishery management through the incorporation of traditional strategies and ecosystem 
management into fisheries management strategies (Weng et al., 2014) 

Mangrove rehabilitation (Harkes et al., 2015) 

Bioengineering 

Assisted evolution and relocation 

Human- assisted evolution (Harvey et al., 2018) 
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Nature based solutions 

Afforestation of greenbelt in shrimp farming communities (Ahmed and Diana, 2015) 

Maintain the structural complexity of fish habitats (Bell et al., 2018) 

Social: 

Improving access to/ storage of natural resources 

Develop water irrigation facilities with proper drainage systems (Ahmed and Diana, 2015) 

Flexible arrangements to allocate more of the tuna resources to local food security (Dunstan et al., 2017) 

Improving agricultural or fisheries practices 

Sustain recruitment and production of demersal fish (Bell et al., 2018) 

Introduction of coastal fish breeding programs and sea ranching to enhance diversity of key species 
(Dasgupta et al., 2017) 

Improvements in fishery management (Hobday et al., 2015; Gaines et al., 2018), including harvest policies 
that are adaptive to changing demographics (Gaines et al., 2018), reduced fishing effort and catch (Cheung et 
al., 2018; Jones et al., 2018), adopting precautionary principle (Hobday et al., 2015). 

Diversify fishing methods (Ho et al., 2016) by transferring fishing efforts from reefs to large pelagic fish 
(Bell et al., 2018), implement near shore fish aggregating devices (Valmonte-Santos et al., 2016; Dunstan et 
al., 2017; Bell et al., 2018), develop fisheries for small pelagic species (Bell et al., 2018), improving post-
harvest methods (Bell et al., 2018) 

Improved post-harvest methods and food storage systems to stockpile tuna and small pelagic when good 
catches are made (Dunstan et al., 2017) 

Coastal fisheries: targeting of coastal pelagic (but this is difficult for small-scale fishermen) (Weng et al., 
2014) 

Culture of prawn, shrimp, and fish with salt-tolerant and drought-resistant rice varieties (Ahmed and Diana, 
2015) 

Dike cropping (fruits and vegetables) and social forestation (Ahmed and Diana, 2015) 

Increasing the diversity of seafood commodities (Ho et al., 2016) 

Increasing aquaculture productivity (Ho et al., 2016) 

Creating diverse marketing channels  (Ho et al., 2016) 

Promote sustainable growth of fisheries (Valmonte-Santos et al., 2016) 

Reduce operational costs (Valmonte-Santos et al., 2016) 

Development of aquaculture (Valmonte-Santos et al., 2016) 

Responsive management to reflect changes in stock distribution (Pinsky et al., 2018) 

Flexible management practices (no-take areas, gear restrictions) (Dunstan et al., 2017) 

Restoration of deserted shrimp farms (Harkes et al., 2015) 

Supporting natured-based industries 

Sustainable resource use 

Adjusting the scale of the fisheries (Ho et al., 2016) 

Maintaining or switching livelihoods 

Implementation of alternative livelihood programs for small-scale coastal communities (Dunstan et al., 
2017) 

Facilitating the fishing community's learning of alternative skills (Shaffiril et al., 2017) 

Encouraging community-based entrepreneurship of small-scale shrimp farmers (Galappaththi et al., 2017) 
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Community participatory programmes 

Stakeholder participation (Harvey et al., 2018) 

Increased stakeholder participation and community-based grass-root planning (Salim et al., 2014) 

Better communication with communities (through facilitators; appropriate mediums; appropriate times; 
pictures) (Cvitanovic et al., 2016; Dunstan et al., 2017)  

Participatory climate change adaptation planning for fishermen (Shaffiril et al., 2017) 

Scenario-based stakeholder engagement  (Finkbeiner et al., 2018)  

Participatory conservation strategies (Harvey et al., 2018) 

Developing adaptive networks 

Effective use of social networks (Cvitanovic et al., 2016) 

Strengthening social relationships (Shaffiril et al., 2017) for disaster preparation and cooperation within 
networks (Shaffiril et al., 2017) 

Strengthening local social networks (Cvitanovic et al., 2016) 

Sustainable household management 

Strategies that build certain high-risk groups’ networks (Novak Colwell et al., 2017) 

Improving access to community services 

Strengthening early warning systems in fisheries (Ho et al., 2016) 

Increase investment in transportation and other infrastructural needs (Valmonte-Santos et al., 2016) 

Empowering communities and addressing inequality 

Develop capacity (Weng et al., 2014) 

Autonomous and facilitative adaptation (Finkbeiner et al., 2018) 

Guarantee access rights (Faraco et al., 2016) through recognition and protection of tenure  (Gourlie et al., 
2018) 

Strategies that build certain high-risk groups’ networks (Novak Colwell et al., 2017) 

Building socio-ecological resilience 

Enhancing societal adaption (Cvitanovic et al., 2016; Valmonte-Santos et al., 2016) 

Sustainable socio-ecological systems (Harvey et al., 2018) 

Multifaceted efforts that simultaneously tackle exposure, sensitivity and adaptive capacity (Islam et al., 
2013) 

Protection for local workers (Gourlie et al., 2018) 

Community awareness and preparedness for disaster management (weather forecast, shelters) (Ahmed and 
Diana, 2015) 

Strengthening civil society value in poor fishing communities (Cahaya, 2015) 

Governance: 

Adopting/ mainstreaming sustainability policies 

Improve sustainable management of coastal fisheries through legislative action and regulatory 
implementation (Gourlie et al., 2018) 

Sustainable conservation policies (Gourlie et al., 2018) 

design and implement management strategies that are robust to the uncertainties of changing marine 
ecosystems (Busch et al., 2016) 

Climate Compatible Development (Harkes et al., 2015) 
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Improving disaster response programmes 

Emergency preparedness programs (Dunstan et al., 2017) 

Preparedness for disaster management (disaster warning, cyclone shelters) (Ahmed and Diana, 2015) 

Strengthening early warning systems in fisheries (Hobday et al., 2015; Ho et al., 2016) 

Community awareness and preparedness for disaster management (weather forecast, shelters) (Ahmed and 
Diana, 2015) 

Improving implementation and coordination of policies 

Greater attention to trade-offs in decision-making regarding climate adaptation  (Finkbeiner et al., 2018) 

Improve sustainable management of coastal fisheries through legislative action and regulatory 
implementation (Gourlie et al., 2018) 

Adaptively managing implementation strategies (Le Cornu et al., 2017) 

Minimise conflicts between fishing nations (Asch et al., 2018) through support for co-management strategies 
(Gourlie et al., 2018) 

Trading country-based allocations of fishing effort (Asch et al., 2018) 

Strengthen international cooperation (Ho et al., 2016) 

Flexible frameworks (Faraco et al., 2016) 

Support for institutional coordination and policy cohesion (Gourlie et al., 2018) 

Enabling policy and legislative environments (Heenan et al., 2015) 

Aligning management measures (Heenan et al., 2015) with good governance and institutions (Heenan et al., 
2015) 

Resolve economic and political concerns that influence fisheries (Valmonte-Santos et al., 2016) 

Empower actors to continuously learn and improve governance institutions (Nursey-Bray et al., 2018)  

Lack of consistent frameworks and agreements across Pacific Islands (Cvitanovic et al., 2016)  

Developing effective strategies and policy frameworks for managing adaptation of coastal communities to 
climate change (Colburn et al., 2016) 

Application of international standards (Harkes et al., 2015) 

Financial and regulatory mechanisms supporting aquaculture (Harkes et al., 2015) 

Development controls 

Adequate enforcement mechanisms (Gourlie et al., 2018) 

 

Evidence-based implementation 

Transparent resource management (Gourlie et al., 2018) 

Improving ICM/ MPAs 

Marine Protected Areas (Valmonte-Santos et al., 2016) to buffer against uncertainty in management, 
environmental fluctuations, directional change and extreme events, conserving biodiversity, repairing 
damaged fish stocks, creation of habitat forming areas, promote genetic diversity that provides raw material 
for adaptation to climate change (Roberts et al., 2017) 

Marine protected areas (Faraco et al., 2016; Dasgupta et al., 2017; Roberts et al., 2017; Asch et al., 2018; 
Jones et al., 2018) that include marine spatial planning for climate change (Le Cornu et al., 2017; Cheung et 
al., 2018; Harvey et al., 2018) 

Marine protected areas, positioning reserves in areas expected to warm less or not at all (Bruno et al., 2018) 

Holistic adaptation planning using CBA and ICM (Ahmed and Diana, 2015) 
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MPAs may impact communities through Fisheries closures (Bennett et al., 2016) 

Identify appropriate climate-informed defence points for managing Large Marine Reserves with appropriate 
strategies for management (Busch et al., 2016) 

Horizontal/ vertical integration of governance 

Decentralisation and co-management (Harkes et al., 2015) 

Developing partnerships and building capacity 

Participatory conservation strategies (Harvey et al., 2018) and co-management of fisheries (Nursey-Bray et 
al., 2018; Pinsky et al., 2018) 

Motivate stakeholders to self-organise, design and reform their institutions (Nursey-Bray et al., 2018) 

Mobilise resources for decision-making and implementations (Nursey-Bray et al., 2018)  

Support for principles of fair governance, building relationships, two-way dialogues between government 
and industry, enhanced governance and leadership (Nursey-Bray et al., 2018)  

Improving access to community services 

Flexible arrangements to allocate more of the tuna resources to local food security (Dunstan et al., 2017) 

Flexible licencing provisions (Dunstan et al., 2017) 

Guarantee access rights (Faraco et al., 2016) through recognition and protection of tenure  (Gourlie et al., 
2018) 

 

Pursuing climate justice 

Increase allocation of area of the EEZ available to small-scale fishers (Dunstan et al., 2017) 

Economic: 

Improving financial resources availability 

Enhancing fishermen's access to credit (Shaffiril et al., 2017) 

Includes fisheries agency budget planning to ensure funds are available for maintenance and repair of FADs 
(Dunstan et al., 2017) 

Fuel and gear subsidies (Dunstan et al., 2017) 

Improving access to insurance products 

Creation of social safety nets e.g. insurance programs for SSF, community insurance banks for communities 
(Dunstan et al., 2017) 

Reducing fishing risks through affordable insurance policies (Shaffiril et al., 2017) and innovative context-
appropriate insurance practices (Shaffiril et al., 2017) 

Economic diversification 

Diversifying incomes for subsistence shrimp farmers (Galappaththi et al., 2017) 

Increasing access to international funding programmes 

Knowledge: 

Better monitoring and modelling 

Scientific needs: ecosystem modelling to social science, economics, international politics and conflict 
resolution (Weng et al., 2014) 

Monitoring, verification and management (Weng et al., 2014) 

Effective monitoring and evaluative mechanisms (Le Cornu et al., 2017; Gourlie et al., 2018) 

Climate model literacy training for marine biological researchers (Payne et al., 2017) 
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Better understanding climate stressors through enhanced social indicator modelling (Colburn et al., 2016) 

Integrated end-to-end models that explore trade-offs (Hobday et al., 2015) 

Improving planning processes 

Identify areas of high risk and factors contributing to risk (Salim et al., 2014) 

Improved adaptation science (Cvitanovic et al., 2016) 

Improving forecasting and early warning systems 

Improved marine ecological forecasting (Payne et al., 2017) 

Develop effective prediction tools (Dunstan et al., 2017) 

Community awareness and preparedness for disaster management (weather forecast, shelters) (Ahmed and 
Diana, 2015) 

Seasonal forecasting of fisheries (Asch et al., 2018) 

Improved forecasting (Ho et al., 2016) 

Predicting productivity, spatial distribution and phenological changes (Payne et al., 2017) 

Predicting human elements of the system (Payne et al., 2017) 

Considering trade-offs in forecasting (Payne et al., 2017) 

Horizontal and vertical range shifts in coastal fishes, eastward shifts of tuna stocks in the tropical Pacific, 
improved habitat in the east and declines in the Warm Pool region 

Improving decision support frameworks 

Acquiring reliable data to base decisions on and data sharing (Pinsky et al., 2018) 

Use of a vulnerability indices to inform adaptation planning (Johnson et al., 2016) 

Holistic adaptation planning using CBA and ICM (Ahmed and Diana, 2015) 

Establishing mechanisms of food security classification management  (Ho et al., 2016) 

Appropriate design (Le Cornu et al., 2017) 

Avoidance measures of climate risk and production uncertainty  (Ho et al., 2016) 

Develop tools to incorporate social vulnerability indicators into policy making (Colburn et al., 2016) 

Improving participatory processes 

Scientists working with communities (Cvitanovic et al., 2016) through participatory research approaches 
(Cvitanovic et al., 2016) 

Engaging key actors in relevant forms of knowledge exchange (Cvitanovic et al., 2016; Faraco et al., 2016; 
Le Cornu et al., 2017; Payne et al., 2017; Finkbeiner et al., 2018) 

Incorporating science with community needs and decision making at all scales (Cvitanovic et al., 2016) and 
participatory (Valmonte-Santos et al., 2016; Nursey-Bray et al., 2018)  research approaches (Cvitanovic et 
al., 2016) 

co-producing knowledge with subsistence shrimp farmers (Galappaththi et al., 2017) 

Coordinating top down and bottom up approaches 

Bottom up approach to fisheries management (Salim et al., 2014) 

Co-ordination with existing on-ground activities (Cvitanovic et al., 2016) 

Integrating knowledge systems 

Collecting and integrating diverse sources of information (Le Cornu et al., 2017) 

Improving fishery management through the incorporation of traditional strategies and ecosystem 
management into fisheries management strategies (Weng et al., 2014) 
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Traditional knowledge (Johnson et al., 2016) 

Recognition and support for local communities and traditional management (Gourlie et al., 2018) 

Improving location and context specific knowledge 

Increased investigation of natural resource management issues through a gendered lens (Novak Colwell et 
al., 2017) 

Adaptive management strategies based on market intelligence (Rodríguez-Rodríguez and Bande Ramudo, 
2017) 

Improving scientific communication 

The use of mobile technology to warn fishermen of threats (Shaffiril et al., 2017) 

Information for improved fisheries management strategies (Weng et al., 2014) 

Data, research and information sharing (Gourlie et al., 2018) 

Information exchange between stakeholders (Heenan et al., 2015) 

Stakeholder identification, outreach and education 

Community training programmes with sharing of technical knowledge and awareness (Salim et al., 2014) 

Informing fishermen of the value and importance of having insurance (Shaffiril et al., 2017) 

Education of a marine fish-eating culture (Ho et al., 2016) 

Support and train stakeholders to use forecast models effectively, engaging end-users (Payne et al., 2017) 

Provide technical assistance to subsistence fishers (Valmonte-Santos et al., 2016) 

Multiple adaptation responses used 

Reduction in local anthropogenic stressors (Harvey et al., 2018) 

Ecosystem based adaption measures which respond to local vulnerability context (Faraco et al., 2016) 

CBA and ICM (Ahmed and Diana, 2015) 

Improving fishery management through the incorporation of traditional strategies and ecosystem 
management into fisheries management strategies (Weng et al., 2014) 

Synergistic responses addressing social, governance and knowledge responses (Dunstan et al., 2017) 

Synergistic social adaptation strategies should be applied (Shaffiril et al., 2017) 

Holistic adaptation planning using CBA and ICM (Ahmed and Diana, 2015) 

 Benefits  

Ecological: 

Ecosystem/ ecological resilience supported 

Reduction of human stressors in MPAs promotes ecosystem recovery and prevents biodiversity loss (Roberts 
et al., 2017) 

Maintain healthy reefs (Harvey et al., 2018) 

Supports development of shrimp industry with less damage to mangroves and salt marshes (Harkes et al., 
2015) 

Physical processes supported 

High abundance of mesopelagic fish in open ocean MPAs may enhance CO2 absorption and buffer 
acidification near the surface through excretion of gut carbonate, protect apex predators that confer increased 
stability to coastal habitats that buffer climate-induced instabilities (Roberts et al., 2017) 

Reduced fishing pressure on reef resources (Valmonte-Santos et al., 2016) 

Coastal infrastructure resilience increased 
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Increased biodiversity 

Reduction of human stressors in MPAs promotes ecosystem recovery and prevents biodiversity loss 
(Hobday et al., 2015; Roberts et al., 2017) 

Preserve species with large home ranges (Jones et al., 2018) 

Habitat range shifts accommodated 

MPAs provide steppingstones for dispersal and safe landing zones for climate migrants (Roberts et al., 2017) 
maintaining high levels of ecological and evolutionary connectivity (Jones et al., 2018) 

Improved organismal fitness 

Increased reproductive outputs (Cheung et al., 2018) 

Genetic heterogeneity supported 

Increased genetic variability (Cheung et al., 2018; Jones et al., 2018) 

Strengthened socio-ecological system 

Promotion of socio-ecological resilience (Ahmed and Diana, 2015; Harkes et al., 2015) 

Social: 

Access to sustainable ecosystem services 

Improved ecosystem services (Faraco et al., 2016) 

Preservation of marine resources (Cahaya, 2015) 

Reduction of human stressors in MPAs enhances livelihoods and ecosystem services (Roberts et al., 2017) 

Increases in maximum catch potential (Asch et al., 2018) and global fishery yield (Gaines et al., 2018) 

Helps sustain the contribution of coastal fisheries to food security (Bell et al., 2018)  

Ensure food security (Heenan et al., 2015; Asch et al., 2018; Finkbeiner et al., 2018) by replenishing 
depleted stocks (Bell et al., 2018)  

Higher fish production (Valmonte-Santos et al., 2016) 

Increased catch per unit of effort (Valmonte-Santos et al., 2016) 

Reduction in reliance on fish imports (Valmonte-Santos et al., 2016) 

Supports development of shrimp industry with less damage to mangroves and salt marshes (Harkes et al., 
2015) 

Improved access to resources 

Human systems supported 

Improved socio-economic services 

Enhanced food security (Cvitanovic et al., 2016; Le Cornu et al., 2017; Gaines et al., 2018) and nutritional 
status of Pacific Island countries (Valmonte-Santos et al., 2016) 

Healthier shrimp industry (Harkes et al., 2015) 

Improved employment and livelihoods 

Reduction of human stressors in MPAs enhances livelihoods and ecosystem services (Roberts et al., 2017) 

Sustaining livelihoods (Harkes et al., 2015; Harvey et al., 2018) through securing employment (Le Cornu et 
al., 2017) 

Uplifting the living standard of fishermen (Cahaya, 2015) by supporting local livelihoods (Heenan et al., 
2015; Faraco et al., 2016; Payne et al., 2017; Finkbeiner et al., 2018; Gourlie et al., 2018), well-being 
(Gourlie et al., 2018), culture (Finkbeiner et al., 2018) and sovereignty (Finkbeiner et al., 2018) 

Prevent and reduce poverty (Faraco et al., 2016; Payne et al., 2017) 



FINAL DRAFT Chapter 5 Supplementary Material IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute SM5-78 Total pages: 110 

Facilitates diversification of effort (Gourlie et al., 2018) 

Supports livelihoods and contributes to food security and wellbeing of coastal and freshwater systems 
(Galappaththi et al., 2017) 

Improved health 

Reduces disease through lower use of chemicals (Harkes et al., 2015) 

Improved community participation 

Improved integration of knowledge systems 

Empowering women and children 

Increased adaptive capacity 

Increased adaptive capacity (Cvitanovic et al., 2016) 

social transformation towards sustainability (Galappaththi et al., 2017) 

Improved disaster preparedness 

Empowered communities 

Empowerment of communities (capacity building) (Ahmed and Diana, 2015) 

Empowering small-scale fishers (Bell et al., 2018) 

Facilitates community-level ownership of adaptation (Gourlie et al., 2018) 

Improved community cohesion 

Incentivises collective action (Faraco et al., 2016) 

Reduced inequality 

Increases equity (shared benefits) and productivity (Harkes et al., 2015) 

Governance: 

Political and institutional capacity developed 

Strengthened participatory governance 

Co-management enhances ownership over decision-making processes (Nursey-Bray et al., 2018)  

Better planning processes supported 

Co-management promotes greater sensitivity to socio-economic and ecological constraints (Nursey-Bray et 
al., 2018) 

Ensures measures are appropriate for the local context (Le Cornu et al., 2017) 

Address complex issues like climate change by contributing to reduce uncertainty and by 

avoiding or, at least limiting, the unbalance of pre-existing governance systems (Rodríguez-Rodríguez and 
Bande Ramudo, 2017) 

Improved coordination and decision making 

Improved implementation and policies 

Sustainable fisheries management (Gourlie et al., 2018) 

Better communication 

Improved communication (Cvitanovic et al., 2016)  

Improved transparency and trust 

Co-management improves management outcomes, promotes collective ownership, increases compliance; 
ensures better monitoring, control and surveillance, encourages diverse knowledge sharing (Nursey-Bray et 
al., 2018)  
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Trust building (Cvitanovic et al., 2016) 

Climate justice advanced 

Maintenance of common property rights over resources (Faraco et al., 2016) 

Reduced conflict 

Minimise conflicts between fishing nations  (Asch et al., 2018) including with new fish stocks (Pinsky et al., 
2018) 

Improved security 

Maintain security (Finkbeiner et al., 2018) 

Improved adaptive management 

Aid disaster preparedness (Asch et al., 2018) 

Improved climate adaption decision-making (Finkbeiner et al., 2018) 

Enable adaptive capacity in fisheries management (Nursey-Bray et al., 2018)  

Allows for better informed adaptive responses (Payne et al., 2017) 

MPAs provide steppingstones for dispersal and safe landing zones for climate migrants (Roberts et al., 2017) 
maintaining high levels of ecological and evolutionary connectivity (Jones et al., 2018) 

Require adaptive management and consideration of the cumulative effects (Gourlie et al., 2018)  

Enhances the analytical capabilities within fisheries, enhancing informed ecosystem based fisheries 
management and policy decisions (Colburn et al., 2016) 

Development supported 

Economic: 

Increased revenue/ income 

Export creation opportunities, commercial development and the creation of jobs (Valmonte-Santos et al., 
2016) 

Better bargaining power producers and higher production lead to higher profits (Harkes et al., 2015) 

Increased financial resources available 

Subsidies required to support adaptions (Bell et al., 2018) 

Promote economic growth (Asch et al., 2018) 

Possibility of funding mechanisms (Gourlie et al., 2018) 

Reduced operational and capital costs 

Investment strengthened 

Knowledge: 

Informed decision making tools 

Collection of key information (Gourlie et al., 2018) 

Reduce risks and uncertainties associated with seafood supply (Ho et al., 2016) 

Create a more integrated picture of climate change (Colburn et al., 2016) 

Enhances the analytical capabilities within fisheries, enhancing informed ecosystem based fisheries 
management and policy decisions (Colburn et al., 2016) 

Provides a blueprint for strengthening the production and use of climate-related information needed promote 
effective fisheries management in a changing climate (Busch et al., 2016) 

Better knowledge inputs on markets behaviour may help avoiding or limiting i) too much anticipated 
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and highly uncertain responses, rushing for mitigation without clear evidence, and  ii) short-term reactions, 
tending to overexploitation of natural resources as a way to maintain producers income (Rodríguez-
Rodríguez and Bande Ramudo, 2017) 

Improved co-production of knowledge 

Improved understanding of strategies outcomes for at risk groups and gender (Novak Colwell et al., 2017) 

Stimulates exchange of information and knowledge (Harkes et al., 2015) 

Improved relevance of products  

Understanding both high-level processes and  individual-level relationships, provides valuable insight into 
people’s livelihood choices that traditional models of gender and the environment do not (Novak Colwell et 
al., 2017) 

Improved education and outreach 

Improved awareness 

Co-benefits  

Constraints and limitations  

Physical: 

Geographic remoteness from markets of reasonable size (Valmonte-Santos et al., 2016) 

Ecological: 

Complex interactions between species and habitats (Bell et al., 2018) 

Certain responses may demand higher energy use and thus increase CO2 emissions, The construction of 
shrimp farms leads to the removal of above and below ground carbon, along with the potential for future 
carbon sequestration, increased shrimp farms require mangroves to be removed for space and pollute surface 
water (Harkes et al., 2015) 

Social: 

Less developed coastal countries have a high dependence on the oceans for food and livelihood, while 
having limited adaptive capacity (Cheung et al., 2018) 

Lack of trust among local communities and external scientists (Cvitanovic et al., 2016) 

Engagement of end-users in climate change science (Cvitanovic et al., 2016) 

Limiting adaption and diversification options (Faraco et al., 2016) 

Uneven socio-economic impacts of climate change (Finkbeiner et al., 2018) 

Difficulty in balancing social and ecological objectives (Finkbeiner et al., 2018) 

Involves reforms for many stock (Gaines et al., 2018) 

Limited assets (Cahaya, 2015) 

Lack of bargaining power (Cahaya, 2015) 

Reduction of aquaculture and degradation of aquaculture areas ((Ho et al., 2016) 

Lack of effective adaptation strategies ((Ho et al., 2016) 

Dependency on marine fisheries for livelihoods, lack of alternative livelihood (Islam et al., 2013) 

Lack of physical, natural and financial capital (Islam et al., 2013) 

Small scale fisheries are extremely intricate social-ecological systems (Le Cornu et al., 2017) 

Inshore resources are heavily exploited and offshore resources are difficult to access for subsistence fishers 
(Valmonte-Santos et al., 2016), Slow development in aquaculture (Valmonte-Santos et al., 2016) 

High fuel costs, lack of appropriate fishing gear and limited infrastructure (Valmonte-Santos et al., 2016) in 
a highly competitive industry 
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Lack of awareness of coastal communities of the consequences of over-exploitation (Valmonte-Santos et al., 
2016) 

Limited interaction between stakeholders (Valmonte-Santos et al., 2016) 

High likelihood of individuals employing reactive strategies that may threaten their longer-term livelihood 
sustainability (Novak Colwell et al., 2017) 

Lack of intersectionality in resource management research (Novak Colwell et al., 2017) 

Governance: 

Conflicts between fishing nations as stocks migrate (Asch et al., 2018; Gaines et al., 2018) 

Emerging conflict between maximizing yield of target species and maintaining ecosystem structure/function. 
Solutions to one of the conflicts may work against a solution for another (Hobday et al., 2015) 

Lack of fisheries management and conservation plans (Cheung et al., 2018) 

Lack of consideration of climate risk in species conservation planning (Cheung et al., 2018) 

Lack of cohesive and connected co-management frameworks within fisheries management arrangements 
(Nursey-Bray et al., 2018) 

Co-management lacks resources and legislation conducive to building fishery support (Nursey-Bray et al., 
2018)  

Lack of effective international coordination (Cheung et al., 2018; Gaines et al., 2018) 

Effective management in Pacific Island communities (Cvitanovic et al., 2016)  

Inappropriate governance structures (Heenan et al., 2015; Cvitanovic et al., 2016) 

Lack of political and technical support (Cvitanovic et al., 2016) 

Lack of consistent frameworks and agreements between Pacific Island nations and local government 
levels(Cvitanovic et al., 2016) 

Problems with access to and management of natural resources (Faraco et al., 2016) 

Poor biodiversity and conservation policies (Faraco et al., 2016) 

Limited financial and political support (Faraco et al., 2016) 

Coastal fisheries receive less attention from government managers (Gourlie et al., 2018) 

Legislation gaps (Gourlie et al., 2018) 

Legally challenging (Jones et al., 2018), difficulties with enforcing compliance beyond national jurisdiction 
(Jones et al., 2018) 

The current legal framework does not directly account for changing distributions (Pinsky et al., 2018) 

Prevailing weak management of fish stocks globally (Pinsky et al., 2018) 

Minimal cooperation between regional fishing management organisations on the potential for future shared 
stocks (Pinsky et al., 2018) 

Judicial decisions do not always resolve conflicts and require adherence by the parties (Pinsky et al., 2018) 

Limited institutional capacities (Valmonte-Santos et al., 2016) 

Concerns about managing displaced fishing efforts with MPAs (Roberts et al., 2017) 

Lack of institutional and financial support to establish buffer zones; although there are shrimp farmers 
associations, the activities of individual farms, are not coordinated;  Access to loans and insurance is difficult 
as interest rates are high and government support is lacking;  absence of a specific law for aquaculture 
(Harkes et al., 2015) 

Economic: 

Lack of resources (Cvitanovic et al., 2016; Bell et al., 2018) 
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Weak capital structures (Cahaya, 2015) 

Limited financial and technical resources (Valmonte-Santos et al., 2016) 

MPAs under-resourced i.r.o. Lack of staff, lack of equipment, lack of funding (Roberts et al., 2017) 

Global market and demographic shifts (Le Cornu et al., 2017) 

Knowledge: 

Lack of frequent data collection (Heenan et al., 2015) and management updates (Gaines et al., 2018) 

Lack of access to data and science (Cahaya, 2015) 

Lack of scientific knowledge and studies (Rodríguez-Rodríguez and Bande Ramudo, 2017). Risks of 
mismanagement resulting from lack of scientific knowledge,  focus on market intelligence may distract from 
the root causes of system degradation (Rodríguez-Rodríguez and Bande Ramudo, 2017) 

Lack of studies relating to fish migration and live-release by-catch survival rates, great deal of coordination 
required to collect some indicators, difficult to collect indicators as the open sea is so vast (Hobday et al., 
2015)  

Future projections of ocean conditions are uncertain (Cheung et al., 2018) and it is difficult to predict where 
fish distribution will shift to (Gaines et al., 2018) 

Limited knowledge on the sensitivity and adaptive capacity of marine species to climate change and fishing 
(Cheung et al., 2018) 

Cultural differences between western science and cultural knowledge (Cvitanovic et al., 2016) 

Challenges related to defining the human component of ecological systems (Payne et al., 2017) 

Gap between climate modelling and marine science communities (Payne et al., 2017) 

Access to forecast data, focus of marine science has been on describing rather than predicting systems, 
complexity of biological systems, difficulty observing life in the ocean (Payne et al., 2017) 

Lack of awareness and engagement by fishers surrounding climate issues (Salim et al., 2014) 

Uncertainty surrounding the environmental tolerances and adaptability for most species when planning 
MPAs (Bruno et al., 2018) 

Inadequate communication and support with local communities i.r.o. MPA management (Roberts et al., 
2017) 

Knowledge of climate-induced impacts and vulnerability on the local-scale of fishery-based livelihoods is 
limited (Islam et al., 2013) 

Research that is too focussed on gender can further marginalize other women and also large segments of the 
male population,  great potential to exacerbate existing inequitable power structures (Novak Colwell et al., 
2017) 

 Costs  

Physical: 

Inundation of infrastructure to allow for mangroves to migrate inland (Bell et al., 2018) 

Vandalism and natural disasters (Valmonte-Santos et al., 2016) 

Economic: 

Expensive to raise and plant seedlings (Bell et al., 2018) 

Resources required for monitoring (Bell et al., 2018) 

Unequal distribution of costs and benefits (Faraco et al., 2016) 

MPAs are a viable low-tech and cost effective adaption strategy (Roberts et al., 2017) 

Knowledge: 

Forecast may be used and interpreted incorrectly (Payne et al., 2017) 



FINAL DRAFT Chapter 5 Supplementary Material IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute SM5-83 Total pages: 110 

Forecasts may fail in a technical sense (Payne et al., 2017) 

Participatory research approaches need to be sustained (Cvitanovic et al., 2016)  

Human System: Coastal Tourism 

Adaptation responses  

Physical: 

Hard engineering responses 

High financial investments for construction of hard protection structures  (Rangel-Buitrago et al., 2015) 

Regulated tidal exchange infrastructure (MacDonald et al., 2017) 

Managed retreat and coastal realignment 

Large coastal managed realignment projects (MacDonald et al., 2017)  

Ecological: 

Nature based solutions 

Natural resource management (Papageorgiou, 2016) and economic evaluations of ecosystem value 
(Hernández-Delgado, 2015) 

Social: 

Sustainable resource use 

Sustainable water use management (Papageorgiou, 2016; Klinsky et al., 2017) 

Promote wise allocation of coastal and marine tourism activities so as to mitigate environmental degradation 
(Papageorgiou, 2016) 

Empowering communities and addressing inequality 

Improving stakeholders in the tourism industry's understanding of their vulnerability to climate change to 
empower them to take appropriate actions to adapt (Tapsuwan and Rongrongmuang, 2015) 

Governance: 

Developing partnerships and building capacity 

Developing public-private partnerships (Klinsky et al., 2017) 

Economic: 

Improving financial resources availability 

Involving the tourism industry in adaption finance (Klinsky et al., 2017)  

Adaptation taxes and levies (Klinsky et al., 2017) 

Adaptation strategies to counteract market share losses induced by climate change (Bujosa et al., 2015) 

Improving access to insurance products 

Risk transfer mechanisms (Klinsky et al., 2017) 

Improving access to international funding programmes 

Adaptation funds (Klinsky et al., 2017) 

Knowledge: 

Better monitoring and modelling 

Hadley Centre Coupled Model (HadCM3)and Canadian Global Climate Model (CGCM2) (Bujosa et al., 
2015) 

Improving decision support frameworks 
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Matrix of exposition degree versus adaptive capacity. Diagram for Integrated Coastal Vulnerability 
Assessment (Lins-de-Barros, 2017) 

Generic management framework (MCDA) (Michailidou et al., 2016) 

Protection Motivation Theory (PTM) framework (Tapsuwan and Rongrongmuang, 2015) 

Social representation of managed realignment (Schliephack and Dickinson, 2017) 

Using marine spatial planning to organize and plan coastal and marine tourism activities (Papageorgiou, 
2016) 

Stakeholder identification, outreach and education 

Changing perceptions of key stakeholders (Klinsky et al., 2017) 

Multiple adaptation responses used 

Natural resource management, Governance, Economic efficiency and welfare maximization (Hernández-
Delgado, 2015) 

Benefits  

Physical: 

Physical processes supported 

Restores intertidal habitat by removing or breaching built infrastructure so the land behind them floods, 
allowing the intertidal habitat to migrate inland (MacDonald et al., 2017) 

Hard engineering responses 

Many protection structures have been built and installed in response to local stakeholder pressure (Rangel-
Buitrago et al., 2015) 

Ecological: 

Ecosystem/ ecological resilience supported 

Coastal protection services offered by ecosystems (Hernández-Delgado, 2015) 

Promotes resilience against climate change effects (Papageorgiou, 2016) 

Increased biodiversity 

Biodiversity benefits provided by ecosystems supports coastal tourism (Hernández-Delgado, 2015) 

Social: 

Improving access to/ storage of natural resources  

Healthy ecosystems improve access to services like fisheries, construction materials, medicines, cosmetics 
and the aquarium trade (Hernández-Delgado, 2015) 

Intertidal  habitats  provide significant ecosystem services, such as carbon sequestration in accreting 
sediments, flood defences for coastal communities, hunting of wintering wildfowl and nursery areas for 
commercially-caught fish (MacDonald et al., 2017) 

Human systems supported 

A more resilient tourism industry (Bujosa et al., 2015; Hernández-Delgado, 2015; Klinsky et al., 2017) 

Ensures that that coastal and marine space is not overwhelmed by tourism facilities and activities 
(Papageorgiou, 2016) 

Increased adaptive capacity 

Enhanced adaptation to climate change effects (Papageorgiou, 2016) 

Governance: 

Development supported 

Fostering development (Klinsky et al., 2017) 
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Economic: 

Increased revenue/ income 

Generate employment (Klinsky et al., 2017) 

Increased tax revenues (Klinsky et al., 2017) 

Justifying the value of protecting natural resources (Klinsky et al., 2017) 

Ensures good environmental conditions for the tourism industry to prosper (Papageorgiou, 2016) 

Reduced conflict 

Minimises conflicts and create synergies among sectors (Papageorgiou, 2016) 

Knowledge: 

Improving decision support frameworks 

Multi-criteria decision-making assessments improved (Lins-de-Barros, 2017) 

Allows for benchmarking when choosing interventions/measures/alternatives by taking into consideration 
local specific characteristics (Michailidou et al., 2016) 

Social representation of managed realignment shapes wider understandings of climate change adaptation 
(Schliephack and Dickinson, 2017) 

Co-benefits  

Constraints and limitations  

Governance: 

Public policy changes and reliability (Klinsky et al., 2017) 

Non-transparent and unreliable political systems (Klinsky et al., 2017) 

Need to update current legislation with strong coastal management laws (Rangel-Buitrago et al., 2015) 

The performance of managed realignment specifically in delivering ecosystem services and biodiversity 
benefits in England has been questioned (MacDonald et al., 2017) 

Social: 

Cumulative effects of coastal tourism may affect multiple ecosystem functions, compromise food security 
and sovereignty, public health, local economies and people's livelihood sustainability in still largely 
unknown ways (Hernández-Delgado, 2015) 

Economic: 

Development of international tourism flows (Klinsky et al., 2017) 

Knowledge; Unclear magnitudes and time scales of regional and local climate change impacts (Klinsky et 
al., 2017) 

Reluctance to finance adaptation in the tourism sector (Klinsky et al., 2017) 

Finding sustainable arrangements for funding and financing coastal management legislation (Rangel-
Buitrago et al., 2015) 

Knowledge: 

Unclear magnitudes and time scales of regional and local climate change impacts (Klinsky et al., 2017) 

This paper focused on a specific destination with unique features and a tailored managed realignment 
strategy. Strategies, features of tourism interest and use values will vary in other destinations (Schliephack 
and Dickinson, 2017) 

Fuzzy and multidisciplinary nature of tourism creates difficulty in identifying synergies and conflicts; coastal 
and marine tourism are generally perceived as non-threatening activities to other human uses. Requires much 
more time and effort than less effective responses  (Papageorgiou, 2016) 
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Costs  

Governance: 

Need for government incentive and frameworks (Klinsky et al., 2017) 

Economic: 

The overall costs of climate change (CC) may be equivalent to losing at least 5% of the global gross 
domestic product each year (Bujosa et al., 2015) 

The greater the uncertainty associated with biophysical estimates, the less easy it is to determine how 
economically valuable a strategy like managed realignment may be. Intertidal sediment accretion is dynamic 
and site-dependent, such that applying values from other sites could be inaccurate (MacDonald et al., 2017)  

Human System: Government systems 

 Adaptation responses  

Ecological: 

Ecosystem restoration and protection 

Enhancing coral reefs and mangroves for ecosystem services (Gallo et al., 2017) 

Social: 

Developing adaptive networks 

Network building (Aylett, 2015) 

Governance: 

Adopting/ mainstreaming sustainability policies 

Investment and policies for adaptation to climate change (Buurman and Babovic, 2016) 

Mainstreaming and integration of adaptation policies (Aylett, 2015) 

Apply a precautionary approach until accurate science is available (Johnson et al., 2018) 

Improving disaster response programmes 

Integrative risk management (Gerkensmeier and Ratter, 2018) 

Improving implementation and coordination of policies 

Improving synergies (Aylett, 2015; Rosendo et al., 2018) 

Supporting marine and coastal Nationally Determined Contributions (NDCs) (Gallo et al., 2017) 

Aligning the policies of local authorities (Porter et al., 2015) 

Development of targets and statutory duties for local authorities (Porter et al., 2015) 

Cross-sectorial approaches (Serrao-Neumann et al., 2013) 

Modern legislation and administrative solutions (Vikolainen et al., 2017) 

Formal institutional reforms (Aylett, 2015) 

Crosscutting action across multiple sectors of urban life carried out by a variety of actors, coordinated policy 
responses across multiple sectors (Aylett, 2015) 

Multi-functionality – a solution that meets societal demands and generates socio-economic and 
environmental opportunities (Vikolainen et al., 2017) 

Adequate governance and management systems (Johnson et al., 2018) 

Increase co-operation between contracting parties and marine sub-regions (Gormley et al., 2015) 

Improving ICM/ MPAs 

Marine protected areas (Gallo et al., 2017; Johnson et al., 2018) 
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Improving ICM/ MPAs (Rosendo et al., 2018) 

Incorporating climate science into Marine Protected Areas network processes. Consider how marine 
biodiversity will change in the future. Design criteria for climate change resilience (Hopkins et al., 2016) 

Area-Based Management Tools. Evaluate levels of connectivity to see where new alternative areas are best 
located (Johnson et al., 2018) 

Develop adaptive management strategies for Priority Marine Habitats and increase MPAs in some sub-
regions (Gormley et al., 2015) 

Bi-directional knowledge sharing and stakeholder participation in ICZM (Abelshausen et al., 2015) 

Horizontal/ vertical integration of governance 

Multi-level governance systems (Serrao-Neumann et al., 2013) 

Increase co-operation between contracting parties and marine sub-regions (Gormley et al., 2015) 

Developing partnerships and building capacity 

Strengthen capacity of local marine institutions (Gallo et al., 2017) 

Community governance responses (Nunn et al., 2014) including empowering community leaders to make 
appropriate decisions, bolstering stakeholder awareness of the science surrounding climate change (Nunn et 
al., 2014) 

Strengthening local governance (Paterson et al., 2017) 

Building capacity at a local level (Paterson et al., 2017) 

Building collaborative networks between municipal agencies (Aylett, 2015) 

Improve collaborative efforts (Johnson et al., 2018) 

Pursuing climate justice 

Climate change research must include equity issues (Klinsky et al., 2017) 

Knowledge: 

Better monitoring and modelling 

Improve scientific climate models and marine observations (Gallo et al., 2017; Johnson et al., 2018) 

Monitoring processes at the coast (Gerkensmeier and Ratter, 2018) 

Strong monitoring frameworks ; employing an adaptive approach to the overall management of an MPA 
network (Hopkins et al., 2016) 

Draw up an Atlantic-wide assessment and monitoring programme (Johnson et al., 2018) 

The use of predictive Species Distribution Modelling (SDM) methods (Gormley et al., 2015) 

Improving forecasting and early warning systems 

Improving decision support frameworks 

Development of more policy-focused adaptation science (Porter et al., 2015) 

Scenario planning, mathematical modelling, multi-criteria analysis, adaptation pathways approach to 
decision making (Buurman and Babovic, 2016) 

Incorporating climate science into Marine Protected Areas network processes (Hopkins et al., 2016) 

Improving participatory processes 

Risk analysis and assessment, using stakeholder perceptions to define risk, improving multi-stakeholder 
partnerships, participative and flexible risk management processes (Gerkensmeier and Ratter, 2018; Rosendo 
et al., 2018) 

Bi-directional knowledge sharing and stakeholder participation in ICZM includes stakeholders as co-
designers and co-decision makers (Abelshausen et al., 2015) 
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Integrating knowledge systems 

Takes traditional values into account and ensures that responses meet the needs of the stakeholders 
(Abelshausen et al., 2015) 

Improving location and context specific knowledge 

Assessing and addressing knowledge gaps (Cooley et al., 2016)  

Stakeholder identification, outreach and education 

Educational programmes (Aylett, 2015)  

Increased education and outreach programmes (Cooley et al., 2016)  

Creates a platform that allows for bi-directional knowledge sharing and improves social learning 
(Abelshausen et al., 2015) 

 Multiple adaptation responses used 

Benefits  

Physical: 

Supporting physical processes 

Major sink for CO2 and for the heat resulting from the associated greenhouse effect (Johnson et al., 2018) 

Ecological: 

Ecosystem restoration and protection 

Promotes the sustainable use, development and protection of coastal environments (Rosendo et al., 2018) 

Enhance the resilience of species and habitats to climate change impacts (Hopkins et al., 2016) 

Provide important habitat for resident and migratory species of fish, sea birds and marine mammals (Johnson 
et al., 2018) 

Protecting biodiversity and setting appropriate conservation priorities (Gormley et al., 2015) 

Raises the potential for habitat restoration as well as the risks posed by non-indigenous species as niches 
become available (Gormley et al., 2015) 

Social: 

Sustainable resource use 

Promotes the sustainable use, development and protection of coastal environments (Rosendo et al., 2018) 

Improved employment and livelihoods 

Improved human wellbeing (Klinsky et al., 2017) 

Improved community participation 

Anchors coastal risk management within society; strengthens multi-risk, multi-scale and multi-stakeholder 
perspectives; enhance participation and communication between stakeholders (Gerkensmeier and Ratter, 
2018; Rosendo et al., 2018) 

Increased adaptive capacity 

Help marine resource-dependent communities adapt to existing acidification (Cooley et al., 2016; Rosendo et 
al., 2018)  

Improving access to community services 

Provide cultural services that are important to (coastal) nations and their citizens (Johnson et al., 2018) 

Reduced inequality 

A focus on equity establishes long-term legitimacy for strategies (Klinsky et al., 2017), informing 
implications of trade-offs for diverse individuals and groups (Klinsky et al., 2017) 
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Governance: 

Better planning processes supported 

Enhanced consideration of social processes in risk management (Gerkensmeier and Ratter, 2018; Rosendo et 
al., 2018) 

Improve future systematic conservation planning (Johnson et al., 2018) 

Improved implementation and policies 

Improved service delivery (Aylett, 2015) 

Improved rationality and effectiveness of policy making (Serrao-Neumann et al., 2013; Rosendo et al., 2018) 

Reduced policy contradictions (Serrao-Neumann et al., 2013) 

Reduced trade-offs (Serrao-Neumann et al., 2013) 

Improved transparency and trust 

Improved transparency (Serrao-Neumann et al., 2013) 

Horizontal/ vertical integration of governance 

Support the local implementation of national climate change policy; bridges different administrative scales 
(national, regional, local) (Rosendo et al., 2018) 

Improved adaptive management 

Improved governance for climate adaptation (Serrao-Neumann et al., 2013) 

Enables management for a changing climate (Gormley et al., 2015) 

Addresses disruption to habitat connectivity and the coherence of MPA networks if these habitats become 
fragmented, highlights certain theoretical problems (Gormley et al., 2015)   

Economic: 

Increased revenue/ income 

Economic growth and innovation (Vikolainen et al., 2017) 

Increased financial resources available 

Financial incentives for countries reliant on marine fisheries (Gallo et al., 2017) 

Knowledge: 

Informed decision making tools 

Real Options Analysis and Adaption Pathways allows for increased flexibility, takes into account 
uncertainties associate with climate change, better policies and investments, prepares for various future 
outcomes  (Buurman and Babovic, 2016) 

Improved co-production of knowledge 

Multi-functional natural infrastructure helps develop knowledge and innovation (Vikolainen et al., 2017) 

 Co-benefits  

Constraints and limitations  

Physical: 

Impacts of climate change are not confined to spatial or sectorial boundaries (Serrao-Neumann et al., 2013) 

Preference for hard measures by local authorities (Vikolainen et al., 2017) 

Social: 

Measures can stall when larger coalitions of individuals are needed for approval (Cooley et al., 2016)  

Governance: 
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Competing local priorities (Aylett, 2015) 

Silo culture in local governance agencies (Aylett, 2015) 

Lack of capacity (Serrao-Neumann et al., 2013; Aylett, 2015; Porter et al., 2015) 

Lack of a champion to push adaption policy at the local level (Porter et al., 2015) 

Lack of effective coordination across sectors(Serrao-Neumann et al., 2013) 

Institutional weakness of environmental agencies (Aylett, 2015) and institutional fragmentation (Porter et al., 
2015) 

No single model for the institutionalisation of local climate adaptation planning (Aylett, 2015) 

Organisational complexity, nascent and varied efforts to effectively  institutionalise adaption planning 
(Aylett, 2015) 

Complex, interlinked systems with manifold uncertainties  (Buurman and Babovic, 2016) 

Leadership challenges (Aylett, 2015; Cooley et al., 2016)  

Lack of local government jurisdiction over key policy areas (Aylett, 2015) 

No national approach to coastal management (Vikolainen et al., 2017) 

Difficulty mainstreaming climate change into existing departmental functions (Aylett, 2015) 

Unwillingness of senior management to depart from established job descriptions and departmental mandates 
(Aylett, 2015) 

Inconsistency between local measures (Cooley et al., 2016) 

Political will drives the consideration of marine issues within national climate action plans (Gallo et al., 
2017) 

Lack of political support (Serrao-Neumann et al., 2013; Porter et al., 2015) 

Practical implementation of Integrated Risk Management Approach is a major challenge (Gerkensmeier and 
Ratter, 2018) 

Coastal management is not viewed as a priority by national government (Vikolainen et al., 2017) 

Lack of awareness among key community decision makers about climate change and associated 
environmental sustainability (Nunn et al., 2014) 

Inappropriateness of traditional decision-making structures for dealing with climate change (Nunn et al., 
2014) 

Short-term views of resource management and sustainability held by many community decision makers 
(Nunn et al., 2014) 

Shifting of responsibility from central government towards local actors has not been accompanied by 
adequate human or financial resources (Paterson et al., 2017) 

Structural barriers faced by local authorities (Paterson et al., 2017) 

Personalities are often the basis of interaction and not organisational structures (Paterson et al., 2017) 

Poor coordination between levels of government (Porter et al., 2015) and within organisations (Vikolainen et 
al., 2017) 

Climate adaptation is not viewed as important as meeting immediate obligation by local authorities (Porter et 
al., 2015) 

Time lag between policy development, implementation and on-ground outcomes (Serrao-Neumann et al., 
2013) 

Legislative barriers (Serrao-Neumann et al., 2013) 

Different stages of development of coastal management policy and legislation in countries;  difficulties 
relating to defining the roles and responsibilities of different levels of government;  lack of funding to 
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undertake climate change impact assessments;  financial and human capacity constraints (Rosendo et al., 
2018) 

Personnel; relevant skills; and sustainable mechanisms for collaboration and coordination of coastal issues 
across different sectors and stakeholders 

Economic: 

Resource related challenges (Serrao-Neumann et al., 2013; Aylett, 2015; Porter et al., 2015; Cooley et al., 
2016) 

Large cities are prioritised in terms of human and economic assets and political visibility (Paterson et al., 
2017) 

Mismatch between the aspirations of the community and the finite funds available at national level 
(Vikolainen et al., 2017) 

Few MPA programmes have directly considered climate change in the design, management or monitoring of 
an MPA network, adaptive management of MPA networks is important but hard to implement, Conflict 
exists between local and national initiatives with differing priorities and differing capacities to implement 
MPAs or MPA networks; The slow process of implementation;  jurisdictional complexity of the MPA 
process; legal or political barriers and realities (Hopkins et al., 2016) 

A large portion of the sea lies beyond national jurisdiction; more research is needed on the impacts of pH 
and reduction in the Atlantic Meridional Overturning Circulation to complete impact assessments; lack of 
climate models with high precision for a 20–50 year time horizon, lack of research related to ecosystem 
responses (Johnson et al., 2018) 

Economic: 

Focus on ICM at the local level will divert resources from other competing issues (Rosendo et al., 2018) 

Knowledge: 

Challenges related to information and awareness (Aylett, 2015) 

Problem framing arises from the aims of dominant policy actors (Paterson et al., 2017) 

Information needed for effective decision-making is centralised at a national level (Paterson et al., 2017)  

Technical-cognitive barriers to adaption (Porter et al., 2015) 

Lack of usable scientific information (Porter et al., 2015) 

Focus on immediate risks (Porter et al., 2015) 

Lack of examples of environmental policy integration emerging from practice (Serrao-Neumann et al., 2013) 

Limited understanding of the concept of integration for climate adaptation (Serrao-Neumann et al., 2013) 

Structural inequality and different worldviews constrain planning with a focus on equity (Klinsky et al., 
2017) 

Assumptions that concerns for equity thwart climate action (Klinsky et al., 2017) 

Model uncertainties at high resolution; current marine management strategies are concerned with managing 
the status quo; regional differences in the predicted changes and some countries will experience 
greater/different changes than others (Gormley et al., 2015) 

Great reluctance for change affects the implementation of ICZM; level of power of stakeholders and the 
level to which stakeholders are embedded in the top-down tradition; difference in interpretation of ICZM; 
corruption and lack of political will. Social learning takes a long time and is not an immediate response, 
often making it inappropriate to deal with immediate issues (Abelshausen et al., 2015) 

Costs  

Social: 

Focus on climate adaptation at the local scale results in trade-offs which may result in serious justice 
implications (Paterson et al., 2017) 
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Governance: 

Possibility of piecemeal and localised resilience that accentuates rather  than helps overcome social 
inequalities (Paterson et al., 2017) 

Economic: 

Financial support needed for least developed countries (Gallo et al., 2017) 

Incentives and compensation provided by government in the case of planned retreat (Serrao-Neumann et al., 
2013) 

Human System: Human health 

 Adaptation responses  

Governance: 

Improving implementation and coordination of policies 

Changes in industry practices  (Jacobs et al., 2015) 

Economic: 

Improving financial resources availability 

Effective allocation of technologies and resources (Wu et al., 2016) 

Knowledge: 

Better monitoring and modelling 

Modelling approaches to inform adaption strategies (Jacobs et al., 2015) 

Improving understanding of climate change patterns (Wu et al., 2016) 

Improving forecasting and early warning systems 

Improve prediction of spatial-temporal process of climate change and infectious diseases (Wu et al., 2016) 

Establish early warning systems (Wu et al., 2016) 

Improving decision support frameworks 

Improving understanding of compound disease-specific health effects (Wu et al., 2016) 

Stakeholder identification, outreach and education 

Education (Jacobs et al., 2015) 

Raising public awareness (Wu et al., 2016) 

Multiple adaptation responses used 

Benefits  

Social: 

Improved health 

Alleviate the negative health impacts of climate change (Wu et al., 2016) 

Knowledge: 

Informed decision making tools 

Enhanced prediction over time and spatial scales relevant to public health intervention (Jacobs et al., 2015) 

Inform adaption and mitigation efforts to minimize risk of disease (Jacobs et al., 2015) 

Co-benefits  

Constraints and limitations  

Social: 
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Social and economic factors play a significant role in adaptation to infectious diseases, including differing 
vulnerabilities (Wu et al., 2016) 

Lack of effective communication and public health systems in developing countries (Wu et al., 2016) 

Economic: 

Inadequate financial and medical resources in developing nations (Wu et al., 2016) 

Knowledge: 

Limited studies on the effects of climate change on coastal water-borne pathogens (Jacobs et al., 2015) 

Models do not account for changing demographics, intervention strategies and sanitation practices (Jacobs et 
al., 2015) 

Challenges with predicting extreme weather events and their health impacts (Wu et al., 2016) 

Peer review literature does not agree on the health effects of changes in climate variables (Wu et al., 2016) 

Costs  

Governance: 

Developing countries will need assistance from developed countries (Wu et al., 2016) 
 
 
SM5.7 Observed Changes in the Ocean and Related Impacts in Support of Figure 5.24 
 
Figure 5.24 shows the synthesis of regional consequences and impacts in ocean assessed in Chapter 5.  
Tables SM5.10a, SM5.10b and SM5.10c give respectively the links to the specific section in this chapter or 
in AR5 WG1 or WG2 reports where appropriate. Table SM5.10a refers to the ocean Physical Changes, Table 
SM5.10b refers to the ocean Ecosystems and Table SM10.c refers to the Human systems and Ecosystems 
services columns of the assessments.  
 
 
Table SM5.10a: The observed physical changes in the ocean covered by Chapter 5. The regions are shown in Figure 
5.24, hazards column is the observed change for the period defined by the start and ends dates, and direction is either 
increase, decrease or neutral. Detection column is the observed changes for the period, and attribution column is 
whether there is a detectable human influence in the change and the reference column points to the traceable evidence 
from this Chapter or form the AR5 WG1 or WG2 report. Some trends analyse and attributed based on zonal averages 
depending on the particular variable and quality of attribution. Temperature: means averages of temperature 0-700m 
depth layer, Oxygen: means change in oxygen levels in the oxygen minimum zone or from the surface to 1000m, Ocean 
pH: changes in pH at the surface of the ocean, Sea Level:  changes in mean sea sea-level. The standard likelihood and 
confidence language is used to indicate the level of confidence in the assessment. 

Region Hazards Notes 
Data 
types 

Start 
year 

End 
year 

Direction 
of changes  Detection  Attribution  Reference 

EBUS Temperature 
Ocean 
Temperature In situ 1960 2017 

Increase 
and 
Decrease  Low  NA {5.2, Box 5.3} 

EBUS Oxygen Oxygen In situ 1990 2010 Neutral Low NA {5.2, Box 5.3} 

EBUS Ocean pH pH In situ 1993 2016 Decrease Very Likely Likely {5.2, Box 5.3} 

EBUS SLR m 
In 
situ/Sat. 1996 2015 Increase  

Virtually 
Certain Medium {4.2.2.4} 

Tropical 
Pacific Temperature 

Ocean 
Temperature In situ 1970 2017 Neutral  Low NA 

{5.2.2.2, AR5 WG1, 
Section 10.9} 

Tropical 
Pacific Oxygen Oxygen In situ 1970 2015 Decrease Medium Low {5.2.2.4}  
Tropical 
Pacific Ocean pH pH In situ 1970 2016 Decrease Very Likely Likely 

{5.2.2.3, SM 5.1 Table 
SM5.3} 

Tropical 
Pacific SLR m 

In 
situ/Sat. 1996 2015 Increase  

Virtually 
Certain medium {4.2.2.6} 

North 
Pacific Temperature 

Ocean 
Temperature In situ 1970 2017 Increase high medium 

{5.2.2.2, AR5 WG1, 
Section 10.9} 

North 
Pacific Oxygen Oxygen In situ 1970 2010 Decrease Medium Low {5.2.2.4}  
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North 
Pacific Ocean pH pH In situ 2000 2010 Decrease Very Likely Likely 

{5.2.2.3, SM 5.1 Table 
SM5.3} 

North 
Pacific SLR m 

In 
situ/Sat. 1996 2015 Increase  

virtually 
certain Medium {4.2.2.6} 

Tropical 
Atlantic Temperature  

Ocean 
Temperature In situ 1970 2017 Increase  High Medium 

{5.2.2.2, AR5 WG1, 
Section 10.9} 

Tropical 
Atlantic Oxygen Oxygen In situ 1970 2010 Decrease Low Low {5.2.2.4} 
Tropical 
Atlantic Ocean pH pH In situ 2000 2010 Decrease Very likely Likely 

{5.2.2.3, SM 5.1 Table 
SM5.3} 

Tropical 
Atlantic SLR m 

In 
situ/Sat. 1996 2015 Increase  

virtually 
certain Medium {4.2.2.6} 

North 
Atlantic Temperature 

Ocean 
Temperature In situ 1970 2017 Increase High Medium 

{5.2.2.2, AR5 WG1, 
Section 10.9} 

North 
Atlantic Oxygen Oxygen In situ 1990 2010 Decrease Low Low {5.2.2.4} 
North 
Atlantic Ocean pH pH In situ 2000 2010 Decrease Very Likely Likely 

{5.2.2.3, SM 5.1 Table 
SM5.3} 

North 
Atlantic SLR m 

In 
situ/Sat. 1996 2015 Increase  

Virtually 
Certain Medium {4.2.2.6} 

Tropical 
Indian 
Ocean Temperature  

Ocean 
Temperature In situ 1970 2017 Increase High Medium 

{5.2.2.2, AR5 WG1, 
Section 10.9} 

Tropical 
Indian 
Ocean Oxygen Oxygen In situ 1970 2010 decrease Low  Low {5.2.2.3} 

Tropical 
Indian 
Ocean Ocean pH pH In situ 2000 2010 Decrease Very likely Likely 

{5.2.2.3} also 
supplementary 
information SM 5.2 
Table 1 

Tropical 
Indian 
Ocean SLR M 

In 
situ/Sat. 1996 2015 Increase  

virtually 
certain medium {4.2.2.6} 

Temperate 
Indian 
Ocean Temperature 

Ocean 
Temperature In situ 1970 2017 increase high medium 

{5.2.2.2, AR5 WG1, 
Section 10.9} 

Temperate 
Indian 
Ocean Oxygen Oxygen In situ 1970 2010 Neutral Low NA {5.2.2.4} 
Temperate 
Indian 
Ocean 

Ocean 
acidification pH In situ 2000 2010 Decrease Very likely Likely 

{5.2.2.3, SM 5.1 Table 
SM5.3} 

Temperate 
Indian 
Ocean SLR m 

In 
situ/Sat. 1996 2015 Increase  

virtually 
certain medium {4.2.2.6} 

South 
Pacific Temperature 

Ocean 
Temperature In situ 1970 2017 Increase High Medium 

{5.2.2.2, AR5 WG1, 
Section 10.9} 

South 
Pacific Oxygen Oxygen In situ 1970 2010 Neutral Low NA {5.2.2.4}  
South 
Pacific 

Ocean 
acidification pH In situ 2000 2010 Decrease Very Likely Likely 

{5.2.2.3, SM 5.1 Table 
SM5.3} 

South 
Pacific SLR m 

In 
situ/Sat. 1996 2015 Increase  

virtually 
certain medium {4.2.2.6} 

South 
Atlantic Temperature 

Ocean 
Temperature In situ 1970 2017 Increase High Medium 

{5.2.2.2, AR5 WG1, 
Section 10.9} 

South 
Atlantic Oxygen Oxygen In situ 1990 2010 Decrease Low Low {5.2.2.4} 
South 
Atlantic 

Ocean 
acidification pH In situ 2000 2010 Decrease Very Likely Likely 

{5.2.2.3, SM 5.1 Table 
SM5.3} 

South 
Atlantic SLR m 

In 
situ/Sat. 1996 2015 Increase  

virtually 
certain medium {4.2.2.6} 

 
 
Table SM5.10b: The observed impacts in selected coastal and ocean ecosystems from 1940 to the present day covered 
by Chapter 5. The regions are shown in Figure 5.24, ecosystem column is the assessed ecosystem types in Chapter 5. 
The observed direction of impacts are either positive, negative, or both position and negative. Detection column is the 
confidence level assessed for the observed impacts, and attribution column is whether there is the level of confidence 
on whether the detected impacts are contributed by climate change.  
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Region Ecosystems Direction of 
impacts 

Impact types Detection Attribution Reference 

EBUS Epipelagic Negative Shift in biogeography, 
mass mortality of 
organisms, decrease in 
abundance 

medium low {Box 5.3} 

EBUS Coral NA NA NA NA NA 
EBUS Coastal 

wetlands 
NA NA NA NA NA 

EBUS Kelp forest Negative Shift to turfs, reduction 
in recruitment 

high medium {5.3.6} 

EBUS Rocky shores NA NA NA NA NA 
EBUS Deep sea NA NA NA NA NA 
North 
Atlantic 

Epipelagic Negative Alteration of 
biogeography/phenology
/community structure 

high high {5.2.3} 

North 
Atlantic 

Coral Negative Shift in depth 
distribution 

low low {Box 5.2} 

North 
Atlantic 

Coastal 
wetlands 

Positive and 
negative 

Increase in area in some 
sub-tropical area but 
expansion of one 
vegetation, invasion by 
grazers impacting 
vegetated habitats.  

high medium {5.3.2} 

North 
Atlantic 

Kelp forest Negative Shift to turfs and algae high medium {5.3.6} 

North 
Atlantic 

Rocky shores Negative Changes in species 
composition 

high high {5.3.5} 

North 
Atlantic 

Deep sea NA NA NA NA NA 

North 
Pacific 

Epipelagic Negative Alteration of 
biogeography/phenology
/community structure 

high medium {5.2.3} 

North 
Pacific 

Coral NA NA NA NA NA 

North 
Pacific 

Coastal 
wetlands 

Positive and 
negative 

Increase in area in some 
sub-tropical area but 
expansion of one 
vegetation, invasion by 
grazers impacting 
vegetated habitats.  

high medium {5.3.2} 

North 
Pacific 

Kelp forest Negative Shift to turfs and aglae, 
increase tropical 
sargassum species, 
reduction in recruitment 
and recovery 

high medium {5.3.6} 

North 
Pacific 

Rocky shores Negative Changes in species 
composition 

medium medium {5.3.5} 

North 
Pacific 

Deep sea Positive or 
negative 

Benthic communities low low {5.4.2.4} 

South 
Atlantic 

Epipelagic Negative Alteration of 
biogeography/phenology
/community structure 

medium medium {5.2.3} 

South 
Atlantic 

Kelp forest Negative Replacement by turfs High Low {5.3.6} 

South 
Atlantic 

Coral NA NA NA NA NA 

South 
Atlantic 

Coastal 
wetlands 

Negative Increased mortality of 
vegetation, loss of 
habitats, changes in 

High medium {5.3.2} 
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community and 
ecosystem structure 

South 
Atlantic 

Rocky shores NA NA NA NA NA 

South 
Pacific 

Epipelagic Negative Alteration of 
biogeography/phenology
/community structure 

medium medium {5.2.3} 

South 
Pacific 

Kelp forest Negative Loss of canopy forming 
species, shift to turfs 

High low {5.3.6} 

South 
Pacific 

Coral Negative Coral bleaching very high high {5.3.4} 

South 
Pacific 

Coastal 
wetlands 

Negative Increased mortality of 
vegetation, loss of 
habitats, changes in 
community and 
ecosystem structure 

High medium {5.3.2} 

Temperate 
Indian 
Ocean 

Epipelagic Negative Alteration of 
biogeography/phenology
/community structure 

medium low {5.2.3} 

Temperate 
Indian 
Ocean 

Coral NA NA NA NA NA 

Temperate 
Indian 
Ocean 

Coastal 
wetlands 

Positive and 
negative 

Increase in area in some 
sub-tropical area but 
expansion of one 
vegetation, invasion by 
grazers impacting 
vegetated habitats.  

High medium {5.3.2} 

Temperate 
Indian 
Ocean 

Kelp forest Negative Shift to turfs, reduction 
in recovery 

medium low {5.3.6} 

Temperate 
Indian 
Ocean 

Rocky shores Negative Changes in species 
composition 

Low low {5.3.5} 

Temperate 
Indian 
Ocean 

Deep sea NA NA NA NA NA 

Tropical 
Atlantic 

Epipelagic Negative Alteration of 
biogeography/phenology
/community structure 

High medium {5.2.3} 

Tropical 
Atlantic 

Coral Negative Coral bleaching very high high {5.3.2} 

Tropical 
Atlantic 

Coastal 
wetlands 

Negative Increased mortality of 
vegetation, loss of 
habitats, changes in 
community and 
ecosystem structure 

High medium {5.3.2} 

Tropical 
Atlantic 

Kelp forest NA NA NA NA NA 

Tropical 
Atlantic 

Rocky shores NA NA NA NA NA 

Tropical 
Atlantic 

Deep sea NA NA NA NA NA 

Tropical 
Indian 
Ocean 

Epipelagic Negative Alteration of 
biogeography/phenology
/community structure 

medium low {5.2.3} 

Tropical 
Indian 
Ocean 

Coral Negative Coral bleaching very high high {5.3.2} 
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Tropical 
Indian 
Ocean 

Coastal 
wetlands 

Negative Increased mortality of 
vegetation, loss of 
habitats, changes in 
community and 
ecosystem structure 

High medium {5.3.2} 

Tropical 
Indian 
Ocean 

Kelp forest NA NA NA NA NA 

Tropical 
Indian 
Ocean 

Rocky shores NA NA NA NA NA 

Tropical 
Pacific 

Coastal 
wetland 

Negative Increased mortality of 
vegetation, loss of 
habitats, changes in 
community and 
ecosystem structure 

high 
confidence 

medium {5.3.2} 

Tropical 
Pacific 

Kelp forest Negative Loss of canopy forming 
species, shift to turfs 

High low {5.3.6} 

Tropical 
Pacific 

Rocky shores NA NA NA NA NA 

Tropical 
Pacific 

Deep sea NA NA NA NA NA 

Tropical 
Pacific 

Epipelagic Negative Alteration of 
biogeography/phenology
/community structure 

medium medium {5.2.3} 

Tropical 
Pacific 

Coral Negative Coral bleaching very high high {5.3.4} 

 
 
Table SM5.10c: The observed impacts of selected human systems and ecosystem services from 1940 to the present day 
covered by Chapter 5. The regions are shown in Figure 5.24, ecosystem services column is the assessed ecosystem 
types in Chapter 5. The observed direction of impacts are either positive, negative, or both position and negative. 
Detection column is the confidence level assessed for the observed impacts, and attribution column is whether there is 
the level of confidence on whether the detected impacts are contributed by climate change. 
Region Human 

systems and 
ecosystem 
services 

Direction of 
changes  

Impact types Detection  Attribution Reference 

EBUS Fisheries Negative Species composition 
and catch potential 

medium low {Box 5.3} 

EBUS Tourism Negative Tourism opportunities low low {Box 5.3} 
EBUS Carbon 

sequestration 
NA NA NA NA {Box 5.3} 

EBUS Habitat 
service 

Negative Modification of habitat 
conditions 

low Low {Box 5.3} 

EBUS Transportatio
n and 
shipping 

NA NA NA NA NA 

EBUS Culture NA NA NA NA NA 
Tropical 
Pacific 

Fisheries Negative Species composition 
and catch potential 

high low {5.4.1.1} 

Tropical 
Pacific 

Tourism NA NA NA NA {5.4.2.3.2} 

Tropical 
Pacific 

Carbon 
sequestration 

Negative Loss of coastal blue 
carbon habitat 

high Low {5.3, 5.4.2, 
5.5.1.2} 

Tropical 
Pacific 

Habitat 
service 

Negative Loss/degradation of 
habitat and their 
functions 

high medium {5.4.3} 

Tropical 
Pacific 

Transportatio
n and 
shipping 

NA NA NA NA NA 
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Tropical 
Pacific 

Culture NA NA NA NA NA 

North 
Pacific 

Fisheries Negative Species composition 
and catch potential 

high low {5.4.1.1} 

North 
Pacific 

Tourism Negative Tourism opportunities high low {5.4.2.3.2} 

North 
Pacific 

Carbon 
sequestration 

Negative Loss of coastal blue 
carbon habitat 

high medium {5.3, 5.4.2, 
5.5.1.2} 

North 
Pacific 

Habitat 
service 

Negative Loss/degradation of 
habitat and their 
functions 

high medium {5.4.3} 

North 
Pacific 

Transportatio
n and 
shipping 

NA NA NA NA NA 

North 
Pacific 

Culture Negative Food and ceremonial 
use of marine 
resources 

high low {5.4.2.1.3, 
5.4.2.2.1} 

Tropical 
Atlantic 

Fisheries Negative Change in species 
composition and catch 
potential 

high medium {5.4.1.1} 

Tropical 
Atlantic 

Tourism NA NA NA NA {5.4.2.3.2} 

Tropical 
Atlantic 

Carbon 
sequestration 

Negative Loss of coastal blue 
carbon habitat 

High Low {5.3, 5.4.2, 
5.5.1.2} 

Tropical 
Atlantic 

Habitat 
service 

Negative Loss/degradation of 
habitat and their 
functions 

High medium {5.4.3} 

Tropical 
Atlantic 

Transportatio
n and 
shipping 

NA NA NA NA NA 

Tropical 
Atlantic 

Culture NA NA NA NA NA 

North 
Atlantic 

Fisheries Negative Species composition 
and catch potential 

high high {5.4.1.1} 

North 
Atlantic 

Tourism NA NA NA NA {5.4.2.3.2} 

North 
Atlantic 

Carbon 
sequestration 

Negative Loss of coastal blue 
carbon habitat 

high Medium {5.3, 5.4.2, 
5.5.1.2} 

North 
Atlantic 

Habitat 
service 

Negative Loss/degradation of 
habitat and their 
functions 

high medium {5.4.3} 

North 
Atlantic 

Transportatio
n and 
shipping 

NA NA NA NA NA 

North 
Atlantic 

Culture Negative Changes in coastal 
livelihood 

medium low {5.4.2.3.1, 
5.4.2.2.1} 

Tropical 
Indian 
Ocean 

Fisheries Negative Species composition 
and catch potential 

low low {5.4.1.1} 

Tropical 
Indian 
Ocean 

Tourism NA NA NA NA {5.4.2.3.2} 

Tropical 
Indian 
Ocean 

Carbon 
sequestration 

Negative Loss of coastal blue 
carbon habitat 

high medium {5.3, 5.4.2, 
5.5.1.2} 

Tropical 
Indian 
Ocean 

Habitat 
service 

Negative Loss/degradation of 
habitat and their 
functions 

medium medium {5.4.3} 

Tropical 
Indian 
Ocean 

Transportatio
n and 
shipping 

NA NA NA NA NA 
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Tropical 
Indian 
Ocean 

Culture NA NA NA NA NA 

Temperate 
Indian 
Ocean 

Fisheries Negative Species composition 
and catch potential 

low low {5.4.1.1} 

Temperate 
Indian 
Ocean 

Tourism NA NA NA NA {5.4.2.3.2} 

Temperate 
Indian 
Ocean 

Carbon 
sequestration 

Negative Loss of coastal blue 
carbon habitat 

high Low {5.3, 5.4.2, 
5.5.1.2} 

Temperate 
Indian 
Ocean 

Habitat 
service 

Negative Loss/degradation of 
habitat and their 
functions 

medium low {5.4.3} 

Temperate 
Indian 
Ocean 

Transportatio
n and 
shipping 

NA NA NA NA NA 

Temperate 
Indian 
Ocean 

Culture NA NA NA NA NA 

South 
Pacific 

Fisheries Negative Species composition 
and catch potential 

high low {5.4.1.1} 

South 
Pacific 

Tourism Negative Perception of local and 
international tourisms 

Low Low {5.4.2.3.2} 

South 
Pacific 

Carbon 
sequestration 

Negative Loss of coastal blue 
carbon habitat 

high Low {5.3, 5.4.2, 
5.5.1.2} 

South 
Pacific 

Habitat 
service 

Negative Loss/degradation of 
habitat and their 
functions 

high medium {5.4.3} 

South 
Pacific 

Transportatio
n and 
shipping 

NA NA NA NA NA 

South 
Pacific 

Culture Negative Influences on 
perceptions, values, 
traditions 

high low {5.4.2.2.1} 

South 
Atlantic 

Fisheries Negative Species composition 
and catch potential 

medium low {5.4.1.1} 

South 
Atlantic 

Tourism NA NA NA NA {5.4.2.3.2} 

South 
Atlantic 

Carbon 
sequestration 

Negative Loss of coastal blue 
carbon habitat 

high Low {5.3, 5.4.2, 
5.5.1.2} 

South 
Atlantic 

Habitat 
service 

Negative Loss/degradation of 
habitat and their 
functions 

medium low {5.4.3} 

South 
Atlantic 

Transportatio
n and 
shipping 

NA NA NA NA NA 

South 
Atlantic 

Culture NA NA NA NA NA 
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Executive Summary 
 
This chapter assesses extremes and abrupt or irreversible changes in the ocean and cryosphere in a changing 
climate, to identify regional hot spots, cascading effects, their impacts on human and natural systems, and 
sustainable and resilient risk management strategies. It is not comprehensive in terms of the systems assessed 
and some information on extremes, abrupt and irreversible changes, in particular for the cryosphere, may be 
found in other chapters 
 
Ongoing and Emerging Changes in the Ocean and Cryosphere, and their Impacts on Ecosystems and 
Human Societies 
 
Anthropogenic climate change has increased precipitation, winds and extreme sea level events 
associated with a number of observed tropical- and extra-tropical cyclones (high confidence1). For 
example, studies have shown that the rainfall intensity of tropical cyclone Harvey increased by at least 8% 
due to climate change. {6.3, Table 6.2, Figure 6.2, Box 6.1}. In the Northern Hemisphere mid-latitudes, 
there is low confidence in links between Arctic amplification, blocking events and various types of weather 
extremes in recent decades. {6.3} 
 
Anthropogenic climate change may have contributed to a poleward migration of maximum tropical 
cyclone intensity in the western North Pacific in recent decades related to anthropogenically-forced 
tropical expansion (low confidence) There is emerging evidence for a number of regional changes in 
tropical cyclone behaviour such as an increase in annual global proportion of Category 4 or 5 tropical 
cyclones in recent decades, severe tropical cyclones occurring in the Arabian Sea and making landfall in East 
and Southeast Asia, increasing in frequency of moderately large US storm surge events since 1923 and the 
decreasing frequency of severe TCs making landfall in eastern Australia since the late 1800s, but low 
confidence that these represent detectable anthropogenic signals. {6.3} 
 
Extreme wave heights across the globe have increased by around 5% over the past three decades 
(medium confidence). {6.3} 
 
Marine heatwaves, periods of extremely high ocean temperatures, have negatively impacted marine 
organisms and ecosystems in all ocean basins over the last two decades, including critical foundation 
species such as corals, seagrasses and kelps (very high confidence). Satellite observations reveal that 
marine heatwaves have very likely2 doubled in frequency between 1982 and 2016, and that they have also 
become longer-lasting, more intense and extensive. Between 2006 and 2015, 84% to 90% (very likely range) 
of all globally occurring marine heatwaves are attributable to the temperature increase since 1850-1900.   
{6.4, Figures 6.3-6.4} 
 
Both paleoclimate and modern observations suggest that the strongest El Niño and La Niña events 
since the pre-industrial have occurred during the last fifty years (medium confidence).  There have been 
three occurrences of extreme El Niño events during the modern observational period (1982–83, 1997–98, 
2015–16), all characterised by pronounced rainfall in the normally dry equatorial east Pacific. There have 
been two occurrences of extreme La Niña (1988–89, 1998–99). El Niño and La Niña variability during the 
last 50 years is unusually high compared with average variability during the last millennium.{6.5, Figure 
6.5} 
 
                                                   
1 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; 
and for the degree of agreement: low, medium, or high. A level of confidence is expressed using five qualifiers: very 
low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and 
agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of 
agreement are correlated with increasing confidence (see Section 1.9.2 and Figure 1.4 for more details). 
2 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: 
Virtually certain 99–100% probability, Very likely 90–100%, Likely 66–100%, About as likely as not 33–66%, 
Unlikely 0–33%, Very unlikely 0–10%, and Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–
100%, More likely than not >50–100%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed 
likelihood is typeset in italics, e.g., very likely (see Section 1.9.2 and Figure 1.4 for more details). This Report also uses 
the term ‘likely range’ to indicate that the assessed likelihood of an outcome lies within the 17-83% probability range. 
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The equatorial Pacific trade wind system experienced an unprecedented intensification during 2001-
2014, resulting in enhanced ocean heat transport from the Pacific to the Indian Ocean, influencing the 
rate of global temperature change (medium confidence). In the last two-decades, total water transport 
from the Pacific to the Indian Ocean by the Indonesian Throughflow, and the Indian Ocean to Atlantic 
Ocean has increased (high confidence). Increased Indonesian Throughflow has been linked to Pacific cooling 
trends and basin-wide warming trends in the Indian Ocean. Pacific sea surface temperature cooling trends 
and strengthened trade winds have been linked to an anomalously warm tropical Atlantic. {6.6, Figure 6.7} 
 
Modern observations, climate simulations and paleoclimate reconstructions suggest that the Atlantic 
Meridional Overturning Circulation (AMOC) has weakened since the preindustrial (medium 
confidence). Nevertheless, there is insufficient evidence yet to quantify a likely range of the magnitude of 
the change {6.7, Figure 6.8}. 
 
Climate change is modifying multiple types of climate-related events or hazards in terms of 
occurrence, intensity and periodicity.  It increases the likelihood of compound hazards that comprise 
simultaneously or sequentially occurring events to cause extreme impacts in natural and human 
systems. Compound events in turn trigger cascading impacts (high confidence). Three case studies are 
presented in the chapter, (i) Tasmania’s Summer of 2015/16, (ii) The Coral Triangle and (ii) Hurricanes of 
2017. {6.8, Box 6.1} 
 
Projections of Ocean and Cryosphere Change and Hazards to Ecosystems and Human Society Under 
Low and High Emission Futures 
 
An increase in the average intensity of tropical cyclones, and the associated average precipitation rates 
is projected for a 2°C global temperature rise (medium confidence), although there is low confidence in 
future frequency changes at the global scale. Rising sea levels will contribute to higher extreme sea 
levels associated with tropical cyclones in the future (very high confidence). Projections show that the 
proportion of Category 4 and 5 TCs will increase (medium confidence). Such changes will affect storm surge 
frequency and intensity, and impact coastal infrastructure and mortality. {6.3} 
 
Wave heights are projected to increase across the Southern Ocean, tropical eastern Pacific and Baltic 
Sea and decrease over the North Atlantic and Mediterranean Sea under RCP 4.5 and RCP 8.5 (high 
confidence). There is still limited knowledge on projected wave period and direction. Accounting for the 
multiple contributions of waves, tides, storm surges and sea level rise, probabilistic projections of extreme 
sea levels predict the global average 100-year extreme sea level to very likely increase by 34–76 cm and 58–
172 cm, under RCP4.5 and RCP8.5, respectively between 2000 and 2100. {6.3} 
 
Marine heatwaves will further increase in frequency, duration, spatial extent and intensity under 
future global warming (very high confidence) pushing some marine organisms, fisheries and 
ecosystems beyond the limits of their resilience, with cascading impacts on economies and societies 
(high confidence). Globally, the frequency of marine heatwaves is very likely to increase by a factor of 46-
55 by 2081-2100 under the RCP8.5 scenario and by a factor of 16-24 under the RCP2.6 scenario, relative to 
the 1850-1900 reference period. These future trends in MHW frequency can largely be explained by 
increases in mean ocean temperature. The largest changes in the frequency of marine heatwaves are 
projected for the Arctic Ocean and the tropical ocean (medium confidence). {6.4} 
 
Extreme El Niño and La Niña events are likely to occur more frequently with global warming and are 
likely to intensify existing impacts, with drier or wetter responses in several regions across the globe, 
even at relatively low levels of future global warming (medium confidence). {6.5, Figure 6.5} 
 
Lack of long-term sustained Indian and Pacific ocean observations, and inadequacies in the ability of 
climate models to simulate the magnitude of trade wind decadal variability and the inter-ocean link, 
mean there is low confidence in future projections of the trade wind system. {6.6, Figure 6.7} 
 
The AMOC will very likely weaken over the 21st century (high confidence), although a collapse is very 
unlikely (medium confidence). Nevertheless, a substantial weakening of the AMOC remains a 
physically plausible scenario. Such a weakening would strongly impact natural and human systems, 
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leading to a decrease in marine productivity in the North Atlantic, more winter storms in Europe, a reduction 
in Sahelian and South Asian summer rainfall, a decrease in the number of tropical cyclones in the Atlantic, 
and an increase in regional sea-level around the Atlantic especially along the northeast coast of North 
America (medium confidence). Such impacts would be superimposed on the global warming signal. {6.7, 
Figure 6.8} 
 
Impacts from further changes in tropical and extra-tropical cyclones, marine heatwaves, extreme El 
Niño and La Niña events and other extremes will exceed the limits of resilience and adaptation of 
ecosystems and people, leading to unavoidable loss and damage (medium confidence). {6.9.2} 
 
 
Strengthening the Global Responses in the Context of Sustainable Development Goals and Charting 
Climate Resilient Development Pathways for Oceans and Cryosphere  
 
There is medium confidence that including extremes and abrupt changes, such as AMOC weakening, 
ice-sheet collapse (WAIS and GIS), leads to a several-fold increase in the cost of carbon emissions 
(medium confidence).  If carbon emissions decline, the risk of extremes and abrupt changes are 
reduced, creating co-benefits. {6.8.5} 
 
For tropical and extratropical cyclones, investment in disaster risk reduction, flood management 
(ecosystem and engineered) and early warning systems decreases economic loss (medium confidence), 
but such investments may be hindered by limited local capacities, such as increased losses and 
mortality from extreme winds and storm surges in less-developed countries despite adaptation efforts. 
There is emerging evidence of increasing risks for locations impacted by unprecedented storm trajectories 
(low confidence). Managing the risk from such changing storm trajectories and intensity proves challenging 
because of the difficulties of early warning and its receptivity by the affected population (high confidence). 
{6.3, 6.9} 
 
Limiting global warming would reduce the risk of impacts of marine heatwaves, but critical 
thresholds for some ecosystems (e.g. kelp forests, coral reefs) will be reached at relatively low levels of 
future global warming (high confidence). Early warning systems, producing skillful forecasts of marine 
heatwaves, can further help to reduce the vulnerability in the areas of fisheries, tourism and conservation, but 
are yet unproven at large scale (medium confidence).{6.4} 
 
Sustained long-term monitoring and improved forecasts can be used in managing the risks of extreme 
El Niño and La Niña events associated with human health, agriculture, fisheries, coral reefs, 
aquaculture, wildfire, drought and flood management (high confidence). {6.5} 
 
Extreme change in the trade wind system and its impacts on global variability, biogeochemistry, 
ecosystems as well as society have not been adequately understood and represent significant 
knowledge gaps. {6.6} 
 
By 2300, an AMOC collapse is as likely as not for high emission pathway and very unlikely for lower 
ones, highlighting that an AMOC collapse can be avoided in the long term by CO2 mitigation (medium 
confidence). Nevertheless, the human impact of these physical changes have not been sufficiently quantified 
and there are considerable knowledge gaps in adaptation responses to a substantial AMOC weakening. {6.7} 
 
The ratio between risk reduction investment and reduction of damages of extreme events varies. 
Investing in preparation and prevention against the impacts from extreme events is very likely less 
than the cost of impacts and recovery (medium confidence). Coupling insurance mechanisms with risk 
reduction measures can enhance the cost-effectiveness of adapting to climate change (medium confidence). 
{6.9} 
 
Climate change adaptation and disaster risk reduction require capacity building and an integrated 
approach to ensure trade-offs between short- and long-term gains in dealing with the uncertainty of 
increasing extreme events, abrupt changes, and cascading impacts at different geographic scales (high 
confidence). {6.9} 
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Limiting the risk from the impact of extreme events and abrupt changes leads to successful adaptation 
to climate change with the presence of well-coordinated climate-affected sectors and disaster 
management relevant agencies (high confidence).  Transformative governance inclusive of successful 
integration of disaster risk management and climate change adaptation, empowerment of vulnerable 
groups, and accountability of governmental decisions promotes climate-resilient development 
pathways (high confidence). {6.9} 
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6.1 Introduction 
 
This chapter assesses extremes and abrupt or irreversible changes in the ocean and cryosphere in a changing 
climate, to identify regional hot spots, cascading effects, their impacts on human and natural systems, and 
sustainable and resilient risk management strategies. While not comprehensive in terms of discussing all 
such phenomena, it addresses a number of issues that are prominent in both the policy area and in the 
scientific literature. Further information may also be found in Chapters 2–4 for other aspects of the ocean 
and cryosphere. 
 
Building on the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate 
Change Adaptation (SREX; IPCC, 2012), AR5 (IPCC, 2013; IPCC, 2014) assessments and the Special 
Report on Global Warming of 1.5 °C (IPCC, 2018), for each of the topics addressed, we provide an 
assessment of: 
• Key processes and feedbacks, observations, detection and attribution, projections; 
• Impacts on human and natural systems; 
• Monitoring and early warning systems; 
• Risk management and adaptation, sustainable and resilient pathways. 
 
The chapter is organised in terms of the space- and time-scales of different phenomena. We move from 
small-scale tropical cyclones, which last for days to weeks, to the global-scale Atlantic Meridional 
Overturning Circulation (AMOC), which has time scales of decades to centuries. A common risk framework 
is adopted, based on that used in AR5 and introduced in Chapter 1, section 1.5 and Cross-Chapter Box 1 in 
Chapter 1 (Figure 6.1).  
 
 

Figure 6.1: Framework used in this chapter (see discussion in Chapter 1). Singular or multiple climate drivers can lead 
to extreme hazards and associated cascading impacts, which combined with non-climatic drivers affect exposure and 
vulnerability, lead to compound risks. Extremes discussed are: tropical and extratropical cyclones and associated sea-
surface dynamics (Section 6.3); marine heatwaves (Section 6.4), extreme El Niño and La Niña events (Section 6.5); and 
extreme oceanic decadal variability (Section 6.6). Examples of abrupt events, irreversibility and tipping points 
discussed are the Atlantic Meridional Overturning Circulation and Sub-polar Gyre system (Section 6.7). Section 6.2 
also collects examples of such events from the rest of the SROCC and compiles examples of events whose occurrence 
or severity has been linked to climate change. Cascading impacts and compound events are discussed in section 6.8 and 
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three examples are given in Box 6.1. Section 6.9 discusses risk management, climate resilience pathways, 
transformative governance adaptation and mitigation required to address societal and environmental risks. 
 
 
While much of what is discussed within the chapter concerns the ocean, we also summarise abrupt events in 
the cryosphere in section 6.2, drawing information from chapters 2–4, where the main assessment of those 
phenomena may be found.  
 
6.1.1 Definitions of Principal Terms 
 
In discussing concepts such as abrupt changes, irreversibility, tipping points and extreme events it is 
important to define precisely what is meant by those terms. The following definitions are therefore adopted 
(based on either AR5, SR15 or SRCCL Glossaries): 
 
Abrupt climate change: A large-scale change in the climate system that takes place over a few decades or 
less, persists (or is anticipated to persist) for at least a few decades, and causes substantial disruptions in 
human and natural systems. 
 
Extreme weather/climate event: An extreme event is an event that is rare at a particular place and time of 
year. Definitions of ‘rare’ vary, but an extreme event would normally be as rare as or rarer than the 10th or 
90th percentile of a probability density function estimated from observations. By definition, the 
characteristics of what is called an extreme event may vary from place to place in an absolute sense. When a 
pattern of extreme weather persists for some time, such as a season, it may be classed as an extreme climate 
event, especially if it yields an average or total that is itself extreme (e.g., high temperature, drought, or total 
rainfall over a season). 
 
Irreversibility: A perturbed state of a dynamical system is defined as irreversible on a given timescale, if 
the recovery timescale from this state due to natural processes is significantly longer than the time it takes 
for the system to reach this perturbed state. In the context of this report, the recovery time scale of interest is 
hundreds to thousands of years.  
 
Tipping point: A level of change in system properties beyond which a system reorganizes, often in a non-
linear manner, and does not return to the initial state even if the drivers of the change are abated. For the 
climate system, the term refers to a critical threshold when global or regional climate changes from one 
stable state to another stable state. Tipping points are also used when referring to impact: the term can imply 
that an impact tipping point is (about to be) reached in a natural or human system. 
 
These above four terms generally refer to aspects of the physical climate system. Here we extend their 
definitions to natural and human systems. For example, there may be gradual physical climate change which 
causes an irreversible change in an ecosystem. An adaptation tipping point could be reached when an 
adaptation option no longer remains effective. There may be a tipping point within a governance structure.  
 
We also introduce two new key terms relevant for discussing risk-related concepts. 
 
Compound events refer to the combination of multiple drivers and/or hazards that contribute to societal or 
environmental risks. 
  
Cascading impacts from extreme weather/climate events occur when an extreme hazard generates a 
sequence of secondary events in natural and human systems that result in physical, natural, social or 
economic disruption, whereby the resulting impact is significantly larger than the initial impact. Cascading 
impacts are complex and multi-dimensional, and are associated more with the magnitude of 
vulnerability than with that of the hazard.  
 
 
6.2 Climate-change influences on Abrupt Changes, Irreversibility, Tipping Points and Extreme 

Events 
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6.2.1 Introduction 
 
Some potentially abrupt or irreversible events are assessed in other chapters hence Table 6.1 presents a 
cross-chapter summary of those. Subsection numbers indicate where detailed information may be found. 
 
 
Table 6.1: Cross-chapter assessment of abrupt and irreversible phenomena related to the ocean and cryosphere. The 
column on the far right of the table indicates the likelihood of an abrupt/irreversible change based on the assessed 
literature which, in general, assesses RCP scenarios. Assessments of likelihood and confidence are made according to 
IPCC guidance on uncertainties. 

Change in system 
component 

Potentially 
abrupt 

Irreversibility 
if forcing 
reversed (time 
scales 
indicated) 

Impacts on natural and human 
systems; global vs. regional vs. 
local 

Projected likelihood 
and/or confidence 
level in 21st century 
under scenarios 
considered 

Ocean 
Atlantic Meridional 
Overturning Circulation 
(AMOC) collapse 
(Section 6.7) 

Yes Unknown Widespread; increased winter 
storms in Europe, reduced 
Sahelian rainfall and agricultural 
capacity, variations in tropical 
storms, increased sea levels on 
Atlantic coasts 

Very unlikely, but 
physically-plausible  

Sub-polar gyre cooling 
(Section 6.7) 

Yes Irreversible 
within decades 

Similar to AMOC impacts but 
considerably smaller. 

Medium confidence 

Marine heatwave 
increase (Section 6.4) 

Yes Reversible 
within decades 
to centuries 

Coral bleaching, loss of 
biodiversity and ecosystem 
services, harmful algal blooms, 
species redistribution 

Very likely (very high 
confidence) for 
physical changes. 
High confidence for 
impacts 

Arctic sea-ice retreat 
(Section 3.3) 
 

Yes Reversible 
within decades 
to centuries 

Coastal erosion in Arctic (may 
take longer to reverse), impact on 
mid-latitude storms (low 
confidence); rise in Arctic surface 
temperatures (high confidence) 

High confidence 

Ocean deoxygenation 
and hypoxic events 
(Section 5.2) 

Yes Reversible at 
surface, but 
irreversible for 
centuries to 
millennia at 
depth 

Major changes in ocean 
productivity, biodiversity and 
biogeochemical cycles 

Medium confidence  

Ocean acidification 
(Section 5.2) 

Yes Reversible at 
surface, but 
irreversible for 
centuries to 
millennia at 
depth 

Changes in growth, development, 
calcification, survival and 
abundance of species; e.g., from 
algae to fish 

Virtually certain 
(very high 
confidence) 

Cryosphere 
Methane release from 
permafrost (Section 
3.4) 

Yes Reversible due 
to short 
lifetime of 
methane in the 
atmosphere 

Further increased global 
temperatures through climate 
feedback 

Medium confidence 
 

CO2 release from 
permafrost (Section 
3.4) 

Yes Irreversible 
for millennia 
due to long 
lifetime of 
CO2 in the 
atmosphere 

Further increased global 
temperatures through climate 
feedback 

Low confidence 

Partial West-Antarctic 
Ice sheet collapse 
(Cross Chapter Box 2 

Yes (late 
21st 
century, 

Irreversible 
for decades to 
millennia 

Significant contribution to sea-
level rise and local decrease in 
ocean salinity 

Low confidence 
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in Chapter 1, Section 
4.2) 

under 
RCP8.5 
only) 

Greenland Ice sheet 
decay (Cross Chapter 
Box 8, Section 4.2) 

No Irreversible 
for millennia 

Significant contribution to sea-
level rise, shipping (icebergs) 

High confidence for 
decay contributing 
10s of cm of SLR 

Ice-shelf collapses 
(Cross Chapter Box 8, 
Sections 3.3, 4.2} 

Yes Possibly 
irreversible for 
centuries 

May lead to sea-level rise from 
contributing glaciers. Some 
shelves more prone than others. 

Low confidence 

Glacier avalanches, 
surges, and collapses 
(Section 2.3) 

Yes Variable Local hazard; may accelerate sea 
level rise; local iceberg 
production; local ecosystems  

Medium confidence 
for occurrence; Low 
confidence for 
increase in 
frequency/magnitude 

Strong shrinkage or 
disappearance of 
individual glaciers 
(Sections 2.2, 3.3) 

Yes Reversible 
within decades 
to centuries 

Regional impact on water 
resources, tourism, ecosystems 
and global sea level 

Medium confidence 

Landslides related to 
glaciers and permafrost, 
glacier lake outbursts 
(Section 2.3) 

Yes Irreversible 
for rock 
slopes; 
reversible 
within decades 
to centuries 
for glaciers, 
debris and 
lakes 

Local direct impact on humans, 
land use, infrastructure (hazard), 
and ecosystems  

Medium confidence 
for increase in 
frequency 

Change in biodiversity 
in high mountain areas 
(impact - Section 2.4) 

Yes In many cases 
irreversible 
(e.g., 
extinction of 
species) 

Local impacts on ecosystems and 
ecosystem services 

Medium confidence 

 
 
6.2.2 Recent Anomalous Extreme Climate Events and their Causes 
 
The attribution of changes in the observed statistics of extremes are generally addressed using well-
established detection-attribution methods. In contrast, record-breaking weather and climate events are by 
definition unique, and can be expected to occur with or without climate change as the observed record 
lengthens. Therefore, event attribution begins with the premise that the climate is changing, the goal being to 
determine statistically how much climate change has contributed to the severity of the event (Trenberth et 
al., 2015; Shepherd, 2016). Annual reports dedicated to extreme event attribution (Peterson et al., 2012; 
Peterson et al., 2013; Herring et al., 2014; Herring et al., 2015; Herring et al., 2018) have helped stimulate 
studies that adopt recognised methods for extreme event attribution. The increasing pool of studies allows 
different approaches to be contrasted and builds consensus on the role of climate change when individual 
climate events are studied by multiple teams using different methods. A number of these events are 
summarised in Table 6.2 and Figure 6.2. Collectively, these studies show that the role of climate change in 
the ocean and cryosphere extreme events is increasingly driving extreme climate and weather events across 
the globe including compound events (high confidence), although some regions including Africa and the 
Pacific have had relatively fewer event attribution studies undertaken, possibly reflecting the lack of capacity 
by regional and national technical institutions. A caveat of this approach is that there is a potential for ‘null 
results’ i.e. cases where attribution is not possible, to be reported. Nevertheless, there is no evidence that this 
is the case, and the number of recent studies and wide range of phenomena addressed suggests increasing 
influence of climate change on extreme events. 
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Figure 6.2: Locations where extreme events with an identified link to ocean changes have been discussed in Table 6.2.  
 
 
Table 6.2: A selection of extreme events with links to oceans and cryosphere. In many of these studies the method of 
event attribution has been used to estimate the role of climate change using either a probabilistic approach (using 
ensembles of climate models to assess how much more likely the event has become with anthropogenic climate change 
compared to a world without) or a storyline approach which examines the components of the climate system that 
contribute to the events and how changes in the climate system affect them (Shepherd, 2016). 

Year/type of 
hazard 

Region Severe hazard Attribution to anthropogenic 
climate change 

Impact, costs 

1998

 

Western 
equatorial 
Pacific, 
Great Barrier 
Reef, 
Australia 

Extreme sea surface 
temperatures 

Unknown if global warming 
has increased the probability. 

Coral bleaching 

2003 

 

Mediterranea
n Sea 

June-August with 
sea water 
temperatures 1°C-
3°C above 
climatological mean 
(Olita et al., 2007; 
Garrabou et al., 
2009; Galli et al., 
2017)  

Increase in air-temperature 
and a reduction of wind stress 
and air-sea exchanges (Olita et 
al., 2007). Unknown if global 
warming has increased the 
probability 

Mass mortality of macro-
invertebrate species; 
amplified heatwave over 
central Europe in 2003 
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2004  

 

South 
Atlantic  

First hurricane in 
the South Atlantic 
since 1970 

Increasing trend to positive 
Southern Annular Mode 
(SAM) could favour the 
synoptic conditions for such 
events in the future (Pezza and 
Simmonds, 2005) 
 

Three deaths, USD 425 
million damage (McTaggart-
Cowan et al., 2006) 

2005 

 

North 
Atlantic  

Record number of 
tropical storms, 
hurricanes and 
Category 5 
hurricanes since 
1970 

Trend in sea surface 
temperature (SST) due to 
global warming contributed to 
half of the total SST anomaly. 
Atlantic Multidecadal 
Variability (AMV) and the 
after-effects of the 2004–2005 
El Niño also played a role 
(Trenberth and Shea, 2006) 

Costliest US natural disaster, 
1,836 deaths and USD 30 
billion in direct economic 
costs in Louisiana due to 
Hurricane Katrina (Link, 
2010) 
 

2007 

 

Arabian Sea Strongest tropical 
cyclone (Gonu) 
attaining sustained 
winds of 270 kph 
and gustiness of 
315kph 

No attribution study done, 
although it was noted that this 
Category 5 cyclone had 
followed an unusual path  
(Dibajnia et al., 2010) 
 

Caused around $4 billion in 
damages (Fritz et al., 2010; 
Coles et al., 2015) 

2008 

 

Western 
Pacific 
Islands  

North Pacific-
generated wave-
swell event  

Event shown to have been 
made more extreme compared 
to other historical events due 
to La Niña and sea level rise 
(Hoeke et al., 2013) 
 

Wave-induced inundation in 
islands of 6 Pacific nations 
(Kiribati, Marshall Islands, 
Micronesia, Nauru, Papua 
New Guinea, Solomon 
Islands), salt water flooding 
of food and water supplies 
in Kosrae, Micronesia, 1408 
houses damaged and 63,000 
people affected across 8 
provinces in Papua New 
Guinea (Hoeke et al., 2013) 

2010

 

Western 
equatorial 
Pacific, 
Great Barrier 
Reef, 
Australia 

Extreme sea surface 
temperatures 

Unknown if global warming 
increased the probability. 

Coral bleaching 

2010 

 

Southern 
Amazon 

Widespread drought 
in the Amazon led 
to lowest river 
levels of major 
Amazon tributaries 
on record (Marengo 
et al., 2011)  

Model-based attribution 
indicates human influences 
and SST natural variability 
increased probabilities of the 
2010 severe drought in the 
South Amazon region whereas 
aerosol emissions had little 
effect (Shiogama et al., 2013) 
 

Relative to the long-term 
mean, the 2010 drought 
resulted in a reduction in 
biomass carbon uptake of 
1.1 Pg C, compared to 1.6 
Pg C for the 2005 event 
which was driven by an 
increase in biomass 
mortality (Feldpausch et al., 
2016) 

2010–2011 

 

Eastern 
Australia  

Wettest spring since 
1900 (Leonard et 
al., 2014) 

Based on La Niña SSTs 
during satellite era, La Niña 
alone is insufficient to explain 
total rainfall. 25% of rainfall 
was attributed to SST trend in 
region (Evans and Boyer-
Souchet, 2012) 

Brisbane river catchment 
flooding in January 2011, 
costing 23 lives and an 
estimated USD 2.55 billion 
(van den Honert and 
McAneney, 2011) 

2010–2011 

 

UK Severely cold 
winter (coldest 
December since 
1910 and second 
coldest since 1659) 

Model results indicate that 
human influence reduced the 
odds by at least 20% and 
possibly by as much as 4 
times with a best estimate that 

Many adverse consequences 
of the extreme temperatures, 
including closed schools and 
airports (Christidis and 
Stott, 2012) 
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the odds have been halved 
(Christidis and Stott, 2012) 

2011 

 

Western 
North Pacific  

Tropical Storm 
Washi (also known 
as TS Sendong) was 
world’s deadliest 
storm in 2011 

No attribution done; disaster 
was the outcome of interplay 
of climatic, environmental and 
social factors (Espinueva et 
al., 2012) 
 

Fatalities: >1,250; injured: 
2,002; missing: 1,049 
(Rasquinho et al., 2013)  
socio-economic costs: USD 
63.3 million (Espinueva et 
al., 2012) 

2011 

 

Western 
Australia 

Most extreme 
warming event in 
the region in the last 
140 years during 
which sea 
temperature 
anomalies of 2-4°C 
persisted for more 
than 10 weeks along 
>2,000 kms of 
coastline.  
from Ningaloo 
(22S) to Cape 
Leeuwin (34°S); up 
to 5°C warmer 
SSTs than normal 
(Feng et al., 2013; 
Pearce and Feng, 
2013; Benthuysen et 
al., 2014; Caputi et 
al., 2016; Perkins-
Kirkpatrick et al., 
2016) 

Warming of poleward-flowing 
Leeuwin Current in Austral 
summer forced by oceanic and 
atmospheric teleconnections 
associated with the 2010–2011 
La Niña (Feng et al., 2013). 
Conditions increased since 
1970’s by negative 
Interdecadal Pacific 
Oscillation (IPO) and 
anthropogenic global warming 
(Feng et al., 2015). Shift of 
temperate marine ecosystem 
was climate-driven  

Widespread coral bleaching 
and fish kills.  
Biodiversity patterns of 
temperate seaweeds, sessile 
invertebrates and demersal 
fish were altered leading to 
reduced abundance of 
habitat-forming seaweeds 
(Wernberg et al., 2013) 

2011 

 

Golden Bay, 
New Zealand 

In December, 
Extreme two-day 
total rainfall was 
experienced (one in 
500-year event) 

Model based attribution 
indicated total moisture 
available for precipitation in 
Golden Bay, New Zealand 
was 1–5% higher due to 
anthropogenic emissions 
(Dean et al., 2013) 

In town of Takaka, 453 mm 
was recorded in 24 hours 
and 674 mm in 48 hours 

2012 

 

Arctic Arctic sea-ice 
minimum 

Model-based attribution 
indicated the exceptional 2012 
sea-ice loss was due to sea-ice 
memory and positive feedback 
of warm atmospheric 
conditions, both contributing 
approximately equally 
(Guemas et al., 2013) and 
extremely unlikely to have 
occurred due to internal 
climate variability alone based 
on observations and model-
based attribution (Zhang and 
Knutson, 2013) 

Up to 60% higher 
contribution of sea ice algae 
in the central Arctic 
(Fernández-Méndez et al., 
2015; see also chapter 3.2.3) 

2012 

 

US East 
coast 

Hurricane Sandy Relative sea level rise (SLR) 
shown to have increased 
probabilities of exceeding 
peak impact elevations since 
the mid-20th century (Sweet 
et al., 2013; Lackmann, 2015) 

Repair & mitigation 
expenditures funded at USD 
60.2 billion. Losses of 
fishing vessels estimated at 
USD 52.0 million 
(Sainsbury et al., 2018) 

2012 

 

Northwest 
Atlantic 

First half of 2012, 
record-breaking 
SSTs (1°C–3°C 
above normal) from 

Local warming from the 
atmosphere due to anomalous 
atmospheric jet stream 
position (Chen et al., 2014) . 

Northward movement of 
warm-water species and 
local migrations of lobsters 
earlier in the season (Mills 
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the Gulf of Maine to 
Cape Hatteras 
(Mills et al., 2013; 
Chen et al., 2014; 
Pershing et al., 
2015; Zhou et al., 
2015)  

Unknown if global warming 
increased the probability. 

et al., 2013; Pershing et al., 
2015) 

2013 
 

 

UK Extreme winter 
rainfall 

Some evidence for a human-
induced increase in extreme 
winter rainfall in the UK for 
events with time scales of 10 
days (Christidis and Stott, 
2015) 

Tidal surges, 
widespread floodplain 
inundation, and pronounced 
river flows leading to 
damages in transport 
infrastructure, business and 
residential properties and a 
cost of GBP 560 million in 
recovery schemes 
(Department for 
Communities and Local 
Government, 2014; 
Huntingford et al., 2014). 
Unprecedented deaths of 
over 4400 Puffins found on 
UK and Scottish coasts 
linked to cold and strong 
winds during this event 
(Harris and Elkins, 2013) 

2013 

 

Western 
North Pacific 

Strongest and 
fastest Super 
Typhoon Haiyan 
(Category 5) in the 
region 

Occurred in a season with 
remarkably warm SSTs, 
(David et al., 2013; Takagi 
and Esteban, 2016). Ocean 
heat content and sea levels had 
increased since 1998 due to 
the negative Pacific Decadal 
Oscillation (PDO) phase but 
impacts were worsened by 
thermodynamic effects on 
SSTs, SLR and storm surges 
due to climate change 
(Trenberth et al., 2015) 

Deadliest and most 
expensive natural disaster in 
the Philippines (Fatalities: 
6,245; Injured: 28,626; 
Missing: 1,039). Damage to 
mangroves was still 
apparent 18 months after the 
storm (Sainsbury et al., 
2018)  

2013–2015 

 

Northeast 
Pacific 
Ocean 

Largest heatwave 
ever recorded (often 
called ‘The Blob’; 
Bond et al. 2015), 
with maximum SST 
anomalies of 6°C 
off Southern 
California (Jacox et 
al., 2016; 
Gentemann et al., 
2017; Rudnick et 
al., 2017) and 
subsurface warm 
anomalies in the 
deep British 
Columbia Fjord that 
persisted through 
the beginning of 
2018 (Jackson and 
Wood, 2018) 

Emerged in 2013 in response 
to teleconnections between 
North Pacific and the weak El 
Niño that drove strong 
positive sea level pressure 
anomalies across Northeast 
Pacific inducing smaller heat 
loss (Bond et al., 2015; Di 
Lorenzo and Mantua, 2016). 
Global warming increased the 
probability of occurrence for 
regional parts of the MHW 
(Weller et al., 2015; Jacox et 
al., 2018; Newman et al., 
2018). 

Major impacts on entire 
marine food web. Caused a 
major outbreak of a toxic 
algal bloom along the US 
West Coast leading to 
impacts on fisheries 
(McCabe et al., 2016) . 
Increased mortality of sea 
birds (Jones et al., 2018). 
Contributed to drought 
conditions across the US 
West Coast. 

2014 Hawaiian 
hurricane 
season 

Extremely active 
hurricane season in 
the eastern and 

Anthropogenic forcing could 
have contributed to the 
unusually large number of 

Acute disturbance of coral 
along Wai‘ōpae coastline 
(southeastern tip of Hawai‘i 
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central Pacific 
Ocean, particularly 
around Hawaii 
 

hurricanes in Hawaii in 2015, 
in combination with the 
moderately favourable 
condition of the El Niño event 
(Murakami et al., 2015) 

Island) due to passages of 
Hurricanes Iselle, Julio and 
Ana that caused high waves, 
increased run-off and 
elevated sea surface 
temperatures associated with 
the 2014–2015 El Niño 
(Burns et al., 2016). 

2014 

 

Arabian Sea Cyclone Nilofar 
was the first severe 
tropical cyclone to 
be recorded in the 
Arabian Sea in post-
monsoon cyclone 
season (Murakami 
et al., 2017) 

Anthropogenic global 
warming has been shown to 
have increased the probability 
of post-monsoon tropical 
cyclones over the Arabian Sea 
(Murakami et al., 2017) 
 

Cyclone did not make 
landfall but produced heavy 
rainfall on western Indian 
coasts (Bhutto et al., 2017) 

2014 

 

Northland 
New Zealand 

Extreme 5-day 
rainfall in Northland 

Extreme 5-day rainfall over 
Northland, New Zealand was 
influenced by human-induced 
climate change (Rosier et al., 
2015) 
 

NZD 18.8 million in 
insurance claims (Rosier et 
al., 2015) 

2014–2017

 

Western 
equatorial 
Pacific, 
Great Barrier 
Reef, 
Australia 

Extreme sea surface 
temperatures 

Global warming increased 
probability of occurrence for 
regional parts of the MHW 
(Weller et al., 2015; Oliver et 
al., 2018b) 

Anthropogenic greenhouse 
gas (GHG) emission 
increased the risk of coral 
bleaching through 
anomalously high SSTs and 
accumulation of heat stress 
(Lewis and Mallela, 2018) 

2015  

 

North 
America 

Anomalously low 
temperatures with 
intense snow storms 

Reduced Arctic sea ice and 
anomalous SSTs may have 
contributed to establishing and 
sustaining the anomalous 
meander of the jet stream, and 
could enhance the probability 
of such extreme cold spells 
over North America (Bellprat 
et al., 2016) 

Several intense snowstorms 
resulting in power outages 
and large economic losses 
(Munich RE, 2016) 

2015 

 

Arctic 
 

Record Low 
Northern 
Hemisphere Sea Ice 
Extent in March 
2015 

Record low in NH sea ice 
maximum could not have been 
reached without human-
induced change in climate, 
with the surface atmospheric 
conditions, on average, 
contributing 54% to the 
change (Fuckar et al., 2016) 

March NH sea ice content 
reached the lowest winter 
maximum in 2015. 
Emerging evidence of 
increased snow fall over 
regions outside the Arctic 
(see 3.4.1.1) due to sea-ice 
reduction as well as changes 
in the timing, duration and 
intensity of primary 
production, which affect 
secondary production 
(3.2.3.1) 

2015 

 

Florida Sixth largest flood 
in Virginia Key, 
Florida since 1994, 
with the 5 highest in 
response to 
hurricanes 

The probability of a 0.57 m 
flood has increased by 500% 
(Sweet et al., 2016) 

Flooding in several Miami-
region communities with 
0.57 m of ocean water on a 
sunny day 
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2015–/2016 

 

Ethiopia and 
Southern 
Africa 

One of the worst 
droughts in 50 
years, also 
intensified flash 
droughts 
characterized by 
severe heatwaves 

Anthropogenic warming 
contributed substantially to the 
very warm 2015/16 El Niño 
SSTs, land local air 
temperatures thereby reducing 
Northern Ethiopia and 
Southern Africa rainfall and 
runoff (Funk et al., 2018; 
Yuan et al., 2018) 

A 9-million tonne cereal 
deficit resulted in more than 
28 million in need of 
humanitarian aid 
 

2015 

 

Eastern 
North Pacific 
 
 

TC Patricia, the 
most intense and 
rapidly intensifying 
storm  in the 
Western 
Hemisphere 
(estimated MSL 
pressure of 872 hPa 
(Rogers et al., 
2017), intensified 
rapidly into a 
Category 5 TC 
(Diamond and 
Schreck, 2016) 

A near-record El Niño 
combined with a positive 
Pacific Meridional Mode 
provided extreme record SSTs 
and low vertical wind shear 
that fuelled the 2015 eastern 
North Pacific hurricane season 
to near-record levels (Collins 
et al., 2016) 

Approximately 9000 homes 
and agricultural croplands, 
including banana crops, 
were damaged by wind and 
rain from Patricia that made 
landfall near Jalisco, Mexico 
(Diamond and Schreck, 
2016) 

2015 

 

Arabian Sea, 
Somalia and 
Yemen 

Cyclones Chapala 
and Megh occurred 
within a week of 
each other and both 
tracked westward 
across Socotra 
Island and Yemen. 
Rainfall from 
Chapala was 7 
times the annual 
average 

Anthropogenic global 
warming has been shown to 
have increased the probability 
of post-monsoon tropical 
cyclones over the Arabian Sea 
(Murakami et al., 2017) 

Death toll in Yemen from 
Chapala and Megh was 8 
and 20 respectively. 
Thousands of houses and 
businesses damaged or 
destroyed by both cyclones 
and fishing disrupted. The 
coastal town of Al Mukalla 
experienced a 10 m storm 
surge that destroyed the 
seafront (Kruk, 2016). 
Flooding in Somalia led to 
thousands of livestock killed 
and damage to infrastructure 
(IFRC, 2016) 

2015–2016 

 
 

Northern 
Australia 
(Gulf of 
Carpentaria) 

High temperatures, 
low rainfall, 
extended drought 
period and low sea 
levels  

Attributed to anomalously 
high temperatures and low 
rainfall and low sea levels 
associated with El Niño (Duke 
et al., 2017) 

1000 km of mangrove tidal 
wetland dieback (>74,000 
ha). with potential flow-on 
consequences to Gulf of 
Carpentaria fishing industry 
worth A $30 million per 
year due to loss of 
recruitment habitat 

2015–2016 

 

Tasman Sea Marine heatwave 
lasted for 251 days 
with maximum 
SSTs of 2.9°C 
above the 1982–
2005 average 
(Oliver et al., 2017) 

Enhanced southward transport 
in the East Australian current 
driven by increased wind 
stress (Oliver et al., 2017). 
The intensity and duration of 
the marine heatwave were 
unprecedented and both had a 
clear human signature (Oliver 
et al., 2017) 

Disease outbreaks in farmed 
shellfish, mortality in wild 
shellfish and species found 
further south than previously 
recorded. Drought followed 
by severe rainfall caused 
severe bushfires and 
flooding in northeast 
Tasmania (see Box 6.1). 
 

2016 

 

Arctic Record-high air 
temperatures and 
record-low sea ice 
were observed in 
the Arctic 
winter/spring of 

Would not have been possible 
without anthropogenic forcing 
(Kam et al., 2018) however 
the relative role of 
preconditioning, seasonal 
atmospheric/ocean forcing and 

Impacts on Arctic 
ecosystems (e.g., Post et al., 
2013; Meier et al., 2014), 
potential changes to 
midlatitude weather (e.g., 
Cohen et al., 2014; Francis 
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2016 (Petty et al., 
2017) 

storm activity in determining 
the evolution of the Arctic sea 
ice cover is still highly 
uncertain (Petty et al., 2018) 

and Skific, 2015; Screen et 
al., 2015) and human 
activities in the Arctic 
 

2016 

 

Bering 
Sea/Gulf of 
Alaska,  

Record-setting 
warming with peak 
SSTs of 6°C above 
the 1981–2010 
climatology (Walsh 
et al., 2017; Walsh 
et al., 2018) 

Nearly fully attributed to 
human-induced climate 
change (Oliver et al., 2018b; 
Walsh et al., 2018) 

Impacts on marine 
ecosystems in Alaska, 
included favouring some 
phytoplankton species, but 
resulted in one of the largest 
harmful algal blooms on 
record which reached the 
Alaska coast in 2015 
(Peterson et al., 2017), 
uncommon paralytic 
shellfish poisoning events in 
Kachemak Bay and oyster 
farm closures in 2015 and 
2016, dramatic mortality 
events in seabird species 
such as common murres in 
2015/16 (Walsh et al., 2018)  

2016 

 

East China 
Sea 

Marine heatwave Warming predominantly 
attributable to combined 
effects of oceanic advection 
(-0.18°C, 24%) and net heat 
flux (-0.44°C, 58%; Tan and 
Cai, 2018) 

Ecological consequences 
induced by this warming 
remains unknown (Tan and 
Cai, 2018) 

2016 

 

Eastern 
China 

Super cold surge This cold surge would have 
been stronger if there was no 
anthropogenic warming (Qian 
et al., 2018; Sun and Miao, 
2018) 

Extreme weather brought by 
the cold surge caused 
significant impacts on > 1 
billion people in China in 
terms of transportation and 
electricity transmission 
systems, agriculture and 
human health 

2016 

 

Antarctic Antarctic sea ice 
extent decreased at 
a record rate 46% 
faster than the mean 
rate and 18% faster 
than any spring rate 
in the satellite era 
producing a record 
minimum for the 
satellite period 
(1979–2016) 
(Turner et al., 2017)  

Largely attributable to 
thermodynamic surface 
forcing (53%), while wind 
stress and the sea-ice and 
oceanic conditions from the 
previous summer (January 
2016) explain the remaining 
34% and 13%, respectively 
(Kusahara et al., 2018) linked 
with a shift to positive phase 
of PDO and negative SAM in 
late 2016 (Meehl et al., 2019; 
see also 3.2.1.1) 

Potential impacts on 
ecosystems and fisheries are 
poorly known (chapter 3.6) 
 

2017 

 

Yellow 
Sea/Sea of 
Japan 

Sea surface 
temperatures 2°C–
7°C higher than 
normal (Korea 
Meteorological 
Administration, 
2016; Kim and Han, 
2017; Tan and Cai, 
2018) 

Unknown if global warming 
has increased the probability. 

Impacts on marine 
organisms 

2017 

 

Western 
North 
Atlantic 

Hurricanes Harvey, 
Irma and Maria 

Rainfall intensity in Harvey 
attributed to climate change 
(Emanuel, 2017; Risser and 
Wehner, 2017; van 

Extensive impacts (see Box 
6.1) 
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Oldenborgh et al., 2017; see 
Box 6.1) 

2017 

 

Europe Storm Ophelia In agreement with projections 
of increase of cyclones of 
tropical origin hitting 
European coasts (Haarsma et 
al., 2013) 

Largest ever recorded 
hurricane in East Atlantic; 
extreme winds and coastal 
erosion in Ireland 
 

2017 

 
 

Persian/Arab
ian Gulf 

Severe warming in 
the Gulf with reef 
bottom 
temperatures 
resulting in 5.5°C-
weeks of thermal 
stress (Burt et al., 
2019) 

Mortality of corals shown to 
have been caused by increases 
in sea-bottom temperatures 
(Burt et al., 2019) 

94.3% of corals bleached in 
the Gulf 
 

2017 

 

East Africa Drought (across 
Tanzania, Ethiopia, 
Kenya and Somalia) 

Extremely warm ‘Western V’ 
(stretching poleward and 
eastward from a point near the 
Maritime Continent) SST 
doubled the probability of 
drought (Funk et al., 2018) 

Contributed to extreme food 
insecurity (Funk et al., 2018) 
approaching near-famine 
conditions (FEWS NET and 
FSNAU, 2017; WFP et al., 
2017) 

2017 

 

Peru Extremely wet rainy 
season  

Human influence is estimated 
to make such events at least 
1.5 times more likely 
(Christidis et al., 2018a) 

Widespread flooding and 
landslides 1.7 million 
people, a death toll of 177 
and an estimated damages of 
$3.1 billion (Christidis et al., 
2018a)  

2017 

 

Bangladesh Pre-monsoon 
extreme 6-day 
rainfall event  

The likelihood of this 2017 
pre-monsoon extreme rainfall 
is nearly doubled by 
anthropogenic climate change; 
although this contribution is 
sensitive to the climatological 
period used (Rimi et al., 2018) 

Triggered flash floods 
affecting 850,000 
households and 220,000 
hectares of harvestable crops 
leading to a 30% rice price 
hike (FAO, 2017) 

2017 

 

Uruguay, 
South 
America 

April-May heavy 
precipitation  

The risk of the extreme 
rainfall in the Uruguay River 
increased two-fold by 
anthropogenic climate change 

Triggered wide-spread 
overbank flooding along the 
Uruguay River causing 
economic loss of $102 
million (FAMURS, 2017) 
and displacement of 3,500 
people (de Abreu et al., 
2019) 

2017 

 

Northeast 
China 

Persistent summer-
spring hot and dry 
extremes 

Risk of persistent spring-
summer hot-and –dry 
extremes is increased by 5–
55% and 37–113% , 
respectively by anthropogenic 
climate change (Wang et al., 
2018) 

Affected more than 7.4 
million kms² of crops and 
herbage and direct economic 
loss of about US$10 billion 
(Zhang et al., 2017c) 

2017 

 

Coastal Peru Strong shallow 
ocean warming of 
up to 10°C off the 
northern coast of 
Peru 

Unknown if global warming 
increased the probability 

Caused heavy rainfall and 
flooding (ENFEN, 2017; 
Garreaud, 2018). Affected 
anchovies (decreased fat 
content and early spawning 
as a reproductive strategy; 
IMPARPE, 2017). 

2017 

 

Southwester
n Atlantic 

Sea surface 
temperatures were 
1.7°C higher than 
previous maximum 
from February to 
March 2017 

High air temperature and low 
wind speed led to marine 
heatwave. Unknown if global 
warming increased the 
probability. 

Fish species mass 
mortalities. 
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between 32° and 
38°S (Manta et al., 
2018).  

 
 
6.3 Changes in Tracks, Intensity, and Frequency of Tropical and Extratropical Cyclones and 

Associated Sea Surface Dynamics 
 
This section addresses new literature on tropical cyclones (TCs) and extra tropical cyclones (ETCs) and their 
effects on the ocean in the context of understanding how the changing nature of extreme events can cause 
compound hazards, risk and cascading impacts (discussed in 6.8). These topics are also discussed in chapter 
4 in the context of changes to extreme sea levels (see 4.2.3.4). 
  
6.3.1 Changes in Storms and Associated Sea-surface Dynamics 
 
6.3.1.1 Tropical Cyclones 
 
IPCC AR5 concluded that there was low confidence in any long-term increases in tropical cyclone (TC) 
activity globally and in attribution of global changes to any particular cause (Bindoff et al., 2013; Hartmann 
et al., 2013). Based on process understanding and agreement in 21st century projections, it is likely that the 
global TC frequency will either decrease or remain essentially unchanged, while global mean TC maximum 
wind speed and precipitation rates will likely increase although there is low confidence in region-specific 
projections of frequency and intensity (Christensen et al., 2013). The AR5 concluded that circulation features 
have moved poleward since the 1970s, associated with a widening of the tropical belt, a poleward shift of 
storm tracks and jet streams, and contractions of the northern polar vortex and the Southern Ocean westerly 
wind belts. However it is noted that natural modes of variability on interannual to decadal time scales 
prevent the detection of a clear climate change signal (Hartmann et al., 2013).  
 
Since the AR5 and Knutson et al. (2010), paleoclimatic surveys of coastal overwash sediments and 
stalagmites have provided further evidence of historical tropical cyclone variability over the past several 
millennia. Patterns of storm activity across TC basins show variations through time that appear to be 
correlated with ENSO, NAO and changes in atmospheric dynamics related to changes in precession of the 
sun (Toomey et al., 2013; Denommee et al., 2014; Denniston et al., 2015).  
 
Further studies have investigated the dynamics of TCs. A modelling study investigated a series of low-
frequency increases and decreases in TC activity over the North Atlantic over the 20th century (Dunstone et 
al., 2013). These variations, culminating in a recent rise in activity, are thought to be due in part to 
atmospheric aerosol forcing variations (aerosol forcing), which exerts a cooling effect (Booth et al., 2012; 
Dunstone et al., 2013). However, the relative importance of internal variability vs. radiative forcing for 
multidecadal variability in the Atlantic basin, including TC variability, remains uncertain (Weinkle et al., 
2012; Zhang et al., 2013; Vecchi et al., 2017; Yan et al., 2017). Although the aerosol cooling effect has 
largely cancelled the increases in potential intensity over the observational period, according to CMIP5 
model historical runs, further anthropogenic warming in the future is expected to dominate the aerosol 
cooling effect leading to increasing TC intensities (Sobel et al., 2016). 
 
TCs amplify wave heights along the tracks of rapidly moving cyclones (e.g., Moon et al., 2015a) and can 
therefore increase mixing to the surface of cooler subsurface water. Several studies found that TCs reduce 
the projected thermal stratification of the upper ocean in CMIP5 models under global warming, thereby 
slightly offsetting the simulated TC-intensity increases under climate warming conditions (Emanuel, 2015; 
Huang et al., 2015b; Tuleya et al., 2016). On the other hand, freshening of the upper ocean by TC rainfall 
enhances density stratification by reducing near-surface salinity and this reduces the ability of TC’s to cool 
the upper ocean, thereby having an influence opposite to the thermal stratification effect (Balaguru et al., 
2015). In the late 21st century, increased salinity stratification was found to offset about 50% of the 
suppressive effects that TC mixing has on temperature stratification (Balaguru et al., 2015). Coupled ocean-
atmosphere models still robustly project an increase of TC intensity with climate warming, and particularly 
for new TC-permitting coupled climate model simulations that compute internally consistent estimates of 
thermal stratification change (e.g., Kim et al., 2014a; Bhatia et al., 2018). Higher TC intensities in turn may 
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further aggravate the impacts of sea level rise on TC-related coastal inundation extremes (Timmermans et 
al., 2017).  
  
Kossin et al. (2014) identified a poleward expansion of the latitudes of maximum TC intensity in recent 
decades, which has been linked to an anthropogenically-forced tropical expansion (Sharmila and Walsh, 
2018) and a continued poleward shift of cyclones projected over the western North Pacific in a warmer 
climate (Kossin et al., 2016). A 10% slowdown in translation speed of TC’s over the 1949–2016 period has 
been linked to the weakening of the tropical summertime circulation associated with tropical expansion and a 
more pronounced slowdown in the range 16–22% was found over land areas affected by TCs in the western 
North Pacific, North Atlantic and Australian regions (Kossin, 2018). Slow-moving TC’s together with higher 
moisture carrying capacity can cause significantly greater flood hazards (Emanuel, 2017; Risser and Wehner, 
2017; van Oldenborgh et al., 2017; see also Table 6.2 and Box 6.1). 
 
Trends in tropical cyclones over decades to a century or more have been investigated in several new studies. 
Key findings include: i) decreasing frequency of severe TCs that make landfall in eastern Australia since the 
late 1800s (Callaghan and Power, 2011); ii) increase in frequency of moderately large US storm surge events 
since 1923 (Grinsted et al., 2012); iii) recent increase of extremely severe cyclonic storms over the Arabian 
Sea in the post-monsoon season (Murakami et al., 2017); iv) intense TCs that make landfall in East and 
Southeast Asia in recent decades (Mei and Xie, 2016; Li et al., 2017); and v) an increase in annual global 
proportion of hurricanes reaching Category 4 or 5 intensity in recent decades (Holland and Bruyère, 2014). 
 
Rapid intensification of TCs (RITCs) poses forecast challenges and increased risks for coastal communities 
(Emanuel, 2017). Warming of the upper ocean in the central and eastern tropical Atlantic associated with the 
positive phase of the Atlantic Multidecadal Oscillation (Balaguru et al., 2018) and in the western North 
Pacific in recent decades due to a La Niña-like pattern (Zhao et al., 2018) has favoured RITCs in these 
regions. One new modelling study suggests there has been a detectable increase in RITC occurrence in the 
Atlantic basin in recent decades, with a positive contribution from anthropogenic forcing (Bhatia et al., 
2019). Nonetheless, the background conditions that favour RITC’s across the Atlantic basin as a whole tend 
to be associated with less favourable conditions for TC occurrence along the US east coast (Kossin, 2017).  
 
New studies have used event attribution to explore attribution of certain individual TC events or anomalous 
seasonal cyclone activity events to anthropogenic forcing (Lackmann, 2015; Murakami et al., 2015; 
Takayabu et al., 2015; Zhang et al., 2016; Emanuel, 2017; see also Table 6.2 and Box 6.1). Risser and 
Wehner (2017) and van Oldenborgh et al. (2017) concluded that for the Hurricane Harvey event, there is a 
detectable human influence on extreme precipitation in the Houston area, although their detection analysis is 
for extreme precipitation in general and not specifically for TC-related precipitation.  
 
There have been more TC dynamical or statistical/dynamical downscaling studies and higher resolution 
General Circulation Model (GCM) experiments (e.g., Emanuel, 2013; Manganello et al., 2014; Knutson et 
al., 2015; Murakami et al., 2015; Roberts et al., 2015; Wehner et al., 2015; Yamada et al., 2017). The 
findings of these studies generally support the IPCC AR5 projections of a general increase in intensity of the 
most intense TCs and a decline in TC frequency overall. However, the projected increase in global TC 
frequency by Emanuel (2013) and Bhatia et al. (2018) differed from most other TC frequency projections 
and previous assessments. For studies into future track changes of TCs under climate warming scenarios (Li 
et al., 2010; Kim and Cai, 2014; Manganello et al., 2014; Knutson et al., 2015; Murakami et al., 2015; 
Roberts et al., 2015; Wehner et al., 2015; Nakamura et al., 2017; Park et al., 2017; Sugi et al., 2017; Yamada 
et al., 2017; Yoshida et al., 2017; Zhang et al., 2017a), it is difficult to identify a robust consensus of 
projected change in TC tracks, although several of the studies found either poleward or eastward expansion 
of TC occurrence over the North Pacific region resulting in greater storm occurrence in the central North 
Pacific. There have been new studies on storm size (Kim et al., 2014a; Knutson et al., 2015; Yamada et al., 
2017) under climate warming scenarios. These project TC size changes of up to ± 10% between basins and 
studies and provide preliminary findings on this issue that future studies will continue to investigate. Several 
studies of TC storm surge (e.g., Lin et al., 2012; Garner et al., 2017) suggest that SLR will dominate the 
increased height of storm surge due to tropical cyclones under climate change.  
 
Taking the above into account, the following is a summary assessment of TC detection and attribution. The 
observed poleward migration of the latitude of maximum TC intensity in the western North Pacific appears 



FINAL DRAFT Chapter 6 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 6-21 Total pages: 94 

to be unusual compared to expected natural variability and therefore there is low to medium confidence that 
this change represents a detectable climate change, though with only low confidence that the observed shift 
has a discernible positive contribution from anthropogenic forcing. Anthropogenic forcing is believed to be 
producing some poleward expansion of the tropical circulation with climate warming. Additional studies of 
observed long-term TC changes such as: an increase in annual global proportion of Category 4 or 5 TCs in 
recent decades, severe TCs occurring in the Arabian Sea and making landfall in East and Southeast Asia, the 
increasing frequency of moderately large US storm surge events since 1923 and the decreasing frequency of 
severe TCs that make landfall in eastern Australia since the late 1800s, may each represent emerging 
anthropogenic signals, but still with low confidence (limited evidence). The lack of confident climate change 
detection for most TC metrics continues to limit confidence in both future projections and in the attribution 
of past changes and TC events, since TC event attribution in most published studies is generally being 
inferred without support from a confident climate change detection of a long-term trend in TC activity.  
 
Tropical cyclone projections for the late 21st century are summarized as follows: 1) there is medium 
confidence that the proportion of TCs that reach Category 4–5 levels will increase, that the average intensity 
of TCs will increase (by roughly 1–10%, assuming a 2 degree global temperature rise), and that average 
tropical cyclone precipitation rates (for a given storm) will increase by at least 7% per degree Celsius sea 
surface temperature (SST) warming, owing to higher atmospheric water vapour content, 2) there is low 
confidence (low agreement, medium evidence) in how global TC frequency will change, although most 
modelling studies project some decrease in global TC frequency and 3) sea level rise will lead to higher 
storm surge levels for the TCs that do occur, assuming all other factors are unchanged (very high 
confidence). 
 
6.3.1.2 Extratropical Cyclones and Blocking 
 
Extratropical cyclones (ETCs) form in the midlatitudes of the North Atlantic, North Pacific and Southern 
oceans, and the Mediterranean Sea. The storm track regions are characterised by large surface equator-to-
pole temperature gradients and baroclinic instability, and jet streams influence the direction and speed of 
movement of ETCs in this region. The thermodynamic response of the atmosphere to CO2 tends to have 
opposing influences on storm tracks; surface shortwave cloud radiative changes increase the equator-to-pole 
temperature gradient whereas longwave cloud radiative changes reduce it (Shaw et al., 2016). AR5 
concluded that the global number of ETCs is not expected to decrease by more than a few percent due to 
anthropogenic change. The Southern Hemisphere (SH) storm track is projected to have a small poleward 
shift, but the magnitude is model dependent (Christensen et al., 2013). AR5 also found a low confidence in 
the magnitude of regional storm track changes and the impact of such changes on regional surface climate 
(Christensen et al., 2013). 
 
A ‘blocking’ event is an extratropical weather system in which the anticyclone (region of high pressure) 
becomes quasi-stationary and interrupts the usual westerly flow and/or storm tracks for up to a week or more 
(Woollings et al., 2018). Recent attention has focused on whether Arctic warming is linked to increased 
blocking and mid-latitude weather extremes (Barnes and Screen, 2015; Francis and Skific, 2015; Francis and 
Vavrus, 2015; Kretschmer et al., 2016), such as drought in California due to sea-ice changes that cause a 
reorganization of tropical convection (Cvijanovic et al., 2017), cold and snowy winters over Europe and 
North America (Liu et al., 2012; Cohen et al., 2018), extreme summer weather (Tang et al., 2013; Coumou et 
al., 2014) and Balkan flooding (Stadtherr et al., 2016). Studies suggest how blocking may influence arctic 
sea ice extent (Gong and Luo, 2017) and various pathways whereby Arctic warming could influence extreme 
weather (Barnes and Screen, 2015) such as reducing the equator to pole temperature gradient, slowing the jet 
stream thereby increasing its meandering behaviour (Röthlisberger et al., 2016; Mann et al., 2017) or causing 
it to split (Coumou et al., 2014), changing local dynamics in the vicinity of the sea-ice edge (Screen and 
Simmonds, 2013) or weakening the stratospheric polar vortex (Cohen et al., 2014). However, sensitivity to 
choice of methodology (Screen and Simmonds, 2013) and large internal atmospheric variability masks the 
detection of such links in past records, and climate change can lead to opposing effects on the midlatitude 
jet-stream response leading to large uncertainty in future changes (Barnes and Polvani, 2015; Barnes and 
Screen, 2015). 
 
New studies of future storm track behaviour in the Northern Hemisphere, include Harvey et al. (2014) who 
find that the future changes to upper and lower tropospheric equator-to-pole temperature differences by the 
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end of the century in a CMIP5 multimodel RCP8.5 ensemble are not well correlated and the lower 
temperature gradient dominates the summer storm track response whereas both upper and lower temperature 
gradients play a role in winter. In the northern North Atlantic storm track region, projected changes are 
found to be more strongly associated with changes in the lower rather than upper tropospheric equator-to-
pole temperature difference (Harvey et al., 2015). In the Southern Hemisphere (SH), Harvey et al. (2014) 
find equator-to-pole temperature differences in the upper and lower troposphere in the future climate across a 
multi-model ensemble are well correlated with a general strengthening of the storm track. The total number 
of ETCs in a CMIP5 GCM multimodel ensemble decreased in the future climate, whereas the number of 
strong ETCs increased in most models and in the ensemble mean (Grieger et al., 2014). This was associated 
with a general poleward shift related to both tropical upper tropospheric warming and shifting meridional sea 
surface temperature gradients in the Southern Ocean. The poleward movement of baroclinic instability and 
associated storm formation over the observational period due to external radiative forcing, is projected to 
continue, with associated declining rainfall trends in the midlatitudes and positive trends further polewards 
(Frederiksen et al., 2017). 
 
A number of new studies have found links between Arctic amplification, blocking events and various types 
of weather extremes in NH midlatitudes in recent decades. However, the sensitivity of results to analysis 
technique and the generally short record with respect to internal variability means that at this stage there is 
low confidence in these connections. Consistent with the AR5, projected changes to NH storm tracks exhibit 
large differences between responses, causal mechanisms and ocean basins and so there remains low 
confidence in future changes in blocking and storm tracks in the NH. The storm track projections for the SH 
remain consistent with previous studies in indicating an observed poleward contraction and a continued 
strengthening and southward contraction of storm tracks in the future (medium confidence). 
 
6.3.1.3 Waves and Extreme Sea Levels 
 
AR5 also concluded that there is medium confidence that mean significant wave height has increased in the 
North Atlantic north of 45°N based on ship observations and reanalysis-forced wave model hindcasts. 
Extreme sea level events have increased since 1970, mainly due to a rise in mean sea levels (MSLs) over this 
period (Rhein et al., 2013). There is medium confidence that mid-latitude jets will move 1–2 degrees further 
poleward by the end of the 21st century under RCP8.5 in both hemispheres with weaker shifts in the 
Northern Hemisphere. In the Southern Hemisphere during austral summer, the poleward movement of the 
mid-latitude westerlies under climate change is projected to be partially offset by stratospheric ozone 
recovery. There is low confidence in projections of Northern Hemisphere storm tracks particularly in the 
North Atlantic. Tropical expansion is likely to continue causing wider tropical regions and poleward 
movement of the subtropical dry zones (Collins et al., 2013). In the southern hemisphere, it is likely that 
enhanced wind speeds will cause an increase in annual mean significant wave heights. Wave swells 
generated in the Southern Ocean may also affect wave heights, periods and directions in adjacent ocean 
basins. The projected reduction in sea-ice extent in the Arctic Ocean (Holland et al., 2006)will increase wave 
heights and wave-season length (Church et al., 2013). 
 
Since AR5, new studies have shown observed changes in wave climate. Satellite observations from 1985 to 
2018, showed small increases in significant wave height and larger increases (5%) in extreme wave heights 
(90th percentiles), especially in the Southern Ocean (Young and Ribal, 2019) as well as positive trends in 
wave height in the Arctic over 1992–2014 due to sea ice loss (Stopa et al., 2016; Thomson et al., 2016). 
Based on a wave reanalysis and satellite observations, Reguero et al. (2019) found that the global wave 
power, which represents the transport of the energy transferred from the wind into the sea-surface motion, 
therefore including wave height, period and direction, has increased globally at a rate of 0.41% per year 
between 1948 and 2008, with large variations across oceans. Long-term correlations are found between the 
increase in wave power and sea surface temperatures, particularly between the tropical Atlantic temperatures 
and the wave power in high southern latitudes, the most energetic region globally. 
 
The results of several new global wave climate projection studies are consistent with those presented in 
IPCC AR5. Mentaschi et al. (2017) find up to a 30% increase in 100-year return level wave energy flux (the 
rate of transfer of wave energy) for the majority of coastal areas in the southern temperate zone, and a 
projected decrease in wave energy flux for most Northern Hemisphere coastal areas at the end of the century 
in wave model simulations forced by six CMIP5 RCP8.5 simulations. The most significant long-term trends 
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in extreme wave energy flux are explained by their relationship to modelled climate indices (Arctic 
Oscillation, El Niño Southern Oscillation and North Atlantic Oscillation). Wang et al. (2014b) assessed the 
climate change signal and uncertainty in a 20-member ensemble of wave height simulations, and found 
model uncertainty (intermodel variability) is significant globally, being about 10 times as large as the 
variability between RCP4.5 and RCP8.5 scenarios. In a study focussing on the western north Pacific wave 
climate, Shimura et al. (2015) associate projected regions of future change in wave climate with spatial 
variation of sea surface temperatures (SSTs) in the tropical Pacific Ocean. A review of 91 published global 
and regional scale wind-wave climate projection studies found a consensus on a projected increase in 
significant wave height over the Southern Ocean, tropical eastern Pacific and Baltic Sea and decrease over 
the North Atlantic and Mediterranean Sea. They found little agreement between studies of projected changes 
over the Atlantic Ocean, southern Indian and eastern North Pacific Ocean and no regional agreement of 
projected changes to extreme wave height. It was noted that few studies focussed on wave direction change, 
which is important for shoreline response (Morim et al., 2018). 
 
Significant developments have taken place since the AR5 to model storm surges and tides at the global scale. 
An unstructured global hydrodynamic modelling system has been developed with maximum coastal 
resolution of 5 km (Verlaan et al., 2015) and used to develop a global climatology of extreme sea levels due 
to the combination of storm surge and tide (Muis et al., 2016). A global modelling study finds that under sea 
level rise (SLR) of 0.5 m to 10 m, changes to astronomical tidal mean high water exceed the imposed SLR 
by 10% or more at around 10% of coastal cities when coastlines are held fixed. When coastal recession is 
permitted a reduction in tidal range occurs due to changes in the period of oscillation of the basin under the 
changed coastline morphology (Pickering et al., 2017). A recent study on global probabilistic projections of 
extreme sea levels considering mean sea level, tides, wind-waves and storm surges shows that under RCP4.5 
and RCP8.5, the global average 100-year extreme sea level is very likely to increase by 34–76 cm and 58–
172 cm, respectively between 2000 and 2100 (Vousdoukas et al., 2018). Despite the advancements in global 
tide and surge modelling, using CMIP GCM multimodel ensembles to examine the effects of future weather 
and circulation changes on storm surges in a globally consistent way is still a challenge because of the low 
confidence in GCMs being able to represent small scale weather systems such as TCs. To date only a small 
number of higher resolution GCMs are able to produce credible cyclone climatologies (e.g., Murakami et al., 
2012) although this will probably improve with further GCM development and increases to GCM resolution 
(Walsh et al., 2016).  
 
The role of austral winter swell waves on extreme sea levels have been investigated in the Gulf of Guinea 
(Melet et al., 2016) and the Maldives (Wadey et al., 2017). Multivariate statistical analysis and probabilistic 
modelling is used to show that flood risk in the northern Gulf of Mexico is higher than determined from 
short observational records (Wahl et al., 2016). In Australia, changes in extreme sea levels were modelled 
using four CMIP5 RCP 8.5 simulations (Colberg et al., 2019). On the southern mainland coast the southward 
movement of the subtropical ridge in the climate models led to small reductions (up to 0.4m) in the modelled 
20y (5% probability of occurring in a year) storm surge. Over the Gulf of Carpentaria in the north, changes 
were largest and positive during austral summer in two out of the four models in response to a possible 
eastward shift in the NW monsoon. Synthetic cyclone modelling was used to evaluate probabilities, 
interannual variability and future changes of extreme water levels from tides and TC-induced storm surge 
(storm tide) along the coastlines of Fiji (McInnes et al., 2014) and Samoa (McInnes et al., 2016). Higher 
resolution modelling for Apia, Samoa incorporating waves highlights that although SLR reduces wave setup 
and wind setup by 10–20%, during storm surges, it increases wave energy reaching the shore by up to 200% 
(Hoeke et al., 2015). 
 
In the German Bight, Arns et al. (2015) show that under sea level rise, increases in extreme water levels 
occur due to a change in phase of tidal propagation; which more than compensates for a reduction in storm 
surge due to deeper coastal sea levels. Vousdoukas et al. (2017) develop extreme sea level (ESL) projections 
for Europe that account for changes in waves and storm surge. In 2100 increases of up to 0.35 m relative to 
the SLR projections occur towards the end of the century under RCP8.5 along the North Sea coasts of 
northern Germany and Denmark and the Baltic Sea coast, whereas little to negative change is found for the 
southern European coasts.  
 
In the US, Garner et al. (2017) combine downscaled tropical cyclones, storm-surge models, and probabilistic 
sea-level rise projections to assess flood hazard associated with changing storm characteristics and sea-level 
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rise in New York City from the preindustrial era to 2300. Increased storm intensity was found to compensate 
for offshore shifts in storm tracks leading to minimal change in modelled storm-surge heights through 2300. 
However, projected SLR leads to large increases in future overall flood heights associated with tropical 
cyclones in New York City. Consequently, flood height return periods that were ∼500y (0.2% probability of 
occurring in a given year) during the preindustrial era have fallen to ∼25y (4% probability of occurring 
annually) at present and are projected to fall to ∼5y (20% probability of occurring annually) within the next 
three decades. 
 
In summary, new studies on observed wave climate change over the last three decades have found small 
increases in significant wave height globally and larger increases (5%) in extreme wave height, especially in 
the Southern Ocean (medium confidence). Global wave power has increased over the last six decades with 
differences across oceans related to long-term correlations with sea surface temperature (low confidence). 
Future projections indicate an increase of the mean significant wave height across the Southern Ocean, 
tropical eastern Pacific and Baltic Sea and a decrease over the North Atlantic and Mediterranean Sea (high 
confidence) under RCP 4.5 and 8.5. Extreme waves are projected to increase in the Southern Ocean and 
decrease in the North Atlantic and Mediterranean Sea under RCP 4.5 and 8.5 (high confidence). There is still 
limited knowledge on projected wave period and direction. For coastal extreme sea levels, new studies at the 
regional to global scale have generally had a greater focus on multiple contributing factors such as waves, 
tides, storm surges and SLR. At the global scale, probabilistic projections of extreme sea levels considering 
these factors projects the global average 100-year extreme sea level is very likely to increase by 34–76 cm 
and 58–172 cm, under RCP4.5 and RCP8.5, respectively between 2000 and 2100. 
 
6.3.2 Impacts 
 
As shown in previous assessments, increasing exposure is a major driver of increased cyclone risk (wind 
damages), as well as flood risk associated with cyclone rainfall and surge, besides possible changes in hazard 
intensities from anthropogenic climate change (Handmer et al., 2012; Arent et al., 2014). Changes in TC 
trajectories are potentially a major source of increased risk, as the degree of vulnerability is typically much 
higher in locations that were previously not exposed to the hazard (Noy, 2016). Typhoon Haiyan’s move to 
the south of the usual trajectories of TCs in the Western North Pacific basin (Yonson et al., 2018) made the 
evacuation more difficult as people were less willing to heed storm surge warnings they received.  
 
Abrupt changes in impacts therefore are not only determined by changes in cyclone hazard, but also by the 
sensitivity or tipping points that are crossed in terms of flooding for instance, that can be driven by sea-level 
rise but also by changes in local exposure. The frequency of nuisance flooding along the US east coast is 
expected to accelerate further in the future (Sweet and Park, 2014). The loss of coral reef cover and 
mangrove forests have also been shown to increase damages from storm surge events (e.g., Beck et al., 
2018). Cyclones also affect marine life, habitats, and fishing. There is some evidence that fish may evacuate 
storm areas or be redistributed by storm waves and currents (FAO, 2018; Sainsbury et al., 2018). Other 
examples of damage to fisheries from cyclones and storm surges can be found in FAO (2018: Chapter V, 
Table 1). 
 
With regard to property losses, according to most projections, increasing losses from more intense cyclones 
are not off-set by a possible reduction in frequency (Handmer et al., 2012). While the relation between 
aggregate damages and frequency may be linear, the relationship between intensity and damages is most 
probably highly non-linear; with research suggesting a 10% increase in wind-speed associated with a 30–
40% increase in damages (e.g., Strobl, 2012). Although it is clear that direct damages from cyclones could 
increase, investigations into the economic impact of past cyclone events is less common, as these are much 
more difficult to identify. Examples of such work include Strobl (2012) on hurricane impacts in the 
Caribbean, Haque and Jahan (2016) on TC Sidr in Bangladesh, Jakobsen (2012) on Hurricane Mitch in 
Nicaragua, and Taupo and Noy (2017) on TC Pam in Tuvalu. The relation between changes in tropical 
cyclones and property losses is complex, and there are indications that wind shear changes may have larger 
impact than changes in global temperatures (Wang and Toumi, 2016). With regard to loss of life, total 
fatalities and mortality from cyclone-related coastal flooding is globally declining, probably as a result of 
improved forecasting and evacuation, although in some low-income countries mortality is still high (Paul, 
2009; Lumbroso et al., 2017; Bouwer and Jonkman, 2018). A global analysis finds that despite adaptation 
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efforts, further sea-level rise could increase storm surge mortality in many parts of the developing world 
(Lloyd et al., 2016).  
 
An assessment of future changes in coastal impacts based on direct downscaling of indicators of flooding 
such as total water level and number of hours per year with breakwater overtopping over a given threshold 
for port operability is provided by Camus et al. (2017). These indicators are multivariable and include the 
combined effect of sea level rise, storm surge, astronomical tide and waves. Regional projected wave climate 
is downscaled from global multimodel projections from 30 CMIP5 model realizations. For example, 
projections by 2100 under the RCP8.5 scenario show a spatial variability along the coast of Chile with port 
operability loss between 600–800 h yr–1 and around 200 h yr–1 relative to present (1979–2005) conditions. 
Although wave changes are included in projected overtopping distributions, future changes of operability are 
mainly due to the sea level rise contribution. 
 
6.3.3 Risk Management and Adaptation 
 
The most effective risk management strategy in the last few decades has been the development of early 
warning systems for cyclones (Hallegatte, 2013). Generally, however, a lack of familiarity with the changed 
nature of storms prevails. Powerful storms often generate record storm surges (Needham et al., 2015) , such 
as in the cases of Cyclone Nargis and Typhoon Haiyan but surge warnings had been less well understood 
and followed because they had tended to be new or rare to the locality (Lagmay et al., 2015). A US study on 
storm surge warnings highlights the issue of the right timing to warn, as well as the difficulty in delivering 
accurate surge maps (Morrow et al., 2015). Previous experience with warnings that were not followed by 
hazard events show the “crying wolf” problem leading many to ignore future warnings (Bostrom et al., 
2018). 
 
There is scant literature on the management of storms that follow less common trajectories. The most recent 
and relatively well-studied ones are Superstorm Sandy in 2012 in the US and Typhoon Haiyan in 2013 in the 
Philippines. These two storms were unexpected and people, having underestimated the levels of impact, 
ignored warnings and evacuation directives. In the case of Typhoon Haiyan, the dissemination of warnings 
via scripted text messages were ineffective without an explanation of the difference between Haiyan’s 
accompanying storm surge and that of other ‘normal’ storms to which people were used to (Lejano et al., 
2016). Negative experiences of previous evacuations also lead to the reluctance of authorities to issue 
mandatory evacuation orders, e.g., during Superstorm Sandy (Kulkarni et al., 2017), and contributes to a 
preventable high number of casualties (Dalisay and De Guzman, 2016). These examples also show that 
saving lives and assets through warning and evacuation is limited. Providing biophysical protection 
measures as well as improving self-reliance during such events can complement warning and evacuation.  
 
After the storms, retreat or rebuild options exist. Rebuilding options can depend on whether insurance is still 
affordable after the event. Buyout programs, a form of ‘managed retreat’ whereby government agencies pay 
people affected by extreme weather events to relocate to safer areas, gained traction in recent years as a 
potential solution to reduce exposure to changing storm surge and flood risk. The decision to retreat or 
rebuild in situ depends, at least partially, on how communities have recovered in the past and therefore on 
the perceived success of a future recovery (Binder, 2014). However, political and jurisdictional conflicts 
between local, regional, and national government over land management responsibilities, lack of coordinated 
nation-wide adaptation plans, and clashes between individual and community needs have led to some 
unpopular buyout programs after Hurricane Sandy (Boet-Whitaker, 2017). Relocation (i.e., managed retreat) 
is often very controversial, and can incur significant political risk even when it is in principle voluntary 
(Gibbs et al., 2016), and is rarely implemented with much success at larger scales (Beine and Parsons, 2015; 
Hino et al., 2017). In addition, managed retreats are often fraught with legal, distributional and human-rights 
issues, as seen in the case of resettlements after Typhoon Haiyan (Thomas, 2015; see also Cross-Chapter 
Box 5 in Chapter 1), and extend to loss of cultural heritage, indigenous qualities in the case of small island 
states.  
 
If rebuilding in situ is pursued after catastrophic events and without decreased exposure, it is often 
accompanied by actions that aim to reduce vulnerability in order to adapt to the increasing risk (Harman et 
al., 2013). In many cases, resilient designs and sustainable urban plans integrating climate change concerns, 
that are inclusive of vegetation barriers as coastal defences and hybrid designs, are considered (Cheong et al., 
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2013; Saleh and Weinstein, 2016). But, often more physical structures that are known to be less sustainable 
in the longer-term, but potentially more protective in the short-term, are constructed (Knowlton and Rotkin-
Ellman, 2014; Rosenzweig and Solecki, 2014). Anticipatory planning approaches are under way to warn and 
enable in-time decision-making (Bloemen et al., 2018; Lawrence et al., 2018). 
 
 
6.4 Marine Heatwaves and their Implications  
 
IPCC WGI AR5 concluded that it is virtually certain that the global ocean temperature in the upper few 
hundred meters has increased from 1971 to 2010 (Rhein et al., 2013), and that the temperature is projected to 
further increase during the 21st century (Collins et al., 2013). For an update on observed and projected long-
term changes in ocean temperature and heat, the reader is referred to Chapter 5.  
 
Superimposed onto the long-term ocean warming trend are short-term extreme warming events, so-called 
marine heatwaves (MHWs), during which ocean temperatures are extremely high. Whereas the response of 
marine organisms and ecosystems to gradual trends in temperature has been assessed in IPCC AR5 (e.g., 
Hoegh-Guldberg et al., 2014; Pörtner et al., 2014), research on the response of the natural, physical and 
socio-economic systems to MHWs has newly emerged since AR5. Notable exceptions are studies on the 
effect of MHWs on intertidal systems and tropical coral reef ecosystems, which have been already assessed 
in IPCC AR5 (Gattuso et al., 2014; Pörtner et al., 2014). 
 
Marine heatwaves are periods of extremely high ocean temperatures that persist for days to months, that can 
extend up to thousands of kilometres and can penetrate multiple hundreds of metres into the deep ocean (see 
SROCC Glossary; Hobday et al., 2016a; Scannell et al., 2016; Benthuysen et al., 2018). A MHW is an event 
at a particular place and time of the year that is rare and predominately, but not exclusively, defined with a 
relative threshold; i.e. an event rarer than 90th or 99th percentile of a probability density function. By 
definition, the characteristics of what is called a MHW may therefore vary from place to place in an absolute 
sense. Different metrics are used to quantify changes in MHW characteristics, such as frequency, duration, 
intensity, spatial extent and severity. To monitor and predict coral bleaching risk, the metric degree heating 
week (DHW; e.g., Eakin et al., 2010) is often used, which combines the effect of duration and magnitude of 
the heatwave.  
 
6.4.1 Observations and Key Processes, Detection and Attribution, Projections  
 
6.4.1.1 Recent Documented Marine Heatwave Events and Key Driving Mechanisms 
 
MHWs have been observed and documented in all ocean basins over the last two decades (Figure 6.3a, 
Figure 6.2, Table 6.2). Prominent examples include the Northeast Pacific 2013–2015 MHW (often called 
'The Blob'; Bond et al., 2015), the Korean Peninsula from 2016 to 2018 (KMA, 2016; KMA, 2017; KMA, 
2018), the Western Australia 2011 MHW (Pearce and Feng, 2013; Kataoka et al., 2014), and the Northwest 
Atlantic 2012 MHW (Mills et al., 2013). 
  
The dominant ocean and/or atmospheric processes leading to the build-up, persistence and decay of MHWs 
vary greatly among the individual MHWs and depend on the location and time of occurrence. One of the 
most important global driver of MHWs are El Niño events (Oliver et al., 2018a). During El Niño events, the 
sea surface temperature, in particular of the central and eastern equatorial Pacific, and the Indian Ocean, are 
anomalous warm (see Section 6.5). MHWs may also be associated with other large-scale modes of climate 
variability, such as the Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, Indian Ocean Dipole, 
North Pacific Oscillation and North Atlantic Oscillation, which modulate ocean temperatures at the regional 
scale (Benthuysen et al., 2014; Bond et al., 2015; Chen et al., 2015b; Di Lorenzo and Mantua, 2016). These 
modes can change the strength, direction and location of ocean currents that build up areas of extreme warm 
waters, or they can change the air-sea heat flux, leading to a warming of the ocean surface from the 
atmosphere. For example, predominant La Niña conditions in 2010 and 2011 strengthened and shifted the 
Leeuwin Current southward along the west coast of Australia leading to the Western Australia 2011 MHW 
(Pearce and Feng, 2013; Kataoka et al., 2014). Another example is The Blob, which emerged in 2013 in 
response to teleconnections between the North Pacific and the weak El Niño that drove strong positive sea 
level pressure anomalies across the Northeast Pacific inducing a smaller heat loss from the ocean (Bond et 
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al., 2015; Di Lorenzo and Mantua, 2016). Low sea ice concentrations in the Arctic, however, may have also 
played a role (Lee et al., 2015a).  
 
The build-up and decay of extreme warm SSTs may also be caused by small-scale atmospheric and oceanic 
processes, such as ocean mesoscale eddies or local atmospheric weather patterns (Carrigan and Puotinen, 
2014; Schlegel et al., 2017a; Schlegel et al., 2017b). For example, the Tasman Sea 2015/16 MHW was 
caused by enhanced southward transport in the East Australian current driven by increased wind stress curl 
across the mid-latitude South Pacific (Oliver and Holbrook, 2014; Oliver et al., 2017) with local 
downwelling-favourable winds also having played a role in the subsurface intensification of the MHW 
(Schaeffer and Roughan, 2017). In addition, the 2016 MHW in the southern part of the Great Barrier Reef 
was mitigated by the extratropical cyclone Winston that passed over Fiji on February 20th. The cyclone 
caused strong winds, cloud cover and rain, which lowered sea surface temperature and prevented corals from 
bleaching (Hughes et al., 2017b).  
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Figure 6.3: Examples of recent marine heatwaves and their observed impacts. (a) Examples of documented marine 
heatwaves (MHWs) over the last two decades and their impacts on natural, physical and socio-economic systems. The 
colour map shows the maximum sea surface temperature anomaly during the MHW using the National Oceanic and 
Atmospheric Administration’s (NOAA) daily Optimum Interpolation sea surface temperature dataset (Reynolds et al., 
2007; Banzon et al., 2016). A MHW is defined here as a set of spatially and temporally coherent grid points exceeding 
the 99th percentile. The 99th percentile is calculated over the 1982–2011 reference period after de-seasonalizing the 
data. Red shading of the boxes indicates if the likelihood of MHW occurrence has increased due to anthropogenic 
climate change, and symbols denote observed impacts on physical systems over land, marine ecosystems, and socio-
economic and human systems. Figure is updated from Frölicher and Laufkötter (2018) and is not a complete 
compilation of all documented MHWs. (b) The record-warming years 2015 and 2016 and the global extent of mass 
bleaching of corals during these years. The colour map shows the Degree Heating Week (DHW) annual maximum over 
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2015 and 2016 from NOAA’s Coral Reef Watch Daily Global 5 km Satellite Coral Bleaching Heat Stress Monitoring 
Product Suite v.3.1 (Liu et al., 2014a). The DHW describes how much heat has accumulated in an area over the past 
twelve weeks by adding up any temperatures that exceed 1°C above the maximum summertime mean (e.g., Eakin et al., 
2010). Symbols show reef locations that are assessed in Hughes et al. (2018a) and indicate where severe bleaching 
affected more than 30% of corals (black circles), moderate bleaching affected less than 30% of corals (blue circles), and 
no substantial bleaching was recorded (green circles).  
 
 
6.4.1.2 Detection and Attribution of Marine Heatwave Events 
 
The upper ocean temperature has significantly increased in most regions over the last few decades, with 
anthropogenic forcing very likely being the main driver (Bindoff et al., 2013). Concurrent with the long-term 
increase in upper ocean temperatures, MHWs have become more frequent, extensive and intense (Frölicher 
and Laufkötter, 2018; Oliver et al., 2018a; Smale et al., 2019). Analysis of satellite daily sea surface 
temperature data reveal that the number of MHW days exceeding the 99th percentile, calculated over the 
1982–2016 period, has doubled globally between 1982 and 2016, from about 2.5 to 5 heatwave-days per 
year (Frölicher et al., 2018; Oliver et al., 2018a). At the same time, the maximum intensity of MHWs has 
increased by 0.15°C and the spatial extent by 66% (Frölicher et al., 2018). Using a classification system to 
separate MHWs into categories (I-IV; depending on the level to which sea surface temperatures exceed local 
averages), Hobday et al. (2018) show that the occurrence of MHWs has increased for all categories over the 
past 35 years with the largest increase (+24%) in strong (Category II) MHW events. In 2016, about a quarter 
of the surface ocean experienced either the longest or most intense MHW (Hobday et al., 2016a; Figure 
6.3b).  
 
The observed trend towards more frequent, intense and extensive MHWs, defined relative to a fixed baseline 
period, is very likely due to the long-term anthropogenic increase in mean ocean temperatures, and cannot be 
explained by natural climate variability (Frölicher et al., 2018; Oliver et al., 2018a; Oliver, 2019). As climate 
models project a long-term increase in ocean temperatures over the 21st century (Collins et al., 2013), a 
further increase in the probability of MHWs under continued global warming can be expected (see section 
6.4.1.3). Extending the analysis to the pre-satellite period (before 1982) by using a combination of daily in-
situ measurements and gridded monthly in-situ based data sets, (Oliver et al., 2018a) show that the global 
frequency and duration of MHWs have increased since 1925. At regional scale, MHWs have become more 
common in 38% of the world’s coastal ocean over the last few decades (Lima and Wethey, 2012). In tropical 
reef systems, the interval between recurrent MHWs and associated coral bleaching events has diminished 
steadily since 1980, from once every 25 to 30 years in early 1980s to once every 6 years in 2016 (Hughes et 
al., 2018a). Due to the scarcity of below surface temperature data with high temporal and spatial resolution, 
it is currently unknown if and how MHWs at depth have changed over the past decades.  
 
Several attribution studies (summarized in Table 6.2) have investigated if the likelihood of individual MHW 
events has changed due to anthropogenic warming. On a global scale and at present day (2006–2015), 
climate models suggest that 84% to 90% (very likely range) of all globally occurring MHWs are attributable 
to the temperature increase since 1850–1900 (Fischer and Knutti, 2015; Frölicher et al., 2018). Attribution 
studies on individual MHW events show that the intensity of the western tropical Pacific MHW in 2014 
(Weller et al., 2015), the intensity of the Alaskan Sea 2016 MHW (Oliver et al., 2018b; Walsh et al., 2018) 
and the extreme SSTs in the central equatorial Pacific in 2015/2016 can be fully attributed to anthropogenic 
warming. In other words, the aforementioned studies show that such events could not have occurred without 
the temperature increase since 1850–1900. In addition, extreme sea surface temperatures in the Northeast 
Pacific in 2014 have become about five times more likely with human-caused global warming (Wang et al., 
2014a; Kam et al., 2015; Weller et al., 2015). The Tasman Sea 2015/16 MHW was 330 times (for duration) 
and 6.8 times (for intensity) more likely with anthropogenic climate change than without (Oliver et al., 
2017), and the northern Australia 2016 MHW was up to fifty times more likely due to anthropogenic climate 
change (Weller et al., 2015; King et al., 2017; Lewis and Mallela, 2018; Newman et al., 2018; Oliver et al., 
2018b). Also the risk of the Great Barrier Reef bleaching event in 2016 was increased due to anthropogenic 
climate change (King et al., 2017; Lewis and Mallela, 2018). Even though natural variability is still needed 
for the events to occur, these studies show that most of the individual MHW events analysed so far have a 
clear human-induced signal. However, such attribution studies have not been undertaken for all major 
individual MHW events yet (e.g., five out of ten MHWs indicated in Figure 6.3a have not been assessed), 
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and it is therefore still unknown for some of the observed individual MHW events if they have an 
anthropogenic signal or not (labelled as ‘unknown’ in Figure 6.3a). 
 
We conclude that it is very likely that MHWs have increased in frequency, duration and intensity since 
preindustrial (1850–1900), and that between 2006 and 2015 most MHWs (84%–90%; very likely range) are 
attributable to the temperature increase since 1850–1900. Only few studies on the attribution of individual 
MHW events exist, but they all point to human influence on recent MHW events.  
 
6.4.1.3 Future Changes 
 
Marine heatwaves will increase in frequency, duration, spatial extent and intensity throughout the ocean 
under future global warming (Oliver et al., 2017; Ramírez and Briones, 2017; Alexander et al., 2018; 
Frölicher et al., 2018; Frölicher and Laufkötter, 2018; Darmaraki et al., 2019). Projections based on twelve 
CMIP5 Earth system models suggest that, on global scale, the probability of MHWs exceeding the 
preindustrial (1850–1900) 99th percentile will very likely increase by a factor of 20–27 by 2031–2050 and 
very likely by a factor of 46–55 by 2081–2100 under the RCP8.5 greenhouse gas scenario (intermodel range: 
11-24; Figure 6.4a; Frölicher et al., 2018). In other words, a one-in-hundred-day event at preindustrial levels 
is projected to become a one-in-four-day event by 2031–2050 and a one-in-two-day event by 2081–2100. 
The duration of MHW is projected to very likely increase from 8–10 days at 1850–1900 to 126–152 days in 
2081–2100 under the RCP8.5 scenario (Frölicher et al., 2018). The maximum intensity (maximum 
exceedance of the 1850–1900 99th percentile) will very likely increase from 0.3°C –0.4°C in 1850–1900 to 
3.1°C –3.8°C in 2081–2100 under the RCP8.5 scenario. Under the RCP2.6 scenario, the magnitude of 
changes in the different MHW metrics would be substantially reduced (Frölicher et al., 2018). For example, 
the probability ratio would very likely increase by a factor of 16–24 by 2081–2100 for RCP2.6; less than half 
of that projected for the RCP8.5. The magnitude of changes in the probability ratio scales with global mean 
atmospheric surface temperature and is independent of the warming path (Figure 6.4b), i.e. it does not 
depend on whether a particular warming level is reached sooner (RCP8.5) or later (RCP2.6). 
 
 

 



FINAL DRAFT Chapter 6 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 6-31 Total pages: 94 

Figure 6.4: Global and regional changes in the probability ratio of marine heatwaves. The probability ratio is the 
fraction by which the number of marine heatwaves (MHW) days per year has changed since 1850–1900. (a) Changes in 
the annual mean probability ratio of MHW exceeding the 99th percentile of preindustrial local daily sea surface 
temperature averaged over the ocean. The thinner lines represent individual projections from 12 CMIP5 models 
covering the 1861–2100 period, while the thicker lines the multi-model averages for the RCP8.5 and RCP2.6 scenarios, 
respectively. The black line shows an observational-based estimate. As daily SST data are available only for the 1982–
2016 period, we assume that the observed mean temperature changes is the main cause of the change in frequency of 
extremes (Frölicher et al., 2018; Oliver, 2019). We therefore subtracted first the differences between 1854–1900 and 
1982–2016 obtained from the extended reconstructed sea surface temperature version 4 dataset (ERSSTv4; Huang et 
al., 2015a) from the daily satellite data before calculating the 99th percentile for the observations. (b) Same as (a), but 
the probability ratio is plotted for different levels of global surface atmospheric warming. The simulated time series in 
(b) are smoothed with a 10-year running mean. (c,d) Simulated regional changes in the multi-model mean probability 
ratio of MHWs exceeding the preindustrial 99th percentile in 2081–2100 for the (c) RCP2.6 scenario and the (d) 
RCP8.5 scenario. The grey contours in (c,d) highlight the spatial pattern. Figure is modified from Frölicher et al. 
(2018).  
 
 
The changes in MHWs will not be globally uniform. CMIP5 models project that the largest increases in the 
probability of MHWs will occur in the tropical ocean, especially in the western tropical Pacific, and the 
Arctic Ocean (Figure 6.4c,d), and that most of the Large Marine Ecosystems will also experience large 
increases in the number of MHW days (Alexander et al., 2018; Frölicher et al., 2018). Smallest changes are 
projected for the Southern Ocean. In addition, MHW events in the Great Barrier Reef, such as the one 
associated with the bleaching in 2016, are projected to be at least twice as frequent under 2°C global 
warming than they are today (King et al., 2017). The magnitude of projected changes at the local scale is 
uncertain, partly due to issues of horizontal and vertical resolution of CMIP5-type Earth system models. 
Only a few studies have used higher resolution oceanic models (eddy-resolving) to assess the local-to-
regional changes in MHW characteristics. For example, regional high-resolution coupled climate model 
simulations suggest that the Mediterranean Sea will experience at least one long lasting MHW every year by 
the end of the 21st century under the RCP8.5 scenario (Darmaraki et al., 2019), and eddy-resolving ocean 
model simulations project a further increase in the likelihood of extreme temperature events in the Tasman 
Sea (Oliver et al., 2014; Oliver et al., 2015; Oliver et al., 2017).  
 
Most of the global changes in the probability of MHWs, when defined relative to a fixed temperature 
climatology and using coarse resolution CMIP5-type climate models, are driven by the global-scale shift in 
the mean ocean temperature (Alexander et al., 2018; Frölicher et al., 2018). However, previously ice-covered 
regions, such as the Arctic Ocean, will exhibit larger SST variability under future global warming. This is 
because of an enhanced SST increase in summer due to sea-ice retreat, but SST remaining near the freezing 
point in winter (Carton et al., 2015; Alexander et al., 2018). When contrasting the changes in the probability 
of MHWs with land-based heatwaves (Fischer and Knutti, 2015), it is evident that MHWs are projected to 
occur more frequently (Frölicher et al., 2018; Frölicher and Laufkötter, 2018). This is because the 
temperature variability is much smaller in ocean surface waters than in the atmosphere (Frölicher and 
Laufkötter, 2018).  
 
We conclude that there is high confidence that marine heatwaves will increase in frequency, duration, spatial 
extent and intensity in all ocean basins under future global warming, mainly because of an increase in mean 
ocean temperature. However, higher resolution models are needed to make robust projections at the local-to-
regional scale.  
 
6.4.2 Impacts on Natural, Physical and Human Systems  
 
6.4.2.1 Impacts on Marine Organisms and Ecosystems  
 
Temperature plays an essential role in the biology and ecology of marine organisms (e.g., Pörtner, 2002; 
Pörtner and Knust, 2007; Poloczanska et al., 2013; Hoegh-Guldberg et al., 2014), and therefore extreme high 
ocean temperature can have large impacts on marine ecosystems. Recent studies show that MHWs have 
strongly impacted marine organisms and ecosystem services in all ocean basins (Smale et al., 2019) over the 
last two decades. Impacts include coral bleaching and mortality (Hughes et al., 2017b; Hughes et al., 2018a; 
Hughes et al., 2018b), loss of seagrass and kelp forests (Smale et al., 2019), shifts in species range (Smale 
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and Wernberg, 2013), and local (Wernberg et al., 2013; Wernberg et al., 2016) and potentially global 
extinctions of coral species (Brainard et al., 2011).  
 
A growing number of studies have reported that MHWs negatively affect corals and coral reefs through 
bleaching, disease, and mortality (see chapter 5 for an extensive discussion on coral reefs and coral 
bleaching). The recent (2014–2017) high ocean temperatures in the tropics and sub-tropics triggered a pan-
tropical episode of unprecedented mass bleaching of corals (100s of km2), the third global-scale event after 
1997–1998 and 2010 (Heron et al., 2016; Eakin et al., 2017; Hughes et al., 2017b; Eakin et al., 2018; Hughes 
et al., 2018a). The heat stress during this event was sufficient to cause bleaching at 75% of global reefs 
(Hughes et al., 2018a; Figure 6.3b) and mortality at 30% (Eakin et al., 2017), much more than any 
previously documented global bleaching event. In some locations, many reefs bleached extensively for the 
first time on record, and over half of the reefs bleached multiple times during the three-year event. However, 
there were distinct geographical variations in bleaching, mainly determined by the spatial pattern and 
magnitude of the MHW (Figure 6.3b). For example, bleaching was extensive and severe in the northern 
regions of the Great Barrier Reef, with 93% of the northern Australian Great Barrier Reef coral suffering 
bleaching in 2016, but impacts were moderate at the southern coral reefs of the Great Barrier Reef (Brainard 
et al., 2018; Stuart-Smith et al., 2018).  
 
Apart from strong impacts on corals, recent MHWs have demonstrated their potential impacts on other 
marine ecosystems and ecosystems services (Ummenhofer and Meehl, 2017; Smale et al., 2019). Two of the 
best-studied MHWs with extensive ecological implications are the Western Australia 2011 MHW and the 
Northeast Pacific 2013–2015 MHW. The Western Australia 2011 MHW resulted in a regime shift of the 
temperate reef ecosystem (Wernberg et al., 2013; Wernberg et al., 2016). The abundance of the dominant 
habitat-forming seaweeds Scytohalia dorycara and Ecklonia radiata became significantly reduced and 
Ecklonia kelp forest was replaced by small turf-forming algae with wide ranging impacts on associated 
sessile invertebrates and demersal fish. The sea grass Amphibolis antarctica in Shark Bay underwent 
defoliation after the MHW (Fraser et al., 2014), and together with the loss of other sea grass species, these 
lead to releases of 2–9 Tg CO2 to the atmosphere during the subsequent three years after the MHW (Arias-
Ortiz et al., 2018). In addition, coral bleaching and adverse impacts on invertebrate fisheries were 
documented (Depczynski et al., 2013; Caputi et al., 2016). The Northeast Pacific 2013–2015 MHW also 
caused extensive alterations to open ocean and coastal ecosystems (Cavole et al., 2016). Impacts included 
increased mortality events of sea birds (Jones et al., 2018), salmon and marine mammals (Cavole et al., 
2016), very low ocean primary productivity (Whitney, 2015; Jacox et al., 2016), an increase in warm-water 
copepod species (Di Lorenzo and Mantua, 2016), and novel species compositions (Peterson et al., 2017). In 
addition, a coast-wide bloom of the toxigenic diatom Pseudo-nitzschia resulted in the largest ever recorded 
outbreak of domoic acid along the North American west coast (McCabe et al., 2016). Domoic acid was 
detected in many marine mammals, such as whales, dolphins, porpoises, seals and sea lions. The elevated 
toxins in commercially harvested fish and invertebrates resulted in prolonged and geographically extensive 
closure of razor clam and crab fisheries.  
 
Other MHWs also demonstrated the vulnerability of marine organisms and ecosystems to extremely high 
ocean temperatures. The Northwest Atlantic 2012 MHW strongly impacted coastal ecosystems by causing a 
northward movement of warm-water species and local migrations of some species (e.g., lobsters) earlier in 
the season (Mills et al., 2013; Pershing et al., 2015). The Mediterranean Sea 2003 MHW lead to mass 
mortalities of macro-invertebrate species (Garrabou et al., 2009) and the Tasman Sea 2015/16 MHW had 
impacts on sessile, sedentary and cultured species in the shallow, near-shore environment including 
outbreaks of disease in commercially viable species (Oliver et al., 2017). Vibrio outbreaks were also 
observed in the Baltic Sea in response to elevated SSTs (Baker-Austin et al., 2013). The Alaskan Sea 2016 
MHW favoured some phytoplankton species, leading to harmful algal blooms, shellfish poisoning events 
and mortality events in seabirds (Walsh et al., 2018; see chapter 3 for more details). Also, lower-than-
average size of multiple groundfish species were observed including Pollock, Pacific cod, and Chinook 
salmon (Zador and Siddon, 2016). The Yellow Sea / Japan Sea 2016 MHW killed a large number of 
different marine organisms in coastal and bay areas around South Korea (Korea Meteorological 
Administration, 2016) and the Southwest Atlantic 2017 MHW lead to toxic algal blooms (Manta et al., 
2018). The Coastal Peruvian 2017 MHW affected anchovies, which showed decreased fat content and early 
spawning as a reproductive strategy (IMPARPE, 2017), a behaviour usually seen during warm El Niño 
conditions (Ñiquen and Bouchon, 2004).  
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Based on the examples described above we conclude with very high confidence that a range of organisms 
and ecosystems have been impacted by MHWs across all ocean basins over the last two decades. Given that 
MHWs will very likely increase in intensity and frequency with further climate warming, we conclude with 
high confidence that this will push some marine organisms, fisheries and ecosystem beyond the limits of 
their resilience. These impacts will occur on top of those expected from a progressive shift in global mean 
ocean temperatures.  
 
6.4.2.2 Impacts on the Physical System  
 
Marine heatwaves can impact weather patterns over land via teleconnections causing drought, heavy 
precipitation or heat wave events. For example, the Northeast Pacific 2013–2015 MHW and the associated 
persistent atmospheric high-pressure ridge prevented normal winter storms from reaching the West Coast of 
the US and may have contributed to the drought conditions across the entire West Coast (Seager et al., 2015; 
Di Lorenzo and Mantua, 2016). The Tasman Sea 2015/16 MHW has increased the intensity of rainfall that 
caused flooding in northeast Tasmania in January 2016 (see Box 6.1) and the Coastal Peruvian 2017 MHW 
caused heavy rainfall and flooding on the west coast of tropical South America (ENFEN, 2017; Echevin et 
al., 2018; Garreaud, 2018; Takahashi et al., 2018). Similarly, MHWs in the Mediterranean Sea may have 
amplified heatwaves (Feudale and Shukla, 2007; García-Herrera et al., 2010) and heavy precipitation events 
over central Europe (Messmer et al., 2017), as well as trigger intense extratropical cyclones over the 
Mediterranean Sea (González-Alemán et al., 2019). Such physical changes induced by MHWs may then also 
affect ecosystems and human systems on land (Reimer et al., 2015).  
 
It should be noted that past and future impacts of MHWs on weather patterns over land depend not only on 
the duration and intensity of MHWs, but also on a wide range of different additional processes in the climate 
system such as the large-scale circulation of the atmosphere and oceans, and changes in the mean climate. 
Therefore, we conclude that there is currently low confidence in how MHWs impact the weather systems 
over land.  
 
6.4.2.3 Impacts on the Human System  
 
Marine heatwaves can also lead to significant socio-economic ramifications when affecting aquaculture or 
important fishery species, or when triggering heavy rain or drought events on land. The Northwest Atlantic 
2012 MHW, for example, had major economic impacts on the US lobster industry in 2015 (Mills et al., 
2013). The MHWs lead to changes in lobster fishing practices and harvest patterns, because the lobsters 
moved from the deep offshore waters into shallower coastal areas much earlier in the season than usual 
causing a rapid rise in lobster catch rates. Together with a supply chain bottleneck, the record catch 
outstripped market demand and contributed to a collapse in lobster prices (Mills et al., 2013). Even though 
high catch volumes were reported, the price collapse threatened the economic viability of many US and 
Canadian lobster fisheries. Economic impacts through changes in fisheries were also reported during the 
Northeast Pacific 2013–2015 MHW and the Alaskan Sea 2016 MHW. The Northeast Pacific 2013–2015 
MHW led to closing of both commercial and recreational fisheries resulting in millions of dollars in losses 
among fishing industries (Cavole et al., 2016). In addition, the toxin produced by the harmful algal blooms 
can be transferred through the marine food web and humans who eat contaminated fish, shellfish or 
crustaceans (Berdalet et al., 2016; Du et al., 2016; McCabe et al., 2016). The ingestion of such contaminated 
seafood products, the inhalation of aerosolized toxins or the skin contact with toxin-contaminated water may 
cause toxicity in humans. Symptoms in human associated with the ingestion of the contaminated seafood 
range from mild gastrointestinal distress to seizures, coma, permanent short-term memory loss and death 
(Perl et al., 1990). The ecological changes associated with the Alaskan Sea 2016 MHW impacted subsistence 
and commercial activities. For example, ice-based harvesting of seals, crabs and fish in western Alaska was 
delayed due to the lack of winter sea ice. MHWs can also impact the socio-economic and human system 
through changes to weather patterns. For example, heavy rain associated with the Coastal Peruvian 2017 
MHW triggered numerous landslides and flooding, which resulted in a death toll of several hundred, 
widespread damage to infrastructure and civil works (United Nations, 2017). 
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Studies on the impact of marine heatwaves on human systems are still relatively scarce, even though many 
show negative impacts on human health and economy. We therefore conclude with medium confidence that 
marine heatwaves can negatively impact human health and economy.  
 
6.4.3 Risk Management and Adaptation, Monitoring and Early Warning Systems 
 
Risk management strategies to respond to MHWs include early warning systems as well as seasonal (weeks 
to several months) and multi-annual predictions systems. Since 1997, the National Oceanic and Atmospheric 
Administration’s (NOAA) Coral Reef Watch has used satellite sea surface temperature data to provide near 
real-time warning of coral bleaching (Liu et al., 2014a). These satellite-based products, along with NOAA 
Coral Reef Watch’s 4-month coral bleaching outlook based on operational climate forecast models (Liu et 
al., 2018), and coral disease outbreak risk (Heron et al., 2010) provide critical guidance to coral reef 
managers, scientists, and other stakeholders (Tommasi et al., 2017b; Eakin et al., 2018). These products are 
also used to implement proactive bleaching response plans (Rosinski et al., 2017), brief stakeholders, and 
allocate monitoring resources in advance of bleaching events, such as the 2014–2017 global coral bleaching 
event (Eakin et al., 2017). For example, Thailand closed ten reefs for diving in advance of the bleaching 
peak in 2016, while Hawaii immediately began preparation of resources both to monitor the 2015 bleaching 
and to place specimens of rare corals in climate-controlled, onshore nurseries in response to these forecast 
systems (Tommasi et al., 2017b). New measurement techniques, such Argo and deep Argo floats, may help 
to further develop prediction systems for subsurface MHWs, but such systems are not yet in place. 
 
SST forecasts ranging from seasonal to decadal (5–10 years) have also been used or are planned to be used 
as early warning systems for multiple other ecosystems and fisheries in addition to coral reefs, including 
aquaculture, lobster, sardine, and tuna fisheries (Hobday et al., 2016b; Payne et al., 2017; Tommasi et al., 
2017b). For example, seasonal forecasts of SST around Tasmania may help farm managers of salmon 
aquaculture to prepare and respond to upcoming MHWs by changing stocking densities, varying feed mixes, 
transferring fish to different locations in the farming region, and implementing disease management 
(Spillman and Hobday, 2014; Hobday et al., 2016b). Skilful multi-annual to decadal SST predictions may 
also inform and improve decisions about spatial and industrial planning, as well as the management of 
various extractive sectors such as the adjustments to quotas for internationally shared fish stocks (Tommasi 
et al., 2017a). It has been shown that global climate forecasts have significant skill in predicting the 
occurrence of above average warm or cold SST events at decadal timescales in coastal areas (Tommasi et al., 
2017a), but barriers to their widespread usage in fishery and aquaculture industry still exist (Tommasi et al., 
2017b).  
 
Even with a monitoring and prediction system in place, MHWs have developed without warning and had 
catastrophic effects (Payne et al., 2017). For example, governmental agencies, socioeconomic sectors, public 
health officials and citizens were not forewarned of the Coastal Peruvian 2017 MHW, despite a basin-wide 
monitoring system across the Pacific. The reason was partly due to a coastal El Niño definition problem and 
a new government (in Nicaragua) that may have hindered actions (Ramírez and Briones, 2017). Therefore, 
early warning systems should not only provide predictions of physical changes, but should also connect 
different institutions to assist decision makers in performing time-adaptive measures (Chang et al., 2013).  
 
Monitoring and prediction systems are important and can be advanced by the use of common metrics to 
describe MHWs. So far, MHWs are often defined differently in the literature, and it is only recently that a 
categorizing scheme (Categories I to IV; based on the degree to which temperatures exceed the local 
climatology), similar to what is used for hurricanes, has been developed (Hobday et al., 2018). Such a 
categorizing scheme, can easily be applied to real data and predictions, and may facilitate comparison, public 
communication and familiarity with MHWs. Similar metrics (e.g., Degree Heating Weeks) have been 
successfully developed and used to identify ocean regions where conditions conducive to coral bleaching are 
developing.  
 
 
6.5 Extreme ENSO Events and Other Modes of Interannual Climate Variability 
 
6.5.1 Key Processes and Feedbacks, Observations, Detection and Attribution, Projections 
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6.5.1.1 Extreme El Niño, La Niña 
 
IPCC AR5 (Christensen et al., 2013) and the Special Report on Managing the Risks of Extreme Events and 
Disasters to Advance Climate Change Adaptation (SREX) do not provide a definition for an extreme El 
Niño but mention such events, especially in the context of the 1997/1998 El Niño and its impacts. AR5 and 
SREX concluded that confidence in any specific change in ENSO variability in the 21st century is low. 
However, they did note that due to increased moisture availability, precipitation variability associated with 
ENSO is likely to intensify. Since AR5 and SREX, there is now a limited body of literature that examines 
the impact of climate change on ENSO over the historical period. 
 
Paleo-ENSO studies suggest that ENSO was highly variable throughout the Holocene, with no evidence for 
a systematic trend in ENSO variance (Cobb et al., 2013) but with some indication that the ENSO variance 
over 1979–2009 has been much larger than that over 1590–1880 (McGregor et al., 2013). Paleo-ENSO 
reconstruction for the past eight centuries suggests that central Pacific ENSO activity has increased between 
the last two decades (1980-2015; Liu et al., 2017b), with an increasing number of central Pacific El Niño 
events compared to east Pacific El Niño events (Freund et al., 2019). Further proxy evidence exists for 
changes in the mean state of the equatorial Pacific in the last 2000 years (Rustic et al., 2015; Henke et al., 
2017). Simulations using an Earth System Model indicate significantly higher ENSO variance during 1645–
1715 than during the 21st century warm period, though it is unclear whether these simulated changes are 
realistic (Keller et al., 2015). For the 20th century, the frequency and intensity of El Niño events were high 
during 1951–2000, in comparison with the 1901–1950 period (Lee and McPhaden, 2010; Kim et al., 2014b; 
Roxy et al., 2014). Current instrumental observational records are not long enough and the quality of data 
before 1950 is limited, to assert these changes with high confidence (Wittenberg, 2009; Stevenson et al., 
2010) though the paleo records mentioned here signal the emergence of a statistically significant increase in 
ENSO variance in recent decades. 
 
Since SREX and AR5, a large El Niño event occurred in 2015/16. This has resulted in significant new 
literature regarding physical processes and impacts but there are no firm conclusions regarding the impact of 
climate change on the event. The SST anomaly peaked toward the central equatorial Pacific causing floods 
in many regions of the world such as those in the west coasts of the United States and other parts of North 
America, some parts of South America close to Argentina and Uruguay, the United Kingdom and China 
(Ward et al., 2014; Ward et al., 2016; Zhai et al., 2016; Scaife et al., 2017; Whan and Zwiers, 2017; Sun and 
Miao, 2018; Yuan et al., 2018).  
 
The main new body of literature concerns future projections of the frequency of occurrence and variability of 
extreme ENSO events with improved confidence (Cai et al., 2014a; Cai et al., 2018). These studies define 
extreme El Niño events as those El Niño events which are characterized by a pronounced eastward extension 
of the west Pacific warm pool and development of atmospheric convection, and hence a rainfall increase of 
greater than 5 mm per day during December-February (above 90th percentile), in the usually cold and dry 
equatorial eastern Pacific (Niño 3 region, 150°W–90°W, 5°S–5°N; Cai et al., 2014a)–such as the 1982/1983, 
1997/1998 and 2015/2016 El Niños (Santoso et al., 2017; Figure 6.5). 
 
The background long-term warming puts the 2015/2016 El Niño among the three warmest in the 
instrumental records (24 El Niño events occurred during 1900–2018; Huang et al., 2016; Santoso et al., 
2017). The 2015/2016 event can be viewed as the first emergence of an extreme El Niño in the 21st century 
– one which satisfies the rainfall threshold definition, but not characterized by the eastward extension of the 
west Pacific warm pool (L’Heureux et al., 2017; Santoso et al., 2017). 
 
Based on the precipitation threshold, extreme El Niño frequency is projected to increase with the global 
mean temperatures (medium confidence) with a doubling in the 21st century under 1.5°C of global warming, 
from about one event every 20 years during 1891–1990, to one every 10 years (Cai et al., 2014a; Figure 6.5). 
The increase in frequency continues for up to a century even after global mean temperature has stabilized at 
1.5°C, thereby challenging the limits to adaptation, and hence indicates high risk even at the 1.5°C threshold 
(Wang et al., 2017; Hoegh-Guldberg et al., 2018). Meanwhile, the La Niña events also tend to increase in 
frequency and double under RCP8.5 (Cai et al., 2015), but indicate no further significant changes after 
global mean temperatures have stabilized (Wang et al., 2017). Particularly concerning is that swings from 
extreme El Niño to extreme La Niña (opposite of extreme El Niño) have been projected to occur more 
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frequently under greenhouse warming (Cai et al., 2015). The increasing ratio of Central Pacific El Niño 
events to East Pacific El Niño events is projected to continue, under increasing emissions (Freund et al., 
2019). Further, CMIP5 models indicate that the risk of major rainfall disruptions has already increased for 
countries where the rainfall variability is linked to ENSO variability. This risk will remain elevated for the 
entire 21st century, even if substantial reductions in global greenhouse gas emissions are made (medium 
confidence). The increase in disruption risk is caused by anthropogenic warming that drives an increase in 
the frequency and magnitude of ENSO events and also by changes in background SST patterns (Power et al., 
2013; Chung et al., 2014; Huang and Xie, 2015). While many of these studies have adopted the precipitation 
view of an extreme El Nino, studies also indicate an increase in SST variability for events with their main 
SST anomalies in the east Pacific (Cai et al., 2018). Also, a role of cross-equatorial winds has been identified 
(Hu and Fedorov, 2018) 
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Figure 6.5: Frequency of extreme El Niño Southern Oscillation (ENSO) events, adapted from Cai et al. (2014a). (a) 
December to February mean meridional sea surface temperature gradient (x-axis: 5°N–10°N, 210°E–270°E minus 
2.5°S–2.5°N, 210°E–270°E) versus equatorial Pacific anomalous rainfall (y-axis: 5°S–5°N, 210°E–270°E). Data from 
only those CMIP5 models that capture the observed relationship between Pacific sea surface temperature and rainfall 
are shown. Black dots are from observations with extreme El Niño and extreme La Niña years indicated. The horizontal 
line denotes the threshold of 5 mm per day for an extreme event. (b)Histogram showing the relative frequency of 
rainfall rates. The vertical line denotes the 5 mm per day threshold. Higher counts of extreme events under the RCP8.5 
scenario suggest an increase in the frequency of extreme El Niño under global warming.  
 
 
6.5.1.2 Indian Ocean Basin-wide Warming and Changes in Indian Ocean Dipole (IOD) Events 
 
The Indian Ocean has experienced consistent warming from the surface to 2000 m during 1960–2015, with 
most of the warming occurring in the upper 300 m (Cheng et al., 2015; Nieves et al., 2015; Cheng et al., 
2017; Gnanaseelan et al., 2017). New historical ocean heat content (OHC) estimates show an abrupt increase 
in the Indian Ocean upper 700 m OHC after 1998, contributing to more than 28% of the global ocean heat 
gain, despite representing only about 12% of the global ocean area (Cheng et al., 2017; Makarim et al., 
2019). The tropical Indian Ocean SST has warmed by 1.04°C during 1950–2015, while the tropical SST 
warming is 0.83°C and the global SST warning is 0.65°C. More than 90% of the surface warming in the 
Indian Ocean has been attributed to changes in greenhouse gas emissions (Dong et al., 2014), with the heat 
redistributed in the basin via local ocean and atmospheric dynamics (Liu et al., 2015b), the Indonesian 
Throughflow (Section 6.6.1; Susanto et al., 2012; Sprintall and Revelard, 2014; Lee et al., 2015b; Susanto 
and Song, 2015; Zhang et al., 2018), and the Walker circulation (Roxy et al., 2014; Abish et al., 2018).  
 
The dynamic processes related to the projected changes in Indian Ocean Dipole (IOD) under global warming 
have a large inter-model spread (Cai et al., 2013). The frequency of extreme positive Indian Ocean Dipole 
(IOD) events are projected to increase by almost a factor of three, from a one-in-seventeen-year event in the 
20th century to a one-in-six-year event in the 21st century (low confidence). The bias in the CMIP5 models 
and internal variability could enlarge the projected increase in the extreme positive IOD events (Li et al., 
2016a; Hui and Zheng, 2018). The increase in IOD events is not linked to the change in the frequency of El 
Niño events but instead to mean state change—with weakening of both equatorial westerly winds and 
eastward oceanic currents in association with a faster warming in the western than the eastern equatorial 
Indian Ocean (Cai et al., 2014b). A combination of extreme ENSO and Indian Ocean Dipole (IOD) events 
has led to a northward shift in the Intertropical Convergence Zone (ITCZ) during 1979–2015, which is 
expected to increase further in the future (ITCZ; Freitas et al., 2017). 
 
6.5.2 Impacts on Human and Natural Systems 
 
Increasing frequency of extreme ENSO and IOD events have the potential to have widespread impacts on 
natural and human systems in many parts of the globe. Though the occurrence of the extreme 2015/16 El 
Niño has produced a large body of literature, it is still not clear how climate change may have altered such an 
impact, nor how such impacts might change in the future with increasing frequency of extreme ENSO 
events. We highlight here some studies that have attempted to assess the joint impact of mean change and 
variability. In addition to observed high variability of rainfall, severe weather events and impacts on tropical 
cyclone activity (Yonekura and Hall, 2014; Zhang and Guan, 2014; Wang and Liu, 2016; Zhan, 2017), 
extreme El Nino events have substantial impacts on natural systems which include those on marine 
ecosystems (Sanseverino et al., 2016; Mogollon and Calil, 2017; Ohman, 2017), such as severe and repeated 
bleaching of corals (Hughes et al., 2017a; Hughes et al., 2017b; Eakin et al., 2018), and glacial growth and 
retreat (Thompson et al., 2017). On the other hand, impacts on human, including managed systems are:- 
increased incidences of forest fires (Christidis et al., 2018b; Tett et al., 2018), degraded air quality (Koplitz 
et al., 2015; Chang et al., 2016; Zhai et al., 2016), such as the dense haze over most parts of Indonesia and 
the neighboring countries in Southeast Asia as a result of prolonged Indonesian wildfires; thus imposing 
adverse impacts on public health in the affected areas (Koplitz et al., 2015; WMO, 2016), decreased 
agricultural yields in many parts of the globe (e.g., in most of the Pacific Islands countries, Thailand, Eastern 
and Southern Africa and others which had resulted food insecurity, particularly in Eastern and Southern 
Africa (UNSCAP, 2015; WMO, 2016; Christidis et al., 2018b; Funk et al., 2018), and regional uptick in the 
number of reported cases of plague and hantavirus in Colorado and New Mexico, cholera in Tanzania, 
dengue in Brazil and Southeast Asia (Anyamba et al., 2019) and Zika virus in South America (Caminade et 
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al., 2017), including increases in heat stroke cases (Christidis et al., 2018b). Substantial economic losses had 
resulted from droughts and floods across various parts of the globe due to teleconnections. For instance, 
direct losses of US$ 10 billion (Sun and Miao, 2018; Yuan et al., 2018) and US$6.5 billion (Christidis et al., 
2018b) were estimated to have been incurred from severe urban inundation in cities along the Yangtze River 
in China and the extreme drought in Thailand, respectively.  
 
ENSO events affect tropical cyclone activity through variations in the low-level wind anomalies, vertical 
wind shear, mid-level relative humidity, steering flow, the monsoon trough and the western Pacific 
subtropical high in Asia (Yonekura and Hall, 2014; Zhang and Guan, 2014). The subsurface heat discharge 
due to El Niño can intensify tropical cyclones in the eastern Pacific (Jin et al., 2014; Moon et al., 2015b). 
Tropical Cyclones are projected to become more frequent (~20–40%) during future-climate El Niño events 
compared with present-climate El Niño events (medium confidence)—and less frequent during future-
climate La Niña events—around a group of small island nations (for example, Fiji, Vanuatu, Marshall 
Islands and Hawaii) in the Pacific (Chand et al., 2017). The Indian Ocean basin-wide warming has led to an 
increase in tropical cyclone heat potential in the Indian Ocean over the last 30 years, however the link to the 
changes in the frequency of tropical cyclones is not robust (Rajeevan et al., 2013). 
 
During the early stages of an extreme El Niño event (2015/16 El Niño), there is an initial decrease in 
atmospheric CO2 concentrations over the tropical Pacific Ocean, due to suppression of equatorial upwelling, 
reducing the supply of CO2 to the surface (Chatterjee et al., 2017) —followed by a rise in atmospheric CO2 
concentrations due reduced terrestrial CO2 uptake and increased fire emissions (Bastos et al., 2018). It is not 
clear how a future increase in the frequency extreme events would modulate the carbon cycle on longer 
decadal time scales. 
 
Studies on projections of changes in ENSO impacts or teleconnections are rather limited. Nevertheless, 
Power and Delage (2018) provide a multi-model assessment of CMIP5 models and their simulated changes 
in the precipitation response to El Niño in the future (Figure 6.6). They identify different combinations of 
changes that might further impact natural and human systems. El Niño causes either positive or negative 
precipitation anomalies in diverse regions of the globe. Dry El Niño teleconnection anomalies may be further 
strengthened by, either mean climate drying in the region (Amazon, Central America and Australia in June–
August (JJA)), or a strengthening of the El Niño dry teleconnection, or both. Conversely, wet El Niño 
teleconections can be further strengthened by either increases in mean precipitation (East Africa and 
Southeastern South America in December–February (DJF)) or a strengthening of the El Niño wet 
teleconnection (Southeastern South America in JJA), or both (Tibetan Plateau, DJF). However, a present day 
dry El Niño response may be dampened by a wet mean response (South, East and Southeast Asia in JJA) or a 
wet present day El Niño response may be weakened by a dry mean change (Southern Europe/Mediterranean 
and West Coast South America in JJA). Finally, changes in the mean and El Niño response may be in the 
opposite direction (Southeast Asia, JJA and Central North America, DJF). Such changes could have an 
impact on phenomena such as wildfires (Fasullo et al., 2018). However, in many other regions that are 
currently impacted by El Niño, e.g., regions of South America, studies have found no significant changes in 
the ENSO-precipitation relationship (Tedeschi and Collins, 2017) and agreement between models for many 
regions suggests low confidence in projections of teleconnection changes (Yeh et al., 2018). 
 
Along with extreme El Niño events, abrupt warming in the Indian Ocean and extreme IOD events have 
largely altered the Asian and African monsoon, impacting the food and water security over these regions. As 
a response to rising global SSTs and partially due to extreme El Niño events, the northern hemisphere 
summer monsoon showed substantial intensification during 1979–2011, with an increase in rainfall by 9.5% 
per degree Celsius of global warming (Wang et al., 2013). However, the Indian summer monsoon circulation 
and rainfall exhibits a statistically significant weakening since the 1950s. This weakening has been 
hypothesised to be a response to the Indian Ocean basin-wide warming (Mishra et al., 2012; Roxy et al., 
2015) and also to increased aerosol emissions (Guo et al., 2016) and changes in land use (Paul et al., 2016). 
Warming in the north Indian Ocean has resulted in increasing fluctuations in the southwest monsoon winds 
and a three-fold increase in extreme rainfall events across central India (Roxy et al., 2017). The frequency 
and duration of heatwaves have increased over the Indian subcontinent, and these events are associated with 
the Indian Ocean basin-wide warming and frequent El Niños (Rohini et al., 2016). In April 2016, as a 
response to the extreme El Niño, southeast Asia experienced surface air temperatures that surpassed national 
records, increased energy consumption, disrupted agriculture and resulted in severe human discomfort 



FINAL DRAFT Chapter 6 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit 6-39 Total pages: 94 

(Thirumalai et al., 2017). A strong negative IOD event in 2016 led to large climate impact on East African 
rainfall, with some regions recording below 50% of normal rainfall, leading to devastating drought, food 
insecurity and unsafe drinking water for over 15 million people in Somalia, Ethiopia and Kenya. 
 
 

 

 
Figure 6.6: Schematic figure indicating future changes in El Niño teleconnections based on the study of Power and 
Delage (2018). The background pattern of sea surface temperature anomalies (°C) are averaged from June 2015 to 
August 2015 (panel a) and December 2015 to February 2016 (panel b), during the most recent extreme El Niño event 
(anomalies computed w.r.t. 1986–2005). Symbols indicate present-day teleconnections for El Niño events. Black 
arrows indicate if there is a model consensus on change in mean rainfall in the region. Red arrows indicate if there is a 
model consensus on change in the rainfall anomaly under a future El Niño event. Direction of the arrow indicates 
whether the response in precipitation is increasing (up) or decreasing (down). Significance is determined when two-
thirds or more of the models agree on the sign.  
 
 
6.5.3 Risk Management and Adaptation 
 
Risk management of ENSO events has focussed on two main aspects: better prediction and early warning 
systems, and better mechanisms for reducing risks to agriculture, infrastructure, fisheries and aquaculture, 
wildfire and flood management. Extreme ENSO events are rare, with three such events since 1950 and they 
are difficult to predict due to the different drivers influencing them (Puy et al., 2017). The impacts of ENSO 
events also vary between events and between the different regions affected (Murphy et al., 2014; Fasullo et 
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al., 2018; Power and Delage, 2018) however, there is limited literature on the change in the impacts of 
extreme ENSO compared to other ENSO events. In addition, there are also no specific risk management and 
adaptation strategies for human and natural systems for more extreme events other than what is in place for 
ENSO events (see also Chapter 4, section 4.4 for the response to sea level change, an observed impact of 
ENSO). A first step in risk management and adaptation is thus to better understand the impacts these events 
have and to identify conditions that herald such extreme events that could be used to better predict extreme 
ENSO events.  
 
Monitoring and forecasting are the most developed ways to manage extreme ENSOs. Several systems are 
already in place for monitoring and predicting seasonal climate variability and ENSO occurrence. However, 
the sustainability of the observing system is challenging and currently the Tropical Pacific Observing System 
2020 (TPOS 2020) has the task of redesigning such a system, with ENSO prediction as one of its main 
objectives. These systems could be further elaborated to include extreme ENSO events. There are potentially 
several indicators that could be included, such as westerly wind events in the Western Tropical Pacific, 
(Lengaigne et al., 2004; Chen et al., 2015a; Fedorov et al., 2015) strong easterly wind events in the tropical 
Pacific (Hu and Fedorov, 2016; Puy et al., 2017), non-linear interaction between air-sea fluxes and 
atmospheric deep convection (Bellenger et al., 2014; Takahashi and Dewitte, 2016) and advection of mean 
temperature by anomalous eastward zonal currents (Kim and Cai, 2014) are some of the factors that play an 
important role in the evolution of extreme ENSO events, which can be considered while improving the 
monitoring and forecasting system.  
 
Despite the specificity of each extreme El Niño event, their forecasting is expected to improve through 
monitoring of recently identified precursory signals that peak in a window of two years before the event 
(Varotsos et al., 2016). An early warning system for coral bleaching associated, among other stressors, with 
extreme ENSO heat stress is provided by the NOAA Coral Reef Watch service with a 5 km resolution (Liu 
et al., 2018). The impacts of ENSO-associated extreme heat stress are heterogeneous, indicating the 
influence of other factors either biotic such as coral species composition, local adaptation by coral taxa reef 
depth or abiotic such as local upwelling or thermal anomalies (Claar et al., 2018). When identified and 
quantified, these factors can be used for risk analysis and risk management for these ecosystems. 
 
In principle, it is easier to transfer the financial risk associated with extreme ENSO events through, for 
example, insurance products or other risk transfer instruments such as Catastrophe Bonds, than for more 
moderate events. An accurate prediction system is not required, but the measurement of these events, and 
quantification of likely impacts is required. As in other types of insurance systems, this can be done through, 
for example, calculations of Average Annual Losses (AAL) associated with extreme ENSO, and the design 
of appropriate financial instruments. Examples of research that can support the design of risk transfer 
instruments include Anderson et al. (2018) and Gelcer et al. (2018) for specific crops yields, and Aguilera et 
al. (2018) and Broad et al. (2002) specific fisheries. Several risk transfer instruments have been implemented 
to deal with ENSO impacts, including parametric insurance based on SSTs for heavy rainfall damages, and 
another scheme for agricultural damages, both in Peru. Other examples include forecast-based financial aid 
(Red Cross Climate Centre, 2016). More broadly, other forms of risk management and governance can be 
designed with better information about the likely impacts of extreme ENSO events (e.g., Vignola et al., 
2018). 
 
 
6.6 Inter-Ocean Exchanges and Global Change  
 
IPCC AR5 Section 3.6.5.1 briefly described Pacific – Indian Ocean exchange (Indonesian Throughflow, 
ITF) but do not explain its variability and impacts. Paleoclimate record, observations, and climate model 
studies suggest that ITF plays an integral role in global ocean circulation, directly impacting mass, heat and 
freshwater budgets of the Pacific and Indian Oceans (high confidence). ITF is influenced by equatorial 
Pacific trade wind system which experienced an unprecedented intensification during 2001–2014, resulting 
in enhanced ocean heat transport from the Pacific to the Indian Ocean and influencing the rate of global 
temperature change (medium confidence). Yet, numerical models are not able to simulate the magnitude of 
decadal variability and the inter-ocean link, which means there is low confidence in future projections of the 
trade wind system. 
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6.6.1 Key Processes and Feedbacks, Observations, Detection and Attribution, Projections 
 
In the last two-decades, total water transport from the Pacific to the Indian Ocean, and the Indian Ocean to 
Atlantic Ocean has increased (high confidence). Increased ITF has been attributed to Pacific cooling and 
basin-wide warming in the Indian Ocean. The ITF annual average is 15 x 106 m3 s–1 (Susanto et al., 2012). 
ITF varies from intraseasonal to decadal time scales. On seasonal time scale, South China Sea Throughflow 
controls freshwater flux and modulates the main ITF (Fang et al., 2010; Susanto et al., 2013; Lee et al., 2019; 
Wang et al., 2019; Wei et al., 2019). During the extreme El Niño of 1997/1998, the ITF transport was 
reduced to 9.2 x 106 m3 s–1. Based on observations and proxy records from satellite altimetry and gravimetry, 
in the last two decades, 1992–2012, ITF has been stronger (Sprintall and Revelard, 2014; Liu et al., 2015a; 
Susanto and Song, 2015), which translates to an increase in ocean heat-flux into the Indian Ocean (Lee et al., 
2015b). Exchanges of heat and fresh water between ocean basins are important at the global scale (Flato et 
al., 2013). ITF may have played a key role in the slowdown of the Pacific SST warming during 1998–2013, 
and the rapid warming in the surface and subsurface Indian Ocean during this period (Section 6.5.1.2; 
Makarim et al., 2019), by transferring warm water from the western Pacific into the Indian Ocean (Lee et al., 
2015b; Dong and McPhaden, 2018).  
 
Under 1.5°C warming both El Niño and La Niña frequencies may increase (see Section 6.5) and hence ITF 
variability may also increase. ITF is also influenced by the IOD events, with an increase in transport during a 
positive IOD and vice-versa during a negative IOD event (Potemra and Schneider, 2007; Pujiana et al., 
2019). Positive IODs are projected to increase threefold in the 21st century as a response to changes in the 
mean state rather than changes in the El Niño frequency (Section 6.5.1.2; Cai et al., 2014b) and this may 
have an impact on the ITF, additional to the changes due to increasing extreme ENSO events. In response to 
greenhouse warming, climate models predict that on interannual time scale, it is likely that the mean ITF may 
decrease due to wind variability (Sen Gupta et al., 2016), but recent observation trend tends to strengthen 
which has led to speculations about the fidelity of the current climate models (Chung et al., 2019). On 
multidecadal and centennial timescales, it is likely that mean ITF decreases which is not associated with 
wind variability but due to reduction of net deep ocean upwelling in the tropical South Pacific (Sen Gupta et 
al., 2016; Feng et al., 2017; Feng et al., 2018). Due to a lack of long-term sustained ITF observations, their 
impacts on Indo-Pacific climate varibility, biogeochemisty, ecosystem as well as society are not fully 
understood. 
 
Pacific sea surface temperature cooling trends and strengthened the equatorial Pacific trade winds have been 
linked to anomalously warm tropical Indian and Atlantic oceans. The period following the mid-1990s saw a 
marked strengthening of both the easterly trade winds in the central equatorial Pacific (Figure 6.7) and the 
Walker circulation (L'Heureux et al., 2013; England et al., 2014). Both the magnitude and duration of this 
trend are large when compared with past variability reconstructed using atmosphere re-analyses. (The 1886–
1905 extreme weakening trend is poorly constrained by observations and we note the disparity between re-
analysis products going back in time.) Moreover, it is very unusual when model simulations are used as an 
estimate of internal climate variability (Figure 6.7; England et al., 2014; Kociuba and Power, 2015). The 
slowdown in global surface warming is dominated by the cooling in the Pacific SSTs, which is associated 
with a strengthening of the Pacific trade winds (Kosaka and Xie, 2013). This pattern leads to cooling over 
land and possibly to additional heat uptake by the ocean, although recent studies suggest that ocean heat 
uptake may even slow down during surface warming slowdown periods (Xie et al., 2016; von Känel et al., 
2017). The intensification of the Pacific trade winds has been related to inter-ocean basin SST trends, with 
rapid warming in the Indian (see section 6.5.1.2) and Atlantic Oceans both hypothesised as drivers 
(Kucharski et al., 2011; Luo et al., 2012; McGregor et al., 2014; Zhang and Karnauskas, 2017). While the 
extreme event of strengthening trade winds are potentially a result of natural internal variability, a role of 
anthropogenic contribution has not been ruled out. Nevertheless, the CMIP5 models indicate no general 
change in trends into the future (Figure 6.7), giving more weight to natural internal variability as an 
explanation.  
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Figure 6.7: Running twenty-year trends of zonal wind stress over the central Pacific (area-averaged over 8°S–8°N and 
160°E–150°W) in CMIP5 models and three re-analyses: European Centre for Medium-Range Weather Forecasts 
(ECMWF) Interim re-analysis, ERA-Interim (Dee et al., 2011), ECMWF 20th century reanalysis, ERA-20C (Poli et al., 
2016), and the National Oceanic and Atmospheric Administration’s 20th century reanalysis, NOAA 20CR v2c (Compo 
et al., 2011). The 66% and 100% ranges of all-available CMIP5 historical simulations with RCP8.5 extension are 
shown. 
 
 
Among the number of potential causes of this decadal variability in surface global temperature, a prolonged 
negative phase of the Pacific Decadal Oscillation/Interdecadal Pacific Oscillation (PDO/IPO) was suggested 
as a contributor. Because of the magnitude and duration of this Pacific-centred variability (Figure 6.7), it is 
identified as an extreme decadal climate event. One line of research has explored the role of the warm 
tropical Atlantic decadal variability in forcing the trade wind trends and associated cooling Pacific SST 
trends (Kucharski et al., 2011; McGregor et al., 2014; Li et al., 2016b). It appears that climate models may 
misrepresent this link due to tropical Atlantic biases (Kajtar et al., 2018; McGregor et al., 2018) and thus 
potentially underestimate global mean temperature decadal variability. Nevertheless, there is no indication 
that such an underestimation of global temperature variability is evident in the models (Flato et al., 2013; 
Marotzke and Forster, 2015). The impact of modes of natural variability on global mean temperature decadal 
variability remains an active area of research. 
 
In the Indian Ocean, water exits the Indonesian Seas mostly flowing westward along with the South 
Equatorial Current, and some supplying the Leeuwin Current. The South Equatorial Current feeds the heat 
and biogeochemical signatures from the Indian Ocean into the Agulhas Current, which transports it further 
into the Atlantic Ocean. Observations of Mozambique Channel inflow from 2003 to 2012, measured a mean 
transport of 16.7 x 106 m3 s–1 with a maximum in austral winter, and Indian Ocean Dipole-related interannual 
variability of 8.9 x 106 m3 s–1 (Ridderinkhof et al., 2010). A multidecadal proxy, from three years of mooring 
data and satellite altimetry, suggests that the Agulhas Current has been broadening since the early 1990s due 
to an increase in eddy kinetic energy (Beal and Elipot, 2016). Numerical model experiments suggest an 
intensification of the Agulhas leakage since the 1960s, which has contributed to the warming in the upper 
300 m of the tropical Atlantic Ocean (Lübbecke et al., 2015). Agulhas leakage is found to covary with the 
AMOC on decadal and multi-decadal timescales and has likely contributed to the AMOC slowdown 
(Biastoch et al., 2015; Kelly et al., 2016). Meanwhile, climate projections indicate that Agulhas leakage is 
likely to strengthen and may partially compensate the AMOC slowdown projected by coarse-resolution 
climate models (Loveday et al., 2015). 
 
6.6.2 Impacts on Natural and Human Systems 
 
Interannual to decadal variability of Indo-Pacific SST variability is likely to affect extreme hydroclimate in 
East Africa (Ummenhofer et al., 2018). The Pacific cooling pattern is often synonymous with predominance 
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of La Niña events in 1998 and 2012 is linked to megadroughts in the United States (Baek et al., 2019). On 
decadal to multidecadal time scales, PDO/IPO and Atlantic variability may have impacts on megadroughts in 
North America (Coats et al., 2016; Diodato et al., 2019) and Australia (Vance et al., 2015) as well as Indian 
subcontinent (Bao et al., 2015; Joshi and Rai, 2015). It is likely that occurrence of megadroughts in North 
America and Australia increased (Kiem et al., 2016; Baek et al., 2019). PDO and North Pacific Gyre 
Oscillation may also influence the decadal variability of North Pacific nutrient, chlorophyll and zooplankton 
taxa (Di Lorenzo et al., 2013). 
 
The Pacific cooling pattern may have significant impacts on terrestrial carbon uptake via teleconnections. 
The reduced ecosystem respiration due to the smaller warming over land has significantly accelerated the net 
biome productivity and therefore increased the terrestrial carbon sink (Ballantyne et al., 2017) and paused 
the growth rate of atmospheric CO2 despite increasing anthropogenic carbon emissions (Keenan et al., 2016). 
During the 2000s, the global ocean carbon sink has also strengthened (Fay and McKinley, 2013; 
Landschützer et al., 2014; Majkut et al., 2014; Landschützer et al., 2015; Munro et al., 2015), reversing a 
trend of stagnant or declining carbon uptake during the 1990s. It has been suggested that the upper ocean 
overturning circulation has weakened during the 2000s thereby decreasing the outgassing of natural CO2, 
especially in the Southern Ocean (Landschützer et al., 2015), and enhanced the global ocean CO2 sink 
(DeVries et al., 2017). How this is connected to the global warming slowdown is currently unclear.  
 
 
6.7 Risks of Abrupt Change in Ocean Circulation and Potential Consequences 
 
6.7.1 Key Processes and Feedbacks, Observations, Detection and Attribution, Projections  
 
6.7.1.1 Observational and Model Understanding of Atlantic Ocean Circulation Changes 
 
Paleo reconstructions indicate that the North Atlantic is a region where rapid climatic variations can occur 
(IPCC, 2013). Deep waters formed in the northern North Atlantic induces a large-scale Meridional 
Overturning Circulation in the Atlantic (AMOC) which transports large amounts of heat northward across 
the hemispheres, explaining part of the difference in temperature between the two hemispheres, as well as 
the northward location of the Intertropical Convergence Zone (e.g., Buckley and Marshall, 2016). This 
circulation system is believed to be a key tipping point of the Earth’s climate system (IPCC, 2013). 
 
Considerable effort has been dedicated in the last decades to improve the observation system of the large-
scale ocean circulation (e.g., Argo and its array of about 3,800 free-drifting profiling floats), including the 
AMOC through dedicated large-scale observing arrays (at 16°N (Send et al., 2011) and 26°N (McCarthy et 
al., 2015b), in the subpolar gyre (Lozier et al., 2017), between Portugal and the tip of Greenland (Mercier et 
al., 2015), at 34.5°S (Meinen et al., 2013), among others). The strength of the AMOC at 26°N has been 
continuously estimated since 2004 with an annual mean estimate of 17 ± 1.9 x 106 m3 s–1 over the 2004–
2017 period (Smeed et al., 2018). The AMOC at 26°N has been 2.7 x 106 m3 s–1 weaker since 2008 than in 
the first 4 years of measurement (Smeed et al., 2018). However, the record is not yet long enough to 
determine if there is a long-term decline of the AMOC. McCarthy et al. (2012) reported a 30% reduction in 
the AMOC in 2009–2010, followed by a weaker minimum a year later. Analysis of forced ocean models 
suggests such events may occur once every two or three decades (Blaker et al., 2015). At 34.5°S, the mean 
AMOC is estimated as 14.7 ± 8.3 x 106 m3 s–1 over the period 2009–2017 (Meinen et al., 2018) also with 
large interannual variability, while no trend has been identified at this latitude. Estimates based on ocean 
reanalyses show considerable diversity in their AMOC mean state, and its evolution over the last 50 years 
(Karspeck et al., 2017; Menary and Hermanson, 2018), because only very few deep ocean observations 
before the Argo era, starting around 2004, are available. During the Argo era, the reanalyses agree better 
with each other (Jackson et al., 2016). 
 
During the last interglacial warm period, paleodata suggest that the AMOC may have been weaker (Govin et 
al., 2012) and also show proxy-record evidences of instabilities (Galaasen et al., 2014). Based on an AMOC 
reconstruction using SST fingerprints, it has been suggested that the AMOC may have experienced around 3 
± 1 x 106 m3 s–1 of weakening (about 15% decrease) since the mid-20th century (Caesar et al., 2018). Such a 
trend in AMOC was also suspected in a former study using Principal Component Analysis of SST (Dima 
and Lohmann, 2010). Paleo proxies also highlight that the historical era may exhibit an unprecedented low 
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AMOC over the last 1600 years (Sherwood et al., 2011; Rahmstorf et al., 2015; Thibodeau et al., 2018; 
Thornalley et al., 2018). Nevertheless, these proxy records are indirect measurements of the AMOC so that 
considerable uncertainty remains concerning these results. Moreover, the exact mechanisms to explain such 
a long-term weakening are not fully understood and some reconstructions show a weakening starting very 
early in the historical era, when the level of anthropogenic perturbation and warming was very low. Climate 
model simulations (Figure 6.8) do show a weakening over the historical era, but this weakening is mainly 
occurring over the recent decades. Climate projections exhibit a weakening of around 1.4 ± 1.4 x 106 m3 s–1 
for present day (2006–2015) minus preindustrial (1850–1900), highlighting that anthropogenic warming may 
have already forced an AMOC weakening. Nevertheless, no proper detection and attribution of the on-going 
changes has been led so far due to still limited observational evidences. Thus, we conclude that there is 
medium confidence that the AMOC has weakened over the historical era but there is insufficient evidence to 
quantify a likely range of the magnitude of the change. 
 
Examination of 14 models from the CMIP5 archive, which do not take into account the melting (either from 
runoff, basal melting or icebergs) from the Greenland ice sheet (cf. Section 6.7.1.2), led to the assessment 
that the AMOC is very unlikely to collapse in the 21st century in response to increasing greenhouse gas 
concentrations (IPCC, 2013). Nonetheless, the CMIP5 models agree that a weakening of the AMOC into the 
21st century will lead to localised cooling (relative to the global mean) centred in the North Atlantic subpolar 
gyre (Menary and Wood, 2018), although the precise location as well as the extension of this cooling patch, 
notably towards Europe, remains uncertain (Sgubin et al., 2017; Menary and Wood, 2018). 
 
Abrupt variations in sea surface temperature or sea ice cover have been found in 19 out of the 40 models of 
the CMIP5 archive (Drijfhout et al., 2015). Large cooling trends, which can occur in a decade, are found in 
the subpolar North Atlantic in 9 out of 40 models. Results show that the heat transport in the AMOC plays a 
role in explaining such a rapid cooling, but other processes are also key for setting the rapid (decadal-scale) 
timeframe of subpolar gyre (SPG) cooling, notably vertical heat transport in the ocean and interactions with 
sea ice and the atmosphere (Sgubin et al., 2017). Using the representation of stratification as an emergent 
constraint, rapid changes in subpolar convection and associated cooling are occurring in the 21st century in 5 
of the 11 best models (Sgubin et al., 2017). The poor representation of ocean deep convection in most 
CMIP5 models has been confirmed in Heuze (2017), which can notably limit a key feedback mechanism 
related with warm summer in the North Atlantic and its impact on oceanic convection in winter (Oltmanns et 
al., 2018). Thus, there is low confidence in the projections of SPG fate. Increasing the horizontal resolution 
of the ocean in next generation climate models might be a way to increase confidence in ocean convection 
future changes. 
 
The SPG dynamical system has been identified as a tipping element of the climate system (Mengel et al., 
2012; Born et al., 2013). If this element reaches its tipping point, the SPG circulation can change very 
abruptly between different stable steady states, due to positive feedback between convective activity and 
salinity transport within the gyre (Born et al., 2016). It has been argued that a transition between two SPG 
stable states can explain the onset of the Little Ice Age that may have occurred around the 14–15th century 
(Lehner et al., 2013; Schleussner et al., 2015; Moreno-Chamarro et al., 2017) possibly triggered by large 
volcanic eruption (Schleussner and Feulner, 2013). Furthermore a few CMIP5 climate models also showed a 
rapid cooling in the SPG within the 1970s cooling events, as a non-linear response to aerosols (Bellucci et 
al., 2017). The SPG therefore appears as a tipping element in the climate system, with a faster (decade) 
response than the AMOC (century), but with lower induced SST cooling. Thus, the SPG system can cross a 
threshold in climate projections when surface water in the subpolar becomes lighter due to increase in 
temperature and decrease in salinity related with changes in radiative forcing (Sgubin et al., 2017). 
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Figure 6.8: Atlantic Meridional Overturning Circulation (AMOC) changes at 26°N as simulated by 27 models (only 14 
were shown in AR5; IPCC, 2013). The thick black line shows the observation-based estimate at 26°N (McCarthy et al., 
2015b) and the thick grey/blue/red lines the multi-model ensemble mean. Values of AMOC maximum at 26°N (in units 
106 m3 s–1) are shown in historical simulations (most of the time 1850–2005) followed for 2006–2100 by a) RCP2.6 
simulations and b) RCP8.5 simulations. In c) and d), the time series show the AMOC strength relative to the value 
during 2006–2015, a period over which observations are available. c) shows historical followed by RCP2.6 simulations 
and d) shows historical followed by RCP8.5 simulations. The 66% and 100% ranges of all-available CMIP5 
simulations are shown in grey for historical, blue for RCP2.6 scenario and red for RCP8.5 scenario. 
 
 
Evaluation of AMOC variations in the CMIP5 database has been further analysed in this report (Figure 6.8) 
using almost twice as many models as in the AR5 assessment (IPCC, 2013). The AR5 assessment of a very 
unlikely AMOC collapse has been confirmed, although one model (FGOALS-s2) does show such a collapse 
(e.g., decrease larger than 80% relative to present-day) before the end of the century for RCP8.5 scenario 
(Figure 6.8). Now based on up to 27 model simulations, the decrease of the AMOC is assessed to be of –2.1 
± 2.6 x 106 m3 s–1 (–11 ± 14%, likely range) in 2081–2100 relative to present-day (2006–2015) for RCP2.6 
scenario and –5.5 ± 2.7 x 106 m3 s–1 (–32 ± 14%) for RCP8.5 scenario, in line with a process-based 
probabilistic assessment (Schleussner et al., 2014). Furthermore, the uncertainty in AMOC changes has been 
shown to be mainly related to the spread in model responses rather than scenarios (RCP4.5 and RCP8.5) or 
internal variability uncertainty (Reintges et al., 2017). This behaviour is very different from the uncertainty 
in global sea surface temperature changes, which is mainly driven by emission scenario after a few decades 
(Frölicher et al., 2016). To explain the AMOC decline, a new mechanism has been proposed on top of the 
classical changes in heat and freshwater forcing (Gregory et al., 2016). A potential role for sea ice decrease 
has been highlighted (Sevellec et al., 2017), due to large heat uptake increase in the Arctic leading to a 
strong warming of the North Atlantic, increasing the vertical stability of the upper ocean, as already 
observed in the Greenland and Iceland seas (Moore et al., 2015). It has also been showed that convection 
sites may move northward in future projections, following the sea-ice edge (Lique and Thomas, 2018).	
 
6.7.1.2 Role of Greenland Ice Sheet Melting and their Freshwater Release Sources 
 
Satellite data indicate accelerated mass loss from the Greenland ice sheet (GIS) beginning around 1996, and 
freshwater contributions to the subpolar North Atlantic from Greenland, Canadian Arctic Archipelago 
glaciers and sea-ice melt totalling around 60,000 m3 s–1 in 2013, a 50% increase since the mid-1990s (Yang 
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et al., 2016b), in line with more recent estimates (Bamber et al., 2018). This increase in GIS melting is 
unprecedented over the last 350 years (Trusel et al., 2018). Since the mid-1990s, there has been about a 50% 
decrease in the thickness of the dense water mass formed in the Labrador Sea, suggesting a possible 
relationship between enhanced freshwater fluxes and suppressed formation of North Atlantic Deep Water 
(Yang et al., 2016b). This hypothesis has been further supported by high-resolution ocean-only simulations 
showing that GIS melting may have affected the Labrador Sea convection since 2010, which may imply an 
emerging on-going impact of this melting on the SPG but a still non-detectable impact on the AMOC 
(Boning et al., 2016). Thus, while some studies argue that this melting may have affected the evolution of 
the AMOC over the 20th century (Rahmstorf et al., 2015; Yang et al., 2016b), considerable variability and 
limitation in ocean models restrain the full validation of this hypothesis, which remains model dependent 
(Proshutinsky et al., 2015; Dukhovskoy et al., 2016). Furthermore, some deep convection events resumed 
since 2014 (Yashayaev and Loder, 2017).  
 
The impact of GIS melting is neglected in AR5 projections (Swingedouw et al., 2013) but has been 
considered in a recent multi-model study (Bakker et al., 2016; Figure 6.9). The decrease of the AMOC in 
projections including this melting term is depicted in Fig. 6.9. GIS melting estimates added in those 
simulations were based on the Lenaerts et al. (2015) approach, using a regional atmosphere model to 
estimate GIS mass balance. Results from eight climate models and an extrapolation by an emulator 
calibrated on these models showed that GIS melting has an impact on the AMOC, potentially adding up to 
around 5–10% more AMOC weakening in 2100 under RCP8.5. Based on Fig. 6.8 and 6.9, the risk of 
collapse before the end of the century is very unlikely, although biases in present-day climate models only 
provide medium confidence in this assessment. By 2290–2300, (Bakker et al., 2016; Figure 6.9) estimated at 
44% the likelihood of an AMOC collapse in RCP8.5 scenario, while the AMOC weakening stabilizes in 
RCP4.5 (37% reduction, [15%, 65%] very likely range). This result suggests that an AMOC collapse can be 
avoided in the long term by mitigation. 
 
Concerning the question of the reversibility of the AMOC, a few ramp-up/ramp-down simulations have been 
performed to evaluate it for transient time scales (a few centuries, while millennia will be necessary for a full 
steady state). Results usually show a reversibility of the AMOC (Jackson et al., 2014; Sgubin et al., 2015) 
although the timing and amplitude is highly model dependent (Palter et al., 2018). A hysteresis behaviour of 
the AMOC in response to freshwater release has been found in a few climate models (Hawkins et al., 2011; 
Jackson et al., 2017) even at the eddy resolving resolution (Mecking et al., 2016; Jackson and Wood, 2018). 
This is in line with the possibility of tipping point in the AMOC system. The biases of present-day models in 
representing the transport at 30°S (Deshayes et al., 2013; Liu et al., 2017a; Mecking et al., 2017) or the 
salinity in the tropical era (Liu et al., 2014b) may considerably affect the sensitivity of the models to 
freshwater release, but more on the multi-centennial time scale.  
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Figure 6.9: The changes in the Atlantic Meridional Overturning Circulation (AMOC) strength as a function of transient 
changes in global mean temperature for projections from RCP4.5 and RCP8.5 scenario. This probabilistic assessment of 
annual mean AMOC strength changes (%) at 26°N (below 500 m and relative to 1850–1900) as a function of global 
temperature change (Celsius; relative to 1850–1900) results from 10,000 RCP4.5 and 10,000 RCP8.5 experiments over 
the period 2006–2300, which are derived from an AMOC emulator calibrated with simulations from 8 climate models 
including the Greenland Ice Sheet (GIS) melting (Bakker et al., 2016). The annual mean AMOC strength changes are 
taken from transient simulations and are therefore not equilibrium values per se. Moreover, it should be stressed that the 
results stem from future runs, not past or historical runs. Thus, due to internal variability both in the global mean 
temperature and AMOC in this transient simulation, large weakening can be found even at 0°C global warming. The 
ranges (66%, 90% and 99%) correspond to the amount of simulations that are within each envelope. The thick black 
line corresponds to the ensemble mean, while the different colors stand for different probability quantiles. The 
horizontal red thick line corresponds to the value of 80% of AMOC decrease, which can be seen as an almost total 
collapse of the AMOC. The horizontal dark red thick line corresponds to a reduction of 50% of the AMOC, which can 
be considered as a substantial weakening. The vertical dashed green line stands for the 1.5°C of global warming 
threshold (relative to 1850–1900). The blue cross stands for the observation-based reduction estimate from Caesar et al. 
(2018). The size of the cross represents the uncertainty in this estimate. 
 
 
Regarding the near-term changes of the AMOC, decadal prediction systems are now in place. They indicate 
a clear impact of the AMOC on the climate predictability horizon (Robson et al., 2012; Persechino et al., 
2013; Robson et al., 2013; Wouters et al., 2013; Msadek et al., 2014; Robson et al., 2018), and a possible 
weakening of the AMOC in the coming decade (Smith et al., 2013; Hermanson et al., 2014; Yeager et al., 
2015; Robson et al., 2016), although not true in all decadal prediction systems (Yeager et al., 2018). All 
these prediction systems do not account for future melting of the GIS yet.  
 
6.7.2 Impacts on Climate, Natural and Human Systems  
 
Even though the AMOC is very unlikely to collapse over the 21st century, its weakening may be substantial, 
which may therefore induce strong and large-scale climatic impacts with potential far-reaching impacts on 
natural and human systems (e.g., Good et al., 2018). Furthermore, the SPG subsystem has been shown to 
potentially shift, in the future, into a cold state over a decadal time scale, with significant climatic 
implications for the North Atlantic bordering regions (Sgubin et al., 2017). There have been far more studies 
analysing impacts on climate of an AMOC weakening than SPG collapse. We will thus in the following 
mainly depict impacts of an AMOC substantial weakening.  
 
The AR5 report concludes that based on paleo-climate data, large changes in the Atlantic Ocean circulation 
can cause worldwide climatic impacts (Masson-Delmotte et al., 2013), with notably, for an AMOC 
weakening, a cooling of the North Atlantic, a warming of the South Atlantic, less evaporation and therefore 
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precipitation over the North Atlantic, and a shift of the ITCZ. Impacts of AMOC or SPG changes and their 
teleconnections in the atmosphere and ocean are supported by a large amount of paleo evidence (Lynch-
Stieglitz, 2017). Such impacts and teleconnections have been further evaluated over the last few years both 
using new paleodata and higher resolution models. Furthermore, multi-decadal variations in sea surface 
temperature observed over the last century, the so-called Atlantic Multidecadal Variability (AMV) or 
Atlantic Meridional Oscillation (AMO), also provide observational evidence of potential impacts of changes 
in ocean circulation. Nevertheless, due to a lack of long-term direct measurements of the Atlantic Ocean 
circulation, the exact link between SST and circulation remains controversial (Clement et al., 2015; Zhang, 
2017).  
 
The different potential impacts of large changes in the Atlantic Ocean circulation are summarized in 
Figure 6.10. Based on variability analysis, it has been shown that a decrease in the AMOC strength has 
impacts on storm track position and intensity in the North Atlantic (Gastineau et al., 2016), with a potential 
increase in the number of winter storms hitting Europe (Woollings et al., 2012; Jackson et al., 2015), 
although some uncertainty remains with respect to the models considered (Peings et al., 2016). The influence 
on the Arctic sea ice cover has also been evidenced at the decadal scale, with a lower AMOC limiting the 
retreat of Arctic sea ice (Yeager et al., 2015; Delworth and Zeng, 2016). The climatic impacts could be 
substantial over Europe (Jackson et al., 2015), where an AMOC weakening can lead to high pressure over 
the British Isles in summer (Haarsma et al., 2015), reminiscent of a negative summer North Atlantic 
Oscillation (NAO), inducing an increase in precipitation in Northern Europe and a decrease in Southern 
Europe. In winter, the response of atmospheric circulation may help to reduce the cooling signature over 
Europe (Yamamoto and Palter, 2016), notably through an enhancement of warming maritime effect due to a 
stronger storm track (Jackson et al., 2015), driving more powerful storms in the North Atlantic (Hansen et 
al., 2016). The observed extreme low AMOC in 2009–2010, which was followed by a reduction in ocean 
heat content to the north (Cunningham et al., 2013), has been possibly implicated in cold European weather 
events in winter 2009–2010 and December 2010 (Buchan et al., 2014) although a robust attribution is 
missing. In summer, cold anomalies in the SPG, like the one occurring during the so-called cold blob (Josey 
et al., 2018), have been suspected to potentially enhance the probability of heatwaves over Europe in 
summer (Duchez et al., 2016). Nevertheless, considerable uncertainties remain with regard to this aspect due 
to the lack of historical observations before 2004 and due to poor model resolution of small-scale processes 
related to frontal dynamics around the Gulf Stream region (Vanniere et al., 2017). In addition, oceanic 
changes in the Gulf Stream region may occur in line with AMOC weakening (Saba et al., 2016) with 
potential rapid warming due to a northward shift of the Gulf Stream. However, these changes are largely 
underestimated in coarse resolution models (Saba et al., 2016) . In North America, a negative phase of the 
AMV, reminiscent of a weakening of the AMOC, lowers agricultural production in a few Mexican coastal 
states (Azuz-Adeath et al., 2019). 
 
Changes in ocean circulation can also strongly impact sea level in the regions bordering the North Atlantic 
(McCarthy et al., 2015a; Palter et al., 2018). A collapse of the AMOC or of the SPG could induce substantial 
increase of sea-level up to a few tens of centimetres along the western boundary of the North Atlantic (Ezer 
et al., 2013; Little et al., 2017; cf. Chapter 5). For instance, such a link may explain 30% of the extreme 
observed sea level rise event (a short-lived increase of 12 mm during 2 years) in northeast America in 2009–
2010 (Ezer, 2015; Goddard et al., 2015). This illustrates that monitoring changes in AMOC may have 
practical implications for coastal protection. 
 
The AMOC teleconnections are widespread and notably strongly affect the tropical area, as evidenced in 
paleodata for the Sahel region (Collins et al., 2017; Mulitza et al., 2017) and in model simulations (Jackson 
et al., 2015; Delworth and Zeng, 2016). These teleconnections may affect vulnerable populations. For 
instance, Defrance et al. (2017) found that a substantial decrease in the AMOC, at the very upper end of 
potential changes, may strongly diminish precipitation in the Sahelian region, decreasing the millet and 
sorghum emblematic crop production, which may impact subsistence of tens of millions of people, 
increasing their potential for migration. Smaller amplitude variations in Sahelian rainfall, driven by North 
Atlantic SST, has been found to be predictable up to a decade ahead (Gaetani and Mohino, 2013; Mohino et 
al., 2016; Sheen et al., 2017), potentially providing mitigation and adaptation opportunities. The number of 
tropical storms in the North Atlantic has been found to be very sensitive to the AMOC (Delworth and Zeng, 
2016; Yan et al., 2017) as well as to the SPG (Hermanson et al., 2014) variations, so that a large weakening 
of the AMOC or cooling of the SPG may decrease the number of Atlantic tropical storms. The Asian 
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monsoon may also potentially weaken in the case of large changes in the AMOC (Marzin et al., 2013; 
Jackson et al., 2015; Zhou et al., 2016; Monerie et al., 2019) implying substantial adverse impacts on 
populations. The interactions of the Atlantic basin with the Pacific has also been largely discussed over the 
last few years, with the supposed influence of a cool North Atlantic inducing a warm tropical Pacific 
(McGregor et al., 2014; Chafik et al., 2016; Li et al., 2016b), although not found in all models (Swingedouw 
et al., 2017), which may induce stronger amplitudes of El Niño (Dekker et al., 2018). 
 

 
Figure 6.10: Infographic on teleconnections and impacts due to Atlantic Meridional Overturning Circulation (AMOC) 
collapse or substantial weakening. Changes in circulation have multiple impacts around the Atlantic Basin, but also 
include remote impacts in Asia and Antarctica. Reductions in AMOC lead to an excess of heat in the South Atlantic, 
leading to increased flooding, methane emissions and drought, and a concomitant negative impact on food production 
and human systems. In the North Atlantic region hurricane frequency is decreased on the western side of the basin, but 
storminess increases in the east. Marine and terrestrial ecosystems, including food production, are impacted while sea-
level rise is seen on both sides of the Atlantic. The arrows indicate the direction of the change associated with each icon 
and is put on its right. An assessment of the confidence level in the understanding of the processes at play is indicated 
below each icon. 
 
 
The AMOC plays an important function in transporting excess heat and anthropogenic carbon from the 
surface to the deep ocean (Kostov et al., 2014; Romanou et al., 2017), and therefore in setting the pace of 
global warming (Marshall et al., 2014). A large potential decline in the AMOC strength reduces global 
surface warming. This is due to changes in the location of ocean heat uptake and associated expansion of the 
cryosphere around the North Atlantic, which increases surface albedo (Rugenstein et al., 2013; Winton et al., 
2013), as well as cloud cover variations and modifications in water vapour content (Trossman et al., 2016). 
As the uptake of excess heat occurs preferentially in regions with delayed warming (Winton et al., 2013; 
Frölicher et al., 2015; Armour et al., 2016), a potential large reduction of the AMOC may shift the uptake of 
excess heat from the low to the high latitudes (Rugenstein et al., 2013; Winton et al., 2013), where the 
atmosphere is more sensitive to external forcing (Winton et al., 2010; Rose et al., 2014; Rose and Rayborn, 
2016; Rugenstein et al., 2016). A decrease in AMOC may also decrease the subduction of anthropogenic 
carbon to deeper waters (Zickfeld et al., 2008; Winton et al., 2013; Randerson et al., 2015; Rhein et al., 
2017). A potential impact of methane emissions has also been highlighted for past Heinrich events during 
which massive icebergs discharge in the North Atlantic may have led to large AMOC disruptions. Large 
increases (>100 parts per billion) in methane production have been associated with these events (Rhodes et 
al., 2015) potentially due to increased wetland production in the Southern Hemisphere, related to 
teleconnections of the North Atlantic with tropical area (Ringeval et al., 2013; Zurcher et al., 2013). All 
these different effects indicate a potentially positive feedback of the AMOC on the carbon cycle (Parsons et 
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al., 2014), although other elements from the terrestrial biosphere may limit its strength or even reverse its 
sign (Bozbiyik et al., 2011).  
 
Changes in Atlantic Ocean circulation can also strongly impact marine life and can be seen at all levels of 
different ecosystems. For instance, changes in the abundance and distribution of species in response to 
circulation changes in the SPG have been documented amongst plankton (Hátún et al., 2009), fish (Payne et 
al., 2012; Miesner and Payne, 2018), seabirds (Descamps et al., 2013) and top predators such as tuna, billfish 
and pilot whales (Hátún et al., 2009; MacKenzie et al., 2014). Nutrient concentrations in the northeast 
Atlantic have also been shown to be limited by the recent weakening of the SPG, with concomitant 
ecosystem impacts (Johnson et al., 2013; Hátún et al., 2016). The influence of SPG circulation also extends 
to ecosystems beyond from the immediate area, and has a clear impact on the productivity of cod (Gadus 
morhua) in the Barents Sea, for example (Årthun et al., 2017; Årthun et al., 2018). On a broader scale, 
changes in the AMOC are an important driver of Atlantic Multidecadal Variability, which has also been 
linked to substantial changes in marine ecosystems on both sides of the North Atlantic (Alheit et al., 2014; 
Nye et al., 2014). Recent AMOC weakening is also suspected to explain large marine deoxygenation in the 
northwest coastal Atlantic (Claret et al., 2018). In addition, a recent study using a marine productivity proxy 
from Greenland ice cores suggest that net primary productivity has decreased by 10 ± 7% in the subarctic 
Atlantic over the past two centuries possibly related to changes in AMOC (Osman et al., 2019). Finally, a 
model study investigated the impact of mitigation by reversing the forcing from a RCP8.5 scenario from 
2100 and found that global marine net productivity may recover very rapidly and even overshoot 
contemporary values at the end of the reversal, highlighting the potential benefit of mitigation (John et al., 
2015). 
 
Following all these potential impacts, it has been suggested that a collapse of the AMOC may have the 
potential to induce a cascade of abrupt events, related to the crossing of thresholds from different tipping 
points, itself potentially driven by GIS rapid melting. For example, a collapse of the AMOC may induce 
causal interactions like changes in ENSO characteristics (Rocha et al., 2018), dieback of the Amazon 
rainforest and shrinking of the West Antarctic Ice Sheet due to seesaw effect, ITCZ southern migration and 
large warming of the Southern Ocean (Cai et al., 2016). However, such a worst-case scenario remains very 
poorly constrained quantitatively due to the large uncertainty in GIS and AMOC response to global 
warming.  
 
The potential impacts of such rapid changes in ocean circulation on agriculture, economy and human health 
remain poorly evaluated up to now with very few studies on the topic (Kopits et al., 2014). The available 
impact literature on AMOC weakening has focussed on impacts from temperature change only (reduced 
warming), globally leading to economic benefits (e.g., Anthoff et al., 2016), and local losses can amount to a 
few percent of GDP, however under a complete shutdown (Link and Tol, 2011). Declines in Barents Sea fish 
species could lead to economic losses (Link and Tol, 2009), but more comprehensive economic studies are 
lacking. 
 
6.7.3 Risk Management and Adaptation 
 
The numerous potential impacts of AMOC weakening (see Section 6.7.2) require adaptation responses. A 
specific adaptation action is a monitoring and early warning system using observation and prediction 
systems, which can help to respond in time to effects of an AMOC decline. Although it is difficult to warn 
very early for large changes in AMOC to come, notably due to large natural decadal variability of the 
AMOC (Boulton et al., 2014), the observation arrays that are in place may allow the development of such an 
early warning system. Nevertheless, the prospects for its operational use for early warnings have not yet 
been fully developed. In this respect, developing early warning systems that do not depend on statistical 
timeseries analysis of long observational record might be seen as an important research goal in the future. 
 
Decadal prediction systems can help fill this gap. Skilful prediction of AMOC variation has been 
demonstrated on the multi-annual scale (Matei et al., 2012) and retrospective prediction experiments have 
demonstrated that the large changes in the SPG seen in the mid-1990s could have been foreseen several 
years in advance (Wouters et al., 2013; Msadek et al., 2014). The World Climate Research Programme's 
(WCRP) grand challenge of launching decadal predictions every year (Kushnir et al., 2019) is an important 
step towards anticipating rapid changes in the near term and can drive decadal-scale climate services. For 
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example, a few studies have already shown that small variations anticipated by decadal predictions (e.g., 
Sheen et al., 2017) can be useful for the development of climate services, notably for agriculture in south and 
east Africa (Nyamwanza et al., 2017). Decadal predictions also match the decision-making time-horizons of 
many users of the ocean (Tommasi et al., 2017b) and are expected to play an increasingly important role in 
this sector in the future (Payne et al., 2017). 
 
 
6.8 Compound Events and Cascading Impacts  
 
6.8.1 Concepts  
 
Compound events from (also referred to as multiple risks or ‘multi-risk’ by Gallina et al., 2016) refers to 
events that are characterised by multiple failures that can amplify overall risk and/or cause cascading impacts 
(Helbing, 2013; Gallina et al., 2016; Figure 6.1). These impacts may be triggered by multiple hazards that 
occur coincidently or sequentially and can lead to substantial disruption of natural or human systems 
(Leonard et al., 2014; Oppenheimer et al., 2014; Gallina et al., 2016; Zscheischler et al., 2018). These 
concepts are illustrated in a series of recent case studies that show how compound events interact with 
multiple elements of the ecosystem and society to create compound risk (also referred to as multiple risks or 
‘multi-risk’ by Gallina et al., 2016) and cascading impacts (Box 6.1). 
 
Compound events and cascading impacts are examples of deep uncertainty because data deficiency often 
prevents the assessment of probabilities and consequences of the risks from compound events. Furthermore, 
climate drivers that contribute to compound events could cross tipping points in the future (e.g., Cai et al., 
2016; Cross-Chapter Box 4 in Chapter 1). Concepts and methods for addressing compound events and 
cascading impacts have a solid foundation in Disaster Risk Reduction (DRR) frameworks (Scolobig, 2017) 
where they may be assessed with scenarios, risk mapping, and participatory governance (Marzocchi et al., 
2012; Komendantova et al., 2014). However, these approaches have tended to not consider the effects of 
climate change, rather considering hazards and vulnerability as stationary entities (Gallina et al., 2016). 
Trends in geophysical and meteorological extreme events and their interaction with more complex social, 
economic and environmental vulnerabilities overwhelm existing governance and institutional capacities 
(Shimizu and Clark, 2015) because of the aggregated cascading impacts.  
 
6.8.2 Multiple Hazards 
 
Understanding regions where changes in the climate system could increase the likelihood or severity of 
multiple hazards is relevant to understanding compound events (Figure 6.1). Several recent studies have 
highlighted coastal regions that are becoming more susceptible to multiple hazards from changes in regional 
climate. Warming and poleward expansion of the warm western boundary current regions (WBCs; Yang et 
al., 2016a) together with intensified cyclogenesis in these WBC regions; the Gulf Stream (Booth et al., 
2012), the Kuroshio (Hirata et al., 2016) and the East Australian Current (EAC; Pepler et al., 2016a) can 
increase the likelihood of multiple hazards. These include increased rates of SLR (Brunnabend et al., 2017; 
Zhang et al., 2017b) together with increases in severe rainfall, storm surges and associated flooding 
(Thompson et al., 2013; Oey and Chou, 2016; Pepler et al., 2016a). WBC’s have undergone an 
intensification and poleward expansion in all but the Gulf Stream where the weakening of the Atlantic 
Overturning Circulation (AMOC) cancelled this effect (Seager and Simpson, 2016; Yang et al., 2016a).  
 
Acknowledging the dual role of regional SLR and tropical cyclone frequency and intensity changes for 
future flood risk, Little et al. (2015) developed a flood index that takes account of local projected SLR along 
with TC frequency and intensity changes in a CMIP5 multi-model ensemble. They find that relative to 1986–
2005, the Flood Index by 2080–2099 is 4–75 times higher for RCP2.6 (10–90th percentile range) and 35–
350 times higher for RCP8.5. In the vicinity of the EAC, Pepler et al. (2016b) found warmer SSTs boost the 
intensification of weak to moderate ETC’s. Neglecting the compounding effects of flood and extreme sea 
level drivers can cause significant underestimation of flood risk and projected failure probability (Wahl et 
al., 2016; Moftakhari et al., 2017).  
 
Over the last decade, several efforts have been made to address long-term shoreline change driven by the 
cascading impact of SLR, waves and mean sea level. Ranasinghe et al. (2012) presented the Probabilistic 
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Coastline Recession (PCR) model, which provides probabilistic estimates of coastline recession in response 
to both storms and SLR in the 21st century. Dune recession is estimated for each storm considering the 
recovery between storms, which is obtained empirically. More recently, Toimil et al. (2017) developed a 
methodology to address shoreline change over this century due to the action of waves, storm surges, 
astronomical tides in combination with SLR. The methodology considers the generation of thousands of 
multi-variate hourly time series of waves and storm surges to reconstruct future shoreline evolution 
probabilistically, which enables estimates of extreme recessions and long-term coastline change to be 
obtained. The model proposed by Vitousek et al. (2017) integrates longshore and cross-shore transport 
induced by GCM-projected waves and SLR, which allows it to be applied to both long and pocket sandy 
beaches. The analysis provides only one instance of what coastline change over the 21st century may be. 
 
To summarise, new studies highlight regions such as coasts including those adjacent to WBCs, that are 
experiencing larger changes to multiple phenomena simultaneously such as sea level rise and cyclone 
intensity linked to higher SST increases (medium confidence), which increases the likelihood of extremes 
from multiple hazards occurring (medium confidence). Failing to account for the multiple factors responsible 
for extreme events will lead to an underestimation of the probabilities of occurrence (high confidence). 
 
6.8.3 Cascading Impacts on Ecosystems  
 
Damage and loss of ecosystems (mangrove, coral reefs, polar deserts, wetlands, salt marshes); or regime 
shifts in ecosystem communities lead to reduced resilience of all the ecosystems and possible flow-on effects 
to human systems. For example, recent studies showed that living corals and reef structures have 
experienced significant losses from human-related drivers such as coastal development; sand and coral 
mining; overfishing, acidification, and climate-related storms and bleaching events (Smith, 2011; Nielsen et 
al., 2012; Hilmi et al., 2013; Graham et al., 2015; Lenoir and Svenning, 2015; Hughes et al., 2017b). As a 
consequence, reef flattening is taking place globally due the loss of corals and from the bio-erosion and 
dissolution of the underlying reef carbonate structures (Alvarez-Filip et al., 2009). Reef mortality and 
flattening due to non-climate and climate-related drivers trigger cascading impacts and risks due to the loss 
of the protection services provided to coastal areas. High emission scenarios are expected to lead to almost 
the complete loss of coral cover by 2100, although policies aiming to lower the combined aerosol-radiation 
interaction and aerosol-cloud interaction (e.g., IPCC RCP 6.0) may partially limit the impacts on coral reefs 
and the associated habitat loss, thereby preserving an estimated USD 14 to 20 billion in consumer surplus 
2100 (2014 $ USD, 3% discount; Speers et al., 2016). Moreover, projected sea level rise will increase 
flooding risks, and these risks will be even greater if reefs that now help protect coasts from waves are lost 
due to bleaching-induced mortality.  
 
6.8.4 Cascading Impacts on Social Systems  
 
Impacts of compound events also have significant multi-effects in the societal system. Cascading impacts are 
particularly driven by the loss or (temporary) disruption of critical infrastructure (Pescaroli and Alexander, 
2018), such as communications, transport, and power supply, on housing, dams and flood protection; as well 
as health provision. Repeated extreme and compound events are leading to critical transitions in social 
systems (Kopp et al., 2016) which may cause the disruption of (local) communities, creating cascading 
impacts consisting of short-term impacts as well as long-lasting economic effects, and in some cases 
migration. When the responses of the economic sector to short term weather variations are applied to long 
term-climate projections, the results indicate that risks associated with climate change on different sectors is 
projected to result in an average 1.2% of decrease of US Gross Domestic Product per degree Celsius of 
warming. Furthermore, broad geographical discrepancies generate a large transfer of value northwards and 
westwards with the expected consequence of increased economic inequality (Hsiang et al., 2017). The 
severity and intensity of the cascading impacts also depend on the affected societies’ vulnerability and 
resilience. For example, the intensity and influence of compound events are dependent on the size and scale 
of the affected society and the percentage of economy or Gross Domestic Product impacted (Handmer et al., 
2012 in IPCC SREX). Smaller countries and especially small islands face the challenge of being unable to 
‘hedge’ the risk through geographical redistribution (see Cross-Chapter Box 9).  
 
Impacts from the natural system can descend into a cascade of disasters; e.g., hurricane Katrina in 2005 led 
to heavy flooding in the coastal area, dike breaches, emergency response failures, chaos in evacuation 
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(traffic jams) and social disruption. Flooding in Thailand in 2011 led to the closure of many factories which 
not only impacted on the country’s economy but impaired the global automobile and electronic industry 
(Kreibich et al., 2014). Female-owned establishments are more challenged with failures than businesses 
owned by men due to less experience, shorter duration and smaller size of businesses (Haynes et al., 2011; 
Marshall et al., 2015). The impact of compound events on ecosystems can also, in the long run, have 
devastating impacts on societal systems, e.g., impacts from tropical storms can lead to coral degradation, 
which leads to increased wave impact and subsequent accelerated coastal erosion and impacts on fishing 
resources. This subsequently can have an impact on local economies, potentially leading to social disruption 
and migration (Saha, 2017). Impacts on marine ecosystems and habitats will also affect subsistence and 
commercial fisheries and, as a result, food security (Barrow et al., 2018). Climate-induced community 
relocations in Alaska stem from repeated extreme weather events coupled with climate change-induced 
coastal erosion and these impact the habitability of the whole community (Bronen, 2011; Durrer and Adams, 
2011; Marino, 2011; Marino, 2012; Bronen and Chapin, 2013; see also Cross-Chapter Boxes 2 and 5 in 
Chapter 1). 
 
 
6.8.5 Risk Management and Adaptation, Sustainable and Resilient Pathways 
 
The management of compound events and cascading impacts in the context of governance poses challenges, 
partly because it is place dependent and heavily influenced by local parameters such as hazard experience 
and cultural values. Moreover, in some cases, people perceive that their community or country is less 
affected than others, leading to a ‘spatial optimism bias’ that delays or reduces the scope of actions (Nunn et 
al., 2016). In other cases it is unclear who will take responsibility when compound events and cascading 
impact occur (Scolobig, 2017), although for some compound risks (e.g. na-tech disasters; natural hazard 
triggering technological disasters), the private sector cooperate with governments to manage and respond to 
risks (Krausmann et al., 2017). Considerable variations exist among and inside countries. The level of 
engagement depends on the process of cascading impacts and the role of governance arrangement at the 
country level (Lawrence et al., 2018) countries’ capacity to develop integrated risk and disaster frameworks 
and regulations, viable multi-stakeholder and public-private partnership in the case of multiple technological 
and natural hazards (Gerkensmeier and Ratter, 2018), the initiatives of local governments to exercise 
compound risk operations, and experience in interagency cooperation (Scolobig, 2017). The importance of 
local knowledge and traditional practices in disaster risk prevention and reduction are widely recognized 
(Hiwasaki et al., 2014; Hilhorst et al., 2015; Audefroy and Sánchez, 2017) (high confidence). The need to 
strengthen disaster risk management (DRM) is evident and can be improved and communicated effectively 
by integrating local knowledge such as Inuit’s indigenous knowledge and local knowledge in Alaska (Pearce 
et al., 2015; Cross-Chapter Box 3 in Chapter 1) since it is easier for communities to accept than pure science-
based DRM (Ikeda et al., 2016).  
 
 
Despite difficulties of governance and decision-making, many researchers and policymakers have recognised 
the need to study combined climatic and other hazards and their impacts. Several methods are now being 
employed to assess climatic hazards and compound events simultaneously, and also in combination (Klerk et 
al., 2015; van den Hurk et al., 2015; Wahl et al., 2015; Zscheischler and Seneviratne, 2017; Wu et al., 2018; 
Zscheischler et al., 2018). Policymakers can also begin to plan for disaster risk reduction and adaptation, 
based on these analyses of compound events and risks. Addressing limitations in understanding the 
compound hazards, as well as adequate mechanisms of the cascading impacts is needed. Finally, there are 
limits to resources to study these complex interactions in sufficient detail, as well as limits to data and 
information on past events that would allow the simulation of these effects, including economic impacts. 
 
6.8.6 Global Impact of Tipping Points 
 
A small number of studies (Lontzek et al., 2015; Cai et al., 2016; Lemoine and Traeger, 2016) use different 
versions of the dynamic integrated climate-economy (DICE) assessment model (Nordhaus, 1992; Nordhaus, 
2017) to assess the impact of diverse sets of tipping points and causal interactions between them on the 
socially optimal reduction of gas emissions and the present social cost of carbon, representing the economic 
cost caused by an additional ton of CO2 emissions or its equivalent. 
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Cai et al. (2016) consider five interacting, stochastic, potential climate tipping points: reorganization of the 
meridional overturning circulation (AMOC); disintegration of the Greenland Ice Sheet; collapse of the West 
Antarctic Ice Sheet (WAIS); dieback of the Amazon Rain Forest; and shift to a more persistent El Niño 
regime. The deep uncertainties associated with the likelihood of each of these tipping points and the 
dependence of them on the state of the others is addressed through expert elicitation. There is limited 
evidence, but high agreement that present costs of carbon are clearly underestimated. Double (Lemoine and 
Traeger, 2016), triple (Ceronsky et al., 2011), to eightfold (Cai et al., 2016) increase of the carbon price are 
suggested, depending on the working hypothesis. Cai et al. (2016) indicate that with the prospect of multiple 
interacting tipping points, the present social cost of carbon increases from USD 15 to 116 per ton of CO2, 
and conclude that stringent efforts are needed to reduce CO2 emission if these impacts are to be avoided. 
 
 
[START BOX 6.1 HERE] 
 
Box 6.1: Multiple Hazards, Compound Risk and Cascading Impacts  
 
The following case studies illustrate that anthropogenic climate change including ocean changes is 
increasingly having a discernible influence on elements of the climate system by exacerbating extreme 
events and causing multiple hazards, often with compound or sequential characteristics. In turn these 
elements are interacting with vulnerability and exposure to trigger compound events and cascading impacts. 
 
Case Study 1: Tasmania’s Summer of 2015/2016 
 
Tasmania in southeast Australia experienced multiple extreme climate events in 2015–2016, driven by 
the combined effects of natural modes of climate variability and anthropogenic climate change, with 
impacts on the energy sector, fisheries and emergency services. The driest warm season on record 
(October to April), together with the warmest summer on record, brought agricultural and hydrological 
droughts to Tasmania and preconditioned the sensitive highland environment for major fires during the 
summer. Thousands of lightning strikes during the first two months of the year led to more than 165 separate 
vegetation fires, which burned more than 120,000 hectares including highland zones and the World Heritage 
Area and incurred costs to the state of more than AUD 50 million (Press, 2016). 
 
In late January an intense cutoff low-pressure system brought heavy rainfall and floods, so that emergency 
services were simultaneously dealing with highland fires and floods in the east and north. The floods were 
followed by an extended wet period for Tasmania, with the wettest wet season (April-November) on record 
in 2016. Meanwhile, an intense marine heatwave off the east coast persisted for 251 days from spring, 2015 
through to autumn, 2016 (Oliver et al., 2017). 
 
The driest October on record was influenced by both the El Niño and anthropogenic forcing (Karoly et al., 
2016). Warmer sea surface temperatures due to anthropogenic warming may have increased the intensity of 
rainfall during the floods in January (e.g., Pepler et al., 2016a). The intensity and the duration of the marine 
heatwave was unprecedented and both aspects had a clear human signature (Oliver et al., 2017).  
 
Tasmania primarily relies on hydro-electric power generation and the trading of power over an undersea 
cable to mainland Australia, ‘Basslink’, for its energy needs. Lake levels in hydro-electric dams were at 
relatively low levels in early spring 2015, and the extended dry period led to further reductions and 
significantly reduced capacity to generate power (Hydro Tasmania, 2016). An unanticipated failure of the 
Basslink cable subsequently necessitated the use of emergency diesel generators (Hydro Tasmania, 2016). 
 
The compound events caused many impacts on natural systems, agriculture, infrastructure and communities. 
Additional emergency services from outside the state were needed to deal with the fires. The marine 
heatwave caused disease outbreaks in farmed shellfish, mortality in wild shellfish and species found further 
south than previously recorded. The energy sector experienced a severe cascade of impacts due to climate 
stressors and system inter-dependencies. The combination of drought, fires, floods and marine heatwave 
reduced output from the agriculture, forestry, fishing and energy sectors and reduced the State of Tasmania 
gross state product to 1.3% (GSP), well below the anticipated growth of 2.5%. To address the energy 
shortages, Tasmania’s four largest industrial energy users, responsible for 60% of Tasmania’s electricity 
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usage, agreed to a series of voluntary load reductions of up to 100 MW on a sustained basis, contributing to a 
1.7% reduction in the output of the manufacturing sector (Eslake, 2016). The total cost of the fires and floods 
was assessed at USD 300 million. In response funding has been increased to government agencies 
responsible for managing floods and bushfires, and multiple independent reviews have recommended major 
policy reforms that are now under consideration (Blake, 2017; Tasmanian Climate Change Office, 2017). 
 
This case illustrates the concepts presented in Figure 6.1. Anthropogenic climate change likely contributed to 
the severity of multiple hazards; including coincident and sequential events (droughts and bushfires, 
followed by extreme rainfall and floods). Compound risks, including risks for the safety of residents affected 
by floods and fires, the natural environment affected by marine heatwaves and fires and the economy in the 
food and energy sectors arose from these climate events with cascading impacts on the industrial sector more 
broadly as it responded to the shortfall in energy supply.  
 
Extremes experienced in 2015–2016 in Tasmania are projected to become more frequent or more intense due 
to climate change, including dry springs and summers (Bureau of Meteorology and Australian CSIRO, 
2007), intense lows bringing extreme rains and floods in summer (Grose et al., 2012), and marine heatwaves 
on the east coast associated with convergence of heat linked to the East Australia Current (Oliver et al., 
2017) indicating that climate change by increasing the frequency or intensity of multiple climate events will 
likely increase compound risk and cascading impacts (high confidence). 
 
Case Study 2: The Coral Triangle 
 
The Coral Triangle is under the combined threats of mean warming, ocean acidification, temperature 
and sea-level variability (often associated with both El Niño and La Niña), coastal development and 
overfishing, leading to reduced ecosystem services and loss of biodiversity. The Coral Triangle covers 4 
million square miles of ocean and coastal waters in Southeast Asia and the Pacific, in the area surrounding 
Indonesia, Malaysia, Papua New Guinea, the Philippines, Timor Leste, and the Solomon Islands. It is the 
centre of the highest coastal marine biodiversity in the world, is due to its geological setting, physical 
environment, and an array of ecological and evolutionary processes which makes it a conservation priority. 
Together with mangroves and seagrass beds, the 605 species of corals including 15 regional endemics 
(Veron et al., 2011) provide ecosystem services to over 100 million people from diverse and rich cultures, in 
particular for food, building materials, coastal protection.  
 
The riches of the ecosystems in the Coral Triangle led to expanding human activities, such as coastal 
development to accommodate a booming tourism sector and overfishing. There is agreement that these 
activities, including coastal deforestation, coastal reclamation, destructive fishing methods and over-
exploitation of marine life generate important pressures on the ecosystem (Pomeroy et al., 2015; Ferrigno et 
al., 2016; Huang and Coelho, 2017). As a result, the coastal ecosystems of the Coral Triangle have already 
lost 40% of their coral reefs and mangroves over the past 40 years (Hoegh-Guldberg et al., 2009).  
 
Risks from compound events include increase in sea surface temperatures, sea level rise and increased 
human activities. The increasing trend in sea surface temperatures (SSTs) was estimated to be 0.1°C per 
decade between 1960 and 2007 (Kleypas et al., 2015) but increased to 0.2°C per decade from 1985 to 2006 
(Penaflor et al., 2009), an estimation comparable with that in the South China Sea (Zuo et al., 2015). 
However, waters in the northern and eastern parts are warming faster than the rest of the region and this 
variability is increased by local parameters linked to the complex bathymetry and oceanography of the 
region (Kleypas et al., 2015). Areas in the eastern part have experienced more thermal stress events, and 
these appear to be more likely during La Niña events, which generate heat pulses in the region, leading to 
bleaching events, some of them already triggered by El Niño Southern Oscillation (ENSO) events. In the 
Coral Triangle, El Niño events have a relative cooling effect, while La Niña events are accompanied by 
warming (Penaflor et al., 2009). The 1997–1998 El Niño was followed by a strong La Niña so that degree 
heating weeks (DHW) values in many parts of the region were greater than 4, which caused widespread 
coral bleaching (DHW values greater than zero indicate there is thermal stress, while DHW values of 4 and 
greater indicate the existence of sufficient thermal stress to produce significant levels of coral bleaching; 
Kayanne, 2017). However, in Indonesia, the 2015–2016 El Niño event had impacted shallow-water reefs 
well before high sea surface temperatures could trigger any coral bleaching (Ampou et al., 2017). Sea level 
in Indonesia had been at its lowest in the past 12 years following this El Niño event and this had affected 
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corals living in shallow waters. Substantial mortality was likely caused by higher daily aerial exposure 
during low tides and warmer SST associated with shallow waters. Another climate change-associated impact 
in the Coral Triangle is ocean acidification. Although less exposed than other reefs at higher latitudes (van 
Hooidonk et al., 2013), changes in pH are expected to affect coral calcification (DeCarlo et al., 2017), with 
an impact on coral reef fisheries (Speers et al., 2016). 
 
At present, different approaches are used to manage the different risks to coral ecosystems in the Coral 
Triangle such as fisheries management (White et al., 2014) and different conservation initiatives (Beger et 
al., 2015), including coral larval replenishment (dela Cruz and Harrison, 2017) and the establishment of a 
region-wide marine protected area system (e.g., Christie et al., 2016). There is high confidence that reefs 
with high species diversity are more resilient to stress, including bleaching (e.g., Ferrigno et al., 2016; Mellin 
et al., 2016; Mori, 2016). Sustainable Management of coastal resources, such as marine protected areas is 
thus a commonly used management approach (White et al., 2014; Christie et al., 2016), supported in some 
cases by ecosystem modelling projections (Weijerman et al., 2015; Weijerman et al., 2016). Evaluations of 
these management approaches led to the development of guiding frameworks and supporting tools for 
coastal area managers (Anthony et al., 2015); however biological and ecological factors are still expected to 
limit the adaptive capacity of these ecosystems to changes (Mora et al., 2016). 
 
Case Study 3: Severe Atlantic Hurricanes of 2017 
 
The above-average hurricane activity of the 2017 season led to the sequential occurrence of Hurricanes 
Harvey, Irma and Maria on the Caribbean and southern US coasts (Klotzbach and Bell, 2017) collectively 
causing USD 265 billion damage and making 2017 the costliest hurricane season on record (Blake et al., 
2011; Blake and Zelinsky, 2018).  
 
The role of climate change in contributing to the severity of these recent hurricanes has been much discussed 
in the public and media. It has not been possible to identify robust long-term trends in either hurricane 
frequency or strength given the large natural variability, which makes trend detection challenging especially 
given the opposing influences of greenhouse gases and aerosols on past changes. However, observational 
data shows a warming of the surface waters of the Gulf of Mexico, and indeed most of the world’s oceans, 
over the past century as human activities have had an increasing impact on our climate (Sobel et al., 2016). 
 
Hurricane Harvey brought unprecedented rainfall to Texas and produced a storm surge that exceeded 2 m in 
some regions (Shuckburgh et al., 2017). Climate change increased the rainfall intensity associated with 
Harvey by at least 8% (8%–19%; Risser and Wehner, 2017; van Oldenborgh et al., 2017) (high confidence). 
Emanuel (2017) estimated that the annual probability of 500 mm of area-averaged rainfall had increased 
from 1% in the period 1981–2000 to 6% in 2017. Furthermore, if society were to follow RCP8.5, the 
probability would increase to 18% over the period 2081–2100.  
 
The event attribution method of Emanuel (2017) indicates that for tropical cyclone (TC) Irma, which 
impacted the Caribbean islands of Barbuda and Cuba, the annual probability of encountering Irma's peak 
wind of 160 knots within 300 km of Barbuda increased from 0.13% in the period 1981–2000 to 0.43% by 
2017 and will further increase to 1.3% by 2081–2100 assuming RCP8.5. TC Maria, followed Irma, and 
made landfalls on the island of Dominica, Puerto Rico, and Turks and Caicos Islands. The annual probability 
of encountering Maria's peak wind of 150 knots within 150 km of 17N, 64W increased from 0.5% during 
1981–2000 to 1.7% in 2017 and will increase to 5% by 2081–2100 assuming RCP8.5.  
 
At least 68 people died from the direct effects of Harvey in Houston (Blake and Zelinsky, 2018). The 
Houston metropolitan area was devastated with the release of about 4.6 million pounds of contaminants from 
petrochemical plants and refineries. Irma caused 44 direct deaths (Cangialosi et al., 2018) and wiped out 
housing, schools, fisheries, and livestock in Barbuda, Antigua, St. Martin, and the British Virgin Island 
(ACAPS et al., 2017). Maria caused 31 direct deaths in Dominica and two in Guadeloupe and around 65 in 
Puerto Rico (Pasch et al., 2018), and completely vacated Barbuda. Maria destroyed almost all power lines, 
buildings, and 80% of crops in Puerto Rico (Rexach et al., 2017; Rosselló, 2017) and damaged 
pharmaceutical industries that provided 33% of Puerto Rico’s GDP causing shortages of some medical 
supplies in the US (Sacks et al., 2018). The effects of Maria are expected to increase the poverty rate by 14% 
because of unemployment in tourism and agriculture sectors for more than a year in Dominica (The 
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Government of the Commonwealth of Dominica, 2017), and resulted in outmigration to neighboring 
countries or the US (ACAPS et al., 2017; Rosselló, 2017). These economic and social consequences are 
indicative of the cascading impact of the 2017 hurricanes. The post-disaster reconstruction plan is to 
renovate telecommunications, develop climate resilient building plans, and emergency coordination 
(Rosselló, 2017; The Government of the Commonwealth of Dominica, 2017). 
 
Collectively, these case studies indicate that climate change has played a role in multiple coincident or 
sequential extreme events that have led to cascading impacts (high confidence). Climate change is projected 
to increase the frequency or intensity of multiple climate events in the future and this will likely increase 
risks of compound event and cascading impacts (high confidence). 
 
[END BOX 6.1 HERE] 
 
 
6.9 Governance and Policy Options, Risk Management, Including Disaster Risk Reduction and 

Enhancing Resilience 
 
6.9.1 Decision Making for Abrupt Change and Extreme Events  
 
As outlined earlier in this report, several approaches exist for adaptive responses towards climate change 
impacts. Other sections that deal with adaptation responses to extremes include Section 1.5.2, Section 4.4 
(sea-level rise and coastal flooding), Cross Chapter Box 4 in Chapter 1 and Section 5.5.2.5 in Chapter 5 
(adaptation limits for coastal infrastructure and ecosystems). Here, we address adaptation responses 
especially to abrupt and extreme changes (for responses to special abrupt changes (e.g. AMOC; see also 
Section 6.7). 
 
Since AR5, growing discussions have advocated for transformative adaptation, implying that they support 
fundamental societal shift towards sustainability and climate-resilient development pathways (Moloney et 
al., 2017; IPCC, 2018; Morchain, 2018). Successful adaptation to abrupt change and extreme events 
incorporates climate change concerns and the impact of climate extremes on vulnerable populations taking 
into account community participation and local knowledge (Tozier de la Poterie and Baudoin, 2015). These 
interventions reduce risk and enhance resilience, and contribute to the Sustainable Development Goals and 
social justice (Mal et al., 2018).Temporal scales denote before and after abrupt changes and extreme events 
(prevention and post-event response), long- and short-term adaptation measures, and the lag time between 
forecast, warning, and event (Field et al., 2012; IPCC, 2012). Spatial dimensions include local risk 
management and adaptation as well as regional and international coordination to prepare for unexpected 
extremes tackling the impacts at multiple geographic scales (Devine-Wright, 2013; Barnett et al., 2014; Lyth 
et al., 2016; Barange et al., 2018).  
 
Decision-making about abrupt change or extreme events is not autonomous: it is constrained by formal and 
informal institutional processes such as regulatory structures, property rights as well as culture, traditions 
and social norms (Field et al., 2012; IPCC, 2012). Efforts in various countries and large cities to improve 
resilience and adaptation are growing, and these efforts are linked to a global network of research, 
information and best practices (e.g., Aerts et al., 2014). In both northern and southern high latitudes, extreme 
climatic conditions and remoteness from densely populated regions constrain human choices. The question is 
whether responses to extreme and abrupt changes require approaches that are different from the anticipatory 
management of adaptation to changes in climate and weather extremes. While there are several impact 
studies on extreme events and abrupt change, very few focus on the necessity of dedicated individual, 
governmental or business adaptive responses (Tol et al., 2006; Anthoff et al., 2010; Anthoff et al., 2016). 
 
Making appropriate decisions to manage abrupt change and extreme events given deep uncertainty is 
challenging (Weaver et al., 2013; see Cross-Chapter Boxes 4 and 5 in Chapter 1). This requires the 
construction of new models integrating different uncertainties under extreme or abrupt scenarios and 
evaluation of value for money (Weaver et al., 2013). Examples include the inclusion of rapid sea-level rise 
for assessing coastal impacts and adaptation options (Ranger et al., 2013; Haasnoot et al., 2018; see Sections 
6.4 and 6.7). Decision analysis frameworks such as ‘Robust Decision Making (RDM)’, ‘Decision Scaling 
(DS)’, ‘Assess Risk of Policy’, ‘Info-gap’, ‘Dynamic Adaptation Policy Pathways’, ‘Dynamic Adaptive 
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Pathways Planning’, ‘Multi-Criteria Decision Analysis’, ‘Real Options Analysis’, and ‘Context-First’, 
accommodate a wide range of uncertainties with subsequent social-ecological impact (Weaver et al., 2013). 
The central question remains, however, how one can overcome path dependencies which may cause 
technical lock-ins in the current system. Monitoring systems of climatic and derived variables, in order to 
predict necessary shifts in adaptation policies are in development (Haasnoot et al., 2015). However, these 
frameworks have so far been mostly applied to more gradual shifts of climate change, rather than extreme 
events and abrupt changes. 
 
Request for the use of ‘actionable’ information and communication based on climate science and modelling 
will increase (McNie, 2007; Moser and Boykoff, 2013). Such information can only be effective when it is 
perceived as ‘credible, salient, and legitimate’ (Paton, 2007; Paton, 2008; Dilling et al., 2015). Since SREX 
(IPCC, 2012), there is medium confidence that trust in the information and the institution (Hardin, 2002; 
Townley and Garfield, 2013) that governs extreme events and abrupt change (Malka et al., 2009; Birkmann 
et al., 2011; Schoenefeld and McCauley, 2016) is important. Trust in expert and scientific knowledge helps 
people make sense of climate change impact and engage with adaptation measures (Moser and Boykoff, 
2013; Yeh, 2016). Without such knowledge, people have little recourse to believe and evaluate relevant 
information (Bråten et al., 2011). Individuals who trust their government can be complacent and do not 
prepare for the consequences of extremes (Simpson, 2012; Edmondson and Levy, 2019), and shift the 
responsibility to the government (Edmondson and Levy, 2019). Familiarity with and information about 
hazards, community characteristics, as well as the relationship between people and government agencies 
influence the level of trust (Paton, 2007). 
 
Recent literature shows that there are crucial differences between the ethical challenges of mitigation and 
those of adaptation (Wallimann-Helmer, 2015; Wallimann-Helmer, 2016) in their dealings with Loss and 
Damage (L&D); and the ongoing analysis disputes how to distribute responsibilities between mitigation and 
adaptation based on climate justice criteria (Wallimann-Helmer et al., 2019). The Warsaw International 
Mechanism on L&D under the United Nations Framework Convention on Climate Change (UNFCCC) 
addresses irreversible changes and limits to adaptation at the global scale (see also Cross-Chapter Box 1 in 
Chapter 1). This is in contrast to national and local policies, addressing impacts and adaptation. Within the 
SROCC report, several of the documented and projected irreversible or unavoidable and thus residual 
impacts beyond adaptation would potentially fall under this category (e.g., Warner and van der Geest, 2013; 
Huggel et al., 2019; Mechler et al., 2019), including impacts from sea-level rise, land erosion and reduced 
fresh-water resources on small islands, changes in high mountains and cryosphere changes, as well as 
changes in ocean species and resources. Apart from climate hazards, risks for L&D are also determined by 
increasing exposure and vulnerability (Birkmann and Welle, 2015). Such impacts can be assessed using 
conventional frameworks, but the debate on the precise scope of such impacts remains, including those from 
anthropogenic climate change impacts as well as natural climate variability and extremes (e.g., James et al., 
2014). More work is required to explore the range of activities available for responding to L&D resulting 
from slow-onset processes in the scope of the SROCC report such as ocean acidification (Harrould-Kolieb 
and Hoegh-Guldberg, 2019), and mountain cryosphere changes (Huggel et al., 2019). 
 
Under the same L&D mechanism, risk transfer mechanisms and insurance have been suggested as a specific 
adaptation policy option. Several forms of ‘climate change’ insurance have been proposed recently, but their 
potential for adaptation has met with criticism, importantly because of the costs of formal insurance and 
other risk transfer options, as well as issues with sustainability given the lack of loss prevention and 
adaptation (Surminski et al., 2016; Linnerooth-Bayer et al., 2019). A compensation mechanism for low-
lying small islands inclusive of L&D proposal is in progress (Adelman, 2016). Insurance (see also 
Section 4.4.4) can help absorb extreme shocks for both individuals, using traditional insurance and 
parametric insurance. Sovereign insurance mechanisms can help governments absorb large losses 
(Linnerooth-Bayer et al., 2019), but eventually they need to be coupled with other incentives for adaptation 
and risk reduction measures to be cost-effective (Botzen, 2013) (medium confidence). 
 
There is a consensus that investing in disaster risk reduction has economic benefits, although there is medium 
evidence about the range of the estimated benefits which varies from a global estimate of two to four dollars 
saved for each dollar invested (Kull et al., 2013; Mechler, 2016) to about 400 Euros per invested Euro in the 
case of flood early warning systems in Europe (Pappenberger et al., 2015). The US Federal Emergency 
Management Agency indicated that a 1% increase in annual investment in flood management decreases 
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flood damage by 2.1% (Davlasheridze et al., 2017). Conserving ecosystems that provide services for risk 
reduction also has monetary benefits. Wetlands have been observed to reduce damages during storms. 
Wetlands and floodplains in Otter Creek (Vermont, US) reduced damages caused by storms by 54–78% and 
by 84–95%, respectively, for Tropical Storm Irene (Watson et al., 2016). For the whole of the US, wetlands 
provide USD 23.2 billion/year in storm protection services and the loss of 1 hectare of wetland is estimated 
to correspond to an average USD 33,000 increase in storm damage from specific storms (Costanza et al., 
2008). Engineered structures are also expected to reduce risks. In Europe, to maintain the coastal flood loss 
constant relative to the size of the economy, flood defence structures need to be able to protect coastal areas 
for a projected increase of sea level between 0.5 and 2.5 m. Without these risk reduction actions, the 
expected damages from coastal floods could increase by two or three degrees of magnitude compared to the 
present (Vousdoukas et al., 2018). Although risk reduction actions are generally considered an effective way 
to reduce the damages by shifting the loss-exceedance curve, cost-benefit analysis of disaster risk reduction 
actions faces several challenges, including its limited role in informing decisions, spatial and temporal 
uncertainty scales, and discounting and choice of discount rate that affect cost-benefit analysis results 
heavily (Mechler, 2016). 
 
6.9.2 Transformative Governance and Integrating Disaster Risk Reduction and Climate Change 

Adaptation 
 
Governance for effective adaptation defined as changes in practice, process and structure (Smit et al., 2001) 
considers equity, legitimacy and co-benefits (Patterson et al., 2018) appropriate to the issue (Young, 2002). 
Countries, sectors, and localities place different values and perspectives on these categories, and they can 
change over time (Plummer et al., 2017; see Cross-Chapter Boxes 1 and 2 in Chapter 1). Transformative 
governance embraces a wider application of climate change-induced mitigation and adaptation strategies to 
generate fundamental change. It is society-wide and goes beyond the goals of climate change policies and 
measures (IPCC, 2013; Patterson et al., 2018). It is distinguished from conventional strategies and solutions, 
as it includes both natural and human systems and intertwined with sustainable development goals 
(Fleurbaey et al., 2014; Tàbara et al., 2019). Transformational adaptation is also needed when incremental 
adaptation to extreme events and abrupt changes are insufficient (Kates et al., 2012). Planned retreat from 
sea-level rise and climate refugees illustrate the need for transformative governance as the current coastal 
and risk management regimes do not have the capacity to handle these issues adequately. Inclusion of 
bilateral and regional agreements related to climate-induced migration (McAdam, 2011), land use planning 
frameworks to respond to policy, institutional and cultural implications of migration (Matthews and Potts, 
2018), and identification of beneficiaries of managed retreat (Hino et al., 2017) along with positive 
opportunities for migrants to diversify income and avoid being in harm’s way (Gemenne, 2015) are steps 
towards transformative governance. Retreat and migration entail local responses that include indigenous and 
local knowledges and perspectives that can be applied to solve these issues (Farbotko and Lazrus, 2012; 
Hilhorst et al., 2015; Tharakan, 2015; Iloka, 2016; Nunn et al., 2016; see also Cross-Chapter Boxes 2 and 5 
in Chapter 1). Another example is the Polar region which has started to pursue transformative governance 
given the potential for increased tourism and cooperation that require changed governance structure (see 
Sections 3.5.2; 3.5.5 and Table 3.7 in Chapter 3). Accountability for transformations and transitions has been 
identified as a crucial factor to support responsible action and strengthen climate governance (Edmondson 
and Levy, 2019). 
 
Though discourse abounds related to transformative governance, it falls short of its ideal in climate change 
action plans as it is unclear whether communities have the capacity to engage in substantive change to build 
low-carbon and resilient communities (Burch et al., 2014). The results of a study on the US by Tang and 
Dessai (2012) indicate that climate adaptation and mitigation plans’ treatment of extreme climate conditions 
and disaster preparedness is limited. Moreover, risk communication with the public is part of an integrated 
disaster warning system, but behavioural response to disaster warnings are often governed by personal 
beliefs about the nature of the hazard; and ultimately swaying individual decisions to comply with or ignore 
the warning message (Mayhorn and McLaughlin, 2014). New approaches such as the ‘first mile’ of early 
warning systems, built on the specific needs from beneficiary communities instead of on technological 
progress, are being implemented (Zommers et al., 2017); but they have not yet been assessed.  
 
Coupling disaster risk reduction and management with climate change adaptation effort – following the set 
targets of UNFCCC and the Sendai Framework – has shown progress since SREX and AR5 (e.g., Lawrence 
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and Saunders, 2017). Substantial literature exists on the topic, but there is little assessment of practices on 
the ground in the implementation of integrated disaster management and climate change adaptation (Nalau et 
al., 2016) including health (Banwell et al., 2018). Mainstreaming disaster risk reduction and climate change 
adaptation within and across sectors is considered essential to ensure administrative coordination and 
coherence across sectoral plans and policies (Shimizu and Clark, 2015) (medium confidence). Financial and 
technological support and capacity-building especially related to public works, savings or loans enable 
households to build assets and improve livelihoods (Ulrichs et al., 2019). No assessment is available so far of 
the efficiency and effectiveness of mainstreaming especially related to the integration of climate change 
adaptation and disaster risk reduction, let alone for abrupt and extreme impacts. 
 
Case studies of integration note major problems, e.g. weak coordination among government agencies 
(Seidler et al., 2018); lack of data and user-friendly information to guide decision-making at the local level 
(Jones et al., 2017) and the need for the central governmental support for data availability (Putra et al., 
2018); fragmentation due to competing local objectives (Forino et al., 2017); dependence on regional and 
international frameworks in the absence of a national framework (Rivera and Wamsler, 2014); limited 
availability of formal training in integration (Hemstock et al., 2017); and turf wars between responsible 
government agencies (Nemakonde and Van Niekerk, 2017). The case of Pacific islands such as Vanuatu is 
indicative of these problems. Though they have coupled disaster risk reduction with climate change 
adaptation, problems manifest in relationships, responsibilities, capacity and expectations between 
government agencies and other actors (e.g., international donors and non-governmental organizations), as 
analysed by Vanuatu’s response to the category 5 tropical cyclone Pam (Nalau et al., 2017). Some solutions 
are proposed such as getting all the actors on the same page and focusing on reducing vulnerability to 
longer-term environmental hazards (Schipper et al., 2016); focussing on specific goals, objectives and 
strategies (Organization of American States, 2014); assigning a single department to handle integration 
(APEC, 2016); and citing real-life decision examples in national guidelines (Bell et al., 2017). Place-based 
responses also entail the inclusion and the acknowledgement of indigenous and local knowledge for an 
enhanced resilience pathway (Hilhorst et al., 2015; Tharakan, 2015; Iloka, 2016; Nunn et al., 2016).  
 
Given the significance of disaster risk reduction to enhance climate change adaptation regardless of the 
integration of the two, the Sendai Framework for Disaster Risk Reduction 2015–2030 focuses on seven 
targets and four priorities that foster participation beyond information sharing and include partnerships and 
collaborations within society (UNISDR, 2015). Inclusion of, and coordination between, different 
stakeholders is a key component for managing risks of extreme events, including in a changing climate 
(medium confidence). In the Wadden Sea coastal area, for example, crucial parts of coordinating disaster risk 
reduction, include (i) responsibility-sharing among authorities, sectors and stakeholders, (ii) all-of-society 
engagement and partnership with empowerment and inclusive participation, and (iii) development of 
international, regional, subregional and transboundary cooperation schemes (González-Riancho et al., 2017). 
In India, a change in the coordination structure was pivotal in reducing fatalities from over 10,000 to 45 
between cyclones Orissa (Odisha) in 1999 and Phailin in 2013. In this case, the Disaster Management Act of 
2005 established a comprehensive policy and command and control system during disaster response that 
empowered the most qualified government officials regardless of their rank. This system provides authority 
to and holds accountability for those in charge of ground operations. Though this rigid system may 
sometimes be questioned, a unified and top-down command structure works better when there is a lack of 
mature disaster management system (Pal et al., 2017). 
 
In sum, limiting the risk from the impact of extreme events and abrupt changes leads to successful adaptation 
to climate change if climate-affected sectors and disaster management relevant agencies coordinate well 
(high confidence). Transformative governance, including successful integration of disaster risk management 
and climate change adaptation, empowerment of vulnerable groups, accountability of governmental 
decisions, and longer-term planning promotes climate-resilient development pathways (high confidence). An 
enhanced understanding of the institutional capacity as well as the legal framework addressing abrupt 
changes and extreme events is especially important (medium confidence).  
 
Knowledge gaps limit the identification of the most relevant actions to achieve and pursue climate-resilient 
development pathways. Since SREX and AR5, there is little research on indirect impacts of climatic 
extremes on ecosystems and consequences on poverty and livelihoods critical to the Sustainable 
Development Goals. For example, adaptation solutions and limitations, including governance challenges, for 
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the ocean do not include extreme events (Sections 5.5.2 and 5.5.3 in Chapter 5). Further, there is only scant 
literature on L&D, including non-economic impacts, resulting from well-documented processes such as 
marine heat waves (Section 6.4), sea-level rise impacts on low-lying coasts (Section 4.3), and 
cryosphere changes (Section 2.3; Chapter 3) (high confidence). Limited information is available 
concerning the cost-benefit and effectiveness of risk-reduction measures. Coupling risk transfer and 
insurance mechanisms with risk reduction measures, for example, can enhance the cost-effectiveness of 
adapting to climate change (medium confidence). 
 
 
[START FAQ 6.1 HERE] 
 
FAQ 6.1: How can risks of abrupt changes in the ocean and cryosphere related to climate change be 

addressed? 
 
Reducing greenhouse gas emissions will reduce the occurrence of extreme events and the likelihood of 
abrupt changes. Abrupt changes can be irreversible on human time scales and, as tipping points, bring 
natural systems to novel conditions. To reduce risks that emerge from these impacts of climate change, 
communities can protect themselves or accommodate to the new environment. In the last resort, they may 
retreat from exposed areas.  Governance that builds on diverse expertise and considers a variety of actions is 
best equipped to manage remaining risks. 
 
Climate change is projected to influence extreme events and to potentially cause abrupt changes in the ocean 
and the cryosphere. Both these phenomena can add to the other, slow-onset impacts of climate change, such 
as a global warming or sea level rise. In addition, abrupt changes can be tipping points, bringing the ocean, 
cryosphere, as well as their ecosystems, or the whole climate system to new conditions instead or going back 
to the ones prevailing before the abrupt change. 
 
In the ocean, a possible abrupt change is associated with an interruption of the Atlantic Meridional 
Overturning Circulation (AMOC), an important component of global ocean circulation. A slowdown of the 
AMOC could have consequences around the world: rainfall in the Sahel region could reduce, hampering 
crop production; the summer monsoon in Asia could weaken; regional sea level rise could increase around 
the Atlantic, and there might be more winter storms in Europe. The collapse of the West Antarctic ice sheet 
is considered to be one of the tipping points for the global climate. Such an event can be triggered when ice 
shelves break and ice flows towards the ocean. While, in general, it is difficult to assess the probability of 
occurrence of abrupt climate events they are physically plausible events that could cause large impacts on 
ecosystems and societies and may be irreversible. 
 
Reducing greenhouse gas emissions is the main action to limit global warming to acceptable levels and 
reduce the occurrence of extreme events and abrupt changes. However, in addition to mitigation, a variety of 
measures and risk management strategies supports adaptation to future risks. Future risks linked to abrupt 
changes are strongly influenced by local conditions and different characteristics of the events themselves and 
evolve differently depending on the circumstances. One major factor for adaptation is whether the extreme 
events will simply amplify the known impacts or whether they will cause completely new conditions, which 
may be related to a tipping point. Another essential factor is whether an extreme event or abrupt change will 
happen in isolation or in conjunction with other events, in a chain of cascading impacts or as part of a 
compound risk where several events happen at the same time so that impacts can multiply each other. Also, 
impacts are heavily aggravated by increasing exposure and changes in vulnerability, for example reducing 
the availability of food, water, and energy supply, and not just the occurrence of extremes themselves.  
 
Successful management of extreme events and abrupt changes in the ocean and cryosphere involves all 
available resources and governance approaches, including among others land-use and spatial planning, 
indigenous knowledge and local knowledge. The management of the risks to ecosystems include their 
preservation, the sustainable use of resources and the recognition of the value of ecosystem services. There 
are three general approaches that, alone or in combination, can enable communities to adapt to these events: 
retreat from the area, accommodation to new conditions and protection. All have advantages and limitations 
and their success will depend on the specific circumstances and the community’s level of adaptability. But 
only transformative governance that integrates a variety of strategies and benefits from institutional change 
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helps to address larger risks posed by compound events. Integrating risk-reduction approaches into 
institutional practices and inclusive decision-making that builds on the respective competences of different 
government agencies and other stakeholders can support management of these extremes. A change of 
lifestyles and livelihoods might further support the adaptation to new conditions. 
 
[END FAQ 6.1 HERE] 
 
 
6.10 Knowledge Gaps 
 
A comprehensive, detailed list of all the knowledge gaps that have been identified during the assessment 
performed in this chapter is not possible, hence we focus here on gaps that are relevant for multiple 
phenomena. 
 
Detection, attribution and projection of physical aspects of climate change at regional and local scales are 
generally limited by uncertainties in the response of climate models to changes in greenhouse gases and 
other forcing agents. Additionally, regionally-based attribution studies for extreme events may be lacking in 
some areas, possibly reflecting the lack of capacity or imperative by regional and national technical 
institutions to undertake such studies. Thermodynamic aspects of change may be more robust than those 
involving changes in dynamics e.g., the tracks of tropical cyclones or ocean dynamical components of 
marine heatwave formation. Increasing resolution and improvements in climate models may help reduce 
uncertainty. However, because extreme events and highly non-linear changes (e.g., Atlantic Meridional 
Overturning Circulation collapse) are, by definition, found in the ‘tails’ of distributions, ensembles or long 
climate model runs may be required. 
 
While it may not be possible to quantify the likelihood of very rare events or irreversible phenomena, it may 
be possible to quantify their impacts on natural and human systems. Such information may be more useful to 
policy makers (Sutton, 2018). Impacts on natural systems (e.g., marine ecosystems) are in general better 
quantified than impacts on human systems, but there are still many gaps in the literature for the phenomena 
assessed here (e.g., future impacts of extreme El Niño and La Niña events). The body of literature on 
compound risks and cascading impacts is growing but is still rather small. One area where there seems to be 
a serious lack of literature is in the assessment of the economic impacts of extreme and abrupt/irreversible 
events. 
 
Literature on managing risks and adaptation strategies for abrupt and irreversible events is sparse, as is the 
literature on the combined impacts of climate-driven events and societal development or mal-adaptation. The 
same is true for compound risks and cascading impacts. Theory on transformative governance is emerging 
but practical demonstrations are few. 
 
Finally, research is still often ‘siloed’ in physical modelling, ecosystem modelling, social sciences etc. 
Researchers who can cross boundaries between these disciplines will help accelerate research in the areas 
covered by this chapter. 
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Executive Summary 
 
Ocean and cryosphere changes already impact Low-Lying Islands and Coasts (LLIC), 
including Small Island Developing States, with cascading and compounding risks. 
Disproportionately higher risks are expected in the course of the 21st century. Reinforcing the 
findings of the IPCC Special Report on Global Warming of 1.5°C, vulnerable human 
communities, especially those in coral reef environments and polar regions, may exceed 
adaptation limits well before the end of this century and even in a low greenhouse gas 
emission pathway (high confidence1). Depending on the effectiveness of 21st century 
mitigation and adaptation pathways under all emission scenarios, most of the low-lying 
regions around the world may face adaptation limits beyond 2100, due to the long-term 
commitment of sea level rise (medium confidence). LLIC host around 11% of the global 
population, generate about 14% of the global Gross Domestic Product and comprise many world 
cultural heritage sites. LLIC already experience climate-related ocean and cryosphere changes (high 
confidence), and they share both commonalities in their exposure and vulnerability to climate 
change (e.g., low elevation, human disturbances to terrestrial and marine ecosystems), and context-
specificities (e.g., variable ecosystem climate sensitivities and risk perceptions by populations). 
Options to adapt to rising seas, e.g., range from hard engineering to ecosystem-based measures, and 
from securing current settings to relocating people, built assets and activities. Effective 
combinations of measures vary across geographies (cities and megacities, small islands, deltas, 
Arctic coasts), and reflect the scale of observed and projected impacts, ecosystems’ and societies’ 
adaptive capacity, and the existence of transformational governance (high confidence) {Sections 
3.5.3, 4.4.2 to 4.4.5, 5.5.2, 6.8, 6.9, Cross-Chapter Box 2 in Chapter 1}. 
 
  

                                                
1 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; 
and for the degree of agreement: low, medium, or high. A level of confidence is expressed using five qualifiers: very 
low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and 
agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of 
agreement are correlated with increasing confidence (see Section 1.9.2 and Figure 1.4 for more details). 
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Introduction 
 
Low-Lying Islands and Coasts (LLIC) are already experiencing the impacts of climate-related changes to the 
ocean and cryosphere, for both extreme events and slow onset changes (Sections 4.3.3, 5.3.1 to 5.3.6, 6.2, 
6.8, 6.9), due to their low elevation, narrow ecological zonation, climate sensitive ecosystems and natural 
resources, as well as increasing anthropogenic pressures (Sections 1.5, 4.3.2). High levels of impacts to 
coastal morphology, ecosystems and dependent human communities are detectable today and 
disproportionately higher risks are expected in the course of the 21st century (medium evidence, high 
agreement) (Sections 4.3.4, 5.3.7), even under a low emission pathway compatible with a +1.5°C global 
warming (IPCC, 2018; Hoegh-Guldberg et al., in press). The magnitude of projected impacts (i.e., risks; 
Cross-Chapter Box 2 in Chapter 1) will depend on future greenhouse gas emissions and the associated 
climate changes, as well as on other drivers such as population movement into risk-prone areas and societal 
efforts to adapt.  
 
LLIC include a wide diversity of systems (Figure CB9.1). Relevant regions occur on both islands and 
continents from the tropics to the poles, and support urban and rural societies from across the development 
spectrum (including Small Island Developing States, SIDS, and Least Developed Countries, LDCs). LLIC 
host around 11% of the global population (Neumann et al., 2015), and generate about 14% of the global 
Gross Domestic Product (GDP) (Kummu et al., 2016). This integrative Cross-Chapter Box focuses on the 
array of challenges created by the melting of the cryosphere and the changing ocean, described throughout 
the report, to address societal risks, adaptation and the future habitability of LLIC. 
 
 

 
Figure CB9.1: The global distribution of low-lying islands and coasts (LLIC) particularly at risk from sea level rise 
This map considers the Low Elevation Coastal Zone (elevation data from National Geophysical Data Center, 1999; 
LECZ, defined by McGranahan et al., 2007), islands with a maximum elevation of 10 m above sea level (Weigelt et al., 
2013), Small Island Developing States (SIDS; UN-OHRLLS, n.d.), coastal megacities (cities with more than 10 million 
inhabitants, within 100 km from coast, and maximum 50 m above sea level; Pelling and Blackburn, 2013; UN-DESA, 
2018) and deltas (Tessler et al., 2015). Regional sea level changes refer to projections under RCP8.5 (2081–2100) (see 
Figure 4.8). 
 
 
Drivers of Impacts and Risks 
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Climate-related hazards—LLIC are subject to the same climate-related hazards as other islands and coasts 
(overview in Wong et al., 2014), for both extreme events, e.g., marine heat waves, tropical and extra-tropical 
storms, associated storm surges, and heavy precipitation; and slow onset changes, e.g., retreat of glaciers and 
ice sheets, sea ice and permafrost thaw, sea level rise, and ocean warming and acidification (Sections 1.4, 
2.2, 3.2 to 3.4, 4.2, 5.2, 6.2 to 6.6, Box 6.1). Table CB9.1 summarizes the SROCC updates of these hazards, 
which often combine to explain part of observed climate impacts and projected risks. For example, 
accelerating sea level rise will combine with storm surges, tides and waves to generate to extreme sea level 
events that affect flooding (Section 4.3.3.2), shoreline changes (Section 4.3.3.3) and salinization of soils, 
groundwater and surface waters (Section 4.3.3.4). Sea level rise will also combine with ocean warming to 
accelerate permafrost thawing in the Arctic (Sections 3.4.1.2, 3.4.2.2). Ocean acidification will combine with 
ocean warming and deoxygenation to impact benthic and pelagic organisms, associated ecosystems (e.g., 
coral reefs, oyster beds) and top predators, with subsequent impacts on species’ abundance and distribution, 
and the ecosystem services benefiting human societies (Sections 4.3.3.5, 5.2.2, 5.3.1 to 5.3.6, 5.4.1, 6.4.2, 
6.5.2, 6.6.2, 6.7.2, 6.8.2). Importantly, LLIC are at risk for multi-metre sea level rise projected post-2100 
under RCP8.5 and restricted to 1–2 m in 2300 under RCP2.6 (Section 4.2.3.5) 
 
 
[INSERT TABLE CB9.1 HERE] 
Table CB9.1: Summary information on the critical climate-related drivers for low-lying islands and coasts, their trends 
due to climate change, and their main physical and ecosystem effects. Based on SROCC chapters and AR5.  
 
 
Anthropogenic drivers—Human factors play a major role in shaping exposure and vulnerability to climate-
related changes in the Arctic, in temperate and tropical small islands, and in coastal urban areas (Sections 
2.5.2, 4.3.2, Cross-Chapter Box 2 in Chapter 1). In the absence of major additional adaptation efforts 
compared to today (i.e., neither further significant action nor new types of actions), the anthropogenic 
drivers’ contribution to climate change-related risk will substantially increase (high confidence) (Section 
4.3.4.2).  
 
Highly context-specific territorial and societal dynamics have resulted in major changes at the coast, for 
instance the growing concentration of people and assets in risk-prone coastal areas (Section 4.3.2.2), and the 
degradation of coastal ecosystem services such as coastal protection and healthy conditions for coastal 
fisheries and aquaculture (Section 4.3.2.3, 5.4.1.3, 5.4.2.2.2). Local drivers of exposure and vulnerability 
include, e.g., coastal squeeze, inadequate land use planning, changes in construction modes, sand mining and 
unsustainable resource extraction (e.g., in the Comoros; Betzold and Mohamed, 2016; Ratter et al., 2016), as 
well as loss of Indigenous Knowledge and Local Knowledge (IK & LK; Cross-Chapter Box 4 in Chapter 1). 
For example, the loss of IK & LK-based practices and associated cultural heritage limits both the ability to 
recognise and respond to ocean- and cryosphere-related risk and the empowerment of local communities 
(high confidence) (Section 4.3.2.4.2). Population growth in medium-to-mega coastal cities is also of concern. 
For the year 2000, the Low Elevation Coastal Zones (LECZ, highest elevation up to 10 m above sea level) 
were estimated to host around 625 million people (Lichter et al., 2011; Neumann et al., 2015), with the vast 
majority (517 million) living in non-developed contexts. By 2100, the LECZ population may increase to as 
much as 1.14 billion under a Shared Socioeconomic Pathway (SSP) where countries focus on domestic, or 
even regional issues (SSP3; Jones and O’Neill, 2016). Poor planning can combine with coastal population 
growth and climate-related ocean change to create maladaptation (Juhola et al., 2016; Magnan et al., 2016).  
 
Local factors drive—as well as are driven by—more regional processes such as extensive coastal 
urbanisation, human-induced sediment starvation (and implications on subsidence), degradation of vegetated 
coastal ecosystems (e.g., mangroves, coral reefs and salt-marshes), lack of long-term integrated planning, 
changing consumption modes, conflicting resource use and socioeconomic inequalities (high confidence), 
among others. These are vehicles of increasing exposure and vulnerability at multiple scales.  
 
 
Observed and Projected Impacts on Geographies and Major Sectors 
 
Coastal cities and megacities—Coastal cities, especially megacities with over 10 million inhabitants, are at 
serious risk from climate-related ocean and cryosphere changes (Abadie, 2018). Over half of today’s global 
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population lives in cities and megacities, many of which are located in LLIC, including New York City, 
Tokyo, Jakarta, Mumbai, Shanghai, Lagos and Cairo (Figure CB9.1). Without substantial adaptation 
interventions, and based on the compounding effects of future growth in population and assets, sea level rise 
and continued subsidence, future flood losses in the 136 largest coastal cities are projected to rise from 6 
billion USD/year at present to 1 trillion USD/year in 2050 (Hallegatte et al., 2013; Sections 4.3.3.2 and 
6.3.3). In addition to important impacts on coastal megacities and large port cities, small and mid-sized cities 
are also considered highly vulnerable because of fast growth rates and low political, human and financial 
capacities for risk reduction compared to larger cities (Birkmann et al., 2016; Box 4.2). 
 
At a more local scale, and regardless of the size of the city, coastal property values and development will be 
affected by sea level changes, storms and other weather and climate-related hazards. Real estate values, and 
the cost and availability of insurance, will be impacted by actual and perceived flood risks (McNamara and 
Keeler, 2013; Section 5.4.2.3.1; Putra et al., 2015). Properties are also at risk of losing value due to coastal 
landscape degradation (McNamara and Keeler, 2013; Fu et al., 2016) and increasing risk aversion. The 
economic consequences manifest in declining rental incomes, business activities and local employment 
(Rubin and Hilton, 1996). 
 
Coastal megacities are especially critical nodes for transboundary risks (Atteridge and Remling, 2018; Miller 
et al., 2018) as they contribute substantially to national economies and serve as a hub for global trade and 
transportation networks. The 2011 floods in Bangkok, for example, not only resulted in direct losses of 46.5 
billion USD (World Bank, 2012; Haraguchi and Lall, 2015), but also in important effects on supply chains 
across the globe (Abe and Ye, 2013). Urbanisation could, however, also provide opportunities for risk 
reduction, given that cities are centres of innovation, political attention and private sector investments 
(Garschagen and Romero-Lankao, 2015). 
 
Small islands—The extreme events occurring today, such as storms, tropical cyclones, droughts, floods and 
marine heat waves (Herring et al., 2017), provide striking illustrations of the vulnerability of small island 
systems (high confidence) (Section 6.8.5, Box 4.2, Box 6.1). Societal dimensions can combine with climate 
changes, e.g., sea level rise, to amplify the impact of tropical cyclones, storm surge and ocean acidification 
in small islands contributing to loss and damage (Moser and Hart, 2015; Noy and Edmonds, 2016). For 
example, category five tropical cyclone (TC) Pam, devastated Vanuatu in 2015 with 449.4 million USD in 
losses for an economy with a GDP of 758 million USD (Government of Vanuatu, 2015; Handmer and 
Iveson, 2017). Kiribati, Papua New Guinea, Solomon Islands and Tuvalu were all impacted by the TC Pam 
system (IFRC, 2018). In 2016, TC Winston caused 43 deaths in Fiji and losses of more than one third of the 
GDP (Government of Fiji, 2016; Cox et al., 2018). In 2017, hurricanes Maria and Irma swept through 15 
Caribbean countries, causing major damages and casualties across numerous islands. Rebuilding in three 
countries alone—Dominica, Barbuda and the British Virgin Islands—will cost an estimated 5 billion USD 
(UNDP, 2017). The Post-Disaster Needs Assessment for Dominica concluded that hurricane Maria resulted 
in total damages amounting to 226% of 2016 GDP (The Government of the Commonwealth of Dominica, 
2017). In 2018, category four TC Gita struck the Pacific islands of Eua and Tongatapu, impacting 80% of the 
population of Tonga through destruction of buildings, crops and infrastructure, and resulting in 165 million 
USD of losses with a national GDP of 461 million USD (Government of Tonga, 2018). Effective early 
warning systems, in some Caribbean islands, have reduced the impact (WMO, 2018). Projected changes in 
extreme weather include increased intensity of tropical cyclones with increased wind speed and rainfall, 
together with reduced translational speed creating greater destruction from individual storms and 
counteracting the decreased frequency of occurrence (Sections 6.3 and 6.8). 
  
More than 80% of small island residents live near the coast where flooding and coastal erosion already pose 
serious problems (Nurse et al., 2014) and since the Fifth Assessment Report (AR5) and the Special Report 
on Global Warming of 1.5°C (SR1.5), there is consensus on the increasing threats to island sustainability in 
terms of land, soils and freshwater availability. As a result, there is growing concern that some island nations 
as a whole may become uninhabitable due to rising sea levels and climate change, with implications for 
relocation, sovereignty and statehood (Burkett, 2011; Gerrard and Wannier, 2013; Yamamoto and Esteban, 
2014; Donner, 2015). For example, at the island scale, recent studies (e.g., on Roi-Namur Island, Marshall 
Islands; Storlazzi et al., 2018) estimate some atoll islands to become uninhabitable before the middle of the 
21st century due to the exacerbation of wave-driven flooding by sea level rise, compromising soil fertility 
and the integrity of freshwater lenses (Cheriton et al., 2016). The literature also discusses the future of atoll 
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island shoreline. Atoll islands are not ‘static landforms’ (high confidence) and they experience both erosion 
(Section 4.3.3.3) and accretion of land. In the Solomon Islands, where rates of sea level rise exceed the 
global average at 7–10 mm per year (Becker et al., 2012), a study of 33 reef islands showed five vegetated 
islands had disappeared and six islands were concerned with severe shoreline erosion (Albert et al., 2016). In 
Micronesia, a study showed the disappearance of several reef islands, severe erosion in leeward reef edge 
islands and coastal expansion in mangrove areas (Nunn et al., 2017). In Tuvalu, with sea level rise of ~15 cm 
between 1971 and 2014, small islands decreased in land area while larger populated islands maintained or 
increased land area with the exception of the remote island of Nanumea (Kench et al., 2018). Positive 
shoreline and surface area changes over the recent decades to century have been observed for atoll islands in 
the Pacific and Indian oceans (McLean and Kench, 2015; Albert et al., 2016; Kench et al., 2018; Duvat, 
2019). Out of 709 islands studied, 73.1% had stable surface area and 15.5% increased and 11.4% decreased 
in size over the last forty to seventy years (Duvat, 2019). It has, however, been argued that the capacity of 
some atoll islands to maintain their land area by naturally adjusting to sea level rise could be reduced in the 
coming decades (low evidence, high agreement). Indeed, the projected combination of higher rates of sea 
level rise (Sections 4.2.3.2, 4.2.3.3 and 4.2.3.5), increased wave energy (Albert et al., 2016; see also Section 
6.3), changes in storm wave direction (Harley et al., 2017), as well as the impacts of ocean warming and 
acidification on the reef system (Quataert et al., 2015; Hoegh-Guldberg et al., in press), is expected to shift 
the balance towards more frequent flooding and increased erosion (Sections 4.3.3, 5.3.3).   
 
Deltas—In a context of natural subsidence exacerbated by high human disturbances to sediment supply, e.g., 
due to fresh water exploitation or damming and land use change upstream from the coast (Kondolf et al., 
2014), marine flooding is already affecting deltas around the world (Brown et al., 2018; Section 4.3.3.4, Box 
4.1). An estimated 260,000 km2 of delta area have been temporarily submerged over the 1990s/2000s 
(Syvitski et al., 2009; Wong et al., 2014). The recurrence of El Niño associated floods in the San Juan River 
delta, Colombia, led to the relocation of several villages, including El Choncho, San Juan de la Costa, 
Charambira and Togoroma (Correa and Gonzalez, 2000). The intrusion of saline or brackish water due to 
relative sea level rise in combination with storm surges and natural and human-induced subsidence, results in 
increasing residual salinity, as already reported in the Delaware Estuary, USA (Ross et al., 2015), in the Ebro 
Delta, Spain (Genua-Olmedo et al., 2016) and in the Mekong Delta, Vietnam (Smajgl et al., 2015; Gugliotta 
et al., 2017). This affects livelihoods, e.g., freshwater fish habitat in Bangladesh (Dasgupta et al., 2017; 
Section 4.3.3.4.2). Increased salinity limits drinking water supply (Wilbers et al., 2014), with associated 
repercussions for the abundance and toxicity of cholera vibrio (vibrio cholerae) as shown in the Ganges 
Delta (Batabyal et al., 2014). Local agriculture is also at risk. Oilseed, sugarcane and jute cultivation have 
already ceased due to high salinity levels in coastal Bangladesh (Khanom, 2016) and dry-season crops are 
projected to decline over the next 15 to 45 years, especially in the Southwest (Kabir et al., 2018). In the Ebro 
delta, Spain, Genua-Olmedo et al. (2016) anticipate a decrease of the rice production index from 61.2% in 
2010 to 33.8% by 2100 for a +1.8 m sea level rise scenario—far above the upper end of the RCP8.5 likely2 
range (Section 4.2.3.2, Table 4.3).  
 
Arctic coasts—Climate-related ocean and cryosphere changes combine to negatively impact not only the 
economy and life-styles of the Arctic coastal communities, but also the local cultural identity, self-
sufficiency, IK & LK and related skills (Lacher, 2015; Sections 3.4.3, 4.3.2.4.2). Changes in fish and seabird 
populations amplified by climate change have an impact on ecosystems and livelihoods in Arctic island 
communities such as in Norway's Lofoten archipelago (Dannevig and Hovelsrud, 2016; Kaltenborn et al., 
2017). Another concern relates to coastal erosion, for example triggered by permafrost thaw (Günther et al., 
2013; Jones et al., 2018), and which already affects 178 Alaskan communities, with 26 in a very critical 
situation, such as Newtok, Shishmaref, Kivilina, and north-western coastal communities on the Chukchi Sea 
(Bronen and Chapin III, 2013). Noteworthy, erosion does not affect all Arctic coastlines: many of them are 
located in areas that experience rapid glacial-isostatic adjustment (GIA) uplift (James et al., 2015; Forbes et 
al., 2018) and have low sensitivity to extreme sea levels and sea level rise. An additional factor unique to the 

                                                
2 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: 
Virtually certain 99–100% probability, Very likely 90–100%, Likely 66–100%, About as likely as not 33–66%, 
Unlikely 0–33%, Very unlikely 0–10%, and Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–
100%, More likely than not >50–100%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed 
likelihood is typeset in italics, e.g., very likely (see Section 1.9.2 and Figure 1.4 for more details). This Report also uses 
the term ‘likely range’ to indicate that the assessed likelihood of an outcome lies within the 17-83% probability range. 
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Arctic coasts compared to other LLIC is the decrease in seasonal sea ice extent (Section 3.2.1, 4.3.4.2.1), that 
both reduces the physical protection of the land (Overeem et al., 2011; Fang et al., 2018), e.g., from wave 
action, and allows for greater open water fetch producing stronger wind-generated waves in the open water 
(Lantuit et al., 2011). In combination with a decreased stability of permafrost—another specificity of polar 
regions (Romanovsky et al., 2010)—and sea level rise, seasonal sea ice extent reduction results in shoreline 
erosion (Gibbs and Richmond, 2017; Jones et al., 2018), with associated impacts on coastal settlements 
(Table 3.4). However, as mentioned above, local geomorphology and geology in the Arctic is as important as 
permafrost and sea ice extent for determining current and future erosion (Lantuit et al., 2011).  
 
Risks to Arctic coasts will be reinforced by anthropogenic drivers originating in the recent decades of history 
(e.g., socio-economic adjustments after government policies requiring children to attend school) which 
resulted in the construction of infrastructure in near-shore areas. While risk levels vary by village, in several 
cases infrastructure has been lost and subsistence use areas modified (Gorokhovich et al., 2013; Marino, 
2015). More broadly, in the Arctic, ‘indigenous peoples (…) have been pushed into marginalized territories 
that are more sensitive to climate impacts’ (Ford et al., 2016: 350), with consequences in terms of 
undermining aspects of socio-cultural resilience. 
 
Impacts on critical sectors and livelihoods—Economic impacts for LLIC are expected to be significant in 
the course of the century due to the convergence of the anticipated increase in the number of LECZ 
inhabitants (Jones and O’Neill, 2016; Merkens et al., 2016), the high dependency of societies on ocean and 
marine ecosystems and services (Section 5.4.1, 5.4.2), and increased detrimental effects of climate-related 
ocean and cryosphere changes on natural and human systems (medium evidence, high agreement) (Hsiang et 
al., 2017; United Nations, 2017). However, the degree of impacts on the economy and related dimensions—
e.g., on employment, livelihood, poverty, health (Kim et al., 2014; Weatherdon et al., 2016), well-being and 
food security (Sections 1.1 and 5.4.2, FAQ 1.2 in Chapter 1), and public budgets and investments—will vary 
across context-specific physical settings and exposure and vulnerability levels. 
 
Considering a sea level rise scenario range of 25–123 cm—all RCPs; wider range of sea level rise scenarios 
than the likely range of AR5 but relatively consistent with the range of projections assessed in this report 
(Section 4.2.3.2)—and no adaptation, Hinkel et al. (2014) estimated annual losses from future marine 
flooding to amount to 0.3–9.3% of global GDP in 2100. Noteworthy, coastal protection will inevitably have 
economic costs (DiSegni and Shechter, 2013), whether it involves hard coastal protection (Hinkel et al., 
2018), ecosystem-based approaches (Narayan et al., 2016; Pontee et al., 2016) or a combination of both 
(Schoonees et al., 2019). Coastal agriculture (e.g., rice crops; Smajgl et al., 2015; Genua-Olmedo et al., 
2016), and fisheries and aquaculture will also be seriously impacted (Sections 4.3.3.6.1, 4.3.3.6.3, 5.4.1). For 
example, it is expected that the marine fisheries revenues of 89% of the world’s fishing countries will be 
negatively affected by mid-century under RCP8.5 (Hilmi et al., 2015). The fact that more than 90% of the 
world’s rural poor are located in the LECZ of 15 developing countries (Barbier, 2015) and that these regions 
are highly dependent on fish for their dietary consumption, raises a serious concern about future food 
security (FAO et al., 2017; Section 5.4.2.1.2). But not all regions are equally threatened, with Lam et al. 
(2016) estimating that the impacts on fisheries will be more important in SIDS, Africa and Southeast Asia. 
Cascading effects are also expected from risks to coral reefs and associated living resources, both on direct 
consumption by local communities and through disturbances to the broader food web chains (Sections 5.4.2, 
6.5 and Box 6.1). 
 
Coastal tourism could be affected in various ways by ocean- and cryosphere-related changes (Hoegh-
Guldberg et al., in press; Sections 4.3.3.6.2, 5.4.2.1.3). Coastal infrastructure and facilities, such as harbours 
and resorts (e.g., in Ghana; Sagoe-Addy and Appeaning Addo, 2013), are prone to storm waves. For coral 
reefs for recreational activities and tourism (especially diving and snorkelling), Chen et al. (2015) estimated 
that the global economic impact of the expected decline in reef coverage (between 6.6 and 27.6% under 
RCPs 2.6 and 8.5, respectively) will range from 1.9 to 12.0 billion USD/year. The future appeal of tourism 
destinations will partly depend on sea surface temperature, including induced effects such as an increase in 
invasive species, e.g., jellyfishes (Burge et al., 2014; Weatherdon et al., 2016) and lion fish in the Northwest 
Atlantic, the Gulf of Mexico and the Caribbean (Albins, 2015; Johnston et al., 2015; Holdschlag and Ratter, 
2016). It will also depend on how tourists and tourism developers perceive the risks induced by ocean-
related changes (e.g., Shakeela et al., 2013; Davidson and Sahli, 2015). This will combine with the influence 
of changes in climatic conditions in tourists’ areas of origin (Bujosa and Rosselló, 2013; Amelung and 



FINAL DRAFT Cross-Chapter Box 9 IPCC SR Ocean and Cryosphere 

  
Subject to Copyedit CCB9-8 Total pages: 23 

Nicholls, 2014; Hoegh-Guldberg et al., in press) and of non-climatic components such as accommodation 
and travel prices. Importantly, estimating the effects on global-to-local tourism flows remains challenging 
(Rosselló-Nadal, 2014; Wong et al., 2014). 
 
Recent studies provide further empirical evidence that people are rarely moving exclusively due to changes 
in ocean- and cryosphere-based conditions, and that migration as a result of disasters and increasing hazards 
strongly interact with other drivers, especially economic and political motivations (high confidence) 
(Kelman, 2015; Marino and Lazrus, 2015; Hamilton et al., 2016; Bettini, 2017; Stojanov et al., 2017; 
Perumal, 2018). While significantly higher risks of human displacement are expected in low-income LLIC, 
for example in Guatemala (Milan and Ruano, 2014) and Myanmar (Brakenridge et al., 2017), the issue also 
concerns developed countries. For example, Logan et al. (2016) show that people temporarily or 
permanently displaced by hurricanes in the Gulf Coast, USA, create a significant economic burden to 
tourism-dependent coastal cities and harbours. Globally, it is estimated that sea level rise associated with a 
2°C warmer world could submerge the homeland of 280 million people by the end of this century (Strauss et 
al., 2015). 
 
 
Responses: Adaptation Strategies in Practice 
 
A wide range of coastal adaptation measures are currently implemented in LLIC worldwide (Sections 1.6.2, 
2.3.7, 3.5.2, 3.5.3, 4.4.3, 5.5.2, 6.9, Figure 1.2, Box 5.4), including the installation of major infrastructure 
such as armouring of coasts (e.g., seawalls, groynes, revetments, rip-raps), soft engineering (e.g., beach 
nourishment, dune restoration), reclamation works to build new lands seaward and upwards, ecosystem-
based measures (e.g., vegetation planting, coral farming), community-based approaches (e.g., social 
networks, education campaigns, economic diversification) and institutional innovations (e.g., marine 
protected areas, evacuation plans). The effectiveness of the measures to reduce risks depends on both local 
context-specificities (Gattuso et al., 2018) and the magnitude and timing of local climate impacts. However, 
there is still a gap in on-the-ground evidence, good practices and guidelines to evaluate the observed and 
projected benefits of each type of measures applied in various contexts, for example, to decide whether 
nature-based options represent low- to no-regret solutions, or not a solution at all.  
 
Protection with hard coastal defences is commonly used to prevent inundation from extreme water levels and 
wave overtopping (Section 4.4.2.2). In environments such as megacities, adequately engineered hard coastal 
defences are considered to be successful options and an efficient adaptation option in the long run (Hinkel et 
al., 2018). However, such measures can also lead to detrimental effects, such as erosion exacerbation by 
seawalls reflecting wave energy and jetties disrupting cross-shore sediment transport. Adaptation-labelled 
measures ‘may [thus] lead to increased risk of adverse climate-related outcomes, increased vulnerability to 
climate change, or diminished welfare’ (Noble et al., 2014: 857) and therefore be maladaptive (Barnett and 
O’Neill, 2013; Juhola et al., 2016; Magnan et al., 2016). As a result, alternatives have emerged, such as 
ecosystem-based design measures including coconut fibre blankets (David et al., 2016a), plantations of 
seagrass (Paul and Gillis, 2015), artificial reefs made from bio-rock materials (Beetham et al., 2017; Goreau 
and Prong, 2017) and bamboo breakwaters (David et al., 2016b). While restoration operations are often 
rather associated to conservation practices, they can have co-benefits in terms of coastal protection services 
(Section 4.3.2.3). For example, soft protection systems used in 69 studies were found to exhibit effectiveness 
in reducing wave heights at 70% for coral reefs, 62–79% for salt marshes, 36% for seagrass meadows and 
31% for mangroves (Narayan et al., 2016). Arguing that coral reefs can provide comparably higher wave 
attenuation benefits to artificial defences such as breakwaters, Ferrario et al. (2014) conclude that reef 
defences for reducing coastal hazards can be enhanced cost effectively on the order of 1/10th. Coral reefs 
are, however, at very high risk from climate change (Hoegh-Guldberg et al., in press; Section 5.3.4), which 
challenges the duration of such benefits. Ecosystem-based measures, if applied place specific and 
adequate—e.g., use of indigenous rather than exotic species (e.g., Duvat et al., 2016)—, are usually 
considered low-regret in that they can stabilise the coastal vegetation and protect against coastal hazards, 
while at the same time enhancing the adaptive capacity of natural ecosystems (medium evidence, high 
agreement) (Schoonees et al., 2019; Sections 2.3.3.4, 5.5.2, 6.9).  
 
While human migration and relocation are expected to be a growing challenge for LLIC (medium evidence, 
high agreement) (Adger et al., 2014; Birk and Rasmussen, 2014; Milan and Ruano, 2014; Thomas, 2015; 
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Sections 3.5.3.5, 4.4.2.4, 6.3.4, Table 3.4; Hajra et al., 2017; Stojanov et al., 2017), recent studies advocate 
for considering these options as adaptation to climate-related changes in the ocean and cryosphere (Shayegh 
et al., 2016; Allgood and McNamara, 2017; Hauer, 2017; Morrison, 2017; Perumal, 2018; Section 4.4.2.4). 
Such a view is, however, convoyed by discussions on related costs and impacts on the wellbeing of the 
people who are relocated (Null and Herzer Risi, 2016). Coastal retreat is underway in various LLIC around 
the world, e.g., in Alaska and the US (Bronen, 2015; Ford et al., 2015; Logan et al., 2016; Hino et al., 2017), 
Guatemala (Milan and Ruano, 2014), Western Colombia (Correa and Gonzalez, 2000), the Caribbean (Apgar 
et al., 2015; Rivera-Collazo et al., 2015) and Vietnam (Collins et al., 2017). Noteworthy, environmentally-
induced relocation is not necessarily new, e.g., in the Pacific (Nunn, 2014; Boege, 2016). The Gilbertese 
people from Kiribati moved to the Solomon Islands during the 1950s/1960s, as a result of long periodic 
droughts and subsequent environmental degradation (Birk and Rasmussen, 2014; Albert et al., 2016; Tabe, 
2016; Weber, 2016). In the Solomon Islands, the relocation of the Taro Township (Choiseul Province) as a 
result of rising sea level and coastal erosion is already underway (Haines and McGuire, 2014; Haines, 2016). 
In Fiji, the relocation of Vunidogoloa village as a result of sea level rise and coastal erosion was successfully 
carried out in 2014 (McNamara and Des Combes, 2015). In Alaska, some communities (e.g., Newtok) 
responded to changing environmental and livelihood conditions due to permafrost thaw with self-initiated 
relocation efforts. Subsequently, Alaska state funding has been allocated to assist them (Bronen, 2015; 
Hamilton et al., 2016). Conflict escalation is a serious concern in the resettlement areas, between newcomers 
and locals, or between different groups of newcomers, particularly under conditions of land scarcity, high 
population density and (perceived) inequality (Connell and Lutkehaus, 2017; Boege, 2018). The obstacles 
thus extend well beyond the cost of relocation itself because of the multi-dimensional impacts on people’s 
lives. Relocation also concerns economic activities, as illustrated with shellfish aquaculture relocation in the 
West coast of the US due to ocean acidification-driven crises (Cooley et al., 2016).  
 
For all interventions, adaptation is fully recognised as being a societal challenge, and not merely a question 
of technological solutions (medium evidence, high agreement) (Jones and Clark, 2014; McCubbin et al., 
2015; Gerkensmeier and Ratter, 2018). Enhancing adaptation implies various socio-political and economic 
framings, coping capacities and cross-scale social and economic impacts (Sections 4.4.3, 4.4.5, Cross-
Chapter Box 3 in Chapter 1). As a result, community-based decision-making, sustainable spatial planning 
and new institutional arrangements gain increasing attention (Sections 4.4.4). Such approaches can involve 
working with local informal and formal institutions (Barron et al., 2012), enhancing risk ownership by 
communities through participative approaches (McEwen et al., 2017), establishing collaborative community 
networks (Hernández-González et al., 2016), and better integrating LLIC communities’ IK & LK (see 
McMillen et al., 2014; Cross-Chapter Box 4 in Chapter 1). Small island communities, in particular, can 
strengthen their adaptive capacities by building on relatively high degrees of social capital, i.e., dense social 
networks, collective action, reciprocity, and relations of trust (Petzold and Ratter, 2015; Barnett and Waters, 
2016; Petzold, 2016; Kelman, 2017; Section 4.3.2.4.3). The aim of all these approaches is both to facilitate 
the effective implementation of adaptive action, and create widespread acceptance of adaptation policies by 
stakeholders and local populations. 
 
Participatory scenario building processes, collaborative landscape planning and co-design of ecosystem-
based management for LLIC resilience are underway along with promising approaches to actively engage all 
levels of society in the exploration of future adaptation scenarios. Experiences are reported for the German 
North Sea coast (Karrasch et al., 2017), Tenerife Island in the Atlantic Ocean (Hernández-González et al., 
2016) and Pacific island communities (Burnside-Lawry et al., 2017). While adaptation-labelled measures 
currently applied ‘on the ground’ are mainly reactive and short-term, long-term approaches are emerging 
(Noble et al., 2014; Wong et al., 2014), as illustrated by the development of ‘adaptation pathways’—i.e., 
long-term adaptation strategies based upon decision cycles that, over time, explore and sequence a set of 
possible actions based on alternative external, uncertain developments (Haasnoot et al., 2013; Barnett et al., 
2014; Wise et al., 2014; Werners et al., 2015; Hermans et al., 2017; Section 4.4.4.3.4). Key expected benefits 
are an improved consideration of both the evolving nature of vulnerability (Denton et al., 2014; Dilling et al., 
2015; Duvat et al., 2017; Fawcett et al., 2017) and climate change uncertainty (O’Brien et al., 2012; Brown 
et al., 2014; Noble et al., 2014), as well as better anticipation of the risks of maladaptation (Magnan et al., 
2016). Practical applications of adaptation pathways in LLIC are occurring, e.g., in the Netherlands 
(Haasnoot et al., 2013), Indonesia (Butler et al., 2014), New York City (Rosenzweig and Solecki, 2014) and 
Singapore (Buurman and Babovic, 2017).  
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Conclusions 
 
LLIC are particularly at risk from climate-related changes to the ocean and the cryosphere, whether they are 
urban or rural, continental or island, at any latitude and regardless of level of development (high confidence). 
Over the course of the 21st century, they are expected to experience both increasing risks (high confidence) 
and limits to ecological and societal adaptation (de Coninck et al., 2018; Djalante et al., in press; Section 
4.3.4.2, Figure 6.2, Figure CB9.2; Hoegh-Guldberg et al., in press), which has the potential to significantly 
increase the level of loss and damage experienced by local coastal livelihoods (e.g., fishing, logistics or 
tourism) (Djalante et al., in press). However, there are still important research gaps on residual risks and 
adaptation limits, given that these limits can be reached due to the intensity of the hazards and/or to the high 
vulnerability of a given system, and can be ecological, technological, economic, social, cultural, political or 
institutional. In addition, ocean and cryosphere changes have the potential to accumulate in compound events 
and cause cascades of impacts through economic, environmental and social processes (medium evidence, 
high agreement) (Sections 6.8.2 to 6.8.3, Box 6.1). This is the case when coastal flooding and riverine 
inundation occur together, e.g., during the 2012 Superstorm Sandy in New York City, USA (Rosenzweig and 
Solecki, 2014); the 2014 cyclone Bejisa in Reunion Island, France (Duvat et al., 2016), and the 2017 
Hurricane Harvey in Houston, USA (Emanuel, 2017). Cascade effects far beyond the extent of the original 
impacts bring the risk in LLIC of slowing down and reversing overall development achievements, 
particularly on poverty reduction (low evidence, medium agreement) (Hallegatte et al., 2016). Global time 
series analysis of risk and vulnerability trends show that many Pacific island states have fallen behind the 
global average in terms of progress made in the reduction of social vulnerability towards natural hazards 
over the past years (Feldmeyer et al., 2017). These findings may well be indicative of the situation for other 
LLIC (medium confidence) (Hay et al., 2019).  
 
In addition, LLIC provide relevant illustrations of some of the IPCC Reasons for Concern (RFC) that 
describe potentially dangerous anthropogenic interference with the climate system (IPCC, 2014; IPCC, 
2018). LLIC especially illustrate the risks to unique and threatened systems (RFC1), and risks associated 
with extreme weather and compound events (RFC2), and the uneven distribution of impacts (RFC3). Using 
this frame, O'Neill et al. (2017) estimate, e.g., that the potential for coastal protection and ecosystem-based 
adaptation will reach significant limits by 2100 in the case of a 1-m rise in sea level, suggesting the need for 
research into the crossing of environmental and/or anthropogenic tipping points (Sections 6.2). The SROCC 
report confirms that high risk to various geographies (Arctic communities remote from regions of rapid 
positive glacial-isostatic adjustment, megacities, urban atoll islands, large tropical agricultural deltas) are to 
be expected before a 1-m rise in global mean sea level (Section 4.3.4.2.1). More broadly, this report 
suggests, first, that the drivers and timing of the future habitability of LLIC will vary from one case to 
another (Manley et al., 2016; Hay et al., 2018). Second, future storylines of risks will also critically depend 
on the multi-decadal effectiveness of coastal nations’ and communities’ responses (medium evidence, high 
agreement). This will, in turn, partly depend on transformation of risk management regimes in order to 
harness these potentials and shift course towards climate-resilient development pathways (low evidence, high 
agreement) (Solecki et al., 2017). 
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Figure CB9.2: The storyline of risk for low-lying islands and coasts (LLIC). From left to right, this figure shows that 
ocean- and cryosphere-related changes (ocean acidification, ocean warming, sea level rise, etc.) will combine with 
anthropogenic drivers (population growth, settlement trends, socioeconomic inequalities, etc.) to explain impacts on 
various LLIC geographies (cities, islands, deltas, Arctic coasts). Depending on the combinations of responses (black 
dots; stylized representation of potential responses) along a continuum going from hard engineering to ecosystem-based 
approaches, and from securing current settings to relocation (light blue triangles), risks will increase or decrease in the 
coming decades. Some responses (black dots) will enhance either adaptation or maladaptation.  
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Table CB9.1: Summary information on the critical climate-related drivers for low-lying islands and coasts, their trends 
due to climate change, and their main physical and ecosystem effects. Based on SROCC chapters and AR5.  
Climate-
related 
driver 

Physical/chemical 
effects 

Observed trends Projections SROCC 
section 

Global 
mean sea 
level 

Submergence, 
flood damage, 
erosion; saltwater 
intrusion; rising 
water 
tables/impeded 
drainage; 
ecosystem loss 
(and change) 

Tide gauge records: 
very likely increase of 
1.5 (1.1–1.9) mm yr–1 (1902–
2010) and a total sea level 
rise of 0.16 (0.12–0.21) m 
Acceleration: with high 
confidence 
(–0.002–0.019) mm yr–2 over 
(1902–2010) 
 
Satellite altimetry: 
Global MSL of 3.0 mm yr–1 
(2.4–3.6) over (1993–2015) 
Acceleration: with high 
confidence 
0.084 (0.059–0.090) mm yr–2 
over (1993–2015) 

RCP2.6 (2046–2065): 0.24 (0.17–0.32) m 
RCP2.6 (2081–2100): 0.39 (0.26–0.53) m  
RCP2.6 (2100): 0.43 (0.29–0.59) m 
Rate of sea level rise (SLR) 4 (2–6) mm 
yr–1 in 2100 
 
RCP4.5 (2046–2065): 0.26 (0.19–0.34) m 
RCP4.5 (2081–2100): 0.49 (0.34–0.64) m 
RCP4.5. (2100): 0.55 (0.39–0.72) m 
Rate of SLR 7 (4-9) mm yr–1 in 2100 
 
RCP8.5 (2046–2065): 0.32 (0.23–0.40) m 
RCP8.5 (2081–2100): 0.71 (0.51–0.92) m 
RCP8.5 (2100): 0.84 (0.61–1.10) m 
Rate of SLR 15 (10–20) mm yr–1 in 2100 

4.2.2.2 
4.2.3.2 

Regional 
sea level 

Substantial regional 
variability at decadal at 
multi-decadal time scales 
due to changing winds, air-
sea heat and freshwater 
fluxes and altered ocean 
circulation. 

Increased regional relative sea level with 
respect to AR5 nearly everywhere for 
RCP8.5 because of the increased Antarctic 
contribution (Figure 4.8) 

4.2.2.4 
4.2.3.2 

Extreme sea 
levels 

It is very likely that flood 
return period in low-lying 
areas has decreased over the 
past 20th century 

High confidence in more frequently or 
yearly extreme sea level events which are 
currently rare (e.g., return period of 100 
years) as a consequence of sea level rise at 
many locations for RCP8.5 by the end of 
the century (Figure 4.10). 
Even earlier and for RCP2.6 in locations 
where historical sea level variability (tides 
and storm surges) is small compared to 
projected sea level rise 

4.2.3.4.1 
4.2.3.4.3 

Storms: 
tropical 
cyclones 
(TCs), 
extratropical 
cyclones 
(ETCs) 

Storm surges and 
storm waves, 
coastal flooding, 
erosion; saltwater 
intrusion; rising 
water 
tables/impeded 
drainage; wetland 
loss (and change); 
coastal 
infrastructure 
damage and flood 
defense failure 

TCs: Decreasing frequency 
of severe TCs in eastern 
Australia since the late 
1800s; increase in frequency 
of moderately large US 
storm surge events since 
1923; recent increase of 
extremely severe cyclonic 
storms over the Arabian Sea 
and intense TCs that make 
landfall in East and 
Southeast Asia in recent 
decades; increase in annual 
global proportion of 
hurricanes reaching Category 
4 or 5 intensity in recent 
decades. 
  
ETCs: likely poleward 
movement of circulation 

TCs: SLR will lead to higher storm surge 
levels for the TCs that do occur, assuming 
all other factors are unchanged (high 
confidence). 
Medium confidence that the proportion of 
TCs that reach Category 4–5 levels will 
increase, that the average intensity of TCs 
will increase (by roughly 1–10%, 
assuming a 2oC global temperature rise), 
and that average tropical cyclone 
precipitation rates (for a given storm) will 
increase by at least 7% per oC (SST) 
warming. Low confidence in how global 
TC frequency will change, although most 
studies project some decrease in global TC 
frequency 
ETCs: Low confidence in future changes 
in blocking and storm tracks in the 
northern hemisphere. The storm track 
projections for the southern hemisphere 
indicate an observed poleward contraction 

6.3.1.1 
6.3.1.2 
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features but low confidence 
in intensity changes (AR5) 

and a continued strengthening and 
southward contraction of storm tracks in 
the future (medium confidence). 

Waves Coastal erosion, 
overtopping and 
coastal flooding 

Small increases in significant 
wave height globally and 
larger increases (5%) in 
extreme wave height, 
especially in the Southern 
Ocean (medium confidence). 
Global wave power has 
increased over the last six 
decades with marked spatial 
changes by oceans and long-
term correlations with sea 
surface temperature (low 
confidence) 

High confidence for projected increase of 
the mean significant wave height across 
the Southern Ocean, tropical eastern 
Pacific and Baltic Sea and for projected 
decrease of significant wave height over 
the North Atlantic and Mediterranean Sea. 
Low confidence in projections of 
significant wave height over the eastern 
north Pacific and Southern Indian and 
Atlantic Oceans. Low confidence in 
projected extreme significant wave height 
everywhere, except for the Southern 
Ocean (increase) and North Atlantic 
(decrease) (high confidence). Limited 
knowledge on projected wave period and 
direction. 

4.2.3.4.2 
6.3.1.3 

Sea surface 
temperature 
(SST) 
  

Changes to 
stratification and 
circulation; 
reduced incidence 
of sea ice at higher 
latitudes; 
increased coral 
bleaching and 
mortality, 
poleward species 
migration; 
increased algal 
blooms 

The ocean has warmed 
unabated, continuing the 
clear multi-decadal ocean 
warming trends documented 
in AR5. The 0−700 m layer 
of the ocean has warmed at 
rate of 5.31 ZJ yr–1 from 
2005 to 2017. The long-term 
trend for 0–700 m layer has 
warmed 4.35 ZJ yr–1 from 
1970 to 2017  

For RCP8.5, the 0–2000 m layers of the 
ocean are projected to warm by a further 
2150 ZJ (very likely range 1710 to 2790 
ZJ) between 2017 and 2100  
For RCP2.6, the 0–2000 m layers are 
projected to warm by 900 ZJ (very likely 
range 650 to 1340 ZJ) by 2100 
 
(*) ZJ is Zettajoule  

 
5.2.2.2.1 

Marine heat 
waves 

Have very likely doubled 
since 1980s 

Very likely increase in frequency, duration, 
spatial extent and intensity, even under 
future low levels of warming. 

6.4.1 

Freshwater 
inputs 

Altered flood risk 
in coastal 
lowlands; altered 
water 
quality/salinity; 
altered fluvial 
sediment supply; 
altered circulation 
and nutrient 
supply 

Medium confidence in a net 
declining trend in annual 
volume of freshwater input  

Medium confidence for general increase in 
high latitude and wet tropics and decrease 
in other tropical regions 

AR5 

Ocean 
acidity 

Increased CO2 
fertilization; 
decreased 
seawater pH and 
carbonate ion 
concentration (or 
‘ocean 
acidification’) 

Virtually certain that ocean 
surface water pH is declining 
by a very likely range 0.017 
to 0.027 pH units per decade, 
since 1980, everywhere 
individual time-series 
observations exist 

High confidence that the ocean will 
experience pH drops of between 0.1 
(RCP2.6) or 0.3 (RCP8.5) pH 
units by 2100, with regional and local 
variability, exacerbated in polar regions. 

5.2.2.3 

Sea ice and 
permafrost 
thaw 
 
 

More storm 
surges, increasing 
ocean swells, 
coastal erosion 

Permafrost temperatures 
have continued to increase to 
record high levels (very high 
confidence) Between 2007 
and 2016, permafrost 
temperatures here increased 
0.39°C ± 0.15°C in cold 
continuous zone permafrost 

For stabilised global warming of 1.5°C, an 
approximately 1% chance of a given 
September being sea ice free at the end of 
century is projected; for stabilised 
warming at a 2°C increase, this rises to 
10–35% (high confidence). The potential 
for reduced (further 5–10%) but stabilized 
Arctic autumn and spring snow extent by 

3.2.1.1 
Box 3.2 
3.2.2 
3.3.2 
3.4.1 
3.4.2 
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and 0.20 ± 0.10°C in warmer 
discontinuous zone 
permafrost. 
 
It is very likely that Arctic 
sea ice extent continues to 
decline in all months of the 
year; the strongest reductions 
in September (-12.8% +/- 
2.3% per decade; 1979–
2018) are likely 
unprecedented in at least 
1000 years. It is virtually 
certain that Arctic sea ice 
has thinned concurrent with 
a shift to younger ice: since 
1979, the areal proportion of 
thick ice at least 5 years old 
has declined by 
approximately 90%. 

mid-century for RCP2.6 contrasts with 
continued loss under RCP8.5 (a further 
15–25% reduction to end of century) (high 
confidence).  
 
Widespread disappearance of Arctic near-
surface permafrost is projected to occur 
this century as a result of warming (high 
confidence). Near-surface permafrost area 
is projected to be reduced by 2–66% for 
RCP2.6 and 30–99% by 2100 under 
RCP8.5. 
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Ablation (of glaciers, ice sheets, or snow cover) All processes that reduce the mass of a glacier, ice sheet, 
or snow cover. The main processes are melting, and for glaciers also calving (or, when the glacier nourishes 
an ice shelf, discharge of ice across the grounding line), but other processes such as sublimation and loss of 
wind-blown snow can also contribute to ablation. Ablation also refers to the mass lost by any of these 
processes. See also Mass balance / budget (of glaciers or ice sheets). 
 
Abrupt climate change A large-scale change in the climate system that takes place over a few decades or 
less, persists (or is anticipated to persist) for at least a few decades, and causes substantial disruptions in 
human and natural systems. See also Climate change, Human system, Natural systems, and Tipping point. 
 
Accumulation (of glaciers, ice sheets, or snow cover) All processes that add to the mass of a glacier, an ice 
sheet, or snow cover. The main process of accumulation is snowfall. Accumulation also includes deposition 
of hoar, freezing rain, other types of solid precipitation, gain of wind-blown snow, avalanching, and basal 
accumulation (often beneath floating ice). See also Avalanche, and Mass balance / budget (of glaciers or ice 
sheets). 
 
Active layer Layer of ground above permafrost subject to annual thawing and freezing. 
 
Adaptability See Adaptive capacity.  
 
Adaptation In human systems, the process of adjustment to actual or expected climate and its effects, in 
order to moderate harm or exploit beneficial opportunities. In natural systems, the process of adjustment to 
actual climate and its effects; human intervention may facilitate adjustment to expected climate and its 
effects.  
 

Ecosystem-based adaptation (EBA) The use of ecosystem management activities to increase the 
resilience and reduce the vulnerability of people and ecosystems to climate change (Campbell et al., 
2009).  
 
Evolutionary adaptation The process whereby a species or population becomes better able to live in a 
changing environment, through the selection of heritable traits. Biologists usually distinguish 
evolutionary adaptation from acclimatisation, with the latter occurring within an organism’s lifetime.  
 
Incremental adaptation Adaptation that maintains the essence and integrity of a system or process at 
a given scale (Park et al., 2012). In some cases, incremental adaptation can accrue to result in 
transformational adaptation (Tàbara et al., 2018; Termeer et al., 2017). Incremental adaptations to 
change in climate are understood as extensions of actions and behaviours that already reduce the 
losses or enhance the benefits of natural variations in extreme weather / climate events.  
 
Transformational adaptation Adaptation that changes the fundamental attributes of a social-
ecological system in anticipation of climate change and its impacts; and adaptation responses that will 
be required in the face of a global failure to mitigate the causes of anthropogenic climate change and 
are characterised by system-wide change or changes across more than one system, by a focus on the 
future and long-term change, or by a direct questioning of the effectiveness of existing systems, social 
injustices and power imbalances.  
 
Adaptation limits The point at which an actor’s objectives (or system needs) cannot be secured from 
intolerable risks through adaptive actions.  
• Hard adaptation limit - No adaptive actions are possible to avoid intolerable risks.  
• Soft adaptation limit - Options may exist but are currently not available to avoid intolerable risks 

through adaptive action.  

See also Adaptation options, Adaptive capacity, Justice, Maladaptive actions (Maladaptation), and 
Mitigation (of climate change). 
 
Adaptation limits See Adaptation.  
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Adaptation options The array of strategies and measures that are available and appropriate for addressing 
adaptation. They include a wide range of actions that can be categorised as structural, institutional, 
ecological or behavioural. See also Adaptive capacity, and Maladaptive actions (Maladaptation). 
 
Adaptation pathways See Pathways.  
 
Adaptive capacity The ability of systems, institutions, humans and other organisms to adjust to potential 
damage, to take advantage of opportunities, or to respond to consequences (IPCC, 2014; MA, 2005). See 
also Adaptation. 
 
Adaptive governance See Governance.  
 
Aerosol A suspension of airborne solid or liquid particles, with a typical size between a few nanometres and 
10 μm, that reside in the atmosphere for at least several hours. The term aerosol, which includes both the 
particles and the suspending gas, is often used in this report in its plural form to mean ‘aerosol particles’. 
Aerosols may be of either natural or anthropogenic origin. Aerosols can influence climate in several ways: 
directly through scattering and absorbing radiation, and indirectly by acting as cloud condensation nuclei or 
ice nuclei, modifying the optical properties and lifetime of clouds or upon deposition on snow or ice covered 
surfaces thereby altering their albedo and contributing to climate feedback. Atmospheric aerosols, whether 
natural or anthropogenic, originate from two different pathways: emissions of primary particulate matter 
(PM), and formation of secondary PM from gaseous precursors. The bulk of aerosols are of natural origin. 
Some scientists use group labels that refer to the chemical composition, namely: sea salt, organic carbon, 
black carbon (BC), mineral species (mainly desert dust), sulphate, nitrate, and ammonium. These labels are, 
however, imperfect as aerosols combine particles to create complex mixtures. See also Short-lived climate 
forcers (SLCFs). 
 
Agreement In this Special Report, the degree of agreement within the scientific body of knowledge on a 
particular finding is assessed based on multiple lines of evidence (e.g., mechanistic understanding, theory, 
data, models, expert judgement) and expressed qualitatively (Mastrandrea et al., 2010). See also Confidence, 
Likelihood, and Uncertainty.  
 
Albedo The proportion of sunlight (solar radiation) reflected by a surface or object, often expressed as a 
percentage. Clouds, snow and ice usually have high albedo; soil surfaces cover the albedo range from high to 
low; vegetation in the dry season and/or in arid zones can have high albedo; whereas photosynthetically 
active vegetation and the ocean have low albedo. The Earth's planetary albedo changes mainly through 
varying cloudiness, snow, ice, leaf area and land cover changes. 
 
Alien (non-native) species An introduced species (alien species, exotic species, non-indigenous species, or 
non-native species) living outside its native distributional range, but which has arrived there by human 
activity, either deliberate or accidental. Non-native species can have various effects on and adversely affect 
the local ecosystem. See also Endemic species, and Invasive species. 
 
Anomaly The deviation of a variable from its value averaged over a reference period.  
 
Anthropogenic Resulting from or produced by human activities. See also Anthropogenic emissions.  
 
Anthropogenic emissions Emissions of greenhouse gases (GHGs), precursors of GHGs, and aerosols, 
caused by human activities. These activities include the burning of fossil fuels, deforestation, land use and 
land use changes (LULUC), livestock production, fertilisation, waste management, and industrial processes. 
See also Anthropogenic.  
 
Anthropogenic subsidence Downward motion of the land surface induced by anthropogenic drivers (e.g., 
loading, extraction of hydrocarbons and/or groundwater, drainage, mining activities) causing sediment 
compaction or subsidence/deformation of the sedimentary sequence, or oxidation of organic material, 
thereby leading to relative sea level rise. See also Anthropogenic, and Sea level change (sea level rise, SLR / 
sea level fall). 
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Atlantic Meridional Overturning Circulation (AMOC) See Meridional Overturning Circulation (MOC).  
 
Atmosphere The gaseous envelope surrounding the Earth, divided into five layers — the troposphere, which 
contains half of the Earth's atmosphere, the stratosphere, the mesosphere, the thermosphere, and the 
exosphere, which is the outer limit of the atmosphere. The dry atmosphere consists almost entirely of 
nitrogen (N2, 78.1% volume mixing ratio) and oxygen (O2, 20.9% volume mixing ratio), together with a 
number of trace gases, such as argon (Ar, 0.93% volume mixing ratio), helium (He) and radiatively active 
greenhouse gases (GHG) such as carbon dioxide (CO2, 0.04% volume mixing ratio) and ozone (O3). In 
addition, the atmosphere contains the GHG water vapour (H2O), whose amounts are highly variable but 
typically around 1% volume mixing ratio. The atmosphere also contains clouds and aerosols. See also 
Climate system, Hydrological cycle, Methane (CH4), and Radiative forcing.  
 
Atmosphere-ocean general circulation model (AOGCM) See Climate model. 
 
Attribution See Detection and attribution.  
 
Avalanche A mass of snow, ice, earth or rocks, or a mixture of these, falling down a mountainside. 
 
Benthos The community of organisms living on the bottom or in sediments of a body of water (such as an 
ocean, a river or a lake). The ecological zone at the bottom of a body of water, including the sediment 
surface and some sub-surface layers, is known as the ‘benthic zone’. 
 
Biodiversity or biological diversity means the variability among living organisms from all sources 
including, among other things, terrestrial, marine and other aquatic ecosystems, and the ecological complexes 
of which they are part; this includes diversity within species, between species, and of ecosystems (UN, 
1992). See also Ecosystem service, and Functional diversity. 
 
Biological (carbon) pump A series of ocean processes through which inorganic carbon (as carbon dioxide, 
CO2) is fixed as organic matter by photosynthesis in sunlit surface water and then transported to the ocean 
interior, and possibly the sediment, resulting in the storage of carbon. See also Carbonate pump, Dissolved 
organic carbon (DOC) and particulate organic carbon (POC), Microbial carbon pump, and Solubility 
pump. 
 
Biomass Organic material excluding the material that is fossilised or embedded in geological formations. 
Biomass may refer to the mass of organic matter in a specific area (ISO, 2014). 
 
Black carbon (BC) A relatively pure form of carbon, also known as soot, arising from the incomplete 
combustion of fossil fuels, biofuel, and biomass. It only stays in the atmosphere for days or weeks. BC is a 
climate forcing agent with strong warming effect, both in the atmosphere and when deposited on snow or 
ice. See also Aerosol, Albedo, Forcing, and Short-lived climate forcers (SLCF). 
 
Blue carbon All biologically-driven carbon fluxes and storage in marine systems that are amenable to 
management can be considered as blue carbon. Coastal blue carbon focuses on rooted vegetation in the 
coastal zone, such as tidal marshes, mangroves and seagrasses. These ecosystems have high carbon burial 
rates on a per unit area basis and accumulate carbon in their soils and sediments. They provide many non-
climatic benefits and can contribute to ecosystem-based adaptation. If degraded or lost, coastal blue carbon 
ecosystems are likely to release most of their carbon back to the atmosphere. There is current debate 
regarding the application of the blue carbon concept to other coastal and non-coastal processes and 
ecosystems, including the open ocean. See also Carbon cycle, Coast, Ecosystem service, and Sequestration. 
 
Calving (of glaciers or ice sheets) The process of mechanical destruction of a mass of ice usually typical of 
marine-terminating glaciers; in the latter case, the ice calving (or breaking away) from the glacier edge can 
lead to the formation of icebergs. See also Ice sheet, and Marine ice cliff instability (MICI).  
 
Carbonate pump Ocean carbon fixation through the biological formation of carbonates, primarily by 
plankton that generate bio-mineral particles that sink to the ocean interior, and possibly the sediment. It is 
also called carbonate counter-pump, since the formation of calcium carbonate (CaCO3) is accompanied by 
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the release of carbon dioxide (CO2) to surrounding water and subsequently to the atmosphere. See also 
Biological (carbon) pump, Blue carbon, Dissolved organic carbon (DOC) and particulate organic carbon 
(POC), Microbial carbon pump, and Solubility pump. 
 
Carbon budget refers to three concepts in the literature: (1) an assessment of carbon cycle sources and sinks 
on a global level, through the synthesis of evidence for fossil-fuel and cement emissions, land use change 
emissions, ocean and land carbon dioxide (CO2) sinks, and the resulting atmospheric CO2 growth rate. This 
is referred to as the global carbon budget; (2) the estimated cumulative amount of global CO2 emissions that 
is estimated to limit global surface temperature to a given level above a reference period, taking into account 
global surface temperature contributions of other GHGs and climate forcers; (3) the distribution of the 
carbon budget defined under (2) to the regional, national, or sub-national level based on considerations of 
equity, costs or efficiency. See also Atmosphere, Forcing, and Land. 
 
Carbon cycle The flow of carbon (in various forms, e.g., as carbon dioxide (CO2), carbon in biomass, and 
carbon dissolved in the ocean as carbonate and bicarbonate) through the atmosphere, hydrosphere, ocean, 
terrestrial and marine biosphere and lithosphere. In this Special Report, the reference unit for the global 
carbon cycle is GtCO2 or GtC (one Gigatonne = 1 Gt = 1015 grams; 1 GtC corresponds to 3.667 GtCO2). See 
also Atmosphere, Blue carbon, and Ocean acidification (OA). 
 
Carbon dioxide (CO2) A naturally occurring gas, CO2 is also a by-product of burning fossil fuels (such as 
oil, gas and coal), of burning biomass, of land use changes (LUC) and of industrial processes (e.g., cement 
production). It is the principal anthropogenic greenhouse gas (GHG) that affects the Earth's radiative 
balance. It is the reference gas against which other GHGs are measured and therefore has a Global Warming 
Potential (GWP) of 1. See also Global warming, Greenhouse gas (GHG), Land, and Ocean acidification 
(OA).  
 
Carbon dioxide removal (CDR) Anthropogenic activities removing carbon dioxide (CO2) from the 
atmosphere and durably storing it in geological, terrestrial, or ocean reservoirs, or in products. It includes 
existing and potential anthropogenic enhancement of biological or geochemical CO2 sinks and direct air 
capture and storage, but excludes natural CO2 uptake not directly caused by human activities. See also 
Greenhouse gas removal (GGR), Mitigation (of climate change), and Negative emissions. 
 
Carbon price The price for avoided or released carbon dioxide (CO2) or CO2-equivalent emissions. This 
may refer to the rate of a carbon tax, or the price of emission permits. In many models that are used to assess 
the economic costs of mitigation, carbon prices are used as a proxy to represent the level of effort in 
mitigation policies.  
 
Carbon sequestration See Sequestration.  
 
Carbon sink See Sink.  
 
Cascading impacts from extreme weather/climate events occur when an extreme hazard generates a 
sequence of secondary events in natural and human systems that result in physical, natural, social or 
economic disruption, whereby the resulting impact is significantly larger than the initial impact. Cascading 
impacts are complex and multi-dimensional, and are associated more with the magnitude of vulnerability 
than with that of the hazard (modified from Pescaroli & Alexander, 2015). See also Impacts (consequences, 
outcomes), Natural systems, and Risk. 
 
Climate in a narrow sense is usually defined as the average weather -or more rigorously, as the statistical 
description in terms of the mean and variability of relevant quantities- over a period of time ranging from 
months to thousands or millions of years. The classical period for averaging these variables is 30 years, as 
defined by the World Meteorological Organization (WMO). The relevant quantities are most often surface 
variables such as temperature, precipitation and wind. Climate in a wider sense is the state, including a 
statistical description, of the climate system.  
 
Climate change A change in the state of the climate that can be identified (e.g., by using statistical tests) by 
changes in the mean and/or the variability of its properties and that persists for an extended period, typically 



FINAL DRAFT  Annex I: Glossary IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute AI-6 Total pages: 34 

decades or longer. Climate change may be due to natural internal processes or external forcings such as 
modulations of the solar cycles, volcanic eruptions and persistent anthropogenic changes in the composition 
of the atmosphere or in land use. Note that the United Nations Framework Convention on Climate Change 
(UNFCCC), in its Article 1, defines climate change as: 'a change of climate which is attributed directly or 
indirectly to human activity that alters the composition of the global atmosphere and which is in addition to 
natural climate variability observed over comparable time periods'. The UNFCCC thus makes a distinction 
between climate change attributable to human activities altering the atmospheric composition and climate 
variability attributable to natural causes. See also Global warming, Ocean acidification (OA), and Detection 
and attribution.  
 
Climate extreme (extreme weather or climate event) The occurrence of a value of a weather or climate 
variable above (or below) a threshold value near the upper (or lower) ends of the range of observed values of 
the variable. For simplicity, both extreme weather events and extreme climate events are referred to 
collectively as 'climate extremes'. See also Extreme weather / climate event.  
 
Climate feedback An interaction in which a perturbation in one climate quantity causes a change in a 
second and the change in the second quantity ultimately leads to an additional change in the first. A negative 
feedback is one in which the initial perturbation is weakened by the changes it causes; a positive feedback is 
one in which the initial perturbation is enhanced. The initial perturbation can either be externally forced or 
arise as part of internal variability. See also Climate variability, and Forcing. 
 
Climate governance See Governance.  
 
Climate model A qualitative or quantitative representation of the climate system based on the physical, 
chemical and biological properties of its components, their interactions and feedback processes and 
accounting for some of its known properties. The climate system can be represented by models of varying 
complexity; that is, for any one component or combination of components a spectrum or hierarchy of models 
can be identified, differing in such aspects as the number of spatial dimensions, the extent to which physical, 
chemical or biological processes are explicitly represented, or the level at which empirical parametrisations 
are involved. There is an evolution towards more complex models with interactive chemistry and biology 
scenarios. Climate models are applied as a research tool to study and simulate the climate and for operational 
purposes, including monthly, seasonal and interannual climate predictions. See also Climate sensitivity, and 
Earth system model (ESM).  
 
Climate projection Simulated response of the climate system to a scenario of future emissions or 
concentrations of greenhouse gases (GHGs) and aerosols and changes in land use, generally derived using 
climate models. Climate projections depend on an emission / concentration / radiative forcing scenario, 
which is in turn based on assumptions concerning, for example, future socioeconomic and technological 
developments that may or may not be realised. See also (Model) Ensemble, Projection, and Radiative 
forcing. 
 
Climate-resilient development pathways (CRDPs) Trajectories that strengthen sustainable development 
and efforts to eradicate poverty and reduce inequalities while promoting fair and cross-scalar adaptation to 
and resilience in a changing climate. They raise the ethics, equity, and feasibility aspects of the deep societal 
transformation needed to drastically reduce emissions to limit global warming (e.g., to well below 2°C) and 
achieve desirable and liveable futures and wellbeing for all. See also Equality. 
 
Climate sensitivity The change in the annual global mean surface temperature (GMST) in response to a 
change in the atmospheric carbon dioxide (CO2) concentration or other radiative forcing.  
 

Equilibrium climate sensitivity The equilibrium (steady state) change in the globally-averaged near-
surface temperature following a doubling of the atmospheric carbon dioxide (CO2) concentration from 
preindustrial conditions. Often estimated through experiments in atmosphere-ocean general circulation 
models (AOGCMs) where CO2 levels are either quadrupled or doubled from pre-industrial levels and 
which are integrated for 100-200 years. A related quantity, the climate feedback parameter (unit: W 
m–2 °C-1) refers to the top of atmosphere budget change per degree of globally-averaged near-surface 
temperature change. See also Climate model, and Global mean surface temperature (GMST). 
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Climate system Global system consisting of five major components: the atmosphere, the hydrosphere, the 
cryosphere, the lithosphere and the biosphere and the interactions between them. The climate system 
changes in time under the influence of its own internal dynamics and because of external forcings such as 
volcanic eruptions, solar variations, orbital forcing, and anthropogenic forcings such as the changing 
composition of the atmosphere and land use change.  
 
Climate variability Deviations of some climate variables from a given mean state (including the occurrence 
of extremes, etc.) at all spatial and temporal scales beyond that of individual weather events. Variability may 
be intrinsic, due to fluctuations of processes internal to the climate system (internal variability), or to 
variations in natural or anthropogenic external forcing (forced variability).  
 
Coast The land near to the sea. The term ‘coastal’ can refer to that land (e.g., as in ‘coastal communities’), 
or to that part of the marine environment that is strongly influenced by land-based processes. Thus, coastal 
seas are generally shallow and near-shore. The landward and seaward limits of the coastal zone are not 
consistently defined, neither scientifically nor legally. Thus, coastal waters can either be considered as 
equivalent to territorial waters (extending 12 nautical miles / 22.2 km from mean low water), or to the full 
Exclusive Economic Zone, or to shelf seas, with less than 200 m water depth. See also Ocean, Ocean 
deoxygenation, and Sea level change (sea level rise, SLR / sea level fall). 
 
Co-benefits The positive effects that a policy or measure aimed at one objective might have on other 
objectives, thereby increasing the total benefits for society or the environment. Co-benefits are often subject 
to uncertainty and depend on local circumstances and implementation practices, among other factors. Co-
benefits are also referred to as ancillary benefits. See also Risk. 
 
Compound events See Compound weather/climate events. 
 
Compound weather/climate events The combination of multiple drivers and/or hazards that contributes to 
societal and environmental risk (Zscheischler et al., 2018). 
 
Compound risks arise from the interaction of hazards, which may be characterised by single extreme events 
or multiple coincident or sequential events that interact with exposed systems or sectors. See also Extreme 
weather / climate event, and Risk. 
 
Confidence The robustness of a finding based on the type, amount, quality and consistency of evidence (e.g., 
mechanistic understanding, theory, data, models, expert judgment) and on the degree of agreement across 
multiple lines of evidence. In this Special Report, confidence is expressed qualitatively (Mastrandrea et al., 
2010). See Section 1.8.3 for the list of confidence levels used. See also Likelihood, and Uncertainty.  
 
Coral reef An underwater ecosystem characterised by structure-building stony corals. Warm-water coral 
reefs occur in shallow seas, mostly in the tropics, with the corals (animals) containing algae (plants) that 
depend on light and relatively stable temperature conditions. Cold-water coral reefs occur throughout the 
world, mostly at water depths of 50-500 m. In both kinds of reef, living corals frequently grow on older, 
dead material, predominantly made of calcium carbonate (CaCO3). Both warm and cold-water coral reefs 
support high biodiversity of fish and other groups, and are considered to be especially vulnerable to climate 
change. See also Ocean acidification (OA).  
 
Cost-benefit analysis Monetary assessment of all negative and positive impacts associated with a given 
action. Cost-benefit analysis enables comparison of different interventions, investments or strategies and 
reveal how a given investment or policy effort pays off for a particular person, company or country. Cost-
benefit analyses representing society's point of view are important for climate change decision-making, but 
there are difficulties in aggregating costs and benefits across different actors and across timescales. See also 
Discounting.  
 
Cost-effectiveness A measure of the cost at which a policy goal or outcome is achieved. The lower the cost, 
the greater the cost-effectiveness. See also Private costs. 
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Coupled Model Intercomparison Project (CMIP) A climate modelling activity from the World Climate 
Research Programme (WCRP) which coordinates and archives climate model simulations based on shared 
model inputs by modelling groups from around the world. The CMIP3 multi-model data set includes 
projections using Special Report on Emissions Scenarios (SRES) scenarios. The CMIP5 data set includes 
projections using the Representative Concentration Pathways (RCP). The CMIP6 phase involves a suite of 
common model experiments as well as an ensemble of CMIP-endorsed Model Intercomparison Projects 
(MIPs). See also Climate projection. 
 
Cryosphere The components of the Earth System at and below the land and ocean surface that are frozen, 
including snow cover, glaciers, ice sheets, ice shelves, icebergs, sea ice, lake ice, river ice, permafrost and 
seasonally frozen ground. See also Climate system. 
 
Cultural services See Ecosystem services. 
 
Cumulative emissions The total amount of emissions released over a specified period of time. See also 
Carbon budget. 
 
Deep uncertainty A situation of deep uncertainty exists when experts or stakeholders do not know or cannot 
agree on: (1) appropriate conceptual models that describe relationships among key driving forces in a 
system; (2) the probability distributions used to represent uncertainty about key variables and parameters; 
and/or (3) how to weigh and value desirable alternative outcomes (Lempert et al., 2003).  
 
Deforestation Conversion of forest to non-forest. [Note: For a discussion of the term forest and related terms 
such as afforestation, reforestation, and deforestation in the context of reporting and accounting Article 3.3 
and 3.4 activities under the Kyoto Protocol, see 2013 Revised Supplementary Methods and Good Practice 
Guidance Arising from the Kyoto Protocol.] 
 
Detection See Detection and attribution.  
 
Detection and attribution Detection of change is defined as the process of demonstrating that climate or a 
system affected by climate has changed in some defined statistical sense, without providing a reason for that 
change. An identified change is detected in observations if its likelihood of occurrence by chance due to 
internal variability alone is determined to be small, for example, <10%. Attribution is defined as the process 
of evaluating the relative contributions of multiple causal factors to a change or event with a formal 
assessment of confidence. 
 
Developed / developing countries (Industrialised / developed / developing countries) There is a diversity 
of approaches for categorizing countries on the basis of their level of development, and for defining terms 
such as industrialised, developed, or developing. Several categorisations are used in this Special Report. (1) 
In the United Nations (UN) system, there is no established convention for the designation of developed and 
developing countries or areas. (2) The UN Statistics Division specifies developed and developing regions 
based on common practice. In addition, specific countries are designated as least developed countries, 
landlocked developing countries, small island developing states (SIDS), and transition economies. Many 
countries appear in more than one of these categories. (3) The World Bank uses income as the main criterion 
for classifying countries as low, lower middle, upper middle, and high income. (4) The UN Development 
Programme (UNDP) aggregates indicators for life expectancy, educational attainment, and income into a 
single composite Human Development Index (HDI) to classify countries as low, medium, high, or very high 
human development. 
 
Development pathways See Pathways.  
 
Disaster A ‘serious disruption of the functioning of a community or a society at any scale due to hazardous 
events interacting with conditions of exposure, vulnerability and capacity, leading to one or more of the 
following: human, material, economic and environmental losses and impacts’ (UNISDR, 2017). See also 
Disaster risk management (DRM), Exposure, Hazard, Risk, and Vulnerability. 
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Disaster risk management (DRM) Processes for designing, implementing, and evaluating strategies, 
policies, and measures to improve the understanding of current and future disaster risk, foster disaster risk 
reduction and transfer, and promote continuous improvement in disaster preparedness, prevention and 
protection, response, and recovery practices, with the explicit purpose of increasing human security, 
wellbeing, quality of life, and sustainable development (SD).  
 
Discharge (of ice) Rate of the flow of ice through a vertical section of a glacier perpendicular to the 
direction of the flow of ice. Often used to refer to the loss of mass at marine-terminating glacier fronts 
(mostly calving of icebergs and submarine melt), or to mass flowing across the grounding line of a floating 
ice shelf. See also Mass balance / budget (of glaciers or ice sheets). 
 
Discounting A mathematical operation that aims to make monetary (or other) amounts received or expended 
at different times (years) comparable across time. The discounter uses a fixed or possibly time-varying 
discount rate from year to year that makes future value worth less today (if the discount rate is positive). The 
choice of discount rate(s) is debated as it is a judgement based on hidden and/or explicit values.  
 
Discount rate See Discounting. 
  
Displacement See (Internal) Displacement (of humans). 
 
Dissolved inorganic carbon The combined total of different types of non-organic carbon in (seawater) 
solution, comprising carbonate (CO3

2-), bicarbonate (HCO3
-), carbonic acid (H2CO3) and carbon dioxide 

(CO2).  
 
Dissolved organic carbon (DOC) and particulate organic carbon (POC) Organic carbon types -for 
example, in the ocean- operationally separated by filtration. Filter pore size typically is 0.45 micrometres 
but may vary between 0.22 and 0.7 micrometres, with smaller carbon types in the solution (DOC) and larger 
carbon types (POC) being filtered out. In the global ocean, the ratio of DOC and POC is approximately 20:1. 
DOC can be further classified as labile DOC (LDOC) and refractory DOC (RDOC; also known as 
recalcitrant DOC). In the global ocean, DOC is mainly (>90%) comprised of RDOC. RDOC can be 
generated by microbial carbon pump processes, and is able to persist for hundreds to thousands of years due 
to its resistance to microbial decomposition. LDOC occurs mainly in surface seawaters and is readily 
available for biological utilisation or decomposition. See also Carbon cycle. 
 
Downscaling A method that derives local- to regional-scale (up to 100 km) information from larger-scale 
models or data analyses. Two main methods exist: dynamical downscaling and empirical/statistical 
downscaling. The dynamical method uses the output of regional climate models, global models with variable 
spatial resolution, or high-resolution global models. The empirical/statistical methods are based on 
observations and develop statistical relationships that link the large-scale atmospheric variables with 
local/regional climate variables. In all cases, the quality of the driving model remains an important limitation 
on quality of the downscaled information. The two methods can be combined, e.g., applying 
empirical/statistical downscaling to the output of a regional climate model, consisting of a dynamical 
downscaling of a global climate model. 
 
Driver Any natural or human-induced factor that directly or indirectly causes a change in a system (adapted 
from MEA, 2005). See also Forcing. 
 
Drought A period of abnormally dry weather long enough to cause a serious hydrological imbalance. 
Drought is a relative term; therefore any discussion in terms of precipitation deficit must refer to the 
particular precipitation-related activity that is under discussion. For example, shortage of precipitation during 
the growing season impinges on crop production or ecosystem function in general (due to soil moisture 
drought, also termed agricultural drought) and during the runoff and percolation season primarily affects 
water supplies (hydrological drought). Storage changes in soil moisture and groundwater are also affected by 
increases in actual evapotranspiration in addition to reductions in precipitation. A period with an abnormal 
precipitation deficit is defined as a meteorological drought. See also Heatwave, and Hydrological cycle. 
 



FINAL DRAFT  Annex I: Glossary IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute AI-10 Total pages: 34 

Early warning systems (EWS) The set of technical and institutional capacities to forecast, predict, and 
communicate timely and meaningful warning information to enable individuals, communities, managed 
ecosystems, and organisations threatened by a hazard to prepare to act promptly and appropriately to reduce 
the possibility of harm or loss. Dependent upon context, EWS may draw upon scientific and/or indigenous 
knowledge, and other knowledge types. EWS are also considered for ecological applications, e.g., 
conservation, where the organisation itself is not threatened by hazard but the ecosystem under conservation 
is (e.g., coral bleaching alerts), in agriculture (e.g., warnings of heavy rainfall, drought, ground frost, and 
hailstorms) and in fisheries (e.g., warnings of storm, storm surge, and tsunamis) (UNISDR 2009; IPCC, 
2012a). See also Disaster, Institutions, Local knowledge, and Loss and Damage, and losses and damages. 
 
Earth system model (ESM) A coupled atmosphere–ocean general circulation model (AOGCM) in which a 
representation of the carbon cycle is included, allowing for interactive calculation of atmospheric carbon 
dioxide (CO2) or compatible emissions. Additional components (e.g., atmospheric chemistry, ice sheets, 
dynamic vegetation, nitrogen cycle, but also urban or crop models) may be included. See also Climate 
model.  
 
Ecosystem A functional unit consisting of living organisms, their non-living environment and the 
interactions within and between them. The components included in a given ecosystem and its spatial 
boundaries depend on the purpose for which the ecosystem is defined: in some cases they are relatively 
sharp, while in others they are diffuse. Ecosystem boundaries can change over time. Ecosystems are nested 
within other ecosystems and their scale can range from very small to the entire biosphere. In the current era, 
most ecosystems either contain people as key organisms, or are influenced by the effects of human activities 
in their environment. See also Ecosystem services.  
 
Ecosystem-based adaptation (EBA) See Adaptation. 
 
Ecosystem services Ecological processes or functions having monetary or non-monetary value to 
individuals or society at large. These are frequently classified as (1) supporting services such as productivity 
or biodiversity maintenance, (2) provisioning services such as food or fibre, (3) regulating services such as 
climate regulation or carbon sequestration and (4) cultural services such as tourism or spiritual and aesthetic 
appreciation. See also Ecosystem, and Nature’s Contribution to People (NCP).  
 
Elevation-dependent warming (EDW) Characteristic of many regions where mountains are located, in 
which past and/or future surface air temperature changes vary neither uniformly nor linearly with elevation. 
In many cases, warming is enhanced within or above a certain elevation range. 
 
El Niño-Southern Oscillation (ENSO) The term El Niño was initially used to describe a warm-water 
current that periodically flows along the coast of Ecuador and Peru, disrupting the local fishery. It has since 
become identified with warming of the tropical Pacific Ocean east of the dateline. This oceanic event is 
associated with a fluctuation of a global-scale tropical and subtropical surface pressure pattern called the 
Southern Oscillation. This coupled atmosphere-ocean phenomenon, with preferred time scales of two to 
about seven years, is known as the El Niño-Southern Oscillation (ENSO). It is often measured by the surface 
pressure anomaly difference between Tahiti and Darwin and/or the sea surface temperatures (SST) in the 
central and eastern equatorial Pacific. During an ENSO event, the prevailing trade winds weaken, reducing 
upwelling and altering ocean currents such that the SSTs warm, further weakening the trade winds. This 
phenomenon has a great impact on the wind, SST and precipitation patterns in the tropical Pacific. It has 
climatic effects throughout the Pacific region and in many other parts of the world, through global 
teleconnections. The cold phase of ENSO is called La Niña. See also Climate. 
 
Emission pathways See Pathways. 
 
Emission scenario A plausible representation of the future development of emissions of substances that are 
radiatively active (e.g., greenhouse gases (GHGs), or aerosols) based on a coherent and internally consistent 
set of assumptions about driving forces (such as demographic and socio-economic development, 
technological change, energy and land use) and their key relationships. Concentration scenarios, derived 
from emission scenarios, are often used as input to a climate model to compute climate projections. See also 
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Driver, Forcing, Mitigation scenario, Radiative forcing, Representative concentration pathways (RCPs, 
under Pathways), Shared socio-economic pathways (SSPs, under Pathways), and Scenario.  
 
Endemic species Plants and animals that are only found in one geographic region (Gallardo et al. 2018). See 
also Alien (non-native) species, Ecosystem, and Invasive species. 
 
Enhanced weathering A proposed method to increase the natural rate of removal of carbon dioxide (CO2) 
from the atmosphere using silicate and carbonate rocks. The active surface area of these minerals is 
increased by grinding, before they are actively added to soil, beaches or the open ocean. See also Carbon 
dioxide removal (CDR), Geoengineering, and Sequestration. 
 
Ensemble See (Model) Ensemble. 
 
Equality A principle that ascribes equal worth to all human beings, including equal opportunities, rights, and 
obligations, irrespective of origins.  
 

Inequality Uneven opportunities and social positions, and processes of discrimination within a group 
or society, based on gender, class, ethnicity, age, and (dis)ability, often produced by uneven 
development. Income inequality refers to gaps between highest and lowest income earners within a 
country and between countries.  

 
See also Equity.  
 
Equilibrium climate sensitivity See Climate sensitivity. 
 
Equity The principle of being fair and impartial, and a basis for understanding how the impacts and 
responses to climate change, including costs and benefits, are distributed in and by society in more or less 
equal ways. Often aligned with ideas of equality, fairness and justice and applied with respect to equity in 
the responsibility for, and distribution of, climate impacts and policies across society, generations, and 
gender, and in the sense of who participates and controls the processes of decision-making.  
 

Distributive equity Equity in the consequences, outcomes, costs and benefits of actions or policies. In 
the case of climate change or climate policies for different people, places and countries, including 
equity aspects of sharing burdens and benefits for mitigation and adaptation.  
 
Gender equity Equity between women and men with regard to their rights, resources and 
opportunities. In the case of climate change, gender equity recognises that women are often more 
vulnerable to the impacts of climate change and may be disadvantaged in the process and outcomes of 
climate policy.  
 
Inter-generational equity Equity between generations that, in the context of climate change, 
acknowledges that the effects of past and present emissions, vulnerabilities and policies impose costs 
and benefits for people in the future and of different age groups.  
 
Procedural equity Equity in the process of decision-making including recognition and inclusiveness in 
participation, equal representation, bargaining power, voice and equitable access to knowledge and 
resources to participate. 

 
Evidence Data and information used in the scientific process to establish findings. In this report, the degree 
of evidence reflects the amount, quality, and consistency of scientific/technical information on which the 
Lead Authors are basing their findings. See also Agreement, Confidence, Likelihood, and Uncertainty.  
 
Evolutionary adaptation See Adaptation. 
 
Exposure The presence of people; livelihoods; species or ecosystems; environmental functions, services, and 
resources; infrastructure, or economic, social, or cultural assets in places and settings that could be adversely 
affected. See also Hazard, Risk, and Vulnerability.  



FINAL DRAFT  Annex I: Glossary IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute AI-12 Total pages: 34 

 
Extratropical cyclone Any cyclonic-scale storm that is not a tropical cyclone. Usually refers to a middle- or 
high-latitude migratory storm system formed in regions of large horizontal temperature variations. 
Sometimes called extratropical storm or extratropical low.  
 
Extreme event See Extreme weather / climate event.  
 
Extreme sea level See Storm surge.  
 
Extreme weather / climate event An extreme weather event is an event that is rare at a particular place and 
time of year. Definitions of ‘rare’ vary, but an extreme weather event would normally be as rare as or rarer 
than the 10th or 90th percentile of a probability density function estimated from observations. By definition, 
the characteristics of what is called extreme weather may vary from place to place in an absolute sense. 
When a pattern of extreme weather persists for some time, such as a season, it may be classified as an 
extreme climate event, especially if it yields an average or total that is itself extreme (e.g., high temperature, 
drought, or total rainfall over a season). See also Heat wave, and Climate extreme (extreme weather or 
climate event).  
 
Fairness Impartial and just treatment without favouritism or discrimination in which each person is 
considered of equal worth with equal opportunity. See also Equity, Equality and Ethics. 
 
Feasibility The degree to which climate goals and response options are considered possible and/or desirable. 
Feasibility depends on geophysical, ecological, technological, economic, social and institutional conditions 
for change. Conditions underpinning feasibility are dynamic, spatially variable, and may vary between 
different groups.  
 

Economic feasibility An indicator of the benefits and costs of a climate adaptation or response, often 
expressed as a ratio of the two, used in order to judge whether it is possible or wise to proceed with the 
option.  
 
Social and institutional feasibility Institutional feasibility has two key parts: (1) the extent of 
administrative workload, both for public authorities and for regulated entities, and (2) the extent to 
which the policy is viewed as legitimate, gains acceptance, is adopted, and is implemented.  

 
Feedback See Climate feedback.  
 
Firn Snow that has survived at least one ablation season but has not been transformed to glacier ice. Its pore 
space is at least partially interconnected, allowing air and water to circulate. Firn densities typically are 400–
830 kg m–3. See also Cryosphere.  
 
Flood The overflowing of the normal confines of a stream or other water body, or the accumulation of water 
over areas that are not normally submerged. Floods can be caused by unusually heavy rain, for example 
during storms and cyclones. Floods include river (fluvial) floods, flash floods, urban floods, rain (pluvial) 
floods, sewer floods, coastal floods, and glacial lake outburst floods (GLOFs). See also Runoff. 
 
Food security A situation that exists when all people, at all times, have physical, social and economic access 
to sufficient, safe and nutritious food that meets their dietary needs and food preferences for an active and 
healthy life (FAO, 2001). [Note: Whilst the term ‘food security’ explicitly includes nutrition within it 
‘dietary needs … for an active and healthy life’, in the past the term has sometimes privileged the supply of 
energy, especially to the hungry. Thus, the term ‘food and nutrition security’ is often used (with the same 
definition as food security) to emphasise that the term food covers both energy and nutrition (FAO, 2009).] 
See also Food system, and Malnutrition. 
 
Food system All the elements (environment, people, inputs, processes, infrastructures, institutions, etc.) and 
activities that relate to the production, processing, distribution, preparation and consumption of food, and the 
output of these activities, including socio-economic and environmental outcomes (HLPE, 2017).  
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[Note: Whilst there is a global food system (encompassing the totality of global production and 
consumption), each location’s food system is unique, being defined by that place’s mix of food produced 
locally, nationally, regionally or globally.] See also Food security. 
 
Forcing The driver of a change in the climate system, usually through an imbalance between the radiative 
energy received by and leaving the Earth’s surface. See also Radiative forcing, and Short-lived climate 
forcers (SLCF). 
 
Forest A vegetation type dominated by trees. Many definitions of the term forest are in use throughout the 
world, reflecting wide differences in biogeophysical conditions, social structure and economics. [Note: For a 
discussion of the term forest and related terms such as afforestation, reforestation and deforestation, see the 
IPCC Special Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000). See also information 
provided by the United Nations Framework Convention on Climate Change (UNFCCC, 2013) and the 
Report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced 
Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).]  
 
Fossil fuels Carbon-based fuels from fossil hydrocarbon deposits, including coal, oil, and natural gas.  
 
Framework Convention on Climate Change See United Nations Framework Convention on Climate 
Change (UNFCCC).  
 
Frozen ground Soil or rock in which part or all of the pore water consists of ice. See also Permafrost. 
 
Functional diversity ‘The range and value of those species and organismal traits that influence ecosystem 
functioning’ (Tilman 2001). See also Biodiversity. 
 
General circulation model See Climate model.  
 
Geoengineering A broad set of methods and technologies that aim to deliberately alter the climate system in 
order to alleviate the impacts of climate change. Most, but not all, methods seek to either (1) reduce the 
amount of absorbed solar energy in the climate system (solar radiation management, or solar radiation 
modification, SRM) or (2) increase net carbon sinks from the atmosphere at a scale sufficiently large to alter 
climate (i.e., carbon dioxide removal, CDR). Scale and intent are of central importance. Two key 
characteristics of geoengineering methods of particular concern are that they use or affect the climate system 
(e.g., atmosphere, land, or ocean) globally or regionally and/or could have substantive unintended effects 
that cross national boundaries. Geoengineering is different from weather modification and ecological 
engineering, but the boundary can be unclear (IPCC, 2012b, p. 2). See also Blue carbon. 
 
Glaciated State of a surface that was covered by glacier ice in the past, but not at present. 
 
Glacier A perennial mass of ice, and possibly firn and snow, originating on the land surface by 
accumulation and compaction of snow and showing evidence of past or present flow. A glacier typically 
gains mass by accumulation of snow, and loses mass by ablation. Land ice masses of continental size 
(>50,000 km2) are referred to as ice sheets (Cogley et al., 2011). See also Calving (of glaciers or ice sheets), 
Cryosphere, Grounding line, and Mass balance / budget (of glaciers or ice sheets). 
 
Glacial lake outburst flood (GLOF) / Glacier lake outburst A sudden release of water from a glacier 
lake, including any of the following types – a glacier-dammed lake, a pro-glacial moraine-dammed lake or 
water that was stored within, under or on the glacier. 
 
Global climate model See Climate model.  
 
Global mean surface temperature (GMST) Estimated global average of near-surface air temperatures over 
land and sea ice, and sea surface temperature (SST) over ice-free ocean regions, with changes normally 
expressed as departures from a value over a specified reference period. When estimating changes in GMST, 
near-surface air temperatures over both land and oceans are also used. 
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Global warming An increase in global mean surface temperature (GMST) averaged over a 30-year period, 
or the 30-year period centred on a particular year or decade, expressed relative to pre-industrial levels unless 
otherwise specified. For 30-year periods that span past and future years, the current multi-decadal warming 
trend is assumed to continue. See also Climate change, and Climate variability.  
 
Governance In this Special Report, governance refers to the effort to establish, reaffirm or change formal 
and informal institutions at all scales to negotiate relationships, resolve social conflicts and realise mutual 
gains (Paavola, 2007; Williamson, 2000). It refers to how the economy and society are governed or 
regulated; and how collective interests are defined, reconciled and institutionalised (Peters and Pierre, 2001). 
Governance may be an act of governments (e.g., a government restricting resource use), non-governmental 
organisation (e.g., issuing green certification), private actors (e.g., resource users establishing rules or norms 
for restricting use of a common resource), or any combination of these. Governance does not only include 
establishing institutions such as laws or policies, but also their implementation, enforcement and monitoring. 
The term ‘governance’ is used in diverse and contested ways. 
 

Adaptive governance An emerging term in the literature for the evolution of formal and informal 
institutions of governance that prioritise planning, implementation and evaluation of policy through 
iterative social learning; in the context of climate change, governance facilitating social learning to 
steer the use and protection of natural resources, and ecosystem services, particularly in situations of 
complexity and uncertainty. 

 
Climate governance includes efforts to share the burden of emission reduction amongst countries, 
sectors and groups of society (mitigation), and to resolve conflicts involved in, or to realise mutual 
gains through, adapting to climate change.  
 
Deliberative governance involves decision making through inclusive public conversation which 
allows opportunity for developing policy options through public discussion rather than collating 
individual preferences through voting or referenda (although the latter governance mechanisms can 
also be proceeded and legitimated by public deliberation processes). 
 
Multi-level governance refers to the dispersion of governance across multiple levels of jurisdiction 
and decision-making (Hooghe and Marks, 2003), including trans-regional and trans-national, regional, 
national and local levels. The concept emphasises that modern governance generally consists in, and 
is more flexible when there is, a vertical ‘layering’ of governance processes at different levels. 
 
Participatory governance favours direct public engagement in decision- and policy-making using a 
variety of techniques such as referenda, community deliberation, citizen juries or participatory 
budgeting. The approach can be applied in formal and informal institutional contexts from national to 
local levels, but is usually associated with devolved decision-making (Fung and Wright, 2003; 
Sarmiento and Tilly, 2018). 
 
Polycentric governance involves multiple centres of decision-making with overlapping jurisdictions. 
While the centres have some degree of autonomy, they also take each other into account, coordinating 
their actions and seeking to resolve conflicts (Carlisle and Gruby, 2017; Jordan et al., 2018; McGinnis 
and Ostrom, 2012). 
 

Gravity Recovery And Climate Experiment (GRACE) A pair of satellites to measure the Earth's gravity 
field anomalies from 2002 to 2017. These fields have been used, among other things, to study mass changes 
of the polar ice sheets and glaciers. See also Marine ice sheet instability (MISI), and Mass balance / budget 
(of glaciers or ice sheets). 
 
Green infrastructure The interconnected set of natural and constructed ecological systems, green spaces 
and other landscape features. It includes planted and indigenous trees, wetlands, parks, green open spaces 
and original grassland and woodlands, as well as possible building and street level design interventions that 
incorporate vegetation. Green infrastructure provides services and functions in the same way as conventional 
infrastructure (Culwick and Bobbins, 2016). See also Ecosystem, and Ecosystem services. 
 



FINAL DRAFT  Annex I: Glossary IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute AI-15 Total pages: 34 

Greenhouse gases (GHG) Gaseous constituents of the atmosphere, both natural and anthropogenic, that 
absorb and emit radiation at specific wavelengths within the spectrum of radiation emitted by the Earth's 
ocean and land surface, by the atmosphere itself, and by clouds. This property causes the greenhouse effect. 
Water vapour (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and ozone (O3) are the 
primary GHGs in the Earth's atmosphere. Human-made GHGs include sulphur hexafluoride (SF6), 
hydrofluorocarbons (HFCs), chlorofluorocarbons (CFCs) and perfluorocarbons (PFCs); several of these are 
also O3-depleting (and are regulated under the Montreal Protocol).  
 
Greenhouse gas removal Withdrawal of a greenhouse gas (GHG) and/or a precursor from the atmosphere 
by a sink. See also Carbon dioxide removal (CDR), and Negative emissions. 
 
Gross domestic product (GDP) The sum of gross value added, at purchasers' prices, by all resident and 
non-resident producers in the economy, plus any taxes and minus any subsidies not included in the value of 
the products in a country or a geographic region for a given period, normally one year. GDP is calculated 
without deducting for depreciation of fabricated assets or depletion and degradation of natural resources.  
 
Grounding line The junction between a glacier or ice sheet and an ice shelf; the place where ice starts to 
float. This junction normally occurs over a zone, rather than at a line.  
 
Habitability The ability of a place to support human life by providing protection from hazards which 
challenge human survival, and by assuring adequate space, food and freshwater.  
 
Hazard The potential occurrence of a natural or human-induced physical event or trend that may cause loss 
of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, 
service provision, ecosystems and environmental resources. See also Disaster, Exposure, Loss and Damage, 
and losses and damages, Risk, and Vulnerability. 
 
Heat wave A period of abnormally hot weather. Heat waves and warm spells have various and in some cases 
overlapping definitions. See also Climate extreme (extreme weather or climate event), Extreme weather 
event, and Marine heatwave.  
 
Holocene The current interglacial geological epoch, the second of two epochs within the Quaternary period, 
the preceding being the Pleistocene. The International Commission on Stratigraphy (ICS) defines the start of 
the Holocene at 11,700 years before 2000 (ICS, 2019). 
 
Hotspot See Climate hotspot. 
 
Human behaviour The responses of persons or groups to a particular situation, here likely to relate to 
climate change. Human behaviour covers the range of actions by individuals, communities, organisations, 
governments and at the international level.  
 

Adaptation behaviour Human actions that directly or indirectly affect the risks of climate change 
impacts.  
 
Mitigation behaviour Human actions that directly or indirectly influence mitigation.  

 
See also Adaptation. 
 
Human mobility The permanent or semi-permanent move by a person for at least one year and involving 
crossing an administrative, but not necessarily a national, border.  
 
Human rights Rights that are inherent to all human beings, universal, inalienable, and indivisible, typically 
expressed and guaranteed by law. They include the right to life, economic, social, and cultural rights, and the 
right to development and self-determination (UNOHCHR, 2018).  
 

Procedural rights Rights to a legal procedure to enforce substantive rights.  
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Substantive rights Basic human rights, including the right to the substance of being human such as 
life itself, liberty, and happiness.  

 
See also Equity, Equality, Justice, and Wellbeing. 
 
Human security A condition that is met when the vital core of human lives is protected, and when people 
have the freedom and capacity to live with dignity. In the context of climate change, the vital core of human 
lives includes the universal and culturally specific, material and non-material elements necessary for people 
to act on behalf of their interests and to live with dignity. 
 
Human system Any system in which human organisations and institutions play a major role. Often, but not 
always, the term is synonymous with society or social system. Systems such as agricultural systems, urban 
systems, political systems, technological systems, and economic systems are all human systems in the sense 
applied in this report.  
 
Hydrological cycle The cycle in which water evaporates from the ocean and the land surface, is carried over 
the Earth in atmospheric circulation as water vapour, condenses to form clouds, precipitates over the ocean 
and land as rain or snow, which on land can be intercepted by trees and vegetation, potentially accumulating 
as snow or ice, provides runoff on the land surface, infiltrates into soils, recharges groundwater, discharges 
into streams, and ultimately, flows into the oceans as rivers, polar glaciers and ice sheets, from which it will 
eventually evaporate again. The various systems involved in the hydrological cycle are usually referred to as 
hydrological systems.  
 
Iceberg Large piece of freshwater ice broken off from a glacier or an ice shelf during calving and floating in 
open water (at least five metres height above sea level). Smaller pieces of floating ice known as ‘bergy bits’ 
(less than 5 metres above sea level) or ‘growlers’ (less than 2 metres above sea level) can originate from 
glaciers or ice shelves, or from the breaking up of a large iceberg. Icebergs can also be classified by shape, 
most commonly being either tabular (steep sides and a flat top) or non-tabular (varying shapes, with domes 
and spires) (NOAA, 2019). In lakes, icebergs can originate by breaking off shelf ice, which forms through 
freezing of a lake surface. See also Calving (of glaciers or ice sheets), and Marine ice cliff instability (MICI). 
 
Iceberg calving See Calving (of glaciers or ice sheets). 
 
Ice core A cylinder of ice drilled out of a glacier or ice sheet to gain information on past changes in climate 
and composition of the atmosphere preserved in the ice or in air trapped in ice. 
 
Ice sheet An ice body originating on land that covers an area of continental size, generally defined as 
covering >50,000 km2, and that has formed over thousands of years through accumulation and compaction 
of snow. An ice sheet flows outward from a high central ice plateau with a small average surface slope. The 
margins usually slope more steeply, and most ice is discharged through fast-flowing ice streams or outlet 
glaciers, often into the sea or into ice shelves floating on the sea. There are only two ice sheets in the modern 
world, one on Greenland and one on Antarctica. The latter is divided into the East Antarctic Ice Sheet 
(EAIS), the West Antarctic Ice Sheet (WAIS) and the Antarctic Peninsula ice sheet. During glacial periods, 
there were other ice sheets. See also Ablation, Calving (of glaciers or ice sheets), Grounding line, 
Hydrological cycle, Marine ice cliff instability (MICI), Marine ice sheet instability (MISI), and Mass balance 
/ budget (of glaciers or ice sheets). 
 
Ice shelf A floating slab of ice originating from land of considerable thickness extending from the coast 
(usually of great horizontal extent with a very gently sloping surface), resulting from the flow of ice sheets, 
initially formed by the accumulation of snow, and often filling embayments in the coastline of an ice sheet. 
Nearly all ice shelves are in Antarctica, where most of the ice discharged into the ocean flows via ice 
shelves. See also Calving (of glaciers or ice sheets), Glacier, Hydrological cycle, Marine ice cliff instability 
(MICI), and Marine ice sheet instability (MISI).  
 
Ice stream A stream of ice with strongly enhanced flow that is part of an ice sheet. It is often separated from 
surrounding ice by strongly sheared, crevassed margins. See also Outlet glacier. 
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Impacts (consequences, outcomes) The consequences of realised risks on natural and human systems, 
where risks result from the interactions of climate-related hazards (including extreme weather / climate 
events), exposure, and vulnerability. Impacts generally refer to effects on lives, livelihoods, health and 
wellbeing, ecosystems and species, economic, social and cultural assets, services (including ecosystem 
services), and infrastructure. Impacts may be referred to as consequences or outcomes, and can be adverse or 
beneficial. See also Adaptation, Loss and Damage, and loss and damages, and Natural systems.  
 
Incremental adaptation See Adaptation.  
 
Indigenous knowledge (IK) The understandings, skills and philosophies developed by societies with long 
histories of interaction with their natural surroundings. For many indigenous peoples, IK informs decision-
making about fundamental aspects of life, from day-to-day activities to longer term actions. This knowledge 
is integral to cultural complexes, which also encompass language, systems of classification, resource use 
practices, social interactions, values, ritual and spirituality. These distinctive ways of knowing are important 
facets of the world’s cultural diversity (UNESCO, 2018). See also Local knowledge (LK). 
 
Industrial revolution A period of rapid industrial growth with far-reaching social and economic 
consequences, beginning in Britain during the second half of the 18th century and spreading to Europe and 
later to other countries including the United States. The invention of the steam engine was an important 
trigger of this development. The industrial revolution marks the beginning of a strong increase in the use of 
fossil fuels, initially coal, and hence emission of carbon dioxide (CO2). See also Pre-industrial. 
 
Inequality See Equality.  
 
Institutions The ‘prescriptions’ -i.e., rules, norms, and conventions- used by humans ‘to organize all forms 
of repetitive and structured interactions including those within families, neighborhoods, markets, firms, 
sports leagues, churches, private associations, and governments at all scales’ (Ostrom, 2005, p. 3). 
Institutions can be formal, such as laws and policies, or informal, such as traditions, customs, norms and 
conventions. Individuals and organisations -such as parliaments, regulatory agencies, private firms, and 
community bodies- develop and act in response to institutions and the incentives they frame. Institutions can 
guide, constrain and shape human interaction through direct control, through incentives, and through 
processes of socialisation.  
 
Integrated assessment A method of analysis that combines results and models from the physical, biological, 
economic and social sciences and the interactions among these components in a consistent framework to 
evaluate the status and the consequences of environmental change and the policy responses to it. 
 
(Internal) Displacement (of humans) The involuntary movement, individually or collectively, of persons 
from their country or community, notably for reasons of armed conflict, civil unrest, or natural or man-made 
disasters (adapted from IOM, 2011). See also Migration (of humans), and Planned relocation (of humans). 
 
Internal variability See Climate variability.  
 
Invasive species A species that is not native to a specific location or nearby, lacking natural controls, and 
has a tendency to rapidly increase in abundance, displacing native species. Invasive species may also damage 
the human economy or human health. See also Alien (non-native) species, Ecosystem, and Endemic species. 
 
Irreversibility A perturbed state of a dynamical system is defined as irreversible on a given timescale if the 
recovery timescale from this state due to natural processes is significantly longer than the time it takes for 
the system to reach this perturbed state. In the context of this Special Report, the recovery time scale of 
interest is hundreds to thousands of years. See also Tipping point.  
 
Justice is concerned with ensuring that people get what is due to them setting out the moral or legal 
principles of fairness and equity in the way people are treated, often based on the ethics and values of 
society.  
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Climate justice Justice that links development and human rights to achieve a human-centred approach 
to addressing climate change, safeguarding the rights of the most vulnerable people and sharing the 
burdens and benefits of climate change and its impacts equitably and fairly (MRFJC, 2018).  
 
Distributive justice Justice in the allocation of economic and non-economic costs and benefits across 
society.  
 
Inter-generational justice Justice in the distribution of economic and non-economic costs and benefits 
across generations.  
 
Procedural justice Justice in the way outcomes are brought about including who participates and is 
heard in the processes of decision-making.  
 
Social justice Just or fair relations within society that seek to address the distribution of wealth, access 
to resources, opportunity, and support according to principles of justice and fairness.  

 
See also Equity, and Human rights.  
 
Kyoto Protocol The Kyoto Protocol to the United Nations Framework Convention on Climate Change 
(UNFCCC) is an international treaty adopted in December 1997 in Kyoto, Japan, at the Third Session of the 
Conference of the Parties (COP3) to the UNFCCC. It contains legally binding commitments, in addition to 
those included in the UNFCCC. Countries included in Annex B of the Protocol (mostly OECD countries and 
countries with economies in transition) agreed to reduce their anthropogenic greenhouse gas (GHG) 
emissions (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), 
perfluorocarbons (PFCs), and sulphur hexafluoride (SF6)) by at least 5% below 1990 levels in the first 
commitment period (2008-2012). The Kyoto Protocol entered into force on 16 February 2005 and as of May 
2018 had 192 Parties (191 States and the European Union). A second commitment period was agreed in 
December 2012 at COP18, known as the Doha Amendment to the Kyoto Protocol, in which a new set of 
Parties committed to reduce GHG emissions by at least 18% below 1990 levels in the period from 2013 to 
2020. However, as of May 2018, the Doha Amendment had not received sufficient ratifications to enter into 
force. See also Anthropogenic, and Paris Agreement. 
 
Labile dissolved organic carbon (LDOC) See Dissolved organic carbon (DOC) and particulate organic 
carbon (POC). 
 
La Niña See El Niño-Southern Oscillation. 
 
Land The terrestrial portion of the biosphere that comprises the natural resources (soil, near-surface air, 
vegetation and other biota, and water), the ecological processes, topography, and human settlements and 
infrastructure that operate within that system (FAO, 2007; UNCCD, 1994). See also Ecosystem services, and 
Land use. 
 
Land management Sum of land-use practices (e.g., sowing, fertilising, weeding, harvesting, thinning, clear-
cutting) that take place within broader land-use categories (Pongratz et al., 2018).  
 
Land restoration The process of assisting the recovery of land from a degraded state (IPBES, 2018; 
McDonald et al. 2015). 
 
Land use The total of arrangements, activities and inputs applied to a parcel of land. The term ‘land use’ is 
also used in the sense of the social and economic purposes for which land is managed (e.g., grazing, timber 
extraction, conservation and city dwelling). In national greenhouse gas (GHG) inventories, land use is 
classified according to the IPCC land use categories of forest land, cropland, grassland, wetlands, 
settlements, and other lands (see the 2006 IPCC Guidelines for National GHG Inventories for details). See 
also Land management. 
 
Likelihood The chance of a specific outcome occurring, where this might be estimated probabilistically. 
Likelihood is expressed in this Special Report using a standard terminology (Mastrandrea et al., 2010). See 
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Section 1.9.2 in this report for the list of likelihood qualifiers used. See also Agreement, Evidence, 
Confidence, and Uncertainty.  
 
Livelihood The resources used and the activities undertaken in order for people to live. Livelihoods are 
usually determined by the entitlements and assets to which people have access. Such assets can be 
categorised as human, social, natural, physical, or financial.  
 
Local knowledge (LK) The understandings and skills developed by individuals and populations, specific to 
the places where they live. Local knowledge informs decision-making about fundamental aspects of life, 
from day-to-day activities to longer term actions. This knowledge is a key element of the social and cultural 
systems which influence observations of and responses to climate change; it also informs governance 
decisions (UNESCO, 2018). See also Indigenous knowledge (IK). 
 
Local sea level change Change in sea level relative to a datum (such as present-day mean sea level) at 
spatial scales smaller than 10 km. See also Regional sea level change, and Sea level change (sea level rise, 
SLR / sea level fall). 
 
Lock-in A situation in which the future development of a system, including infrastructure, technologies, 
investments, institutions, and behavioural norms, is determined or constrained (‘locked in’) by historic 
developments.  
 
Loss and Damage, and losses and damages Research has taken the term ‘Loss and Damage’ (capitalised 
letters) to refer to political debate under the United Nations Framework Convention on Climate Change 
(UNFCCC) following the establishment of the Warsaw Mechanism on Loss and Damage in 2013, which is 
to ‘address loss and damage associated with impacts of climate change, including extreme events and slow 
onset events, in developing countries that are particularly vulnerable to the adverse effects of climate 
change.’ The expression ‘losses and damages’ (lowercase letters) has been taken to refer broadly to harm 
from (observed) impacts and (projected) risks (Mechler et al., 2018).  
 
Maladaptive actions (Maladaptation) Actions that may lead to increased risk of adverse climate-related 
outcomes, including via increased greenhouse gas (GHG) emissions, increased vulnerability to climate 
change, or diminished welfare, now or in the future. Maladaptation is usually an unintended consequence. 
See also Adaptation, and Adaptive capacity. 
 
Marine heatwave A period of extreme warm near-sea surface temperature that persists for days to months 
and can extend up to thousands of kilometres. See also Climate extreme (extreme weather or climate event), 
Extreme weather event, and Heat wave.  
 
Marine ice cliff instability (MICI) A hypothetic mechanism of an ice cliff failure. In case a marine-
terminated ice sheet loses its buttressing ice shelf, an ice cliff can be exposed. If the exposed ice cliff is tall 
enough (about 800 m of the total height, or about 100 m of the above-water part), the stresses at the cliff face 
exceed the strength of the ice, and the cliff fails structurally in repeated calving events. See also Iceberg, and 
Marine ice sheet instability (MISI).  
 
Marine ice sheet instability (MISI) A mechanism of irreversible (on the decadal to centennial time scale) 
retreat of a grounding line for the marine-terminating glaciers, in case the glacier bed slopes towards the ice 
sheet interior. See also Hydrological cycle, Ice shelf, Marine ice cliff instability (MICI), and Sea ice.  
 
Mass balance / budget (of glaciers or ice sheets) Difference between the mass input (accumulation) and 
the mass loss (ablation) of an ice body (e.g., a glacier or ice sheet) over a stated time period, which is often a 
year or a season. Surface mass balance refers to the difference between surface accumulation and surface 
ablation. See also Calving (of glaciers or ice sheets), and Discharge (of ice). 
 
Measurement, reporting and verification (MRV) 
 

Measurement ‘Processes of data collection over time, providing basic datasets, including associated 
accuracy and precision, for the range of relevant variables. Possible data sources are field 
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measurements, field observations, detection through remote sensing and interviews’ (UN REDD, 
2009). 
 
Reporting ‘The process of formal reporting of assessment results to the UNFCCC, according to 
predetermined formats and according to established standards, especially the Intergovernmental Panel 
on Climate Change (IPCC) Guidelines and GPG (Good Practice Guidance)’ (UN REDD, 2009). 
 
Verification ‘The process of formal verification of reports, for example, the established approach to 
verify national communications and national inventory reports to the UNFCCC’ (UN REDD, 2009). 

 
Meridional Overturning Circulation (MOC) Meridional (north-south) overturning circulation in the ocean 
quantified by zonal (east-west) sums of mass transports in depth or density layers. In the North Atlantic, 
away from the subpolar regions, the MOC (which is in principle an observable quantity) is often identified 
with the thermohaline circulation (THC), which is a conceptual and incomplete interpretation. It must be 
borne in mind that the MOC is also driven by wind, and can also include shallower overturning cells such as 
occur in the upper ocean in the tropics and subtropics, in which warm (light) waters moving poleward are 
transformed to slightly denser waters and subducted equatorward at deeper levels.  
 

Atlantic Meridional Overturning Circulation (AMOC) The main current system in the South and 
North Atlantic Oceans. AMOC transports warm upper-ocean water northwards, and cold, deep water 
southwards, as part of the global ocean circulation system. Changes in the strength of AMOC can 
affect other components of the climate system.  

 
Methane (CH4) One of the six greenhouse gases (GHGs) to be mitigated under the Kyoto Protocol and is 
the major component of natural gas and associated with all hydrocarbon fuels. Under future global warming, 
there is risk of increased methane emissions from thawing permafrost, coastal wetlands and sub-sea gas 
hydrates. See also Mitigation. 
 
Microbial carbon pump Microbial processes that transform organic carbon from rapidly-degradable states 
to biologically-unavailable forms, resulting in long-term carbon storage in the ocean. The unavailable states 
of organic carbon can be due to their intrinsic refractory nature, or to extremely low concentrations of each 
of the diverse individual molecules. The microbial carbon pump can take place at any depth in the water 
column and is the principal mechanism generating and sustaining refractory dissolved organic carbon 
(RDOC) in the ocean. See also Biological (carbon) pump, Blue carbon, and Dissolved organic carbon 
(DOC) and particulate organic carbon (POC). 
 
Migrant See Migration.  
 
Migration (of humans) ‘Movement of a person or a group of persons, either across an international border, 
or within a State. It is a population movement, encompassing any kind of movement of people, whatever its 
length, composition and causes; it includes migration of refugees, displaced persons, economic migrants, and 
persons moving for other purposes, including family reunification’ (IOM, 2018).  
 

Migrant ‘Any person who is moving or has moved across an international border or within a State 
away from his/her habitual place of residence, regardless of (1) the person’s legal status; (2) whether 
the movement is voluntary or involuntary; (3) what the causes for the movement are; or (4) what the 
length of the stay is’ (IOM, 2018).  

 
See also (Internal) Displacement (of humans).  
 
Mitigation (of climate change) A human intervention to reduce emissions or enhance the sinks of 
greenhouse gases (GHG).  
 

Mitigation measures In climate policy, mitigation measures are technologies, processes or practices 
that contribute to mitigation, for example renewable energy technologies, waste minimisation 
processes, public transport commuting practices. See also Mitigation option.  
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Mitigation option A technology or practice that reduces GHG emissions or enhances sinks. 
  
Mitigation scenario A plausible description of the future that describes how the (studied) system 
responds to the implementation of mitigation policies and measures.  

 
See also Emission scenario, and Socio-economic scenarios.  
 
Mobility See Human mobility. 
 
(Model) Ensemble A group of parallel model simulations characterising historical climate conditions, 
climate predictions, or climate projections. Variation of the results across the ensemble members may give 
an estimate of modelling-based uncertainty. Ensembles made with the same model but different initial 
conditions only characterise the uncertainty associated with internal climate variability, whereas multi-model 
ensembles including simulations by several models also include the impact of model differences. Perturbed 
parameter ensembles, in which model parameters are varied in a systematic manner, aim to assess the 
uncertainty resulting from internal model specifications within a single model. Remaining sources of 
uncertainty unaddressed with model ensembles are related to systematic model errors or biases, which may 
be assessed from systematic comparisons of model simulations with observations wherever available. See 
also Projection.  
 
Monitoring and evaluation (M & E) Mechanisms put in place at national to local scales to respectively 
monitor and evaluate efforts to reduce greenhouse gas (GHG) emissions and/or adapt to the impacts of 
climate change with the aim of systematically identifying, characterising and assessing progress over time. 
See also Adaptation. 
 
Multi-level governance See Governance.  
 
Narratives (in the context of scenarios) Qualitative descriptions of plausible future world evolutions, 
describing the characteristics, general logic and developments underlying a particular quantitative set of 
scenarios. Narratives are also referred to in the literature as ‘storylines’. See also Pathways.  
 
Nationally determined contributions (NDCs) A term used under the United Nations Framework 
Convention on Climate Change (UNFCCC) whereby a country that has joined the Paris Agreement outlines 
its plans for reducing its emissions. Some countries’ NDCs also address how they will adapt to climate 
change impacts, and what support they need from, or will provide to, other countries to adopt low-carbon 
pathways and to build climate resilience. According to Article 4 paragraph 2 of the Paris Agreement, each 
Party shall prepare, communicate and maintain successive NDCs that it intends to achieve.  
 
Natural systems The dynamic physical and biological components of the environment that would operate in 
the absence of human impacts. Most, if not all, natural systems are also now affected by human activities to 
some degree.  
 
Nature's contributions to people (NCP) ‘All the contributions, both positive and negative, of living nature 
(i.e., diversity of organisms, ecosystems, and their associated ecological and evolutionary processes) to the 
quality of life for people. Beneficial contributions from nature include such things as food provision, water 
purification, flood control, and artistic inspiration, whereas detrimental contributions include disease 
transmission and predation that damages people or their assets. Many NCP may be perceived as benefits or 
detriments depending on the cultural, temporal or spatial context (Díaz et al, 2018).’ See also Biodiversity, 
and Ecosystem services. 
 
Near-surface permafrost See Permafrost. 
 
Negative emissions Removal of greenhouse gases (GHGs) from the atmosphere by deliberate human 
activities, i.e., in addition to the removal that would occur via natural carbon cycle processes. See also 
Anthropogenic, Carbon dioxide removal (CDR), and Greenhouse gas removal (GGR). 
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Net-negative emissions A situation of net-negative emissions is achieved when, as result of human 
activities, more greenhouse gases (GHG) are removed from the atmosphere than are emitted into it. Where 
multiple GHG are involved, the quantification of negative emissions depends on the climate metric chosen to 
compare emissions of different gases (such as global warming potential, global temperature change 
potential, and others, as well as the chosen time horizon). See also Greenhouse gas removal (GGR), Net-zero 
emissions, and Net-zero CO2 emissions. 
 
Net-zero CO2 emissions Net-zero carbon dioxide (CO2) emissions are achieved when anthropogenic CO2 
emissions are balanced by anthropogenic CO2 removals over a specified period. See also Carbon dioxide 
removal (CDR), Greenhouse gas removal (GGR), Net zero emissions, and Net negative emissions. 
 
Net-zero emissions Net-zero emissions are achieved when anthropogenic emissions of greenhouse gases 
(GHG) to the atmosphere are balanced by anthropogenic removals over a specified period. Where multiple 
GHG are involved, the quantification of net-zero emissions depends on the climate metric chosen to compare 
emissions of different gases (such as global warming potential, global temperature change potential, and 
others, as well as the chosen time horizon). See also Greenhouse gas removal (GGR), Net-zero CO2 
emissions, Negative emissions, and Net-negative emissions. 
 
Ocean The interconnected body of saline water that covers 71% of the Earth's surface, contains 97% of the 
Earth's water and provides 99% of the Earth's biologically-habitable space. It includes the Arctic, Atlantic, 
Indian, Pacific and Southern Oceans, as well as their marginal seas and coastal waters. See also Blue carbon, 
Coast, Ocean acidification (OA), Ocean deoxygenation, and Southern Ocean. 
 
Ocean acidification (OA) A reduction in the pH of the ocean, accompanied by other chemical changes 
(primarily in the levels of carbonate and bicarbonate ions), over an extended period, typically decades or 
longer, which is caused primarily by uptake of carbon dioxide (CO2) from the atmosphere, but can also be 
caused by other chemical additions or subtractions from the ocean. Anthropogenic OA refers to the 
component of pH reduction that is caused by human activity (IPCC, 2011, p. 37). See also Carbon cycle, 
Climate change, and Global warming. 
 
Ocean deoxygenation The loss of oxygen in the ocean. It results from ocean warming, which reduces 
oxygen solubility and increases oxygen consumption and stratification, thereby reducing the mixing of 
oxygen into the ocean interior. Deoxygenation can also be exacerbated by the addition of excess nutrients in 
the coastal zone.  
 
Outburst flood See Glacier lake outburst / Glacial lake outburst flood (GLOF).  
 
Outlet glaciers A glacier, usually between rock walls, that is part of, and drains an ice sheet. See also Ice 
stream, and Hydrological cycle.  
 
Outflow See Discharge (of ice). 
 
Overshoot See Temperature overshoot. 
 
Ozone (O3) The triatomic form of oxygen, and a gaseous atmospheric constituent. In the troposphere, O3 is 
created both naturally and by photochemical reactions involving gases resulting from human activities (e.g., 
smog). Tropospheric O3 acts as a greenhouse gas (GHG). In the stratosphere, O3 is created by the interaction 
between solar ultraviolet radiation and molecular oxygen (O2). Stratospheric O3 plays a dominant role in the 
stratospheric radiative balance. Its concentration is highest in the ozone layer. See also Anthropogenic, and 
Radiative forcing. 
 
Paris Agreement The Paris Agreement under the United Nations Framework Convention on Climate 
Change (UNFCCC) was adopted in December 2015 in Paris, France, at the 21st session of the Conference of 
the Parties (COP) to the UNFCCC. The agreement, adopted by 196 Parties to the UNFCCC, entered into 
force on 4 November 2016 and as of May 2018 had 195 Signatories and was ratified by 177 Parties. One of 
the goals of the Paris Agreement is ‘Holding the increase in the global average temperature to well below 
2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-
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industrial levels’, recognising that this would significantly reduce the risks and impacts of climate change. 
Additionally, the Agreement aims to strengthen the ability of countries to deal with the impacts of climate 
change. The Paris Agreement is intended to become fully effective in 2020. See also Kyoto Protocol, and 
Nationally determined contributions (NDCs).  
 
Participatory governance See Governance. 
 
Particulate organic carbon (POC) See Dissolved organic carbon (DOC) and particulate organic carbon 
(POC). 
 
Pathways The temporal evolution of natural and/or human systems towards a future state. Pathway concepts 
range from sets of quantitative and qualitative scenarios or narratives of potential futures to solution-
oriented decision-making processes to achieve desirable societal goals. Pathway approaches typically focus 
on biophysical, techno-economic, and/or socio-behavioural trajectories and involve various dynamics, goals, 
and actors across different scales.  
 

Adaptation pathways A series of adaptation choices involving trade-offs between short-term and 
long-term goals and values. These are processes of deliberation to identify solutions that are 
meaningful to people in the context of their daily lives and to avoid potential maladaptation.  
 
Development pathways Trajectories based on an array of social, economic, cultural, technological, 
institutional, and biophysical features that characterise the interactions between human and natural 
systems and outline visions for the future, at a particular scale. See also Climate-resilient development 
pathways (CRDPs), and Human systems. 
 
Emission pathways Modelled trajectories of global anthropogenic emissions over the 21st century are 
termed emission pathways. Emission pathways are classified by their temperature trajectory over the 
21st century: pathways giving at least 50% probability based on current knowledge of limiting global 
warming to below 1.5°C are classified as ‘no overshoot’; those limiting warming to below 1.6°C and 
returning to 1.5°C by 2100 are classified as ‘1.5°C limited overshoot’; while those exceeding 1.6°C 
but still returning to 1.5°C by 2100 are classified as ‘higher overshoot’. See also Temperature 
overshoot.  
 
Representative concentration pathways (RCPs) Scenarios that include time series of emissions and 
concentrations of the full suite of greenhouse gases (GHGs) and aerosols and chemically active gases, 
as well as land use / land cover (Moss et al., 2008). The word ‘representative’ signifies that each RCP 
provides only one of many possible scenarios that would lead to the specific radiative forcing 
characteristics. The term ‘pathway’ emphasises the fact that not only the long-term concentration 
levels, but also the trajectory taken over time to reach that outcome are of interest (Moss et al., 2010). 
RCPs were used to develop climate projections in Coupled Model Intercomparison Project CMIP5.  
• RCP2.6: One pathway where radiative forcing peaks at approximately 3 W m–2 and then declines 

to be limited at 2.6 W m–2 in 2100 (the corresponding Extended Concentration Pathway (ECP) 
assuming constant emissions after 2100).  

• RCP4.5 and RCP6.0: Two intermediate stabilisation pathways in which radiative forcing is limited 
at approximately 4.5 W m–2 and 6.0 W m–2 in 2100 (the corresponding ECPs assuming constant 
concentrations after 2150).  

• RCP8.5: One high pathway which leads to >8.5 W m–2 in 2100 (the corresponding ECP assuming 
constant emissions after 2100 until 2150 and constant concentrations after 2250). See also Shared 
Socio-economic Pathways (SSPs).  

 
Shared socio-economic pathways (SSPs) were developed to complement the RCPs with varying 
socio-economic challenges to adaptation and mitigation (O’Neill et al., 2014). Based on five 
narratives, the SSPs describe alternative socio-economic futures in the absence of climate policy 
intervention, comprising sustainable development (SSP1), regional rivalry (SSP3), inequality (SSP4), 
fossil-fueled development (SSP5), and a middle-of-the-road development (SSP2) (O’Neill et al., 2017; 
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Riahi et al., 2017). The combination of SSP-based socio-economic scenarios and RCP-based climate 
projections provides an integrative frame for climate impact and policy analysis.  
 
Sustainable development pathways (SDPs) Trajectories aimed at attaining the Sustainable 
Development Goals (SDGs) in the short term and the goals of sustainable development in the long 
term. In the context of climate change, such pathways denote trajectories that address social, 
environmental, and economic dimensions of sustainable development, adaptation and mitigation, and 
transformation, in a generic sense or from a particular methodological perspective such as integrated 
assessment models and scenario simulations.  

 
See also Emission scenario, Institution, Mitigation scenario, and Natural Systems.  
 
Pelagic The pelagic zone consists of the entire water column of the open ocean. It is subdivided into the 
'epipelagic zone' (<200 m, the uppermost part of the ocean that receives enough sunlight to allow 
photosynthesis), the 'mesopelagic zone' (200–1000 m depth) and the 'bathypelagic zone' (>1000 m depth). 
The term ‘pelagic’ can also refer to organisms that live in the pelagic zone. 
 
Permafrost Ground (soil or rock, and included ice and organic material) that remains at or below 0°C for at 
least two consecutive years (Harris et al., 1988). Note that permafrost is defined via temperature rather than 
ice content and, in some instances, may be ice-free. 
 

Near-surface permafrost Permafrost within ~3-4 m of the ground surface. The depth is not precise, 
but describes what commonly is highly relevant for people and ecosystems. Deeper permafrost is often 
progressively less ice-rich and responds more slowly to warming than near-surface permafrost. 
Presence or absence of near-surface permafrost is not the only significant metric of permafrost change, 
and deeper permafrost may persist when near-surface permafrost is absent. 
 
Permafrost degradation Decrease in the thickness and/or areal extent of permafrost.  
 
Permafrost thaw Progressive loss of ground ice in permafrost, usually due to input of heat. Thaw can 
occur over decades to centuries over the entire depth of permafrost ground, with impacts occurring 
while thaw progresses. During thaw, temperature fluctuations are subdued because energy is 
transferred by phase change between ice and water. After the transition from permafrost to non-
permafrost, ground can be described as thawed.  
 

See also Cryosphere, and Frozen ground. 
 
Permafrost degradation See Permafrost. 
 
Permafrost thaw See Permafrost. 
 
pH A dimensionless measure of the acidity of a solution given by its concentration of hydrogen ions (H+). 
pH is measured on a logarithmic scale where pH = -log10(H+). Thus, a pH decrease of 1 unit corresponds to 
a 10-fold increase in the concentration of H+, or acidity. See also Ocean acidification (OA). 
 
Planned relocation (of humans) A form of human mobility response in the face of sea level rise and related 
impacts. Planned relocation is typically initiated, supervised and implemented from national to local level 
and involves small communities and individual assets but may also involve large populations. Also termed 
resettlement, managed retreat, or managed realignment. See also (Internal) Displacement (of humans), and 
Sea level change (sea level rise, SLR / sea level fall). 
 
Plasticity Change in organismal trait values in response to an environmental cue, and which does not require 
change in underlying DNA sequence.  
 
Political economy The set of interlinked relationships between people, the state, society and markets as 
defined by law, politics, economics, customs and power that determine the outcome of trade and transactions 
and the distribution of wealth in a country or economy.  
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Poverty A complex concept with several definitions stemming from different schools of thought. It can refer 
to material circumstances (such as need, pattern of deprivation or limited resources), economic conditions 
(such as standard of living, inequality or economic position) and/or social relationships (such as social class, 
dependency, exclusion, lack of basic security or lack of entitlement). See also Equality, and Poverty 
eradication. 
 
Poverty eradication A set of measures to end poverty in all its forms everywhere. See also Sustainable 
Development Goals (SDGs). 
 
Precursors Atmospheric compounds that are not greenhouse gases (GHGs) or aerosols, but that have an 
effect on GHG or aerosol concentrations by taking part in physical or chemical processes regulating their 
production or destruction rates. 
 
Pre-industrial The multi-century period prior to the onset of large-scale industrial activity around 1750. In 
this Special Report, as in IPCC 2018a, the reference period 1850–1900 is used to approximate pre-industrial 
global mean surface temperature (GMST). See also Industrial Revolution. 
 
Private costs Costs carried by individuals, companies or other private entities that undertake an action, 
whereas social costs include additionally the external costs on the environment and on society as a whole. 
Quantitative estimates of both private and social costs may be incomplete, because of difficulties in 
measuring all relevant effect.  
 
Primary production The synthesis of organic compounds by plants and microbes, on land or in the ocean, 
primarily by photosynthesis using light and carbon dioxide (CO2) as sources of energy and carbon 
respectively. It can also occur through chemosynthesis, using chemical energy, e.g., in deep sea vents. 
 

Gross primary production (GPP) 
The total amount of carbon fixed by photosynthesis over a specified time period. 
 
Net primary production (NPP) 
The amount of carbon fixed by photosynthesis minus the amount lost by respiration over a specified 
time period. 

 
Projection A potential future evolution of a quantity or set of quantities, often computed with the aid of a 
model. Unlike predictions, projections are conditional on assumptions concerning, for example, future socio-
economic and technological developments that may or may not be realised. See also Climate projection, 
(Model) ensemble, Scenario, and Pathways.  
 
Radiative forcing The change in the net, downward minus upward, radiative flux (expressed in W m-2) at 
the tropopause or top of atmosphere due to a change in an external driver of climate change, such as a 
change in the concentration of carbon dioxide (CO2), the concentration of volcanic aerosols or in the output 
of the Sun. The traditional radiative forcing is computed with all tropospheric properties held fixed at their 
unperturbed values, and after allowing for stratospheric temperatures, if perturbed, to readjust to radiative-
dynamical equilibrium. Radiative forcing is called instantaneous if no change in stratospheric temperature is 
accounted for. The radiative forcing once rapid adjustments are accounted for is termed the effective 
radiative forcing. Radiative forcing is not to be confused with cloud radiative forcing, which describes an 
unrelated measure of the impact of clouds on the radiative flux at the top of the atmosphere.  
 
Reasons for concern (RFC) Elements of a classification framework, first developed in the IPCC Third 
Assessment Report, which aims to facilitate judgments about what level of climate change may be 
dangerous (in the language of Article 2 of the UNFCCC) by aggregating risks from various sectors, 
considering hazards, exposures, vulnerabilities, capacities to adapt, and the resulting impacts.  
 
Reference period The period relative to which anomalies are computed. 
 



FINAL DRAFT  Annex I: Glossary IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute AI-26 Total pages: 34 

Refractory dissolved organic carbon (RDOC) See Dissolved organic carbon (DOC) and particulate 
organic carbon (POC). 
 
Region A relatively large-scale land or ocean area characterised by specific geographical and climatological 
features. The climate of a land-based region is affected by regional and local scale features like topography, 
land use characteristics and large water bodies, as well as remote influences from other regions, in addition 
to global climate conditions. The IPCC defines a set of standard regions for analyses of observed climate 
trends and climate model projections (see IPCC, 2018a, Figure 3.2; IPCC 2012a).  
 
Regional sea level change Change in sea level relative to a datum (such as present-day mean sea level) at 
spatial scales of about 100 km.  
 
Relative sea level Sea level measured by a tide gauge with respect to the land upon which it is situated. See 
also Global mean sea level, Coast, Small Island Developing States (SIDS), Local sea level, Regional sea 
level change, Sea level change (sea level rise, SLR / sea level fall), Steric sea level change, and 
Anthropogenic subsidence.  
 
Relocation See Planned relocation (of humans). 
 
Reporting See Measurement / Measurement, reporting and verification (MRV). 
 
Representative concentration pathways (RCPs) See Pathways.  
 
Resettlement See Planned relocation (of humans). 
 
Residual risk The risk that remains following adaptation and risk reduction efforts. 
 
Resilience The capacity of interconnected social, economic and ecological systems to cope with a hazardous 
event, trend or disturbance, responding or reorganising in ways that maintain their essential function, identity 
and structure. Resilience is a positive attribute when it maintains capacity for adaptation, learning and/or 
transformation (Arctic Council, 2016). See also Hazard, Risk, and Vulnerability. 
 
Restoration In environmental context, restoration involves human interventions to assist the recovery of an 
ecosystem that has been previously degraded, damaged or destroyed. 
 
Risk The potential for adverse consequences for human or ecological systems, recognising the diversity of 
values and objectives associated with such systems. In the context of climate change, risks can arise from 
potential impacts of climate change as well as human responses to climate change. Relevant adverse 
consequences include those on lives, livelihoods, health and wellbeing, economic, social and cultural assets 
and investments, infrastructure, services (including ecosystem services), ecosystems and species. 
  
In the context of climate change impacts, risks result from dynamic interactions between climate-related 
hazards with the exposure and vulnerability of the affected human or ecological system to the hazards. 
Hazards, exposure and vulnerability may each be subject to uncertainty in terms of magnitude and likelihood 
of occurrence, and each may change over time and space due to socio-economic changes and human 
decision-making. 
 
In the context of climate change responses, risks result from the potential for such responses not achieving 
the intended objective(s), or from potential trade-offs with, or negative side-effects on, other societal 
objectives, such as the Sustainable Development Goals (SDGs). Risks can arise for example from 
uncertainty in implementation, effectiveness or outcomes of climate policy, climate-related investments, 
technology development or adoption, and system transitions. 
 
See also Adaptation, Human systems, Mitigation, and Risk management. 
 
Risk assessment The qualitative and/or quantitative scientific estimation of risks. See also Risk, Risk 
management, and Risk perception. 
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Risk management Plans, actions, strategies or policies to reduce the likelihood and/or magnitude of adverse 
potential consequences, based on assessed or perceived risks. See also Risk assessment, and Risk perception. 
 
Risk perception The subjective judgment that people make about the characteristics and severity of a risk. 
See also Risk assessment, and Risk management. 
 
Runoff The flow of water over the surface or through the subsurface, which typically originates from the 
part of liquid precipitation and/or snow/ice melt that does not evaporate, transpire or refreeze, and returns to 
water bodies. See also Hydrological cycle.  
 
Scenario A plausible description of how the future may develop based on a coherent and internally 
consistent set of assumptions about key driving forces (e.g., rate of technological change (TC), prices) and 
relationships. Note that scenarios are neither predictions nor forecasts, but are used to provide a view of the 
implications of developments and actions. See also Climate projection, Driver, Emission scenario, 
Mitigation scenario, (Model) ensemble, Pathways, and Projection.  
 
Sea ice Ice found at the sea surface that has originated from the freezing of seawater. Sea ice may be 
discontinuous pieces (ice floes) moved on the ocean surface by wind and currents (pack ice), or a motionless 
sheet attached to the coast (land-fast ice). Sea ice concentration is the fraction of the ocean covered by ice. 
Sea ice less than one year old is called first-year ice. Perennial ice is sea ice that survives at least one 
summer. It may be subdivided into second-year ice and multi-year ice, where multiyear ice has survived at 
least two summers. See also Cryosphere. 
 
Sea level change (sea level rise, SLR / sea level fall) Change to the height of sea level, both globally and 
locally (relative sea level change) at seasonal, annual, or longer time scales due to (1) a change in ocean 
volume as a result of a change in the mass of water in the ocean (e.g., due to melt of glaciers and ice sheets), 
(2) changes in ocean volume as a result of changes in ocean water density (e.g., expansion under warmer 
conditions), (3) changes in the shape of the ocean basins and changes in the Earth’s gravitational and 
rotational fields, and (4) local subsidence or uplift of the land. Global mean sea level change resulting from 
change in the mass of the ocean is called barystatic. The amount of barystatic sea level change due to the 
addition or removal of a mass of water is called its sea level equivalent (SLE). Sea level changes, both 
globally and locally, resulting from changes in water density are called steric. Density changes induced by 
temperature changes only are called thermosteric, while density changes induced by salinity changes are 
called halosteric. Barystatic and steric sea level changes do not include the effect of changes in the shape of 
ocean basins induced by the change in the ocean mass and its distribution. See also Anthropogenic 
subsidence, Local sea level change, Regional sea level change, and Steric sea level change. 
 
Sea level equivalent (SLE) The SLE of a mass of water, ice, or water vapour is that mass, converted to a 
volume using a density of 1000 kg m-3, and divided by the present-day ocean surface area of 3.625 × 1000 
m2. Thus, 362.5 Gt of water mass added to the ocean correspond to 1 mm of global mean sea level rise. 
However, more accurate estimates of SLE must account for additional processes affecting mean sea level 
rise, such as shoreline migration, changes in ocean area, and for vertical land movements. See also Sea level 
change (sea level rise, SLR / sea level fall). 
 
Sea level rise (SLR) See Sea level change (sea level rise, SLR / sea level fall). 
 
Sea surface temperature (SST) The subsurface bulk temperature in the top few metres of the ocean, 
measured by ships, buoys, and drifters. From ships, measurements of water samples in buckets were mostly 
switched in the 1940s to samples from engine intake water. Satellite measurements of skin temperature 
(uppermost layer; a fraction of a millimetre thick) in the infrared or the top centimetre or so in the 
microwave are also used, but must be adjusted to be compatible with the bulk temperature. See also Global 
mean surface temperature (GMST). 
 
Sendai Framework for Disaster Risk Reduction The Sendai Framework for Disaster Risk Reduction 
2015-2030 outlines seven clear targets and four priorities for action to prevent new, and to reduce existing 
disaster risks. The voluntary, non-binding agreement recognizes that the State has the primary role to reduce 
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disaster risk but that responsibility should be shared with other stakeholders including local government, the 
private sector and other stakeholders, with the aim for the substantial reduction of disaster risk and losses in 
lives, livelihoods and health and in the economic, physical, social, cultural and environmental assets of 
persons, businesses, communities and countries. 
 
Sequestration The long-term removal of carbon dioxide (CO2) or other forms of carbon from the 
atmosphere, with secure storage on climatically significant time-scales (decadal to century). The period of 
storage needs to be known for climate modelling and carbon accounting purposes. See also Blue carbon, 
Carbon dioxide removal (CDR), Sink, and Uptake. 
 
Shared socio-economic pathways (SSPs) See Pathways.  
 
Shelf seas Relatively shallow water covering the shelf of continents or around islands. The limit of shelf seas 
is conventionally considered as 200 m water depth at the continental shelf edge, where there is usually a 
steep slope to the deep ocean floor. During glacial periods, most shelf seas are lost since they become land 
as the build-up of ice sheets caused a decrease of global sea level. See also Coasts, Glacier, and Ice shelf. 
 
Short-lived climate forcers (SLCF) A set of compounds that are primarily composed of those with short 
lifetimes in the atmosphere compared to well-mixed greenhouse gases (GHGs), and are also referred to as 
near-term climate forcers. This set of compounds includes methane (CH4), which is also a well-mixed 
greenhouse gas, as well as ozone (O3) and aerosols, or their precursors, and some halogenated species that 
are not well-mixed GHGs. These compounds do not accumulate in the atmosphere at decadal to centennial 
timescales, and so their effect on climate is predominantly in the first decade after their emission, although 
their changes can still induce long-term climate effects such as sea level change. Their effect can be cooling 
or warming. A subset of exclusively warming SLCFs is referred to as short-lived climate pollutants. See also 
Forcing, and Sea level change (sea level rise, SLR / sea level fall). 
 
Sink Any process, activity or mechanism which removes a greenhouse gas (GHG), an aerosol or a 
precursor of a GHG from the atmosphere (UNFCCC Article 1.8). See also Blue carbon, Sequestration, and 
Uptake.  
 
Small Island Developing States (SIDS), as recognised by the United Nations Office of the High 
Representative for the Least Developed Countries, Landlocked Developing Countries and Small Island 
Developing States, are a distinct group of developing countries facing specific social, economic and 
environmental vulnerabilities (UN-OHRLLS, 2011). They were recognised as a special case both for their 
environment and development at the Rio Earth Summit in Brazil in 1992. Fifty-eight countries and territories 
are presently classified as SIDS by the UN-OHRLLS, with 38 being UN member states and 20 being Non-
UN-Members or Associate Members of the Regional Commissions (UN-OHRLLS, 2018).  
 
Social costs See Private costs. 
 
Social-ecological system An integrated system that includes human societies and ecosystems, in which 
humans are part of nature. The functions of such a system arise from the interactions and interdependence of 
the social and ecological subsystems. The system’s structure is characterised by reciprocal feedbacks, 
emphasising that humans must be seen as a part of, not apart from, nature (Arctic Council, 2016; Berkes and 
Folke, 1998).  
 
Social learning A process of social interaction through which people learn new behaviours, capacities, 
values, and attitudes.  
 
Soil moisture Water stored in the soil in liquid or frozen form. Root-zone soil moisture is of most relevance 
for plant activity. See also Drought, and Permafrost.  
 
Solar radiation management See Solar radiation modification (SRM). 
 
Solar radiation modification (SRM) The intentional modification of the Earth's shortwave radiative budget 
with the aim of reducing warming. Artificial injection of stratospheric aerosols, marine cloud brightening, 
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and land surface albedo modification are examples of proposed SRM methods. SRM does not fall within the 
definitions of mitigation and adaptation (IPCC, 2012b, p. 2). Note that in the literature, SRM is also referred 
to as solar radiation management, or albedo enhancement. See also Geoengineering. 
 
Solubility pump A physicochemical process that transports dissolved inorganic carbon from the ocean’s 
surface to its interior. The solubility pump is primarily driven by the solubility of carbon dioxide (CO2) (with 
more CO2 dissolving in colder water) and the large-scale, thermohaline patterns of ocean circulation. See 
also Biological (carbon) pump, and Dissolved inorganic carbon. 
 
Source Any process or activity which releases a greenhouse gas (GHG), an aerosol or a precursor of a GHG 
into the atmosphere (UNFCCC Article 1.9). See also Sink. 
 
Southern Ocean The ocean region encircling Antarctica that connects the Atlantic, Indian and Pacific 
Oceans together, allowing inter-ocean exchange. This region is the main source of much of the deep water of 
the world’s ocean and also provides the primary return pathway for this deep water to the surface (Marshall 
and Speer, 2012; Toggweiler and Samuels, 1995). The drawing up of deep waters and the subsequent 
transport into the ocean interior has major consequences for the global heat, nutrient, and carbon balances, as 
well as the Antarctic cryosphere and marine ecosystems. 
 
Stabilisation (of GHG or CO2-equivalent concentration) A state in which the atmospheric concentrations 
of one greenhouse gas (GHG) (e.g., carbon dioxide, CO2) or of a CO2-equivalent basket of GHGs (or a 
combination of GHGs and aerosols) remains constant over time. See also Atmosphere. 
 
Steric sea level change Change in sea level due to thermal expansion and salinity variations. Thermal 
expansion refers to the increase in volume (and decrease in density) that results from warming water. See 
also Anthropogenic subsidence, Coast, Global mean sea level, Local sea level, Regional sea level, Relative 
sea level, Sea level change (sea level rise, SLR / sea level fall), and Small Island Developing States (SIDS). 
 
Storm surge The temporary increase, at a particular locality, in the height of the sea due to extreme 
meteorological conditions (low atmospheric pressure and/or strong winds). The storm surge is defined as 
being the excess above the level expected from the tidal variation alone at that time and place. See also 
Extreme weather / climate event. 
 
Stratification Process of forming of layers of (ocean) water with different properties such as salinity, 
density and temperature that act as barrier for water mixing. The strengthening of near-surface stratification 
generally results in warmer surface waters, decreased oxygen levels in deeper water, and intensification of 
ocean acidification (OA) in the upper ocean. See also Ocean deoxygenation. 
 
Subsidence See Anthropogenic subsidence. 
 
Sustainability involves ensuring the persistence of natural and human systems, implying the continuous 
functioning of ecosystems, the conservation of high biodiversity, the recycling of natural resources and, in 
the human sector, successful application of justice and equity. See also Natural systems, and Sustainable 
development (SD). 
 
Sustainable development (SD) Development that meets the needs of the present without compromising the 
ability of future generations to meet their own needs (WCED, 1987) and balances social, economic and 
environmental concerns. See also Development pathways (under Pathways), Sustainability, and Sustainable 
development goals (SDGs).  
 
Sustainable development goals (SDGs) The 17 global goals for development for all countries established 
by the United Nations through a participatory process and elaborated in the 2030 Agenda for Sustainable 
Development (UN, 2015), including ending poverty and hunger; ensuring health and wellbeing, education, 
gender equality, clean water and energy, and decent work; building and ensuring resilient and sustainable 
infrastructure, cities and consumption; reducing inequalities; protecting land and water ecosystems; 
promoting peace, justice and partnerships; and taking urgent action on climate change. See also Resilience, 
and Sustainability.  
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Sustainable development pathways (SDPs) See Pathways. 
 
Teleconnection A statistical association between climate variables at widely separated, geographically-fixed 
spatial locations. Teleconnections are caused by large spatial structures such as basin-wide coupled modes of 
ocean-atmosphere variability, Rossby wave-trains, mid-latitude jets, and storm tracks. 
 
Temperature overshoot The temporary exceedance of a specified level of global warming, such as 1.5°C. 
Overshoot implies a peak followed by a decline in global warming, achieved through anthropogenic removal 
of carbon dioxide (CO2) exceeding remaining CO2 emissions globally. See also Carbon dioxide removal 
(CDR), and Emission pathways (under Pathways). 
 
Thermokarst Processes, such as collapse, subsidence and erosion, by which characteristic landforms result 
from the thawing of ice-rich permafrost (Harris et al., 1988). 
 
Time of Emergence (ToE) Time when a specific anthropogenic signal related to climate change is 
statistically detected to emerge from the background noise of natural climate variability in a reference 
period, for a specific region (Hawkins and Sutton, 2012). 
 
Tipping point A level of change in system properties beyond which a system reorganises, often in a non-
linear manner, and does not return to the initial state even if the drivers of the change are abated. For the 
climate system, the term refers to a critical threshold at which global or regional climate changes from one 
stable state to another stable state. Tipping points are also used when referring to impact: the term can imply 
that an impact tipping point is (about to be) reached in a natural or human system. See also Abrupt climate 
change, Adaptation, Irreversibility, and Natural Systems.  
 
Transformation A change in the fundamental attributes of natural and human systems.  
 

Societal (social) transformation A profound and often deliberate shift initiated by communities 
toward sustainability, facilitated by changes in individual and collective values and behaviours, and a 
fairer balance of political, cultural, and institutional power in society.  
 
Transformative change A system-wide change that requires more than technological change through 
consideration of social and economic factors that with technology can bring about rapid change at 
scale.  
 

See also Natural systems. 
 
Transformational adaptation See Adaptation.  
 
Transformative change See Transformation. 
 
Transition The process of changing from one state or condition to another in a given period of time. 
Transition can be in individuals, firms, cities, regions and nations, and can be based on incremental or 
transformative change.  
 
Tropical cyclone The general term for a strong, cyclonic-scale disturbance that originates over tropical 
oceans. Distinguished from weaker systems (often named tropical disturbances or depressions) by exceeding 
a threshold wind speed. A tropical storm is a tropical cyclone with one-minute average surface winds 
between 18 and 32 m s-1. Beyond 32 m s-1, a tropical cyclone is called a hurricane, typhoon, or cyclone, 
depending on geographic location. See also Extratropical cyclone.  
 
Uncertainty A state of incomplete knowledge that can result from a lack of information or from 
disagreement about what is known or even knowable. It may have many types of sources, from imprecision 
in the data to ambiguously defined concepts or terminology, incomplete understanding of critical processes, 
or uncertain projections of human behaviour. Uncertainty can therefore be represented by quantitative 
measures (e.g., a probability density function) or by qualitative statements (e.g., reflecting the judgment of a 



FINAL DRAFT  Annex I: Glossary IPCC SR Ocean and Cryosphere 

Do Not Cite, Quote or Distribute AI-31 Total pages: 34 

team of experts) (see IPCC, 2004; Mastrandrea et al., 2010; Moss and Schneider, 2000). See also Agreement, 
Confidence, Deep Uncertainty, and Likelihood.  
 
United Nations Framework Convention on Climate Change (UNFCCC) The UNFCCC was adopted in 
May 1992 and opened for signature at the 1992 Earth Summit in Rio de Janeiro. It entered into force in 
March 1994 and as of May 2018 had 197 Parties (196 States and the European Union). The Convention’s 
ultimate objective is the ‘stabilisation of greenhouse gas concentrations in the atmosphere at a level that 
would prevent dangerous anthropogenic interference with the climate system’. The provisions of the 
Convention are pursued and implemented by two treaties: the Kyoto Protocol and the Paris Agreement.  
 
Uptake The transfer of substances (such as carbon) or energy (e.g., heat) from one compartment of a system 
to another; for example, in the Earth system from the atmosphere to the ocean or to the land. See also 
Sequestration, and Sink.  
 
Vulnerability The propensity or predisposition to be adversely affected. Vulnerability encompasses a 
variety of concepts and elements including sensitivity or susceptibility to harm and lack of capacity to cope 
and adapt. See also Adaptation, Exposure, Hazard, and Risk.  
 
Water cycle See Hydrological cycle.  
 
Wellbeing A state of existence that fulfils various human needs, including material living conditions and 
quality of life, as well as the ability to pursue one’s goals, to thrive, and feel satisfied with one’s life. 
Ecosystem well-being refers to the ability of ecosystems to maintain their diversity and quality. See also 
Biodiversity, Climate-resilient development pathways (CRDPs), Human rights, and Sustainable development 
goals (SDGs).  
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